JPH0156840B2 - - Google Patents

Info

Publication number
JPH0156840B2
JPH0156840B2 JP58115019A JP11501983A JPH0156840B2 JP H0156840 B2 JPH0156840 B2 JP H0156840B2 JP 58115019 A JP58115019 A JP 58115019A JP 11501983 A JP11501983 A JP 11501983A JP H0156840 B2 JPH0156840 B2 JP H0156840B2
Authority
JP
Japan
Prior art keywords
water
tank
denitrification
nitrogen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58115019A
Other languages
Japanese (ja)
Other versions
JPS607998A (en
Inventor
Mitsuto Sasaki
Shigeo Nakahata
Shozo Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP58115019A priority Critical patent/JPS607998A/en
Publication of JPS607998A publication Critical patent/JPS607998A/en
Publication of JPH0156840B2 publication Critical patent/JPH0156840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 3−1 産業上の利用分野 本発明は上水用原水、都市下水、各種産業廃水
などに含まれる窒素化合物を生物学的に除去する
窒素除去装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 3-1 Field of Industrial Application The present invention relates to a nitrogen removal device that biologically removes nitrogen compounds contained in raw water for drinking water, municipal sewage, various industrial wastewater, and the like.

3−2 従来技術 最近上水の取水源である河川、湖沼などの汚濁
が進行し、上水用の原水中にアンモニア性窒素な
どの窒素化合物の含有量が増加している。また都
市下水、各種産業廃水などでも従来の二次処理の
段階では、窒素化合物の除去は困難で現状では一
部の地域を除いて無処理のまま公共水域に放流さ
れている例が多い。上水処理においては、原水中
に多量のアンモニア性窒素が含まれると、浄水工
程で遊離残留塩素を確保するために、これを上回
る量の塩素を注入しなければならない。この場合
アンモニア性窒素の10倍量以上の塩素が必要で、
さらに塩素注入によるアルカリ度の低下を補うた
めにアルカリ剤の添加も必要となる。この結果、
浄水工程における薬品使用量が著しく増加するこ
とになる。また都市下水、各種産業廃水などに由
来する窒素化合物を含めた栄養塩類は水域の富栄
養化現象をもたらし、さまざまな被害、障害を招
いている。
3-2 Prior Art Recently, pollution of rivers, lakes, and marshes that are sources of drinking water has progressed, and the content of nitrogen compounds such as ammonia nitrogen in raw water for drinking water has increased. In addition, it is difficult to remove nitrogen compounds from urban sewage and various industrial wastewater in the conventional secondary treatment stage, and currently, in many cases, except in some areas, the water is discharged untreated into public water bodies. In water treatment, if raw water contains a large amount of ammonia nitrogen, a larger amount of chlorine must be injected to ensure free residual chlorine during the water purification process. In this case, 10 times more chlorine than ammonia nitrogen is required.
Furthermore, it is necessary to add an alkaline agent to compensate for the decrease in alkalinity caused by chlorine injection. As a result,
The amount of chemicals used in the water purification process will increase significantly. In addition, nutrient salts including nitrogen compounds derived from urban sewage and various industrial wastewaters cause eutrophication of water bodies, causing various damage and disorders.

これらの現状から種々の窒素除去装置が開発さ
れ、実用化されているが、生物学的窒素除去装置
は、大容量の処理が可能、プロセスが比較的単
純、運転費が安価などの理由から主流となつてい
る。かかる一般的な生物学的窒素除去装置による
と、被処理水中に含まれる窒素化合物(有機化合
物、アンモニアなど)は先づ硝化槽において好気
的に硝化菌の働きで、硝酸、亜硝酸に酸化され、
次に脱窒素槽で嫌気的雰囲気の下で水素供給源
(例えばメタノールなど)を利用して、脱窒素菌
の働きにより硝酸、亜硝酸は窒素ガスに還元され
る。従来では被処理水のアンモニア性窒素濃度が
低い場合などには、上記の前段の処理、すなわ
ち、生物学的な硝化のみを行い、アンモニア性窒
素を硝酸性あるいは亜硝酸性窒素の形に酸化し
て、比較的安定した化合物にして放流する例も多
かつた。ところが上水の分野では、硝化によつて
生じた硝酸、亜硝酸は無機化されたといつても飲
料水には好ましくなく、消化器管などに障害を起
すことが知られている。従つて水道水基準ではア
ンモニア性窒素と亜硝酸性窒素は同時に検出され
ないこと、硝酸性窒素は10mg/以下であること
が定められている。また工業用水にとつても亜硝
酸性窒素は好ましいものでなく、例えば染色、醸
造工業においては、亜硝酸性窒素を含む用水は利
用価値がない。以上のようなことから最近では、
生物学的硝化装置において窒素化合物を硝酸、亜
硝酸性窒素に変換した後も、これらの化合物を還
元して窒素ガスにして大気に放出するプロセス、
すなわち生物学的脱窒素装置を加えるケースが多
くなつている。この方法により被処理水中の有害
窒素化合物は完全に除去され、無害な窒素ガスと
して大気に返還されることになる。
Various nitrogen removal devices have been developed and put into practical use due to these current circumstances, but biological nitrogen removal devices are the mainstream because they are capable of large-capacity treatment, have a relatively simple process, and have low operating costs. It is becoming. According to such general biological nitrogen removal equipment, nitrogen compounds (organic compounds, ammonia, etc.) contained in the water to be treated are first oxidized into nitric acid and nitrite by the action of nitrifying bacteria in a nitrification tank. is,
Next, in a denitrification tank, nitric acid and nitrite are reduced to nitrogen gas by the action of denitrifying bacteria using a hydrogen supply source (for example, methanol) under an anaerobic atmosphere. Conventionally, when the ammonia nitrogen concentration in the water to be treated is low, the above-mentioned first-stage treatment, i.e., only biological nitrification, is performed, and the ammonia nitrogen is oxidized to nitrate or nitrite nitrogen. Therefore, there were many cases where relatively stable compounds were released. However, in the field of water supply, nitric acid and nitrous acid produced by nitrification are not desirable for drinking water even if they are mineralized, and are known to cause problems in the gastrointestinal tract. Therefore, the tap water standards stipulate that ammonia nitrogen and nitrite nitrogen cannot be detected at the same time, and that nitrate nitrogen is 10 mg/or less. Nitrite nitrogen is also not desirable for industrial water, and for example, in the dyeing and brewing industries, water containing nitrite nitrogen has no utility value. Due to the above, recently,
After converting nitrogen compounds into nitric acid and nitrite nitrogen in biological nitrification equipment, the process of reducing these compounds to nitrogen gas and releasing it into the atmosphere;
In other words, more and more biological denitrification devices are being added. By this method, harmful nitrogen compounds in the water to be treated are completely removed and returned to the atmosphere as harmless nitrogen gas.

現在生物学的硝化、脱窒素装置として、活性汚
泥法、回転円板法、流動床法など種々の方法が実
用化されているが、この中回転円板法は保守管理
が容易である、運転費が安価であることなどから
注目されている。回転円板を生物学的硝化装置と
して使用する場合、回転円板の回転によつて大気
中の酸素が円板表面あるいは回転円板槽内に溶解
し、円板上の付着微生物がこれを消費して、生物
学的な硝化反応が遂行される。従つてこの装置で
は、酸素の供給が回転円板の回転によつて行われ
るため、その供給量を自由にコントロールするこ
とが困難である。例えば他の活性汚泥装置では、
酸素の供給はブロアなどの送風機によつて行われ
るため、送風量を変化させることで、比較的容易
に酸素の供給量をコントロールすることができ
る。ところが回転円板法ではこのコントロールが
困難で、回転数が一定であれば、ほぼ一定の酸素
が供給されることになる。ここで被処理水が上水
用原水、都市下水、二次処理水などの場合には、
BODなどの有機成分の含有量は非常に少く、従
つて生物酸化に利用される酸素はほとんどが窒素
化合物の硝化用である。またこの窒素化合物の含
有量も窒素として10〜20mg/以下、少い時は1
mg/以下という例もある。このため硝化装置内
で利用される酸素の量は非常に少く、結果として
硝化装置の流出水には過剰に供給された酸素が残
存して、溶解し溶存酸素が高い値を示すようにな
る。これは後段に設置する脱窒素装置が嫌気性雰
囲気で運転されることが原則であることに対して
障害となり、脱窒素効率を低下させることとな
る。また生物学的脱窒素装置では硝酸、亜硝酸を
還元する脱窒素菌への水素供与体としてメタノー
ルなどの有機炭化水素源を添加する必要がある
が、被処理水中に溶存酸素が存在すると、この酸
素が有機炭化水素源と反応し、該有機炭化水素源
を消費するので脱窒素反応に不足する結果とな
る。従つてこの場合、脱窒素反応を充分進行させ
るためには、溶存酸素によつて消費される分を加
えて、有機炭化水素源を添加しなければならず、
脱窒素反応に要する薬品代が増加することにな
る。この値は被処理水中の溶存酸素濃度が高くな
れば、それに従つて増大することになる。
Currently, various methods such as activated sludge method, rotating disk method, and fluidized bed method are in practical use as biological nitrification and denitrification equipment, but this medium rotating disk method is easy to maintain and operate. It is attracting attention because of its low cost. When a rotating disk is used as a biological nitrification device, atmospheric oxygen is dissolved on the disk surface or in the rotating disk tank due to the rotation of the rotating disk, and the microorganisms attached to the disk consume it. Then, a biological nitrification reaction is carried out. Therefore, in this device, oxygen is supplied by the rotation of the rotating disk, and it is difficult to freely control the amount of oxygen supplied. For example, in other activated sludge equipment,
Since oxygen is supplied by a blower such as a blower, the amount of oxygen supplied can be controlled relatively easily by changing the amount of air blown. However, this control is difficult in the rotating disk method, and if the rotational speed is constant, a nearly constant amount of oxygen will be supplied. If the water to be treated is raw water for drinking water, urban sewage, secondary treatment water, etc.,
The content of organic components such as BOD is very low, so most of the oxygen used for biological oxidation is for nitrification of nitrogen compounds. In addition, the content of this nitrogen compound is 10 to 20 mg/or less as nitrogen, and when it is less than 1
There are also examples of less than mg/mg. For this reason, the amount of oxygen utilized within the nitrification device is very small, and as a result, the excess oxygen supplied remains in the water flowing out of the nitrification device and dissolves, resulting in a high value of dissolved oxygen. This becomes a hindrance to the fact that the denitrification equipment installed in the latter stage is operated in an anaerobic atmosphere in principle, and reduces the denitrification efficiency. In addition, in biological denitrification equipment, it is necessary to add an organic hydrocarbon source such as methanol as a hydrogen donor to the denitrifying bacteria that reduce nitric acid and nitrite, but if dissolved oxygen exists in the water to be treated, this Oxygen reacts with the organic hydrocarbon source and consumes the organic hydrocarbon source, resulting in a deficiency in the denitrification reaction. Therefore, in this case, in order for the denitrification reaction to proceed sufficiently, an organic hydrocarbon source must be added in addition to the amount consumed by dissolved oxygen.
The cost of chemicals required for the denitrification reaction will increase. This value will increase as the dissolved oxygen concentration in the water to be treated increases.

3−3 発明の目的 本発明は、上記問題点に鑑みてなされたもので
あり、その目的とするところは生物学的脱窒素反
応をより効率的に進行させ、かつその運転費をよ
り軽減し得る窒素除去装置を提供することにあ
る。
3-3 Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and its purpose is to make the biological denitrification reaction proceed more efficiently and to further reduce its operating cost. The object of the present invention is to provide a nitrogen removal device that obtains the desired results.

3−4 発明の構成 即ち本発明は、回転円板により被処理水中の窒
素化合物を生物学的に硝化する硝化槽と硝化槽で
硝化された被処理水を生物学的に脱窒素する脱窒
素槽との間に被処理水中に含まれる酸素ガスを除
去する減圧脱気装置を設置したことを特徴とする
窒素除去装置である。
3-4 Structure of the Invention In other words, the present invention provides a nitrification tank that biologically nitrifies nitrogen compounds in water to be treated using a rotating disk, and a denitrification system that biologically denitrifies the water that has been nitrified in the nitrification tank. This nitrogen removal device is characterized in that a vacuum degassing device for removing oxygen gas contained in the water to be treated is installed between the tank and the tank.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は、本発明の一実施態様であり、生物学
的窒素除去装置の概略図、第2図は脱窒素槽出口
の溶存酸素濃度と脱窒素率との関係を示すグラフ
である。
FIG. 1 is a schematic diagram of a biological nitrogen removal apparatus, which is an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the dissolved oxygen concentration at the outlet of the denitrification tank and the denitrification rate.

以下第1図について説明すると、硝化槽は直
径1〜3m、厚さ0.5〜2.0mm程度のプラスチツク
製の波形円板2と平板の円板2とを交互に積層
し、中心回転軸3に軸支して並べた回転円板4と
該回転円板4の全円板面の約50%を被処理水中に
潜水せしめ得る槽5とからなり、同図ではかかる
硝化槽が供給路6より供給される被処理水Wの
流下方向に沿つて複数(この場合4槽)順次直列
に連結した状態で構成されている。硝化槽は直
列および/または並列に連結されていてもよい。
To explain Fig. 1 below, the nitrification tank 1 consists of corrugated plastic discs 2 and flat discs 2, each having a diameter of 1 to 3 m and a thickness of approximately 0.5 to 2.0 mm, stacked alternately. It consists of rotary disks 4 arranged in a rotary manner and a tank 5 in which approximately 50% of the entire disk surface of the rotary disks 4 can be submerged in the water to be treated. A plurality of tanks (four tanks in this case) are sequentially connected in series along the flow direction of the water to be treated W supplied from the tank. The nitrification tanks 1 may be connected in series and/or in parallel.

また脱窒素槽は、硝化槽におけると同様に
円板2′を複数枚、中心回御軸3′に軸支して並べ
た回転円板4′とこの場合回転円板4′の全円板面
を実質的に被処理水中に潜水せしめ、密封し得る
槽5′とからなるが、該脱窒素槽は同図に具示
したように被処理水Wの流下方向に沿つて複数
(この場合4槽)順次直列に連結した状態で構成
されている。脱窒素槽は硝化槽と同様に直列
および/または並列に連結されていてもよい。
In addition, the denitrification tank 7 consists of a rotating disk 4' in which a plurality of disks 2' are arranged and supported on a central rotation shaft 3', as in the nitrification tank 1 , and in this case, the entire rotating disk 4' is The denitrification tank 7 consists of a tank 5' whose disk surface is substantially submerged in the water to be treated and which can be sealed. (In this case, 4 tanks) are connected in series. The denitrification tank 7 may be connected in series and/or in parallel like the nitrification tank 1 .

脱窒素槽は、第1図の場合回転円板により構
成されているが、これに限定されるものでなく、
生物学的脱窒素装置であれば如何なるものでもよ
く、通常の撹拌式水槽型の脱窒素槽でも適用でき
る。なお、脱窒素槽では、被処理水が流入する
直前においてメタノールなどの水素供与体である
有機炭化水素源を添加する注入装置8が設けられ
ている。
Although the denitrification tank 7 is composed of a rotating disk in the case of FIG. 1, it is not limited to this.
Any biological denitrification device may be used, and even a normal agitated water tank type denitrification tank can be used. Note that the denitrification tank 7 is provided with an injection device 8 that adds an organic hydrocarbon source, such as methanol, as a hydrogen donor just before the water to be treated flows into the tank.

かくて本発明では、硝化槽と脱窒素槽との
間に被処理水W中に溶存する酸素を除去するた
め、減圧脱気装置を設置する。第1図ではかか
る減圧脱気装置として液面上に気体が頂部に貯
まるようになされた塔10および該塔の頂部近傍
よりパイプを介して連結された真空ポンプ11と
によつて構成されている。前記塔10は、円筒ド
ラム状構造物であつてもよく、内部の設定圧力に
よつてその高さが決定される。また脱気効率を上
げるため塔内部に棚を設けたり、ラシヒリングな
どの充填物を挿入することも可能である。真空ポ
ンプ11はエジエクターなどに変えることも可能
である。
Thus, in the present invention, a vacuum deaerator 9 is installed between the nitrification tank 1 and the denitrification tank 7 in order to remove oxygen dissolved in the water to be treated W. In FIG. 1, the vacuum degassing device 9 is composed of a column 10 in which gas is stored at the top above the liquid level, and a vacuum pump 11 connected via a pipe from near the top of the column. There is. The column 10 may be a cylindrical drum-like structure, the height of which is determined by the set pressure inside. Furthermore, in order to increase deaeration efficiency, it is also possible to provide a shelf inside the column or insert a packing material such as a Raschig ring. The vacuum pump 11 can also be replaced with an ejector or the like.

次に本発明の作用について説明すると、窒素化
合物(有機化合物、アンモニアなど)を含む被処
理水Wは供給路6を通して回転円板4よりなる硝
化槽に供給される。ここで窒素化合物は回転円
板表面の付着微生物の働きにより硝酸あるいは亜
硝酸に酸化される。大気からの酸素の供給により
好気反応が行われ酸素が消費されるが、被処理水
中の窒素化合物、有機物濃度が低い場合には、酸
素供給量が消費量を上廻つて硝化槽の流出水
(硝化された被処理水W)中に高い溶存酸素濃度
が示されることになる。そこで本発明では、この
流出水を脱窒素槽に直接導びかず、一旦減圧脱
気装置に供給し真空ポンプ11により装置内を
大気圧以下の減圧状態に維持し、被処理水中に存
在する溶解気体及び気泡を放出させる。これによ
り被処理水中の溶存酸素が除去される。被処理水
Wは減圧脱気装置を通過することによつて溶存
酸素濃度は低減され、一方水素供与体(メタノー
ルなど)注入装置8により有機炭化水素源が添加
され脱窒素槽に供給される。該槽で硝酸、亜
硝酸は脱窒素菌の働きによつて還元され、窒素ガ
スが放出される。以上の工程により被処理水中の
窒素化合物は分解除去される。
Next, the operation of the present invention will be described. Water to be treated W containing nitrogen compounds (organic compounds, ammonia, etc.) is supplied to the nitrification tank 1 made up of a rotating disk 4 through the supply path 6. Here, the nitrogen compounds are oxidized to nitric acid or nitrous acid by the action of microorganisms attached to the surface of the rotating disk. An aerobic reaction occurs due to the supply of oxygen from the atmosphere, and oxygen is consumed. However, if the concentration of nitrogen compounds and organic matter in the water to be treated is low, the amount of oxygen supplied exceeds the amount consumed, and the effluent from the nitrification tank 1 (The nitrified water to be treated W) exhibits a high dissolved oxygen concentration. Therefore, in the present invention, this effluent water is not directly led to the denitrification tank 7 , but is once supplied to the reduced pressure deaerator 9 , and the inside of the equipment is maintained at a reduced pressure state below atmospheric pressure by the vacuum pump 11. Dissolved gases and bubbles are released. This removes dissolved oxygen in the water to be treated. The water to be treated W passes through a vacuum degassing device 9 to reduce the dissolved oxygen concentration, while an organic hydrocarbon source is added by a hydrogen donor (methanol etc.) injection device 8 and supplied to the denitrification tank 7. Ru. In the tank 7 , nitric acid and nitrite are reduced by the action of denitrifying bacteria, and nitrogen gas is released. Through the above steps, nitrogen compounds in the water to be treated are decomposed and removed.

第2図は、上水処理において浄水工程の前処理
として回転円板法を採用し、生物学的硝化脱窒素
実験を行つた時の脱窒素槽出口の溶存酸素濃度と
脱窒素率を示すグラフである。この場合硝化槽と
脱窒素槽との間に減圧脱気装置は介在させておら
ず(即ち第1図で硝化槽と脱窒素槽を直結し
たものに相当)、硝化槽の流出水はほぼ飽和濃度
に近い溶存酸素が存在していた。この流出水に水
素供与体であるメタノールを種々の割合で添加し
た。その結果脱窒素槽出口の溶存酸素濃度は変動
し、これに従つて硝酸、亜硝酸の脱窒素率も変化
している。第2図から明らかなように溶存酸素濃
度が低いほど脱窒素率は向上する。このケースで
は硝化槽流出水に脱窒素反応に必要な量以上の過
剰の水素供与体である有機炭化水素源を添加し
て、溶存酸素を還元してその低減をはかつてい
る。しかしこの方法の場合は、酸素の還元が必要
で多量の有機炭化水素源が必要となり、この量は
脱窒素率を高めるほど増加する。これに伴い装置
の運転費用は急激に上昇する。
Figure 2 is a graph showing the dissolved oxygen concentration at the outlet of the denitrification tank and the denitrification rate when a biological nitrification and denitrification experiment was conducted using the rotating disk method as a pretreatment for the water purification process in water treatment. It is. In this case, no vacuum deaerator is interposed between the nitrification tank and the denitrification tank (that is, it corresponds to the direct connection of the nitrification tank 1 and the denitrification tank 7 in Fig. 1), and the outflow water from the nitrification tank is Dissolved oxygen was present at almost saturation concentration. Methanol, a hydrogen donor, was added to the effluent in various proportions. As a result, the dissolved oxygen concentration at the outlet of the denitrification tank fluctuates, and the denitrification rates of nitric acid and nitrite also change accordingly. As is clear from FIG. 2, the lower the dissolved oxygen concentration, the higher the denitrification rate. In this case, an organic hydrocarbon source as a hydrogen donor is added in excess of the amount necessary for the denitrification reaction to the nitrification tank effluent to reduce dissolved oxygen. However, this method requires reduction of oxygen and a large amount of organic hydrocarbon source, and this amount increases as the denitrification rate increases. As a result, the operating cost of the equipment increases rapidly.

本発明では、上記の有機炭化水素源による溶存
酸素の除去を硝化槽と脱窒素槽との間に設置
された減圧脱気装置によつて行うもので、かか
る装置では運転費用は真空ポンプなどの動力費だ
けに限られ、有機炭化水素源は脱窒素反応に必要
な量だけ添加すれば良く、薬品使用量は大巾に節
減される。また本発明によれば硝化槽流出水中の
溶存酸素は安定して常に低い値に維持されるた
め、脱窒素槽内の脱窒素反応は効率的に安定して
遂行される。例えば第2図によれば脱窒素槽にお
いて脱窒素反応に必要な量だけの有機炭化水素源
を加えた場合、脱窒素槽の溶存酸素が5mg/の
時には脱窒素率は約30%にしかならない。ところ
が本発明に従つて回転円板よりなる硝化槽の後段
に減圧脱気装置を設置し、脱窒素槽流入水中の溶
存酸素濃度を低下させてやると第2図で示したデ
ータからも明らかなように脱窒素率は徐々に上昇
する。脱窒素槽は溶存酸素が0.5mg/では約90
%の脱窒素率が得られることになる。
In the present invention, the removal of dissolved oxygen from the organic hydrocarbon source described above is carried out by a vacuum degassing device 9 installed between the nitrification tank 1 and the denitrification tank 7 . The amount of organic hydrocarbon source required for the denitrification reaction is limited to only the power costs for pumps, etc., and the amount of chemicals used can be greatly reduced. Further, according to the present invention, the dissolved oxygen in the nitrification tank effluent is stably maintained at a low value, so that the denitrification reaction in the denitrification tank can be carried out efficiently and stably. For example, according to Figure 2, when the amount of organic hydrocarbon source necessary for the denitrification reaction is added to the denitrification tank, the denitrification rate is only about 30% when the dissolved oxygen in the denitrification tank is 5 mg/. . However, it is clear from the data shown in Figure 2 that according to the present invention, a vacuum degassing device is installed at the rear stage of the nitrification tank consisting of a rotating disk to reduce the dissolved oxygen concentration in the water flowing into the denitrification tank. As such, the denitrification rate gradually increases. The denitrification tank has dissolved oxygen of 0.5 mg/approx.
% denitrification rate will be obtained.

以上要するに本発明は上水用原水、都市下水、
各種産業廃水などに含まれる窒素化合物を生物学
的に除去する装置において、回転円板よりなる硝
化槽と脱窒素槽との間に、被処理水中に溶存する
酸素ガスを除去する減圧脱気装置を介在させるこ
とを特徴としている。
In summary, the present invention provides raw water for drinking water, urban sewage,
In equipment that biologically removes nitrogen compounds contained in various types of industrial wastewater, etc., a vacuum degassing device is installed between the nitrification tank and the denitrification tank, which are made up of rotating disks, to remove oxygen gas dissolved in the water to be treated. It is characterized by intervening.

3−5 発明の効果 本発明によれば、回転円板よりなる硝化槽で硝
化された溶存酸素濃度の高い流出水から減圧脱気
装置によつて機械的に溶存酸素が取り除かれ、後
段の脱窒素槽に供給される。この結果、従来脱窒
素反応以外に高い溶存酸素との反応で消費されて
いた有機炭化水素源が不要となり、脱窒素槽の運
転費用を大巾に節減することができた。また、同
時に脱窒素槽内の溶存酸素濃度を常に低い状態に
維持できるようになつたため、高くて安定した脱
窒素率が得られるようになつた。
3-5 Effects of the Invention According to the present invention, dissolved oxygen is mechanically removed by a vacuum deaerator from effluent water with a high dissolved oxygen concentration that has been nitrified in a nitrification tank consisting of a rotating disk, and Supplied to nitrogen tank. As a result, the organic hydrocarbon source, which was conventionally consumed in the reaction with high dissolved oxygen in addition to the denitrification reaction, became unnecessary, and the operating cost of the denitrification tank could be significantly reduced. At the same time, it has become possible to maintain the dissolved oxygen concentration in the denitrification tank at a constant low level, making it possible to obtain a high and stable denitrification rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様であり、生物学的
窒素除去装置の概略図、第2図は脱窒素槽出口の
溶存酸素濃度と脱窒素率との関係を示すグラフで
ある。 ……硝化槽、……脱窒素槽、……減圧脱
気装置。
FIG. 1 is an embodiment of the present invention, which is a schematic diagram of a biological nitrogen removal device, and FIG. 2 is a graph showing the relationship between the dissolved oxygen concentration at the outlet of the denitrification tank and the denitrification rate. 1 ...Nitrification tank, 7 ...Denitrification tank, 9 ...Reducing pressure deaerator.

Claims (1)

【特許請求の範囲】[Claims] 1 回転円板によつて被処理水中の窒素化合物を
生物学的に硝化する硝化槽と硝化槽で硝化された
被処理水を生物学的に脱窒素する脱窒素槽との間
に被処理水中に含まれる酸素ガスを除去する減圧
脱気装置を設置したことを特徴とする窒素除去装
置。
1. Water to be treated is placed between a nitrification tank that biologically nitrifies nitrogen compounds in the water to be treated using a rotating disk and a denitrification tank that biologically denitrifies the water to be treated that has been nitrified in the nitrification tank. A nitrogen removal device characterized by being equipped with a vacuum deaeration device for removing oxygen gas contained in the nitrogen gas.
JP58115019A 1983-06-28 1983-06-28 Nitrogen removing apparatus Granted JPS607998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115019A JPS607998A (en) 1983-06-28 1983-06-28 Nitrogen removing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115019A JPS607998A (en) 1983-06-28 1983-06-28 Nitrogen removing apparatus

Publications (2)

Publication Number Publication Date
JPS607998A JPS607998A (en) 1985-01-16
JPH0156840B2 true JPH0156840B2 (en) 1989-12-01

Family

ID=14652229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115019A Granted JPS607998A (en) 1983-06-28 1983-06-28 Nitrogen removing apparatus

Country Status (1)

Country Link
JP (1) JPS607998A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106897A (en) * 1984-07-09 1987-05-18 シラキユ−ス ユニバ−シテイ Device and method of treating waste water
KR100422211B1 (en) * 2000-12-06 2004-03-12 대한통운 주식회사 Management Unit and Method of Foul and Waste Water
KR100419431B1 (en) * 2002-02-28 2004-02-18 삼성엔지니어링 주식회사 Wastewater treatment apparatus and method for removing nitrogen and phosphorus
KR100542676B1 (en) * 2005-04-26 2006-01-11 (주)이엔이 Apparatus and method for treating wastewater using membrane

Also Published As

Publication number Publication date
JPS607998A (en) 1985-01-16

Similar Documents

Publication Publication Date Title
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP5238002B2 (en) Organic waste water treatment apparatus and treatment method
KR100821659B1 (en) E-mbr system
Rogalla et al. Large‐scale biological nitrate and ammonia removal
KR100513352B1 (en) A wastewater treatment apparatus combined a membrane soaked biological reactor and an anaerobic granule sludge packed reactor
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP2007050312A (en) Method and apparatus for biologically treating waste water
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
JPH0156840B2 (en)
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
KR100321679B1 (en) Advanced wastewater treatment method
KR100513567B1 (en) Wastewater Purification Apparatus
KR100478010B1 (en) A waste water disposal plant
KR100465851B1 (en) Removal measure of Circulated Sequencing Batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
KR100430578B1 (en) The organic material and nitrogen removal system using the three phase fluidized bed biofilm reactors
JP3345873B2 (en) Ammonia-containing wastewater treatment equipment
KR20060096825A (en) Continual system for processing waste water
JP5628955B2 (en) Organic waste water treatment apparatus and treatment method
KR19990030406A (en) Nutrient treatment method of wastewater by changing the flow path
KR20020091723A (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor and its apparatus
KR20040094019A (en) The purification method of an organic waste water with high density
KR100321681B1 (en) Wastewater purification method
KR100521722B1 (en) Method of wastewater treatment using internal recyclein and step feeding
JPH0966293A (en) Low load sewage treatment apparatus