JP5034778B2 - Membrane separation wastewater treatment method and apparatus - Google Patents

Membrane separation wastewater treatment method and apparatus Download PDF

Info

Publication number
JP5034778B2
JP5034778B2 JP2007217809A JP2007217809A JP5034778B2 JP 5034778 B2 JP5034778 B2 JP 5034778B2 JP 2007217809 A JP2007217809 A JP 2007217809A JP 2007217809 A JP2007217809 A JP 2007217809A JP 5034778 B2 JP5034778 B2 JP 5034778B2
Authority
JP
Japan
Prior art keywords
biological treatment
sludge
treatment tank
tank
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007217809A
Other languages
Japanese (ja)
Other versions
JP2009050764A (en
Inventor
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007217809A priority Critical patent/JP5034778B2/en
Publication of JP2009050764A publication Critical patent/JP2009050764A/en
Application granted granted Critical
Publication of JP5034778B2 publication Critical patent/JP5034778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機物含有水等の排水を生物汚泥により処理し、生物汚泥を含む混合液を膜分離して処理水を得る膜分離式排水処理方法および装置に関する。   The present invention relates to a membrane separation type wastewater treatment method and apparatus for treating wastewater such as organic matter-containing water with biological sludge and membrane separation of a mixed liquid containing biological sludge to obtain treated water.

有機物等を含む排水の処理方法として、生物処理が知られている。生物処理法の中でも活性汚泥と呼ばれる微生物群集を利用する活性汚泥法は、様々な性状の排水に適用でき、良好な水質の処理水が得られるため、広く用いられている。活性汚泥法では、生物処理槽に活性汚泥の基質となる汚濁物質を含む排水を導入して活性汚泥と接触させ、汚濁物質を生物分解させる。生物処理槽から流出する生物処理水は、生物汚泥を含むため固液分離装置で固形分を分離して清澄化された処理水を得る。   Biological treatment is known as a method for treating wastewater containing organic matter and the like. Among biological treatment methods, an activated sludge method using a microbial community called activated sludge is widely used because it can be applied to wastewater of various properties and can provide treated water with good water quality. In the activated sludge method, wastewater containing a pollutant that becomes a substrate of the activated sludge is introduced into a biological treatment tank and brought into contact with the activated sludge to biodegrade the pollutant. Since the biologically treated water flowing out from the biological treatment tank contains biological sludge, the clarified treated water is obtained by separating the solid content with a solid-liquid separator.

固液分離装置としては沈殿装置が多く使用されている。沈殿装置では一般的に、フロック化した活性汚泥を重力沈降させることにより固液分離を行う。生物汚泥は、汚泥滞留時間(SRT)が長くなるとフロック化する傾向がある。そこで、生物処理槽を複数設け、前段側の生物処理槽を高負荷で運転して微生物を指数関数的に増殖させた後、SRTを長くした後段側の生物処理槽に導入する方法が知られている(特許文献1)。この方法では、前段側生物処理槽で増殖した分散状態の生物汚泥は、後段側生物処理槽でフロック化され、沈降性が高くなる。   As a solid-liquid separator, a precipitation device is often used. In a precipitation apparatus, solid-liquid separation is generally performed by gravity sedimentation of activated sludge that has been flocked. Biological sludge tends to flock as the sludge residence time (SRT) increases. Therefore, a method is known in which a plurality of biological treatment tanks are provided, the biological treatment tank on the front stage is operated at a high load and microorganisms are exponentially grown, and then introduced into the biological treatment tank on the rear stage with a longer SRT. (Patent Document 1). In this method, the biological sludge in a dispersed state grown in the former-stage biological treatment tank is flocked in the latter-stage biological treatment tank, and the sedimentation property becomes high.

一方、固液分離装置として膜分離装置を用いる場合、沈降性が悪い生物汚泥を含む混合液も清澄化できる。そこで、生物処理槽の後段に膜分離装置を設けた膜分離式の生物処理装置およびこれを用いる生物処理方法も知られている(例えば特許文献2)。
特許第3478241号公報 特開2005−74346号公報
On the other hand, when a membrane separator is used as the solid-liquid separator, a mixed liquid containing biological sludge having poor sedimentation can also be clarified. Therefore, a membrane separation type biological treatment apparatus provided with a membrane separation apparatus in the subsequent stage of the biological treatment tank and a biological treatment method using the same are also known (for example, Patent Document 2).
Japanese Patent No. 3478241 JP 2005-74346 A

ところで膜分離装置には、分離膜が目詰まりするという問題がある。特に生物汚泥を含む生物処理水を膜分離すると、微生物が生産した粘質物等が膜面に付着して目詰まりを生じやすい傾向がある。   By the way, the membrane separation apparatus has a problem that the separation membrane is clogged. In particular, when biologically treated water containing biological sludge is subjected to membrane separation, sticky substances produced by microorganisms tend to adhere to the membrane surface and easily clog.

膜の目詰まり防止策としては、特許文献2に記載された方法のように粘質物を凝集剤で凝集させる方法の他にも、分離膜の洗浄方法を工夫する方法が知られている。具体的には1週間か2週間に一度程度、次亜塩素酸ナトリウム等の薬剤を用いて分離膜を逆洗する。しかし、このような簡易洗浄法は洗浄用薬品を必要とする上、分離膜を洗浄している間も処理水を得るためには代替用の分離膜が必要となり、高コストとなる。   As a measure for preventing clogging of the membrane, a method of devising a cleaning method of the separation membrane is known in addition to a method of aggregating a viscous material with a flocculant as in the method described in Patent Document 2. Specifically, the separation membrane is back-washed with a chemical such as sodium hypochlorite about once a week or two weeks. However, such a simple cleaning method requires cleaning chemicals, and requires an alternative separation membrane to obtain treated water even while the separation membrane is being cleaned, resulting in high costs.

別の膜の目詰まり防止方法としては、膜への通水方法を工夫する方法がある。具体的には、分離膜で10分程度、吸引濾過を行った後、1分程度、吸引を停止する間欠吸引を行う。間欠吸引を行う場合、吸引停止時間中は処理水が得られないため、膜分離の効率が良くない。   As another method for preventing clogging of the membrane, there is a method of devising a water passing method to the membrane. Specifically, after performing suction filtration with a separation membrane for about 10 minutes, intermittent suction for stopping suction is performed for about 1 minute. When intermittent suction is performed, since the treated water cannot be obtained during the suction stop time, the efficiency of membrane separation is not good.

膜の目詰まりを防止するさらに別の方法としては、生物処理槽の活性汚泥浮遊物質(MLSS:Mixed Liquor Suspended Solid)濃度と汚泥負荷を低くする方法がある。この方法では、膜に付着する生物汚泥量を少なくするためにMLSSを低く(例えば12,000mg/L以下)する。また、粘質物の生成を抑制するために生物処理槽に保持される汚泥に対するBOD(生物化学的酸素消費量で表される有機物)汚泥負荷を低くして、汚泥滞留時間(SRT:Sludge Retention Time)が長くなるようにする。   As another method for preventing clogging of the membrane, there is a method of reducing the activated sludge suspended solid (MLSS) concentration and sludge load in the biological treatment tank. In this method, MLSS is lowered (for example, 12,000 mg / L or less) in order to reduce the amount of biological sludge adhering to the membrane. In addition, the sludge retention time (SRT: Sludge Retention Time) is reduced by reducing the BOD (organic matter expressed in terms of biochemical oxygen consumption) sludge load on the sludge retained in the biological treatment tank in order to suppress the production of mucilage. ) To be long.

しかし、MLSSとSRTの制御による効果は必ずしも十分ではない。また、生物処理槽のMLSSを低くしてSRTを長くすると、生物処理槽に対する負荷が低くなるため生物処理装置をコンパクトにできない。   However, the effect of controlling MLSS and SRT is not always sufficient. Moreover, if the MLSS of the biological treatment tank is lowered and the SRT is lengthened, the biological treatment apparatus cannot be made compact because the load on the biological treatment tank is reduced.

本発明は、かかる課題に対し、膜の目詰まり防止効果を向上させることを目的とする。   An object of the present invention is to improve the effect of preventing clogging of a film against such a problem.

本発明者は、膜分離装置で分離された分離汚泥を一定量以上、生物処理槽に返送して分離汚泥にBOD成分のような汚濁物質を吸収させた後、これを分解させることで粘質物の生成が抑制されることを見出し、本発明を完成した。具体的には本発明は以下を提供する。   The present inventor returns a certain amount or more of the separated sludge separated by the membrane separation apparatus to the biological treatment tank and absorbs the pollutant such as the BOD component in the separated sludge, and then decomposes it to make the viscous material As a result, the present invention was completed. Specifically, the present invention provides the following.

(1) 排水を生物処理装置で生物処理した後、分離膜を備える膜分離槽で前記生物処理装置から流出した生物処理水を液分と分離汚泥とに膜分離する膜分離式排水処理方法であって、 前記生物処理装置を、前記分離汚泥が返送される第1生物処理槽と、前記第1生物処理槽後段に設けられる第2生物処理槽とで構成し、 前記第1生物処理槽への前記分離汚泥の返送量を、MLVSSの乾燥質量として前記排水に含まれて前記第1生物処理槽に流入する基質量の10倍以上とし、 前記第1生物処理槽を高負荷で運転する膜分離式排水処理方法。
(2) 前記排水は前記基質としてのBOD成分を含む有機物含有水であり、 前記第1生物処理槽を、BOD汚泥負荷4kg−BOD/kg−MLVSS/day以上の高負荷で運転する(1)に記載の膜分離式排水処理方法。
(3) 前記生物処理装置を、互いに直列に接続された3以上の生物処理槽で構成し、 前記膜分離槽の前段側に設けられ前記膜分離槽と接続される最後段生物処理槽の汚泥滞留時間を20日以上とする(1)または(2)に記載の膜分離式排水処理方法。
(4) 排水が導入され高負荷で運転される第1生物処理槽、および前記第1生物処理槽後段に設けられる第2生物処理槽を備える生物処理装置と、 分離膜を備え前記生物処理装置から流出した生物処理水を液分と分離汚泥とに膜分離する膜分離槽と、 前記分離汚泥を前記第1生物処理槽に返送する汚泥返送管であって、前記分離汚泥を、MLVSSの乾燥重量として前記排水に含まれて前記第1生物処理槽に流入する基質量の10倍以上となるように返送する汚泥返送管と、を含む膜分離式排水処理装置。
(5) 前記排水は前記基質としてBOD成分を含む有機物含有水であり、 前記第1生物処理槽は、BOD汚泥負荷4kg−BOD/kg−MLVSS/day以上の高負荷で運転される処理槽である(4)に記載の膜分離式排水処理装置。
(6) 前記生物処理装置は、互いに直列に接続された3以上の生物処理槽を備え、 前記膜分離槽の前段側に設けられ前記膜分離槽と接続される最後段生物処理槽は、汚泥滞留時間が20日以上で運転される処理槽である(4)または(5)に記載の膜分離式排水処理装置。
(1) A membrane-separated wastewater treatment method in which wastewater is biologically treated with a biological treatment device, and then biologically treated water flowing out from the biological treatment device is separated into liquid and separated sludge in a membrane separation tank equipped with a separation membrane. The biological treatment apparatus is composed of a first biological treatment tank to which the separated sludge is returned, and a second biological treatment tank provided at a stage subsequent to the first biological treatment tank, and to the first biological treatment tank The return amount of the separated sludge is 10 times or more the base mass contained in the wastewater and flowing into the first biological treatment tank as the dry mass of MLVSS, and the membrane for operating the first biological treatment tank at a high load Separated wastewater treatment method.
(2) The wastewater is organic-containing water containing a BOD component as the substrate, and the first biological treatment tank is operated at a high load of BOD sludge load 4 kg-BOD / kg-MLVSS / day or higher (1) The membrane separation type wastewater treatment method according to 1.
(3) The biological treatment apparatus is composed of three or more biological treatment tanks connected in series with each other, and the sludge of the last biological treatment tank provided on the front side of the membrane separation tank and connected to the membrane separation tank. The membrane separation wastewater treatment method according to (1) or (2), wherein the residence time is 20 days or longer.
(4) A biological treatment apparatus including a first biological treatment tank in which wastewater is introduced and operated at a high load, a second biological treatment tank provided at a stage subsequent to the first biological treatment tank, and the biological treatment apparatus including a separation membrane A membrane separation tank for separating the biologically treated water flowing out from the liquid into liquid and separated sludge, and a sludge return pipe for returning the separated sludge to the first biological treatment tank, wherein the separated sludge is dried by MLVSS. A membrane-separated wastewater treatment apparatus comprising: a sludge return pipe that is returned so as to be 10 times or more the basic mass flowing into the first biological treatment tank by being contained in the wastewater as a weight.
(5) The waste water is organic-containing water containing a BOD component as the substrate, and the first biological treatment tank is a treatment tank operated at a high load of BOD sludge load 4 kg-BOD / kg-MLVSS / day or higher. The membrane separation type waste water treatment apparatus as described in (4).
(6) The biological treatment apparatus includes three or more biological treatment tanks connected in series with each other, and the last biological treatment tank provided on the front side of the membrane separation tank and connected to the membrane separation tank is sludge. The membrane separation waste water treatment apparatus according to (4) or (5), which is a treatment tank operated for a residence time of 20 days or longer.

本発明により処理される排水は、活性汚泥の基質となる汚濁物質を含む排水であれば限定されない。汚濁物質はBOD成分に限定されず、有機態窒素やアンモニア態窒素等の窒素分であってもよい。よって、「生物処理槽」には、好気的にBOD除去を行う「曝気槽」、嫌気的に有機物を分解する「消化槽」、硝化を行う「硝化槽」、および脱窒を行う「脱窒槽」が含まれるものとする。生物処理槽には上記汚濁物質を基質として増殖する生物汚泥が保持される。こうした生物汚泥としては、BODを分解する好気性細菌を主体とする汚泥(以下、特に「BOD汚泥」と称する)、アンモニアを酸化する硝化細菌を主体とする汚泥(以下、特に「硝化汚泥」と称する)、硝酸または亜硝酸を還元する脱窒菌を主体とする汚泥(以下、特に「脱窒汚泥」と称する)、およびメタン菌等を主体とする汚泥(以下、特に「メタン汚泥」と称する)が挙げられる。   The wastewater to be treated according to the present invention is not limited as long as it contains a pollutant that becomes a substrate for activated sludge. The pollutant is not limited to the BOD component, and may be nitrogen such as organic nitrogen or ammonia nitrogen. Therefore, the “biological treatment tank” includes an “aeration tank” that removes BOD aerobically, a “digestion tank” that decomposes organic matter anaerobically, a “nitrification tank” that performs nitrification, and a “denitrification tank” that performs denitrification. "Nitrogen tank" shall be included. The biological treatment tank holds biological sludge that grows using the pollutant as a substrate. Examples of such biological sludge include sludge mainly composed of aerobic bacteria that decompose BOD (hereinafter referred to as “BOD sludge”), sludge mainly composed of nitrifying bacteria that oxidize ammonia (hereinafter referred to as “nitrified sludge” in particular). Sludge mainly composed of denitrifying bacteria that reduce nitric acid or nitrous acid (hereinafter, particularly referred to as “denitrified sludge”), and sludge mainly composed of methane bacteria (hereinafter, particularly referred to as “methane sludge”). Is mentioned.

生物処理装置は、直列に接続された2以上の生物処理槽を備える。活性汚泥の基質となる物質を含む排水が導入される生物処理槽(第1生物処理槽)には、生物処理装置後段の膜分離装置で得られた分離汚泥を返送する。   The biological treatment apparatus includes two or more biological treatment tanks connected in series. The separated sludge obtained by the membrane separation apparatus at the latter stage of the biological treatment apparatus is returned to the biological treatment tank (first biological treatment tank) into which the wastewater containing the substance that becomes the substrate of the activated sludge is introduced.

分離汚泥は、糖、たんぱく質、および有機酸等の基質を吸収する。分離汚泥による基質の吸収量は、概ね、活性汚泥有機性浮遊物質(MLVSS:Mixed Liquor Volatile Suspended Solids)の1/10程度である。そこで、本発明では、分離汚泥の返送量を、MLVSS乾燥質量換算で第1生物処理槽に持ち込まれるBOD等の基質の10倍量以上とする。分離汚泥の返送量をこのようにすれば、第1生物処理槽に流入する基質のほぼ全量を分離汚泥に吸収させることができる。なお、10倍以上というのは、第1生物処理槽で分離汚泥が当該処理槽に持ち込まれる基質を吸収するのに必要とされる量である。ただし、基質の種類によっては分離汚泥による吸収量が前述した値より大きい場合もありうる。このような場合に分離汚泥の返送量を第1生物処理槽に持ち込まれる基質の10倍を下回らせつつ基質を吸収させることができる量とすることは本発明の均等の範囲である。   Separated sludge absorbs substrates such as sugar, protein, and organic acids. The amount of substrate absorbed by the separated sludge is about 1/10 of that of activated sludge organic suspended solids (MLVSS). Therefore, in the present invention, the return amount of the separated sludge is set to 10 times or more of the substrate such as BOD brought into the first biological treatment tank in terms of MLVSS dry mass. If the return amount of the separated sludge is set in this way, almost the entire amount of the substrate flowing into the first biological treatment tank can be absorbed by the separated sludge. The term “10 times or more” refers to the amount required for the separated sludge to absorb the substrate brought into the treatment tank in the first biological treatment tank. However, depending on the type of substrate, the amount absorbed by the separated sludge may be larger than the above-mentioned value. In such a case, it is within the equivalent range of the present invention that the return amount of the separated sludge is an amount capable of absorbing the substrate while being less than 10 times the substrate brought into the first biological treatment tank.

一方、これら基質が微生物の代謝活動により分解される速度は、吸収速度に比べてはるかに遅い。本発明では、第1生物処理槽では分離汚泥に基質を吸収させるにとどめ、第1生物処理槽の後段で分離汚泥に吸収した基質を分解させる。このようにすることにより、第1生物処理槽後段で粘質物の生成量の少ない活性汚泥を形成できる。   On the other hand, the rate at which these substrates are degraded by the metabolic activity of microorganisms is much slower than the absorption rate. In the present invention, the substrate is absorbed only by the separated sludge in the first biological treatment tank, and the substrate absorbed by the separated sludge is decomposed in the subsequent stage of the first biological treatment tank. By doing in this way, the activated sludge with little production amount of mucilage can be formed in the latter part of the 1st biological treatment tank.

また、分離汚泥による基質の吸収速度は、BODとして概ね4kg−BOD/kg−MLVSS/day程度である。よって、第1生物処理槽の滞留時間は、分離汚泥が基質を吸収できる時間であればよい。具体的には、第1生物処理槽のBOD汚泥負荷は、分離汚泥による基質の吸収速度と同程度の4kg−BOD/kg−MLVSS/day以上の高負荷とするとよい。このような高負荷にすることで、第1生物処理槽では分離汚泥に基質を吸収させるにとどめることができる上、第1生物処理槽を小型化できる。ただし、基質が分離汚泥により吸収されにくい物質、例えばポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、機械油を主体とする場合は、第1生物処理槽のBOD汚泥負荷は4kg−BOD/kg−MLVSS/dayより低くする方がよい。   Moreover, the absorption rate of the substrate by the separated sludge is about 4 kg-BOD / kg-MLVSS / day as BOD. Therefore, the residence time of the first biological treatment tank may be a time that allows the separated sludge to absorb the substrate. Specifically, the BOD sludge load of the first biological treatment tank is preferably a high load of 4 kg-BOD / kg-MLVSS / day or more, which is similar to the absorption rate of the substrate by the separated sludge. By making such a high load, the first biological treatment tank can not only absorb the substrate in the separated sludge, but also the first biological treatment tank can be miniaturized. However, when the substrate is mainly composed of substances that are not easily absorbed by the separated sludge, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and machine oil, the BOD sludge load in the first biological treatment tank is 4 kg-BOD / kg- It is better to make it lower than MLVSS / day.

なお、分離汚泥を十分な量、返送せずに第1生物処理槽を高負荷運転すると、生物汚泥による粘質物の生成量が増え、膜の目詰まりの原因となるため、好ましくない。   If the first biological treatment tank is operated at a high load without returning a sufficient amount of separated sludge, the amount of mucus produced by the biological sludge increases, causing clogging of the membrane, which is not preferable.

本発明では、膜分離槽で分離された分離汚泥を第1生物処理槽に返送して、排水中の基質を吸収させた後、第1生物処理槽の後段の生物処理槽で生物分解を行わせることで、粘質物の生成を抑制できる。よって、本発明によれば、生物処理された混合液を膜分離する際の目詰まりを効果的に回避できる。   In the present invention, the separated sludge separated in the membrane separation tank is returned to the first biological treatment tank to absorb the substrate in the waste water, and then biodegradation is performed in the biological treatment tank subsequent to the first biological treatment tank. By making it, the production | generation of a sticky substance can be suppressed. Therefore, according to this invention, the clogging at the time of carrying out membrane separation of the biologically processed liquid mixture can be avoided effectively.

以下、本発明について図面を用いて詳細に説明する。以下、同一部材については同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明に用いられる膜分離式排水処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、生物処理装置10と膜分離槽21とを含む。生物処理装置10は、第1生物処理槽11と第2生物処理槽12とを備え、第1生物処理槽11および第2生物処理槽12には、散気手段として散気管15がそれぞれ設けられている。   FIG. 1 is a schematic view of a membrane separation wastewater treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 used in the present invention. The processing apparatus 1 includes a biological processing apparatus 10 and a membrane separation tank 21. The biological treatment apparatus 10 includes a first biological treatment tank 11 and a second biological treatment tank 12, and the first biological treatment tank 11 and the second biological treatment tank 12 are each provided with a diffuser pipe 15 as an aeration means. ing.

膜分離槽21には分離膜17が設けられ、分離膜17は液中に浸漬されている。膜分離槽21にはまた、散気管15が設けられている。散気管15は、分離膜17を曝気洗浄できるよう、膜分離槽21の底部であって分離膜17の下側に配置されている。   A separation membrane 17 is provided in the membrane separation tank 21, and the separation membrane 17 is immersed in the liquid. The membrane separation tank 21 is also provided with an air diffuser 15. The air diffusion tube 15 is disposed at the bottom of the membrane separation tank 21 and below the separation membrane 17 so that the separation membrane 17 can be aerated and washed.

第1生物処理槽11には原水管30が接続され、原水管30を介して排水が生物処理装置10に導入される。第1生物処理槽11と第2生物処理槽12とは第1処理液管31を介して直列に接続されている。第2生物処理槽12は、第2処理液管32を介して膜分離槽21と接続されている。膜分離槽21には、分離膜で分離された分離汚泥が取り出される汚泥引抜管35と、分離水(処理水)が取り出される分離水管36がさらに接続されている。汚泥引抜管35からは汚泥返送管37が分岐しており、汚泥返送管37は第1生物処理槽11に接続されている。膜分離槽21で分離された分離汚泥は、汚泥引抜管35および汚泥返送管37を介して第1生物処理槽11に返送される。   A raw water pipe 30 is connected to the first biological treatment tank 11, and wastewater is introduced into the biological treatment apparatus 10 through the raw water pipe 30. The first biological treatment tank 11 and the second biological treatment tank 12 are connected in series via the first treatment liquid pipe 31. The second biological treatment tank 12 is connected to the membrane separation tank 21 via the second treatment liquid pipe 32. The membrane separation tank 21 is further connected to a sludge extraction pipe 35 from which separated sludge separated by the separation membrane is taken out and a separation water pipe 36 from which separated water (treated water) is taken out. A sludge return pipe 37 is branched from the sludge extraction pipe 35, and the sludge return pipe 37 is connected to the first biological treatment tank 11. The separated sludge separated in the membrane separation tank 21 is returned to the first biological treatment tank 11 through the sludge extraction pipe 35 and the sludge return pipe 37.

排水は、微生物の基質となる物質、例えばBOD成分や窒素等を含む。以下、処理装置1を用いてBOD成分を含む有機物含有水を排水として処理する場合の本発明に係る生物処理方法について説明する。   The wastewater contains substances that serve as microbial substrates, such as BOD components and nitrogen. Hereinafter, the biological treatment method according to the present invention in the case where the organic substance-containing water containing the BOD component is treated as wastewater using the treatment apparatus 1 will be described.

第1生物処理槽11には、BOD成分を含む排水が導入され、膜分離槽21から送られた分離汚泥と混合される。分離汚泥の返送量は、MLVSSとしての乾燥質量が、排水に含まれて第1生物処理槽11に持ち込まれるBOD量の10倍以上となるようにする。   Wastewater containing a BOD component is introduced into the first biological treatment tank 11 and mixed with the separated sludge sent from the membrane separation tank 21. The return amount of the separated sludge is such that the dry mass as MLVSS is 10 times or more the BOD amount included in the wastewater and brought into the first biological treatment tank 11.

例えば、第1生物処理槽11に流入する有機物含有水のBOD濃度が1,000mg/Lで、その流入量が100m/dayである場合、第1生物処理槽11に持ち込まれるBOD量は100kg/dayとなる。そこで、分離汚泥の返送量は、MLVSS(乾燥質量)として1,000kg−MLVSS/day以上とすればよい。 For example, when the BOD concentration of the organic substance-containing water flowing into the first biological treatment tank 11 is 1,000 mg / L and the inflow amount is 100 m 3 / day, the BOD amount brought into the first biological treatment tank 11 is 100 kg. / Day. Therefore, the return amount of the separated sludge may be 1,000 kg-MLVSS / day or more as MLVSS (dry mass).

本発明者の知見によれば、返送された分離汚泥は4kg−BOD/kg−MLVSS/day以上の速度で基質となるBOD成分を微生物体内に吸収する。分離汚泥による基質の吸収速度は、好気性条件の場合に最も速くなるが、無酸素条件下であっても、あるいは嫌気性条件下であっても、吸収速度はそれほど、低下しない。また、汚泥の種類の違い(BOD汚泥か硝化汚泥か等の違い)および基質の違い(BOD成分か窒素か等の違い)によってもさほど異なることはない。   According to the knowledge of the present inventor, the returned separated sludge absorbs the BOD component serving as a substrate into the microorganism at a rate of 4 kg-BOD / kg-MLVSS / day or more. The absorption rate of the substrate by the separated sludge is the fastest under aerobic conditions, but the absorption rate does not decrease so much even under anaerobic conditions or under anaerobic conditions. In addition, there is no significant difference depending on the type of sludge (difference between BOD sludge and nitrified sludge, etc.) and the difference in substrate (difference between BOD component and nitrogen, etc.).

本発明では、第1生物処理槽11においては、分離汚泥と排水を混合して排水中の基質(BOD成分)を分離汚泥に吸収させればよい。すなわち特許文献2では第1生物処理槽で排水中の汚濁物質を基質として生物汚泥を増殖させるが、本発明では生物汚泥を増殖させるのではなく、膜分離槽21から返送された分離汚泥に汚濁物質を分離汚泥に吸収させる。そのために本発明では分離汚泥の返送量を上述した量とする。   In the present invention, in the first biological treatment tank 11, the separated sludge and the waste water are mixed and the substrate (BOD component) in the waste water is absorbed by the separated sludge. That is, in Patent Document 2, the biological sludge is propagated in the first biological treatment tank using the pollutant in the wastewater as a substrate. In the present invention, the biological sludge is not propagated, but the separated sludge returned from the membrane separation tank 21 is contaminated. Absorb material in separated sludge. Therefore, in the present invention, the return amount of the separated sludge is set as described above.

分離汚泥は、基質を吸収した時点で第1生物処理槽から取り出す。このため、第1生物処理槽11では、分離汚泥による基質の吸収速度と同等以上の汚泥負荷をかけ、水理学的滞留時間(HRT)を短くすればよい。具体的には、第1生物処理槽11のBOD汚泥負荷は4kg−BOD/kg−MLVSS/day以上とするとよい。例えば、上記条件において分離汚泥のMLVSS濃度が15,000mg/L、第1生物処理槽11のMLVSS濃度が10,000mg/Lである場合において、第1生物処理槽11のBOD汚泥負荷を5kg−BOD/kg−MLVSS/dayとして、HRTを36分以下とする。この場合、上記MLVSS濃度の分離汚泥であれば返送量は67m/day(返送率67%)以上であればよい。 The separated sludge is taken out from the first biological treatment tank when the substrate is absorbed. For this reason, in the 1st biological treatment tank 11, what is necessary is just to apply the sludge load equivalent to or more than the absorption rate of the substrate by separation sludge, and to shorten hydraulic residence time (HRT). Specifically, the BOD sludge load of the first biological treatment tank 11 is preferably 4 kg-BOD / kg-MLVSS / day or more. For example, when the MLVSS concentration of the separated sludge is 15,000 mg / L and the MLVSS concentration of the first biological treatment tank 11 is 10,000 mg / L under the above conditions, the BOD sludge load of the first biological treatment tank 11 is 5 kg- As BOD / kg-MLVSS / day, HRT is set to 36 minutes or less. In this case, if it is the separation sludge having the above-mentioned MLVSS concentration, the return amount may be 67 m 3 / day (return rate 67%) or more.

第1生物処理槽11をこのような高負荷で運転してHRTを短くすることは、生物処理装置10を小型化することにもつながる。第1生物処理槽11の負荷を低くすると装置の大型化を招く上、生物汚泥による粘質物の生成を抑制する効果が満足に得られない。   Operating the first biological treatment tank 11 with such a high load and shortening the HRT also leads to miniaturization of the biological treatment apparatus 10. If the load of the first biological treatment tank 11 is lowered, the apparatus is increased in size, and the effect of suppressing the generation of mucilage by biological sludge cannot be obtained satisfactorily.

なお、第1生物処理槽11の運転条件は、流入BOD量と分離汚泥の返送量の比が上記条件を満足すれば足り、さらに上記負荷条件を満足していればよく、その他の条件(酸素濃度)は限定されない。ただし、分離汚泥による基質の吸収は微生物活動によって生じる作用であるため、pHおよび温度に影響される。このため、第1生物処理槽11の槽内液のpHは中性付近(6〜8.5程度)であり、温度は10〜40℃程度が好ましい。   The operating condition of the first biological treatment tank 11 is sufficient if the ratio of the inflow BOD amount and the return amount of the separated sludge satisfies the above condition, and further satisfies the above load condition. Other conditions (oxygen) The concentration is not limited. However, the absorption of the substrate by the separated sludge is an effect caused by microbial activity, and is therefore affected by pH and temperature. For this reason, the pH of the solution in the tank of the first biological treatment tank 11 is near neutral (about 6 to 8.5), and the temperature is preferably about 10 to 40 ° C.

第1生物処理槽11の槽内液は、第1処理液管31から取り出して第2生物処理槽12に導入する。本発明では、生物処理装置10に流入する有機物の大部分は第1生物処理槽11で分離汚泥に吸収されているため、第2生物処理槽12では、分離汚泥に吸収した基質を生物分解させればよい。具体的には、第2生物処理槽12では、負荷を低くしてSRTを長く(20日以上)にするとよい。このようにすることで、分離汚泥が吸収した基質を生物分解させるとともに、粘質物の生成量が少ない活性汚泥を得ることができる。   The liquid in the tank of the first biological treatment tank 11 is taken out from the first treatment liquid pipe 31 and introduced into the second biological treatment tank 12. In the present invention, most of the organic matter flowing into the biological treatment apparatus 10 is absorbed by the separated sludge in the first biological treatment tank 11, so that the substrate absorbed in the separated sludge is biodegraded in the second biological treatment tank 12. Just do it. Specifically, in the second biological treatment tank 12, the load is reduced and the SRT is increased (20 days or more). By doing so, it is possible to biodegrade the substrate absorbed by the separated sludge and to obtain activated sludge with a small amount of mucilage produced.

第2生物処理槽12の運転条件は、SRTを長くすることが好ましい他は特に限定されず、吸収された基質が分解される条件であればよい。なお、本発明では第1生物処理槽11で、原水に含まれるBODの大部分が分離汚泥に吸収されているため、第2生物処理槽12のBOD汚泥負荷は低くなる。   The operating conditions of the second biological treatment tank 12 are not particularly limited, except that it is preferable to lengthen the SRT, and may be any conditions as long as the absorbed substrate is decomposed. In the present invention, in the first biological treatment tank 11, most of the BOD contained in the raw water is absorbed by the separated sludge, so that the BOD sludge load of the second biological treatment tank 12 is reduced.

第2生物処理槽12から取り出した槽内液は、第2処理液管32を介して膜分離槽21に送る。膜分離槽21に送られる槽内液(生物処理水)に含まれる活性汚泥は、粘質物の生成が抑制されている。よって、膜分離槽21では分離膜17の目詰まりを防止するために間欠吸引を行う必要はなく、散気管15から曝気しながら連続的に膜分離すればよい。もっとも、間欠吸引をすることは排除されない。膜分離により液分と分離された分離汚泥は、汚泥引抜管35から引き抜き、汚泥返送管37を介してその途中に設けたポンプPによって上述した必要量を第1生物処理槽11に送る。余剰の引抜汚泥は汚泥引抜管35から系外へ排出してよい。分離水は、処理水として分離水管36から取り出せばよい。   The solution in the tank taken out from the second biological treatment tank 12 is sent to the membrane separation tank 21 via the second treatment liquid pipe 32. In the activated sludge contained in the tank liquid (biologically treated water) sent to the membrane separation tank 21, the production of mucilage is suppressed. Therefore, in the membrane separation tank 21, it is not necessary to perform intermittent suction in order to prevent the separation membrane 17 from being clogged. However, intermittent suction is not excluded. The separated sludge separated from the liquid by membrane separation is extracted from the sludge extraction pipe 35, and the necessary amount described above is sent to the first biological treatment tank 11 through the sludge return pipe 37 by the pump P provided in the middle thereof. Excess extracted sludge may be discharged out of the system from the sludge extraction pipe 35. The separated water may be taken out from the separated water pipe 36 as treated water.

なお、分離膜17としては、固液分離に一般に用いられている膜であれば特に限定されない。具体的には、精密濾過(MF)膜、または限外濾過(UF)膜を用いればよく、膜モジュールの形状は中空糸、または平膜等であってよい。   The separation membrane 17 is not particularly limited as long as it is a membrane generally used for solid-liquid separation. Specifically, a microfiltration (MF) membrane or an ultrafiltration (UF) membrane may be used, and the shape of the membrane module may be a hollow fiber or a flat membrane.

本発明は、上記方法に限定されない。次に、本発明の他の実施態様として、図2に示す処理装置2を用いた処理方法を説明する。処理装置2は、生物処理装置10Bが3槽の直列接続された生物処理槽を備える点で、第1実施形態に係る処理装置1と異なる。3槽の生物処理槽を、前段側から第1生物処理槽11B、第2生物処理槽12B、および第3生物処理槽13と称する。   The present invention is not limited to the above method. Next, as another embodiment of the present invention, a processing method using the processing apparatus 2 shown in FIG. 2 will be described. The treatment apparatus 2 is different from the treatment apparatus 1 according to the first embodiment in that the biological treatment apparatus 10B includes three biological treatment tanks connected in series. The three biological treatment tanks are referred to as a first biological treatment tank 11B, a second biological treatment tank 12B, and a third biological treatment tank 13 from the front side.

第1生物処理槽11Bは、分離汚泥が返送され、基質を含む排水が導入される点で第1実施態様の処理装置1の第1生物処理槽11と同様である。ただし、処理装置2では第1生物処理槽11Bは散気管を備えず、代わりに攪拌機16を備え、嫌気的な生物処理を行うよう構成されている。処理装置2においても、第1生物処理槽11Bにはこれに流入する基質(例えばたんぱく質)の10倍以上の分離汚泥が膜分離槽21から返送され、高負荷で運転されるとよい。   The first biological treatment tank 11B is the same as the first biological treatment tank 11 of the treatment apparatus 1 of the first embodiment in that separated sludge is returned and wastewater containing a substrate is introduced. However, in the processing apparatus 2, the first biological treatment tank 11 </ b> B does not include an aeration tube, and instead includes a stirrer 16 so as to perform anaerobic biological treatment. In the treatment apparatus 2 as well, the first biological treatment tank 11B is preferably returned to the separation sludge 10 times or more of the substrate (for example, protein) flowing into the first biological treatment tank 11B from the membrane separation tank 21 and operated at a high load.

第2生物処理槽12Bは、第1生物処理槽11Bと同様の構成で散気管を備えず攪拌機16を備える嫌気性生物処理槽として構成されている。第3生物処理槽13は、第1実施態様の処理装置1における第2生物処理槽12に相当し、SRTを長くして低負荷で運転される。   The 2nd biological treatment tank 12B is comprised as an anaerobic biological treatment tank provided with the stirrer 16 without the aeration pipe | tube with the structure similar to the 1st biological treatment tank 11B. The third biological treatment tank 13 corresponds to the second biological treatment tank 12 in the treatment apparatus 1 of the first embodiment, and is operated with a low SRT by extending the SRT.

このように、3槽以上の生物処理槽を直列接続して配置する場合、基質を含む排水が導入される第1生物処理槽に、MLVSS乾燥質量換算で10倍量以上の分離汚泥を返送する。また、分離汚泥が返送される第1生物処理槽は負荷を高くする。一方、膜分離槽直前に配置される生物処理槽(最後段の生物処理槽)は、SRTを長くして運転するとよい。   As described above, when three or more biological treatment tanks are connected in series, the separated sludge of 10 times or more in terms of MLVSS dry mass is returned to the first biological treatment tank into which the wastewater containing the substrate is introduced. . Moreover, the load of the first biological treatment tank to which the separated sludge is returned is increased. On the other hand, the biological treatment tank (last biological treatment tank) disposed immediately before the membrane separation tank is preferably operated with a longer SRT.

[実施例1]
排水として、食品工場廃水(BOD濃度1,900mg/L)を図1に示す処理装置1と同様の構成の装置で処理した。第1生物処理槽11および第2生物処理槽12はどちらも好気条件で運転される好気処理槽である。膜分離槽21には、ポリエチレン製の精密濾過膜を(モジュール形式:中空糸膜、三菱レイヨン株式会社製、商品名「ステラポア LFM」)を浸漬させ曝気した。膜面積は4mとした。その他の各槽の運転条件を以下に記す。
[Example 1]
As waste water, food factory waste water (BOD concentration 1,900 mg / L) was treated with an apparatus having the same configuration as the processing apparatus 1 shown in FIG. Both the first biological treatment tank 11 and the second biological treatment tank 12 are aerobic treatment tanks operated under aerobic conditions. The membrane separation tank 21 was aerated by immersing a microfiltration membrane made of polyethylene (module type: hollow fiber membrane, manufactured by Mitsubishi Rayon Co., Ltd., trade name “Sterapore LFM”). The membrane area was 4 m 2 . The other operating conditions of each tank are described below.

〔第1生物処理槽〕
MLVSS :8,300〜8,900mg/L
HRT :1.1時間
BOD汚泥負荷:4.4〜4.7kg−BOD/kg−MLVSS/day
〔第2生物処理槽〕
MLVSS :8,400〜9,000mg/L
HRT :24時間
〔膜分離槽〕
MLVSS :15,500mg/L
膜フラックス :0.4m/day
HRT :1時間
[First biological treatment tank]
MLVSS: 8,300-8,900 mg / L
HRT: 1.1 hours BOD sludge load: 4.4-4.7 kg-BOD / kg-MLVSS / day
[Second biological treatment tank]
MLVSS: 8,400-9,000mg / L
HRT: 24 hours [membrane separation tank]
MLVSS: 15,500mg / L
Membrane flux: 0.4 m / day
HRT: 1 hour

実施例1では、膜分離槽21からの分離汚泥の返送量を、第1生物処理槽11への原水流入量の125%とした。この返送量は、MLVSSの乾燥質量として、第1生物処理槽11への流入BOD量の約10.2倍である。   In Example 1, the return amount of the separated sludge from the membrane separation tank 21 was set to 125% of the raw water inflow amount to the first biological treatment tank 11. This return amount is about 10.2 times the inflow BOD amount to the first biological treatment tank 11 as the dry mass of MLVSS.

上記条件で10日間、排水の処理を行った結果、分離膜の圧損はほとんど上昇しなかった。また、膜分離後に得られた分離水(処理水)の水質は、全有機物(TOC)濃度34mg/Lであり、膜分離槽の溶解性TOC濃度は35mg/Lであった。   As a result of treating the wastewater for 10 days under the above conditions, the pressure loss of the separation membrane hardly increased. The water quality of the separated water (treated water) obtained after membrane separation was a total organic matter (TOC) concentration of 34 mg / L, and the soluble TOC concentration of the membrane separation tank was 35 mg / L.

[実施例2]
実施例2として、図2に示す処理装置2と同様の構成の装置で処理した。実施例2では、第1生物処理槽11Bおよび第2生物処理槽12Bはどちらも嫌気的条件で運転される嫌気処理槽である。第2生物処理槽12Bの構成及び運転条件は第1生物処理槽11Bと同様にしたが、HRTは8時間とした。第3生物処理槽13は、実施例1の第2生物処理槽12と同様の構成および運転条件とし、膜分離槽21も実施例1と同様の構成および運転条件とした。
[Example 2]
As Example 2, the processing was performed by an apparatus having the same configuration as the processing apparatus 2 shown in FIG. In Example 2, the first biological treatment tank 11B and the second biological treatment tank 12B are both anaerobic treatment tanks operated under anaerobic conditions. The configuration and operating conditions of the second biological treatment tank 12B were the same as those of the first biological treatment tank 11B, but the HRT was 8 hours. The third biological treatment tank 13 has the same configuration and operating conditions as the second biological treatment tank 12 of Example 1, and the membrane separation tank 21 also has the same configuration and operating conditions as in Example 1.

実施例2では、第1生物処理槽11Bおよび第2生物処理槽12Bを嫌気処理槽にした以外は、実施例1と同じ条件で実施例1と同じ排水を処理した。この条件で10日間、排水の処理を行った結果、分離膜の圧損はほとんど上昇しなかった。また、膜分離後に得られた分離水(処理水)の水質は、TOC濃度32mg/Lであり、膜分離槽の溶解性TOC濃度も同様に32mg/Lであった。   In Example 2, the same waste water as Example 1 was processed on the same conditions as Example 1 except having made the 1st biological treatment tank 11B and the 2nd biological treatment tank 12B into the anaerobic treatment tank. As a result of treating wastewater for 10 days under these conditions, the pressure loss of the separation membrane hardly increased. The water quality of the separated water (treated water) obtained after the membrane separation was a TOC concentration of 32 mg / L, and the soluble TOC concentration of the membrane separation tank was also 32 mg / L.

[比較例1]
比較例1として、実施例1において第1生物処理槽11の負荷を低くした実験を行った。具体的には、第1生物処理槽11のHRTを2時間にしてBOD汚泥負荷を下げた。第1生物処理槽1の負荷を低くした以外は実施例1と同様の構成および運転条件で、実施例1と同じ排水を処理した。その結果、運転直後から分離膜の圧損が上昇し始め、4日間で16kPa上昇した。このときの処理水の水質は、TOC濃度30mg/Lであり、膜分離槽の溶解性TOC濃度は58mg/Lであった。
[Comparative Example 1]
As Comparative Example 1, an experiment was performed in Example 1 in which the load of the first biological treatment tank 11 was reduced. Specifically, the BOD sludge load was lowered by setting the HRT of the first biological treatment tank 11 to 2 hours. Except for reducing the load on the first biological treatment tank 1, the same waste water as in Example 1 was treated with the same configuration and operating conditions as in Example 1. As a result, the pressure loss of the separation membrane began to increase immediately after operation, and increased by 16 kPa over 4 days. The quality of the treated water at this time was a TOC concentration of 30 mg / L, and the soluble TOC concentration of the membrane separation tank was 58 mg / L.

[比較例2]
比較例2では、実施例1において第1生物処理槽11への分離汚泥の返送量を低下させた。具体的には、第1生物処理槽1への分離汚泥の返送量を第1生物処理槽11への原水流入量の80%にした。汚泥返送量を少なくした以外は実施例1と同様の構成および運転条件で、実施例1と同じ排水を処理した。その結果、運転直後から分離膜の圧損が上昇し始め、7日間で21kPa上昇した。このときの処理水の水質は、TOC濃度44mg/Lであり、膜分離槽の溶解性TOC濃度は87mg/Lであった。
[Comparative Example 2]
In Comparative Example 2, the return amount of the separated sludge to the first biological treatment tank 11 in Example 1 was reduced. Specifically, the return amount of the separated sludge to the first biological treatment tank 1 was set to 80% of the raw water inflow amount to the first biological treatment tank 11. Except for reducing the amount of sludge returned, the same waste water as in Example 1 was treated under the same configuration and operating conditions as in Example 1. As a result, the pressure loss of the separation membrane started to increase immediately after the operation, and increased by 21 kPa in 7 days. The quality of the treated water at this time was a TOC concentration of 44 mg / L, and the soluble TOC concentration of the membrane separation tank was 87 mg / L.

以上より、本発明によれば微生物による粘質物の生成を抑制して膜の目詰まりを防止できることが示された。通常の活性汚泥法では一般に、生物汚泥に分解される有機物の2〜3%程度の代謝産物が生成されるが、本発明によれば代謝産物の生成量は代謝産物の生成量は分解された有機物の1〜2%に抑制される。特に、実施例2に示すように、生物処理装置を3槽以上の直列接続された生物処理槽で構成して処理すれば、代謝産物の生成量自体は1〜2%程度であるものの、膜の目詰まりの大きな原因となる高分子物質の生成量を減らすことができる。   From the above, it was shown that according to the present invention, the production of mucilage by microorganisms can be suppressed to prevent clogging of the film. In general, the activated sludge method generally produces about 2 to 3% of metabolites of organic substances that are decomposed into biological sludge. According to the present invention, the amount of metabolites produced is decomposed. It is suppressed to 1-2% of the organic matter. In particular, as shown in Example 2, if the biological treatment apparatus is constituted by three or more biological treatment tanks connected in series and processed, the amount of metabolite produced itself is about 1 to 2%. It is possible to reduce the amount of polymer material that is a major cause of clogging.

本発明は、有機物等を含む排水の膜分離式生物処理に用いることができる。   The present invention can be used for membrane separation biological treatment of wastewater containing organic matter and the like.

本発明に用いられる第1実施態様に係る排水処理装置の模式図。The schematic diagram of the waste water treatment equipment concerning the 1st embodiment used for the present invention. 本発明に用いられる第2実施態様に係る排水処理装置の模式図。The schematic diagram of the waste water treatment equipment concerning the 2nd embodiment used for the present invention.

符号の説明Explanation of symbols

1、2 排水処理装置
10、10B 生物処理装置
11、11B 第1生物処理槽
12、12B 第2生物処理槽
13 第3生物処理槽
15 散気管
16 攪拌機
17 分離膜
21 膜分離槽
DESCRIPTION OF SYMBOLS 1, 2, Waste water treatment apparatus 10, 10B Biological treatment apparatus 11, 11B 1st biological treatment tank 12, 12B 2nd biological treatment tank 13 3rd biological treatment tank 15 Aeration pipe 16 Stirrer 17 Separation membrane 21 Membrane separation tank

Claims (6)

排水を生物処理装置で生物処理した後、分離膜を備える膜分離槽で前記生物処理装置から流出した生物処理水を液分と分離汚泥とに膜分離する膜分離式排水処理方法であって、
前記生物処理装置を、前記分離汚泥が返送される第1生物処理槽と、前記第1生物処理槽後段に設けられる第2生物処理槽とで構成し、
前記第1生物処理槽への前記分離汚泥の返送量を、MLVSSの乾燥質量換算で、前記排水に含まれて前記第1生物処理槽に流入する基質量の10倍以上とし、
前記第1生物処理槽を高負荷で運転する膜分離式排水処理方法。
A membrane-separated wastewater treatment method in which biologically treated water discharged from the biological treatment device is separated into liquid and separated sludge in a membrane separation tank equipped with a separation membrane after biological treatment of the wastewater with the biological treatment device,
The biological treatment apparatus is composed of a first biological treatment tank to which the separated sludge is returned, and a second biological treatment tank provided at a stage subsequent to the first biological treatment tank,
The amount of return of the separated sludge to the first biological treatment tank is at least 10 times the base mass contained in the wastewater and flowing into the first biological treatment tank in terms of dry weight of MLVSS,
A membrane-separated wastewater treatment method for operating the first biological treatment tank with a high load.
前記排水は前記基質としてのBOD成分を含む有機物含有水であり、
前記第1生物処理槽を、BOD汚泥負荷4kg−BOD/kg−MLVSS/day以上の高負荷で運転する請求項1に記載の膜分離式排水処理方法。
The waste water is an organic substance-containing water containing a BOD component as the substrate,
The membrane-separated wastewater treatment method according to claim 1, wherein the first biological treatment tank is operated at a high load of BOD sludge load 4 kg-BOD / kg-MLVSS / day or higher.
前記生物処理装置を、互いに直列に接続された3以上の生物処理槽で構成し、
前記膜分離槽の前段側に設けられ前記膜分離槽と接続される最後段生物処理槽の汚泥滞留時間を20日以上とする請求項1または2に記載の膜分離式排水処理方法。
The biological treatment apparatus is composed of three or more biological treatment tanks connected in series with each other,
The membrane separation wastewater treatment method according to claim 1 or 2, wherein a sludge residence time of a last biological treatment tank provided on the front side of the membrane separation tank and connected to the membrane separation tank is 20 days or more.
排水が導入され高負荷で運転される第1生物処理槽、および前記第1生物処理槽後段に設けられる第2生物処理槽を備える生物処理装置と、
分離膜を備え前記生物処理装置から流出した生物処理水を液分と前記分離汚泥とに膜分離する膜分離槽と、
前記分離汚泥を前記第1生物処理槽に返送する汚泥返送管であって、前記分離汚泥を、MLVSSの乾燥重量換算で、前記排水に含まれて前記第1生物処理槽に流入する前記基質量の10倍以上となるように返送する汚泥返送管と、を含む膜分離式排水処理装置。
A biological treatment apparatus comprising a first biological treatment tank in which wastewater is introduced and operated at a high load, and a second biological treatment tank provided at a stage subsequent to the first biological treatment tank;
A membrane separation tank comprising a separation membrane and membrane-separating biologically treated water flowing out of the biological treatment apparatus into a liquid component and the separated sludge;
A sludge return pipe for returning the separated sludge to the first biological treatment tank, wherein the separation sludge, a dry weight basis of MLVSS, the substrate amount flowing in the first biological treatment tank included in the waste water And a sludge return pipe that returns the pipe so as to be 10 times or more of the above.
前記排水は前記基質としてBOD成分を含む有機物含有水であり、
前記第1生物処理槽は、BOD汚泥負荷4kg−BOD/kg−MLVSS/day以上の高負荷で運転される処理槽である請求項4に記載の膜分離式排水処理装置。
The waste water is an organic substance-containing water containing a BOD component as the substrate,
5. The membrane separation wastewater treatment apparatus according to claim 4, wherein the first biological treatment tank is a treatment tank operated at a high load of BOD sludge load 4 kg-BOD / kg-MLVSS / day or higher.
前記生物処理装置は、互いに直列に接続された3以上の生物処理槽を備え、
前記膜分離槽の前段側に設けられ前記膜分離槽と接続される最後段生物処理槽は、汚泥滞留時間が20日以上で運転される処理槽である請求項4または5に記載の膜分離式排水処理装置。
The biological treatment apparatus includes three or more biological treatment tanks connected in series with each other,
The membrane separation according to claim 4 or 5, wherein the last biological treatment tank provided on the front side of the membrane separation tank and connected to the membrane separation tank is a treatment tank operated with a sludge residence time of 20 days or longer. Type wastewater treatment equipment.
JP2007217809A 2007-08-24 2007-08-24 Membrane separation wastewater treatment method and apparatus Active JP5034778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217809A JP5034778B2 (en) 2007-08-24 2007-08-24 Membrane separation wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217809A JP5034778B2 (en) 2007-08-24 2007-08-24 Membrane separation wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2009050764A JP2009050764A (en) 2009-03-12
JP5034778B2 true JP5034778B2 (en) 2012-09-26

Family

ID=40502338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217809A Active JP5034778B2 (en) 2007-08-24 2007-08-24 Membrane separation wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5034778B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP5260417B2 (en) * 2009-06-19 2013-08-14 株式会社クボタ Sewage treatment facilities and methods for renovating sewage treatment facilities
CN102113347A (en) 2009-07-29 2011-06-29 日本先锋公司 Speaker device
NZ600892A (en) * 2009-12-01 2014-05-30 Jinmin Li Sludge treatment method and apparatus thereof and application to wastewater bio-treatment
CN102172045A (en) 2009-12-25 2011-08-31 日本先锋公司 Speaker vibrator and speaker device
JP2012166142A (en) * 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
JP2012205997A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment method of organic wastewater by membrane separation activated sludge apparatus
JP2012206040A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic matter containing wastewater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399443B2 (en) * 2000-05-10 2003-04-21 栗田工業株式会社 High-load biological treatment method
JP2005211788A (en) * 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2009050764A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5034778B2 (en) Membrane separation wastewater treatment method and apparatus
Li et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling
JP5358886B2 (en) Biological treatment method of water containing organic matter
WO2007019617A1 (en) Biological phosphorous removal
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
JP2007050312A (en) Method and apparatus for biologically treating waste water
JP3150506B2 (en) Wastewater treatment method
KR19980083279A (en) Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process
CN104609639B (en) Wastewater treatment apparatus and wastewater treatment method
CN101516790A (en) Method of wastewater disposal
JPH1034185A (en) Drainage treatment method
JP4293529B2 (en) Organic wastewater treatment method
JP2003247255A (en) Circulation type flush toilet system
KR101679603B1 (en) Water treatment apparatus using cleaning powder and submersed membranes module
JP2000218290A (en) Sewage treatment and sewage treating device
KR100992321B1 (en) Wastewater treatment apparatus with membrane module
JP2010005560A (en) Method and apparatus for treating organic alkali wastewater
JPH0639396A (en) Method for treating waste water
US20150368130A1 (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
JP2003266096A (en) Wastewater treatment apparatus
JPH0947781A (en) Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JP5817177B2 (en) Organic wastewater treatment equipment
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150