JP2003010877A - Activated sludge treatment method for sewage and its apparatus - Google Patents
Activated sludge treatment method for sewage and its apparatusInfo
- Publication number
- JP2003010877A JP2003010877A JP2001199423A JP2001199423A JP2003010877A JP 2003010877 A JP2003010877 A JP 2003010877A JP 2001199423 A JP2001199423 A JP 2001199423A JP 2001199423 A JP2001199423 A JP 2001199423A JP 2003010877 A JP2003010877 A JP 2003010877A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- sewage
- aeration
- aeration tank
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は下水を複数の曝気処
理工程で活性汚泥処理する方法、特に汚泥を減容化する
下水の活性汚泥処理方法および装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of treating sewage by a plurality of aeration treatment steps, and more particularly to a method and apparatus for treating sewage to reduce the volume of sewage.
【0002】[0002]
【従来の技術】下水の処理として活性汚泥法による好気
性生物処理が広く行われている。活性汚泥処理方法で
は、生物増殖により大量の余剰汚泥が発生するが、この
余剰汚泥は生物処理を経ているため、難生物分解性であ
り、また難脱水性であるため、その処分は困難である。
このような活性汚泥処理における汚泥発生量を削減する
ために、活性汚泥をオゾン処理等により易生物分解性に
改質して好気性生物処理工程に供給し、改質汚泥を基質
として利用することにより、発生汚泥量を減容化する方
法が提案されている。2. Description of the Related Art As a treatment of sewage, aerobic biological treatment by an activated sludge method is widely used. In the activated sludge treatment method, a large amount of excess sludge is generated due to biological growth, but since this excess sludge has undergone biological treatment, it is difficult to biodegrade and difficult to dehydrate, so its disposal is difficult. .
In order to reduce the amount of sludge generated in such activated sludge treatment, the activated sludge is modified to be easily biodegradable by ozone treatment etc. and supplied to the aerobic biological treatment process, and the modified sludge is used as a substrate. Has proposed a method for reducing the volume of generated sludge.
【0003】図2は従来の活性汚泥処理装置を示すフロ
ー図である。図2において、1は曝気槽、2は沈殿槽等
の固液分離装置、3はオゾン処理装置等の改質装置、4
bは原水注入路、5は給気路、6は曝気装置、7は処理
水取出路、8は汚泥返送路、9は改質汚泥供給路、10
は余剰汚泥排出路である。FIG. 2 is a flow chart showing a conventional activated sludge treatment device. In FIG. 2, 1 is an aeration tank, 2 is a solid-liquid separation device such as a precipitation tank, 3 is a reforming device such as an ozone treatment device, 4
b is a raw water injection passage, 5 is an air supply passage, 6 is an aeration device, 7 is a treated water extraction passage, 8 is a sludge return passage, 9 is a reformed sludge supply passage, 10
Is an excess sludge discharge channel.
【0004】図2は特開平6−206088号に示され
たもので、曝気槽1に原水注入路4bから有機性排水等
の原水を注入して活性汚泥と混合し、給気路5から曝気
装置6に空気を送って曝気し、好気性生物反応により有
機物を分解する。混合液20は移送路11から固液分離
装置2に送って固液分離し、分離液を処理水として処理
水取出路7から取り出し、分離汚泥の一部は汚泥返送路
8から返送汚泥として曝気槽1に返送する。分離汚泥の
一部は引抜路12から引き抜き、改質装置3においてオ
ゾン処理等の改質処理を行って易生物分解性に改質し、
改質汚泥供給路9から改質汚泥を曝気槽1に供給する。
余剰汚泥が発生する場合は余剰汚泥排出路10より排出
する。FIG. 2 is shown in Japanese Unexamined Patent Publication No. 6-206088, in which raw water such as organic waste water is injected into the aeration tank 1 from the raw water injection passage 4b, mixed with activated sludge, and aerated from the air supply passage 5. Air is sent to the device 6 for aeration, and organic substances are decomposed by aerobic biological reaction. The mixed liquid 20 is sent from the transfer passage 11 to the solid-liquid separation device 2 for solid-liquid separation, the separated liquid is taken out as treated water from the treated water take-out passage 7, and part of the separated sludge is aerated as returning sludge from the sludge returning passage 8. Return to tank 1. A part of the separated sludge is drawn out from the drawing path 12 and subjected to a modification treatment such as ozone treatment in the reforming device 3 to be easily biodegradable,
The modified sludge is supplied from the modified sludge supply passage 9 to the aeration tank 1.
When excess sludge is generated, it is discharged from the excess sludge discharge path 10.
【0005】上記の処理では生物反応により生物が増殖
して活性汚泥は増量する。このとき増殖する汚泥量より
も多い活性汚泥を引き抜き改質処理して生物反応系に供
給すると、易生物分解性に変換された改質汚泥は曝気槽
1において生物分解されるため、活性汚泥が減容化さ
れ、場合によっては余剰汚泥を実質的にゼロにすること
もできる。In the above treatment, organisms grow due to biological reactions and the amount of activated sludge increases. At this time, when activated sludge larger than the amount of sludge that grows is extracted and modified and supplied to the bioreaction system, the easily converted biodegradable modified sludge is biodegraded in the aeration tank 1, so that the activated sludge is The volume can be reduced, and in some cases, excess sludge can be reduced to substantially zero.
【0006】しかしながら上記のような処理方法で下水
を処理する場合、改質処理によって汚泥中の微生物を死
滅させ、易生物分解性成分に改質して曝気槽1へ返送す
るため、曝気槽1の汚泥負荷は高くなり、特に冬季の低
水温時では改質汚泥の有機物の分解が不充分となって処
理水質が不安定になる場合がある。また、曝気槽1中に
未分解の不活性有機汚泥が蓄積し、固液分離装置2での
汚泥沈降性が悪化する場合がある。However, when the sewage is treated by the above treatment method, the microorganisms in the sludge are killed by the reforming treatment, reformed into easily biodegradable components and returned to the aeration tank 1, so that the aeration tank 1 The sludge load becomes high, and the treated water quality may become unstable due to insufficient decomposition of organic matter in the modified sludge, especially at low water temperatures in winter. In addition, undegraded inert organic sludge may accumulate in the aeration tank 1 and the sludge settling property in the solid-liquid separator 2 may deteriorate.
【0007】さらに減容化率を大きくするため多量の活
性汚泥を改質処理する場合、曝気槽1の汚泥滞留時間
(SRT)が短くなり、処理水質が低下する場合があ
る。例えば、窒素除去を良好に行い、処理水質を維持す
るためには、硝化細菌をウォッシュアウトさせないこと
が重要であり、水温に応じて曝気槽1のSRTを維持し
なければならない。また難分解性有機物の分解にとって
もSRTは重要な要因であり、SRTが短い場合には処
理水CODが悪化する場合がある。When a large amount of activated sludge is reformed to further increase the volume reduction rate, the sludge retention time (SRT) in the aeration tank 1 may be shortened and the treated water quality may be deteriorated. For example, in order to satisfactorily remove nitrogen and maintain the treated water quality, it is important not to wash out nitrifying bacteria, and the SRT of the aeration tank 1 must be maintained according to the water temperature. Further, SRT is an important factor for the decomposition of hardly decomposable organic substances, and if the SRT is short, the treated water COD may deteriorate.
【0008】SRTを長くする方法としては、曝気槽1
の容量を増加させることが簡単であるが、敷地面積や建
設費の増加を招き現実的でない。曝気槽1の容量を増加
させずにSRTを長くするには、槽内の汚泥濃度を高く
できればよい。しかし、汚泥濃度を高めるほど固液分離
装置2での固液分離が難しくなり、汚泥性状によっては
汚泥のキャリーオーバーが生じ、かえって処理水質を悪
くする場合がある。従って、経済的に大きな負担を強い
ることなく、また固液分離装置2における安定性を犠牲
にすることなく、曝気槽SRTを長くする方法が求めら
れている。As a method of lengthening the SRT, an aeration tank 1 is used.
It is easy to increase the capacity, but it is not realistic because it increases the site area and construction cost. In order to lengthen the SRT without increasing the capacity of the aeration tank 1, it is sufficient to increase the sludge concentration in the tank. However, the higher the sludge concentration, the more difficult the solid-liquid separation in the solid-liquid separation device 2, and the carry-over of the sludge may occur depending on the sludge property, which may rather deteriorate the quality of the treated water. Therefore, there is a demand for a method of lengthening the aeration tank SRT without imposing a heavy economic burden and without sacrificing the stability of the solid-liquid separation device 2.
【0009】ところで、下水処理施設においては、供用
開始当初、処理水量が設計水量より大幅に少ないことが
多い。下水管路の接続状況によっては、設計水量の半分
以下の期間がしばらく続くこともある。このように水量
が少ない場合には、曝気槽の有機物負荷量が生物処理の
適正範囲から逸脱し、過曝気等による水質低下を招くこ
とがある。これに対応するため処理施設の系列が複数あ
る場合、通常系列数を減らして運転している。処理施設
が1系列しかない場合は系列を減らすことができないた
め、空気量を絞ったり、曝気装置を間欠的に運転したり
して低負荷運転に対応している。しかしこれらの対応に
は限界があり、供用開始まもなくの処理水量が少ない場
合にも、良好な処理水質を得るための施設の有効な活用
方法が求められている。By the way, in the sewage treatment facility, the treated water amount is often much smaller than the designed water amount at the beginning of service. Depending on the connection status of the sewer pipeline, a period of less than half the design water volume may continue for a while. When the amount of water is small in this way, the amount of organic matter loaded in the aeration tank may deviate from the proper range for biological treatment, leading to deterioration of water quality due to excessive aeration and the like. In order to deal with this, when there are multiple series of processing facilities, the number of series is usually reduced to operate. When there is only one treatment facility, the number of treatments cannot be reduced, so the amount of air is reduced and the aeration device is operated intermittently to support low-load operation. However, there is a limit to these measures, and there is a demand for effective utilization of facilities to obtain good treated water quality even when the amount of treated water is small immediately after the start of operation.
【0010】[0010]
【発明が解決しようとする課題】本発明の課題は、改質
汚泥の分解性能と下水の分解性能をともに高くすること
ができ、これにより活性汚泥を減容化するとともに、固
液分離障害を抑制し、高水質の処理水を低コストで安定
して得ることができる下水の活性汚泥処理方法および装
置を提案することである。The object of the present invention is to improve both the decomposition performance of the modified sludge and the decomposition performance of the sewage, thereby reducing the volume of the activated sludge and preventing solid-liquid separation obstacles. It is an object of the present invention to propose a method and an apparatus for treating activated sludge of sewage, which can suppress and stably obtain treated water of high quality at low cost.
【0011】[0011]
【課題を解決するための手段】本発明は次の下水の活性
汚泥処理方法および装置である。
(1) 下水を活性汚泥と混合して曝気を行いながら、
順次通過するように設けられた複数の曝気処理工程と、
下水を複数の曝気処理工程に分割注入する下水分割注入
工程と、後段の曝気処理工程の混合液を分離汚泥と分離
液とに固液分離する固液分離工程と、分離汚泥の一部を
前段の曝気処理工程に返送する汚泥返送工程と、曝気処
理工程の混合液または固液分離工程で固液分離した分離
汚泥の一部を易生物分解性に改質し、改質汚泥を前段の
曝気処理工程に供給する改質工程とを含む下水の活性汚
泥処理方法。
(2) 下水を活性汚泥と混合して曝気を行いながら、
順次通過するように直列に連結して設けられた複数の曝
気槽と、下水を複数の曝気槽に分割注入する下水分割注
入路と、後段の曝気槽の混合液を分離汚泥と分離液とに
固液分離する固液分離装置と、分離汚泥の一部を前段の
曝気槽に返送する汚泥返送路と、曝気槽の混合液または
固液分離装置で固液分離した分離汚泥の一部を易生物分
解性に改質し、改質汚泥を前段の曝気槽に供給する改質
装置とを含む下水の活性汚泥処理装置。The present invention is the following method and apparatus for treating activated sludge of sewage. (1) While mixing sewage with activated sludge and performing aeration,
A plurality of aeration processing steps provided so as to pass sequentially,
Separate sewage injection process that divides sewage into multiple aeration processes, solid-liquid separation process that separates the mixed liquid of the latter aeration process into separated sludge and separated liquid, and part of the separated sludge in the previous stage. The sludge return process, which is returned to the aeration treatment process, and part of the separated sludge that has undergone solid-liquid separation in the mixed liquid or solid-liquid separation process of the aeration process are easily biodegradable and the modified sludge is aerated in the previous stage. A method for treating activated sludge containing sewage, which comprises a reforming step of supplying the treatment step. (2) While mixing sewage with activated sludge and performing aeration,
A plurality of aeration tanks that are connected in series so as to pass sequentially, a sewage split injection path that divides and injects sewage into a plurality of aeration tanks, and a mixed solution in the aeration tank in the subsequent stage as separation sludge and separation liquid. A solid-liquid separator for solid-liquid separation, a sludge return path for returning a part of the separated sludge to the aeration tank at the previous stage, and a part of the separated sludge for solid-liquid separation by the mixed liquid in the aeration tank or the solid-liquid separator An activated sludge treatment device for sewage, which includes a reformer that is biodegradable and that supplies the reformed sludge to the aeration tank in the previous stage.
【0012】本発明における処理の対象はいわゆる下水
であり、具体的には都市下水、農業集落下水、浄化槽下
水などがあげられ、産業排水は処理の対象には属さな
い。The target of the treatment in the present invention is so-called sewage, and concrete examples thereof include urban sewage, agricultural sewage collected, septic tank sewage, etc. Industrial wastewater does not belong to the treatment target.
【0013】本発明における曝気処理工程では、上記の
ような下水を活性汚泥の存在下に曝気を行いながら生物
の作用により有機物などを好気的に除去する。この生物
反応は、有機物の場合は従属栄養微生物が有機物を資化
することにより分解する反応であり、アンモニアの場合
はアンモニア酸化菌により硝化する反応である。In the aeration treatment step of the present invention, organic substances and the like are aerobically removed by the action of organisms while aerating the sewage as described above in the presence of activated sludge. This biological reaction is a reaction in which a heterotrophic microorganism decomposes by assimilating an organic substance in the case of an organic substance, and is a reaction in which nitrification is caused by an ammonia-oxidizing bacterium in the case of ammonia.
【0014】本発明における曝気槽は、下水を活性汚泥
と混合して生物反応を行いながら順次通過するように、
複数の曝気槽が直列に連結して設けられる。各曝気槽は
独立したものでもよいが、1つの槽を隔壁で区画して形
成することができる。この場合は槽内の混合液は隔壁の
上部を通過するようにするのが好ましいが、他の部分を
通過するようにしてもよい。In the aeration tank according to the present invention, sewage is mixed with activated sludge so that the sludge passes sequentially while performing a biological reaction.
A plurality of aeration tanks are connected in series and provided. Although each aeration tank may be independent, one aeration tank can be formed by partitioning with a partition. In this case, it is preferable that the mixed liquid in the tank pass through the upper part of the partition wall, but it may pass through other parts.
【0015】本発明における下水分割注入路は複数の曝
気槽に下水を分割注入するように設けられる。この場合
第1段から最終段の曝気槽のそれぞれに分割注入するよ
うに各曝気槽に設けるのが好ましいが、一部の曝気槽へ
の注入を省略するようにしてもよい。The sewage split injection passage in the present invention is provided so as to split and inject sewage into a plurality of aeration tanks. In this case, it is preferable to provide each aeration tank so as to perform divided injection into each of the first to final aeration tanks, but the injection into some aeration tanks may be omitted.
【0016】本発明における固液分離装置は曝気槽の混
合液を沈殿分離、濾過分離等により固液分離し、分離液
を処理水として排出し、分離汚泥の少なくとも一部を前
段の曝気槽へ返送するように構成する。このような曝気
槽、下水分割注入路および固液分離装置を含む活性汚泥
処理系としては、有機性排液を曝気槽で活性汚泥と混合
して曝気し、混合液を固液分離装置において固液分離
し、分離汚泥の一部を曝気槽に返送するステップフィー
ド式の活性汚泥処理法が一般的であるが、これを変形し
た他の処理方法でもよい。The solid-liquid separator according to the present invention performs solid-liquid separation of the mixed liquid in the aeration tank by precipitation separation, filtration separation, etc., and discharges the separated liquid as treated water, and at least a part of the separated sludge to the preceding aeration tank. Configure to return. As an activated sludge treatment system including such an aeration tank, a sewage split injection path, and a solid-liquid separation device, organic waste liquid is mixed with activated sludge in an aeration tank and aerated, and the mixed liquid is solidified in a solid-liquid separation device. A step-feed type activated sludge treatment method in which liquid is separated and a part of the separated sludge is returned to the aeration tank is generally used, but other treatment methods modified from this may be used.
【0017】本発明では、このような活性汚泥処理にお
ける処理系からの活性汚泥(生物汚泥)の一部を引き抜
き、この引抜汚泥を易生物分解性に改質して改質汚泥を
前段の曝気処理工程に供給する改質処理を行う。活性汚
泥を引き抜く場合、固液分離装置で分離された分離汚泥
の一部を引き抜くのが好ましいが、曝気槽から混合液を
引き抜いてもよい。分離汚泥から引き抜く場合、余剰汚
泥として排出される部分の一部または全部を引抜汚泥と
して引き抜くことができるが、余剰汚泥に加えて、返送
汚泥として曝気槽に返送される返送汚泥の一部をさらに
引き抜いて改質処理することもできる。この場合系外に
排出する余剰汚泥の発生量をより少なくし、場合によっ
てはゼロにすることもできる。曝気槽から混合液を引き
抜く場合、後段の曝気槽から引き抜くのが好ましい。In the present invention, a part of the activated sludge (biological sludge) from the treatment system in such activated sludge treatment is extracted, and the extracted sludge is modified to be easily biodegradable to aerate the modified sludge in the preceding stage. A reforming process to be supplied to the processing step is performed. When extracting the activated sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separation device, but the mixed liquid may be extracted from the aeration tank. When extracting from separated sludge, part or all of the part discharged as excess sludge can be extracted as extracted sludge, but in addition to excess sludge, part of the return sludge returned to the aeration tank as return sludge It can also be pulled out and modified. In this case, the amount of excess sludge discharged to the outside of the system can be reduced, and in some cases, it can be reduced to zero. When withdrawing the mixed liquid from the aeration tank, it is preferable to withdraw it from the aeration tank at the subsequent stage.
【0018】引抜汚泥を生物が分解し易い性状に改質す
る改質処理方法としては、引抜汚泥に薬剤および/また
はエネルギーを加えて易生物分解性に改質する方法であ
れば任意の方法を採用することができる。例えば、オゾ
ン処理による改質処理、過酸化水素処理による改質処
理、酸処理による改質処理、アルカリ処理による改質処
理、加熱処理による改質処理、高圧パルス放電処理、ボ
ールミル、コロイドミル等のミルによる磨砕処理、これ
らを組合せた改質処理等を採用することができる。これ
らの中ではオゾン処理による改質処理が、処理操作が簡
単かつ処理効率が高いため好ましい。As a modification treatment method for modifying the drawn sludge into a property in which organisms are easily decomposed, any method can be used as long as it is a method of adding chemicals and / or energy to the drawn sludge so as to be easily biodegradable. Can be adopted. For example, modification treatment by ozone treatment, modification treatment by hydrogen peroxide treatment, modification treatment by acid treatment, modification treatment by alkali treatment, modification treatment by heat treatment, high pressure pulse discharge treatment, ball mill, colloid mill, etc. Milling treatment with a mill, modification treatment combining these, and the like can be adopted. Of these, the modification treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.
【0019】改質処理としてのオゾン処理は、活性汚泥
処理系から引き抜いた引抜汚泥をオゾンと接触させれば
よく、オゾンの酸化作用により汚泥は易生物分解性に改
質される。オゾン処理はpH5以下の酸性領域で行うと
酸化分解効率が高くなる。このときのpHの調整は、硫
酸、塩酸または硝酸などの無機酸をpH調整剤として活
性汚泥に添加するか、活性汚泥を酸発酵処理して調整す
るか、あるいはこれらを組合せて行うのが好ましい。p
H調整剤を添加する場合、pHは3〜4に調整するのが
好ましく、酸発酵処理を行う場合、pHは4〜5となる
ように行うのが好ましい。For the ozone treatment as the reforming treatment, the drawn sludge drawn from the activated sludge treatment system may be brought into contact with ozone, and the sludge is reformed to be easily biodegradable by the oxidizing action of ozone. When the ozone treatment is carried out in an acidic region of pH 5 or less, the oxidative decomposition efficiency becomes high. The pH adjustment at this time is preferably carried out by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the activated sludge as a pH adjusting agent, adjusting the activated sludge by acid fermentation treatment, or a combination thereof. . p
When the H adjuster is added, the pH is preferably adjusted to 3 to 4, and when the acid fermentation treatment is performed, the pH is preferably adjusted to 4 to 5.
【0020】オゾン処理は、引抜汚泥または酸発酵処理
液をそのまま、または必要により遠心分離機などで濃縮
した後pH5以下に調整し、オゾンと接触させることに
より行うことができる。接触方法としては、オゾン処理
槽に汚泥を導入してオゾンを吹込む方法、機械攪拌によ
る方法、充填層を利用する方法などが採用できる。オゾ
ンガスとしてはオゾン化酸素、オゾン化空気などのオゾ
ン含有ガスが使用できる。オゾンの使用量は処理汚泥あ
たり0.002〜0.1g−O3/g−SS、好ましく
は0.03〜0.08g−O3/g−SSとするのが望
ましい。オゾン処理により活性汚泥は酸化分解されて、
BOD成分に変換される。The ozone treatment can be carried out by bringing the drawn sludge or the acid fermentation treatment liquid as it is, or if necessary concentrating it with a centrifuge or the like, adjusting the pH to 5 or less, and contacting it with ozone. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of utilizing a packed bed, and the like can be adopted. As the ozone gas, ozone-containing gas such as ozonized oxygen or ozonized air can be used. The amount of ozone treated sludge per 0.002~0.1g-O 3 / g-SS , preferably it is desirable to 0.03~0.08g-O 3 / g-SS . Activated sludge is oxidatively decomposed by ozone treatment,
Converted to BOD component.
【0021】改質処理としての過酸化水素処理は活性汚
泥処理系から引き抜いた引抜汚泥を改質槽に導き、過酸
化水素を混合する。過酸化水素の使用量は0.001〜
0.2g−H2O2/g−SSとする。このとき引抜汚泥
に塩酸などの酸を添加してpH3〜5とすることが好ま
しく、この場合、過酸化水素の使用量は0.001〜
0.07g−H2O2/g−SSとするのが好ましい。反
応を促進するために、加温したり、第1鉄イオンなどの
触媒を添加してもよい。In the hydrogen peroxide treatment as the reforming treatment, the drawn sludge drawn from the activated sludge treatment system is introduced into the reforming tank and hydrogen peroxide is mixed. The amount of hydrogen peroxide used is 0.001
And 0.2g-H 2 O 2 / g -SS. At this time, it is preferable to add an acid such as hydrochloric acid to the drawn sludge to adjust the pH to 3 to 5, and in this case, the amount of hydrogen peroxide used is 0.001 to 0.001.
It is preferably 0.07 g-H 2 O 2 / g-SS. In order to accelerate the reaction, heating may be performed or a catalyst such as ferrous ion may be added.
【0022】改質方法としての酸処理では、活性汚泥処
理系から引き抜いた引抜汚泥を改質槽に導き、塩酸、硫
酸などの鉱酸を加え、pH2.5以下、好ましくはpH
1〜2の酸性条件下で所定時間滞留させればよい。滞留
時間としては、例えば5〜24時間とする。この際、汚
泥を加熱、例えば50〜100℃に加熱すると改質が促
進されるので好ましい。このような酸による処理により
汚泥は易生物分解性となり、曝気槽に戻すことにより容
易に分解除去できるようになる。In the acid treatment as a reforming method, the drawn sludge drawn from the activated sludge treatment system is introduced into a reforming tank, and a mineral acid such as hydrochloric acid or sulfuric acid is added thereto to adjust the pH to 2.5 or less, preferably pH.
It may be allowed to stay for a predetermined time under an acidic condition of 1-2. The residence time is, for example, 5 to 24 hours. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., since the reforming is promoted. By such treatment with acid, the sludge becomes easily biodegradable and can be easily decomposed and removed by returning it to the aeration tank.
【0023】また、汚泥の改質方法としてのアルカリ処
理では、活性汚泥処理系から引き抜いた引抜汚泥を改質
槽に導き、水酸化ナトリウム、水酸化カリウム等のアル
カリを汚泥に対して0.1〜1重量%加え、所定時間滞
留させればよい。滞留時間は0.5〜2時間程度で汚泥
は易生物分解性に改質される。この際、汚泥を加熱し、
例えば50〜100℃に加熱すると改質が促進されるの
で好ましい。In addition, in the alkali treatment as a sludge reforming method, the drawn sludge drawn from the activated sludge treatment system is introduced into a reforming tank, and alkali such as sodium hydroxide or potassium hydroxide is added to the sludge in an amount of 0.1. Add about 1% by weight and let it stay for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is easily biodegradable. At this time, heat the sludge,
For example, heating to 50 to 100 ° C. is preferable because reforming is promoted.
【0024】改質方法としての加熱処理は、加熱処理単
独で行うこともできるが、酸処理またはアルカリ処理と
組合せて行うのが好ましい。加熱処理単独で行う場合
は、例えば温度70〜100℃、滞留時間2〜3時間と
することができる。The heat treatment as a reforming method can be carried out by the heat treatment alone, but it is preferably carried out in combination with the acid treatment or the alkali treatment. When the heat treatment is performed alone, the temperature may be 70 to 100 ° C. and the residence time may be 2 to 3 hours.
【0025】高電圧のパルス放電処理は、電極間隔3〜
10mm、好ましくは4〜8mmのタングステン/トリ
ウム合金等の+極と、ステンレス鋼等の−極間に汚泥を
存在させ、印加電圧10〜50kV、好ましくは20〜
40kV、パルス間隔20〜80Hz、好ましくは40
〜60Hzでパルス放電を行い、汚泥は順次循環させな
がら処理を行うことができる。The high-voltage pulse discharge process is performed with an electrode interval of 3 to
Sludge is allowed to exist between a positive electrode such as a tungsten / thorium alloy of 10 mm, preferably 4 to 8 mm, and a negative electrode of stainless steel, and an applied voltage is 10 to 50 kV, preferably 20 to
40 kV, pulse interval 20-80 Hz, preferably 40
The pulse discharge is performed at -60 Hz, and the sludge can be treated while being sequentially circulated.
【0026】このようにして易生物分解性に改質した改
質汚泥は、前段好ましくは第1段の曝気槽に導入して活
性汚泥処理を行い、微生物に資化させて分解するが、改
質汚泥を後段の曝気槽にも分割して注入してもよい。最
終の曝気槽の活性汚泥のVSS/SS比を0.2〜0.
7、好ましくは0.3〜0.6、MLVSSを500〜
10000mg/l、好ましくは1000〜5000m
g/lに維持するように制御することにより、汚泥の沈
降性および脱水性を悪化させることなく活性汚泥処理を
行うことができる。The modified sludge thus modified to be easily biodegradable is introduced into the aeration tank of the first stage, preferably the first stage, and subjected to activated sludge treatment to be assimilated by microorganisms and decomposed. The sludge may be dividedly injected into the aeration tank at the latter stage. The final activated aeration tank activated sludge had a VSS / SS ratio of 0.2 to 0.
7, preferably 0.3-0.6, MLVSS 500-
10000 mg / l, preferably 1000-5000 m
By controlling so that the sludge is maintained at g / l, the activated sludge treatment can be performed without deteriorating the sedimentation property and the dehydration property of the sludge.
【0027】本発明では、下水分割注入路から下水を複
数の曝気槽に分割注入し、活性汚泥と混合して生物反応
を行いながら、混合液を順次前段の曝気槽から後段の曝
気槽に通過させ、後段の混合液を固液分離装置で固液分
離する。そして分離液を処理水として取り出し、分離汚
泥の一部を汚泥返送路から返送汚泥として前段の曝気槽
に返送し、他の一部を引抜汚泥として改質装置に引き抜
いて易生物分解性に改質処理を行い、改質汚泥を前段の
曝気槽に供給する。In the present invention, sewage is split-injected into a plurality of aeration tanks from the sewage split-injection passage, mixed with activated sludge to cause a biological reaction, and the mixed liquid is sequentially passed from the aeration tank in the first stage to the aeration tank in the second stage. Then, the latter-stage mixed liquid is subjected to solid-liquid separation by a solid-liquid separation device. Then, the separated liquid is taken out as treated water, a part of the separated sludge is returned from the sludge return path to the aeration tank in the previous stage as returned sludge, and the other part is drawn out as reformed sludge into a reformer to improve biodegradability. Quality treatment is performed and the modified sludge is supplied to the previous aeration tank.
【0028】上記の処理では前段の曝気槽に供給された
改質汚泥は返送汚泥と混合されて前段から後段の曝気槽
を通過する過程で生物反応により分解され、順次易生物
分解性成分濃度が低下する。下水は複数の曝気槽に分割
注入することにより各曝気槽において分解が行われ、後
段の曝気槽における負荷は小さくなり、分解効率は高く
なる。このため改質汚泥の有機物除去性能と下水の有機
物除去性能はともに高くなり、高水質の処理水質が得ら
れる。また改質汚泥の分解により活性汚泥は減容し、引
抜汚泥量を増殖量より多くすることにより減容化率は高
くなり、余剰汚泥として排出する量を実質的にゼロとす
ることもできる。In the above treatment, the modified sludge supplied to the aeration tank of the first stage is mixed with the return sludge and decomposed by a biological reaction in the process of passing from the aeration tank of the first stage to the second stage, and the easily biodegradable component concentration is gradually increased. descend. By separately injecting sewage into a plurality of aeration tanks, the aeration tanks are decomposed, the load on the aeration tanks in the subsequent stages is reduced, and the decomposition efficiency is increased. Therefore, the organic matter removing performance of the modified sludge and the organic matter removing performance of the sewage are both high, and high quality treated water can be obtained. Further, the volume of the activated sludge is reduced by the decomposition of the modified sludge, and the volume reduction rate is increased by increasing the amount of drawn-out sludge to be larger than the multiplication amount, and the amount discharged as surplus sludge can be substantially zero.
【0029】本発明では曝気槽を複数段に分割し、下水
を各曝気槽に分注して活性汚泥処理しているので、曝気
槽容量を増やさずかつ固液分離装置の固形物負荷を増や
さずに曝気槽SRTを長くすることができる。また返送
汚泥および改質汚泥を前段の曝気槽に戻しているので、
従来の方法と比較して、最終曝気槽以外のMLSS濃度
は増加し、かつ最終曝気槽のMLSS濃度は同程度とす
ることができる。従って、曝気槽全体での汚泥保持量を
増加させることができ、SRTを長くして高水質の処理
水を得ることができるとともに、固液分離装置への固形
物負荷は増加せず、固液分離障害なども生じない。In the present invention, since the aeration tank is divided into a plurality of stages and the sewage is dispensed to each aeration tank to treat the activated sludge, the aeration tank capacity is not increased and the solid load of the solid-liquid separator is increased. The aeration tank SRT can be lengthened without having to do so. Moreover, since the returned sludge and the modified sludge are returned to the aeration tank in the previous stage,
Compared with the conventional method, the MLSS concentration in the parts other than the final aeration tank can be increased, and the MLSS concentration in the final aeration tank can be the same level. Therefore, the sludge holding amount in the entire aeration tank can be increased, the SRT can be lengthened to obtain treated water of high water quality, and the solid load on the solid-liquid separation device does not increase. Separation failure does not occur.
【0030】分割段数が多いほど曝気槽全体での活性汚
泥保持量は増加するが、装置の煩雑さなどを考慮して、
通常2〜5段程度がよい。処理する下水量が少ない場合
などでは、前段の一部の曝気槽への分割注入を省略する
こともできる。これにより、下水処理施設において供用
開始当初の処理水量が少ない場合でも、容易に対応する
ことができる。The larger the number of division stages, the greater the amount of activated sludge retained in the aeration tank. However, considering the complexity of the equipment, etc.
Usually, about 2 to 5 steps is preferable. In the case where the amount of sewage to be treated is small, it is possible to omit the divisional injection into a part of the aeration tank in the previous stage. As a result, even if the amount of treated water at the beginning of service at the sewage treatment facility is small, it can be easily dealt with.
【0031】本発明の処理において、改質処理汚泥は直
列に連結された複数の曝気槽へ分割注入することができ
るが、改質汚泥は下水中の有機物よりも生物分解されに
くいので、第1段の曝気槽に全量注入する方が好まし
い。ただし、改質汚泥より難生物分解性の有機物を含む
下水を処理する場合には、このような下水を改質汚泥よ
りも前段の曝気槽に注入してもよい。上記の活性汚泥処
理において複数の曝気槽内の活性汚泥は、分注される下
水によって順次希釈されるため、前段から後段にかけて
汚泥濃度は低くなる勾配ができる。In the treatment of the present invention, the reformed sludge can be dividedly injected into a plurality of aeration tanks connected in series, but the reformed sludge is less biodegradable than the organic matter in the sewage. It is preferable to inject the entire amount into the aeration tank in stages. However, when treating sewage containing organic substances that are less biodegradable than the modified sludge, such sewage may be injected into the aeration tank at a stage before the modified sludge. In the above-mentioned activated sludge treatment, the activated sludge in the plurality of aeration tanks is sequentially diluted by the sewage to be dispensed, so that the sludge concentration becomes low from the first stage to the second stage.
【0032】上記の処理方法において活性汚泥処理の電
子受容体は制限が無く、分子状酸素でも結合酸素(例え
ば硝酸)でもかまわない。本発明では下水と返送汚泥に
よって曝気槽内の汚泥濃度に勾配を形成して槽内の保有
汚泥量を高めることを意図しているので、活性汚泥処理
の方式に浮遊法を採用する方が好ましく、これに微生物
が付着増床できる担体を添加すれば、さらに保有汚泥量
を高めることができる。In the above treatment method, the electron acceptor for treating the activated sludge is not limited and may be molecular oxygen or bound oxygen (eg nitric acid). In the present invention, since it is intended to form a gradient in the sludge concentration in the aeration tank by the sewage and the returned sludge to increase the amount of sludge retained in the tank, it is preferable to adopt the floating method as the activated sludge treatment method. The amount of sludge retained can be further increased by adding a carrier to which microorganisms can adhere and increase the floor.
【0033】[0033]
【発明の効果】本発明によれば、改質汚泥および返送汚
泥を前段の曝気槽に供給するとともに、下水を複数の曝
気槽に分注するようにしたので、改質汚泥の分解性能と
下水の分解性能をともに高くすることができ、これによ
り活性汚泥を減容化して高水質の処理水を安定して得る
ことができる。この場合前段の曝気槽内の保有汚泥量を
高められるため、下水や余剰汚泥の分解を高性能で行う
ことができ、後段の曝気槽における汚泥濃度を低く維持
できるため、固液分離障害が起こりにくい。また曝気槽
全体としては活性汚泥の保持量を多くしてSRTを長く
することができるので、曝気槽容量を増加させないで低
コストで、高水質の処理水を安定して得ることができ
る。EFFECTS OF THE INVENTION According to the present invention, the modified sludge and the returned sludge are supplied to the aeration tank at the preceding stage, and the sewage is dispensed into a plurality of aeration tanks. It is possible to improve both the decomposition performance of the above, and thereby to reduce the volume of the activated sludge and stably obtain the treated water of high quality. In this case, since the amount of sludge retained in the aeration tank in the first stage can be increased, sewage and excess sludge can be decomposed with high performance, and the sludge concentration in the aeration tank in the second stage can be kept low, resulting in solid-liquid separation failure. Hateful. In addition, since the amount of activated sludge retained in the aeration tank as a whole can be increased to increase the SRT, it is possible to stably obtain high-quality treated water at a low cost without increasing the aeration tank capacity.
【0034】[0034]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は実施形態の活性汚泥処理装置を示す
フロー図であり、図2と同符号は同一または相当部分を
示す。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a flow chart showing the activated sludge treatment device of the embodiment, and the same reference numerals as those in FIG. 2 indicate the same or corresponding portions.
【0035】図1において、複数の曝気槽1a、1b、
1c、1dが隔壁13a、13b、13cによって区画
され、混合液20が隔壁13a、13b、13cの上部
を越えて流れるように直列に連結して設けられており、
最終段の曝気槽1dから移送路11が固液分離装置2に
連絡している。下水分割注入路4aは各曝気槽1a、1
b…に連絡し、それぞれに同一の下水を分注するように
されている 。各曝気槽1a、1b…には曝気装置6
a、6b、6c、6dが設けられ、給気路5から空気を
供給するように連絡している。固液分離装置2には上部
に分離液を処理水として取り出す処理水取出路7が連絡
し、下部から分離汚泥を返送汚泥として第1段の曝気槽
1aに返送する汚泥返送路8および引抜汚泥として改質
装置3に引き抜く引抜路12が連絡し、さらに必要によ
り余剰汚泥として系外に排出する余剰汚泥排出路10が
連絡する。改質装置3は引抜汚泥をオゾン処理により易
生物分解性に改質し、改質汚泥を改質汚泥供給路9から
第1段の曝気槽1aに供給するように連絡している。In FIG. 1, a plurality of aeration tanks 1a, 1b,
1c and 1d are partitioned by partition walls 13a, 13b and 13c, and the mixed liquid 20 is connected in series so as to flow over the upper portions of the partition walls 13a, 13b and 13c,
A transfer path 11 communicates with the solid-liquid separation device 2 from the last-stage aeration tank 1d. The sewage split injection path 4a is provided in each aeration tank 1a, 1
b ... is contacted and the same sewage is dispensed to each. The aeration device 6 is provided in each of the aeration tanks 1a, 1b.
a, 6b, 6c, 6d are provided and are connected to supply air from the air supply passage 5. The solid-liquid separator 2 is connected to a treated water take-out passage 7 for taking the separated liquid as treated water at the upper part, and the sludge return passage 8 and drawn sludge for returning the separated sludge as the returned sludge to the first aeration tank 1a from the lower part. As a result, the withdrawal path 12 for withdrawing is connected to the reforming apparatus 3, and further, the excess sludge discharge path 10 for discharging the excess sludge to the outside of the system is connected as necessary. The reforming device 3 communicates so that the extracted sludge is easily biodegradable by ozone treatment and the modified sludge is supplied from the modified sludge supply passage 9 to the first-stage aeration tank 1a.
【0036】上記の装置による活性汚泥処理方法は、下
水分割注入路4aから下水をそれぞれ曝気槽1a、1b
…に分割注入して活性汚泥と混合し、給気路5から空気
を供給して曝気装置6a、6b…から曝気する。下水は
曝気槽1a、1b…容量に応じて均等に分割注入するの
が好ましいが、分注量に差を設けることもできる。この
ようにして生物反応を行いながら、槽内の混合液20を
順次前段の曝気槽1a側から後段の曝気槽1d側に通過
させ、最終段の曝気槽1dの混合液20を移送路11か
ら固液分離装置2に送って固液分離する。そして分離液
を処理水として処理水取出路7から取り出し、分離汚泥
の一部を汚泥返送路8から返送汚泥として第1段の曝気
槽1aに返送し、他の一部を引抜汚泥として引抜路12
から改質装置3に引き抜いて易生物分解性に改質処理を
行い、改質汚泥を改質汚泥供給路9から第1段の曝気槽
1aに供給する。余剰汚泥が発生する場合は余剰汚泥排
出路10から系外に排出する。In the activated sludge treatment method using the above-mentioned apparatus, the sewage is aerated from the sewage split injection path 4a, respectively.
Are separately injected and mixed with activated sludge, and air is supplied from the air supply path 5 to aerate from the aeration devices 6a, 6b. It is preferable that the sewage is divided and injected evenly according to the aeration tanks 1a, 1b ..., However, it is also possible to provide a difference in the dispensing amount. While carrying out the biological reaction in this manner, the mixed solution 20 in the tank is sequentially passed from the aeration tank 1a side of the first stage to the aeration tank 1d side of the second stage, and the mixed solution 20 of the last aeration tank 1d is transferred from the transfer path 11. It is sent to the solid-liquid separation device 2 for solid-liquid separation. Then, the separated liquid is taken out from the treated water outlet 7 as treated water, a part of the separated sludge is returned from the sludge returning passage 8 to the first-stage aeration tank 1a as returning sludge, and the other part is taken out as drawn-out sludge. 12
The modified sludge is extracted to the reforming device 3 to be easily biodegradable, and the modified sludge is supplied from the modified sludge supply passage 9 to the first-stage aeration tank 1a. When excess sludge is generated, it is discharged from the excess sludge discharge path 10 to the outside of the system.
【0037】上記の処理では第1段の曝気槽1aに供給
された改質汚泥は返送汚泥と混合されて、第1段から最
終段の曝気槽1a〜1dを通過する過程で生物反応によ
り分解され、順次易生物分解性成分濃度が低下する。下
水は直列多段の曝気槽1a、1b…に分割注入すること
により各槽において分解が行われ、後段の曝気槽1dに
おける負荷は小さくなり、分解効率は高くなる。このた
め改質汚泥の有機物除去性能と下水の有機物除去性能は
ともに高くなり、高水質の処理水質が得られる。改質汚
泥の分解により活性汚泥は減容し、引抜汚泥量を増殖量
より多くすることにより減容化率は高くなり、余剰汚泥
排出路10から余剰汚泥として排出する量を実質的にゼ
ロとすることもできる。In the above treatment, the reformed sludge supplied to the first-stage aeration tank 1a is mixed with the return sludge and decomposed by biological reaction in the process of passing from the first-stage to the final-stage aeration tanks 1a to 1d. The concentration of easily biodegradable components gradually decreases. The sewage is decomposed in each tank by dividing and injecting it into the multi-stage aeration tanks 1a, 1b ..., The load on the aeration tank 1d in the subsequent stage is reduced, and the decomposition efficiency is increased. Therefore, the organic matter removing performance of the modified sludge and the organic matter removing performance of the sewage are both high, and high quality treated water can be obtained. The volume of activated sludge is reduced by the decomposition of the reformed sludge, and the volume reduction rate is increased by increasing the amount of drawn-out sludge to be larger than the multiplication amount, and the amount discharged as excess sludge from the excess sludge discharge path 10 becomes substantially zero. You can also do it.
【0038】曝気槽全体としては汚泥保持量を増加させ
ることができ、SRTを長くして高水質の処理水を得る
ことができる。また負荷の少ない後段の曝気槽1dの混
合液20を固液分離装置2で固液分離しているので、固
液分離装置2の固形物負荷は増加しておらず、固液分離
障害なども生じない。生物学的に不活性な汚泥、たとえ
ば無機汚泥が蓄積する場合は、ごく少量の余剰汚泥を排
出することができる。The sludge retention amount can be increased in the aeration tank as a whole, and the SRT can be lengthened to obtain treated water of high water quality. Further, since the mixed liquid 20 in the aeration tank 1d in the latter stage with a small load is subjected to solid-liquid separation by the solid-liquid separation device 2, the solids load of the solid-liquid separation device 2 does not increase, and solid-liquid separation obstacles occur. Does not happen. When biologically inert sludge, for example inorganic sludge, accumulates, only a small amount of excess sludge can be discharged.
【0039】[0039]
【実施例】以下、本発明の実施例および比較例について
説明する。EXAMPLES Examples and comparative examples of the present invention will be described below.
【0040】実施例1
図1の装置により、次の条件で下水を活性汚泥処理し
た。なお、曝気槽としては均等に4段に区画された曝気
槽を用いた。また改質処理としてはオゾン処理を行っ
た。Example 1 Sewage was treated with activated sludge under the following conditions using the apparatus shown in FIG. As the aeration tank, an aeration tank that was evenly divided into four stages was used. Further, ozone treatment was performed as the modification treatment.
【0041】下水:沈砂池後の下水(BOD濃度150
mg/L、Kj−N濃度25mg/L)
処理量:1m3/day
下水分割:1/4ずつ均等に分注
曝気槽:全槽で1m3(HRT1日)、槽4段均等分
割、最終槽MLSS濃度2500mg/L
曝気槽水温:14〜16℃
汚泥返送率:30%
返送汚泥濃度:10800mg/L
オゾン処理汚泥量:0.055m3/day
オゾン使用量:0.05g−O3/g−SSSewage: Sewage after a sand basin (BOD concentration 150
mg / L, Kj-N concentration 25 mg / L) Treatment amount: 1 m 3 / day Sewage division: 1/4 evenly aeration tank: 1 m 3 (HRT 1 day) in all tanks, 4 tanks evenly divided, final Tank MLSS concentration 2500 mg / L Aeration tank water temperature: 14-16 ° C Sludge return rate: 30% Returned sludge concentration: 10800 mg / L Ozone-treated sludge amount: 0.055 m 3 / day Ozone usage amount: 0.05 g-O 3 / g -SS
【0042】3か月の試験期間中、余剰汚泥を排出する
ことなく運転することができた。最終段の曝気槽のML
SS濃度は2500±300mg/Lで推移し、汚泥の
減容化運転は安定して行われた。この結果、曝気槽全体
のSRTは約10日となり、処理水のNH4−N濃度は
2mg/L以下(平均0.8mg/L)で硝化反応は良
好に行われた。処理水CODMnは平均9mg/L(7〜
12mg/L)で良好に処理された。処理水SSも5m
g/L以下であり、汚泥がキャリーオーバーすることも
なかった。During the test period of 3 months, it was possible to operate without discharging excess sludge. ML of the final stage aeration tank
The SS concentration remained at 2500 ± 300 mg / L, and the sludge volume reduction operation was performed stably. As a result, the SRT of the entire aeration tank was about 10 days, the NH 4 —N concentration of the treated water was 2 mg / L or less (average 0.8 mg / L), and the nitrification reaction was performed well. The treated water COD Mn has an average of 9 mg / L (7-
12 mg / L) worked well. Treated water SS is also 5m
It was g / L or less, and sludge did not carry over.
【0043】比較例1
実施例1と同時期に図2の装置により下水の活性汚泥処
理を行った。すなわち、実施例1と同じ下水を用い、区
画しない曝気槽に下水を供給する以外は実施例1と同じ
条件で処理した。Comparative Example 1 At the same time as Example 1, sewage activated sludge treatment was performed by the apparatus shown in FIG. That is, the same sewage as in Example 1 was used, and the treatment was performed under the same conditions as in Example 1 except that sewage was supplied to an aeration tank that was not partitioned.
【0044】その結果、汚泥の減容効果は良好で、実施
例1と同様に余剰汚泥を引き抜かなくてもMLSSが増
加することはなかった。しかし曝気槽全体のSRTは平
均6.5日で、実施例1と比べるて大幅に短くなった。
そのため、処理水にNH4−Nが0.5〜7mg/L
(平均3.5mg/L)残存し、硝化は不安定であっ
た。処理水CODMnは平均10.5mg/Lであり、実
施例に比べてやや高かった。処理水SSは5mg/L以
下で良好であった。As a result, the sludge volume-reducing effect was good, and the MLSS did not increase even without extracting the excess sludge as in Example 1. However, the SRT of the entire aeration tank was 6.5 days on average, which was significantly shorter than that in Example 1.
Therefore, NH 4 -N is 0.5 to 7 mg / L in the treated water.
(Average 3.5 mg / L) remained and nitrification was unstable. The treated water COD Mn was 10.5 mg / L on average, which was slightly higher than that in the examples. The treated water SS was good at 5 mg / L or less.
【図1】実施形態の活性汚泥処理装置を示すフロー図で
ある。FIG. 1 is a flowchart showing an activated sludge treatment device of an embodiment.
【図2】従来の活性汚泥処理装置を示すフロー図であ
る。FIG. 2 is a flowchart showing a conventional activated sludge treatment device.
1、1a、1b… 曝気槽 2 固液分離装置 3 改質装置 4a 下水分割注入路 4b 原水注入路 5 給気路 6、6a、6b… 曝気装置 7 処理水取出路 8 汚泥返送路 9 改質汚泥供給路 10 余剰汚泥排出路 11 移送路 12 引抜路 13、13a、13b… 隔壁 20 混合液 1, 1a, 1b ... Aeration tank 2 Solid-liquid separator 3 reformer 4a Sewage split injection channel 4b Raw water injection channel 5 air supply 6, 6a, 6b ... Aeration device 7 Treated water outlet 8 Sludge return path 9 Modified sludge supply channel 10 Surplus sludge discharge route 11 Transfer route 12 Withdrawal path 13, 13a, 13b ... Partition walls 20 mixed liquid
フロントページの続き Fターム(参考) 4D028 AB00 BB06 BC01 BC13 BD01 BE01 BE08 4D059 AA03 AA05 BC02 BF01 BF14 BK12 BK22 CA28 DA32 DA33 DA43 DA44 Continued front page F-term (reference) 4D028 AB00 BB06 BC01 BC13 BD01 BE01 BE08 4D059 AA03 AA05 BC02 BF01 BF14 BK12 BK22 CA28 DA32 DA33 DA43 DA44
Claims (2)
がら、順次通過するように設けられた複数の曝気処理工
程と、 下水を複数の曝気処理工程に分割注入する下水分割注入
工程と、 後段の曝気処理工程の混合液を分離汚泥と分離液とに固
液分離する固液分離工程と、 分離汚泥の一部を前段の曝気処理工程に返送する汚泥返
送工程と、 曝気処理工程の混合液または固液分離工程で固液分離し
た分離汚泥の一部を易生物分解性に改質し、改質汚泥を
前段の曝気処理工程に供給する改質工程とを含む下水の
活性汚泥処理方法。1. A plurality of aeration treatment steps provided so as to sequentially pass while mixing sewage with activated sludge to perform aeration, and a sewage split injection step of separately injecting sewage into a plurality of aeration treatment steps, Mixing the solid-liquid separation process that solid-liquid separates the mixed liquid of the latter aeration process into separated sludge and the separated liquid, the sludge return process that returns a part of the separated sludge to the previous aeration process, and the aeration process Method for sewage activated sludge treatment, including a reforming step in which a part of the sludge separated in the liquid or solid-liquid separation step is subjected to biodegradability and the modified sludge is supplied to the previous aeration treatment step. .
がら、順次通過するように直列に連結して設けられた複
数の曝気槽と、 下水を複数の曝気槽に分割注入する下水分割注入路と、 後段の曝気槽の混合液を分離汚泥と分離液とに固液分離
する固液分離装置と、 分離汚泥の一部を前段の曝気槽に返送する汚泥返送路
と、 曝気槽の混合液または固液分離装置で固液分離した分離
汚泥の一部を易生物分解性に改質し、改質汚泥を前段の
曝気槽に供給する改質装置とを含む下水の活性汚泥処理
装置。2. A plurality of aeration tanks connected in series so as to sequentially pass while sewage is mixed with activated sludge to perform aeration, and sewage split injection to separately inject sewage into a plurality of aeration tanks. A channel, a solid-liquid separator for solid-liquid separation of the mixed liquid in the aeration tank in the latter stage into separated sludge and the separated liquid, a sludge return path for returning a part of the separated sludge to the aeration tank in the first stage, and mixing of the aeration tank An activated sludge treatment device for sewage, which includes a reformer that reforms a part of the sludge separated by the liquid or solid-liquid separator into a biodegradable substance and supplies the reformed sludge to the aeration tank in the previous stage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001199423A JP2003010877A (en) | 2001-06-29 | 2001-06-29 | Activated sludge treatment method for sewage and its apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001199423A JP2003010877A (en) | 2001-06-29 | 2001-06-29 | Activated sludge treatment method for sewage and its apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003010877A true JP2003010877A (en) | 2003-01-14 |
Family
ID=19036722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001199423A Pending JP2003010877A (en) | 2001-06-29 | 2001-06-29 | Activated sludge treatment method for sewage and its apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003010877A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010155184A (en) * | 2008-12-26 | 2010-07-15 | Nishihara Environment Technology Inc | Support feeding type biological reaction apparatus |
JP2010188347A (en) * | 2010-04-28 | 2010-09-02 | Kurita Water Ind Ltd | Apparatus for treating wastewater containing organic sulfur compound |
JP2012110807A (en) * | 2010-11-22 | 2012-06-14 | Metawater Co Ltd | Sewage treatment system |
JP5575316B1 (en) * | 2013-08-23 | 2014-08-20 | 株式会社神鋼環境ソリューション | Waste water treatment method and waste water treatment apparatus |
CN105347634A (en) * | 2015-10-26 | 2016-02-24 | 徐明好 | Designing method of sludge processing apparatus and apparatus thereof |
CN109208669A (en) * | 2018-10-27 | 2019-01-15 | 河北雄安德荫源环境科技有限公司 | A kind of sewage disposal system and processing method of swag |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51125969A (en) * | 1975-04-24 | 1976-11-02 | Kurita Water Ind Ltd | Active sludge process |
JPH08281289A (en) * | 1995-04-11 | 1996-10-29 | Kurita Water Ind Ltd | Aerobic biological treatment device for organic waste liquid |
JPH09206781A (en) * | 1996-01-31 | 1997-08-12 | Ebara Corp | Treatment of organic sewage and treating device |
-
2001
- 2001-06-29 JP JP2001199423A patent/JP2003010877A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51125969A (en) * | 1975-04-24 | 1976-11-02 | Kurita Water Ind Ltd | Active sludge process |
JPH08281289A (en) * | 1995-04-11 | 1996-10-29 | Kurita Water Ind Ltd | Aerobic biological treatment device for organic waste liquid |
JPH09206781A (en) * | 1996-01-31 | 1997-08-12 | Ebara Corp | Treatment of organic sewage and treating device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010155184A (en) * | 2008-12-26 | 2010-07-15 | Nishihara Environment Technology Inc | Support feeding type biological reaction apparatus |
JP2010188347A (en) * | 2010-04-28 | 2010-09-02 | Kurita Water Ind Ltd | Apparatus for treating wastewater containing organic sulfur compound |
JP2012110807A (en) * | 2010-11-22 | 2012-06-14 | Metawater Co Ltd | Sewage treatment system |
JP5575316B1 (en) * | 2013-08-23 | 2014-08-20 | 株式会社神鋼環境ソリューション | Waste water treatment method and waste water treatment apparatus |
JP2015039691A (en) * | 2013-08-23 | 2015-03-02 | 株式会社神鋼環境ソリューション | Waste water treatment method and apparatus |
CN105347634A (en) * | 2015-10-26 | 2016-02-24 | 徐明好 | Designing method of sludge processing apparatus and apparatus thereof |
CN105347634B (en) * | 2015-10-26 | 2017-08-25 | 徐明好 | The design method and its device of a kind of sludge treatment equipment |
CN109208669A (en) * | 2018-10-27 | 2019-01-15 | 河北雄安德荫源环境科技有限公司 | A kind of sewage disposal system and processing method of swag |
CN109208669B (en) * | 2018-10-27 | 2023-09-26 | 河北雄安德荫源环境科技有限公司 | Sewage treatment system and treatment method for pit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706185B2 (en) | Biological method of phosphorus removal and biological phosphorus-removing apparatus | |
JP3521535B2 (en) | Aerobic biological treatment system for organic wastewater | |
KR101294489B1 (en) | Apparatus for treating a drainage containing organic sulfur compounds | |
US7404897B2 (en) | Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation | |
JP2000233198A (en) | Treatment of organic waste water | |
JP3473328B2 (en) | Biological dephosphorization equipment | |
JP4114128B2 (en) | Waste water purification apparatus and method | |
JP2003010877A (en) | Activated sludge treatment method for sewage and its apparatus | |
JP4882181B2 (en) | Denitrification method and apparatus | |
JP2000140886A (en) | Equipment for treatment of nitrogen-containing drainage | |
JPH08155482A (en) | Aerobic treatment method for organic drainage | |
KR100460851B1 (en) | Sewage and wastewater treatment apparatus which is no need internal recycle | |
JP4547799B2 (en) | Biological phosphorus removal equipment | |
JP4617572B2 (en) | Nitrogen-containing wastewater treatment method | |
HU205330B (en) | Process for purifying sewage containing organic material, by increased removal of phosphorus and nitrogen | |
JPH11333494A (en) | Method and apparatus for biological dentrification of waste water | |
JPH09174071A (en) | Method for treating organic sewage and apparatus therefor | |
JP2001212593A (en) | Post-treatment method for ascending current anaerobic treatment apparatus | |
JP2000263091A (en) | Sewage and sludge treatment method | |
JPH0994596A (en) | Removal and recovery of phosphorus from organic sewage | |
JP2002346584A (en) | Method and apparatus for treating activated sludge | |
WO2007050714A2 (en) | Method and apparatus for nitrogen removal in wastewater using bioaugmentation | |
JP2002192188A (en) | Biological denitrification apparatus | |
JP2001269697A (en) | Nitrogen-containing drainage treating method | |
JP2636772B2 (en) | Continuous treatment of waste liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120413 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130205 |