JP2010155184A - Support feeding type biological reaction apparatus - Google Patents

Support feeding type biological reaction apparatus Download PDF

Info

Publication number
JP2010155184A
JP2010155184A JP2008333807A JP2008333807A JP2010155184A JP 2010155184 A JP2010155184 A JP 2010155184A JP 2008333807 A JP2008333807 A JP 2008333807A JP 2008333807 A JP2008333807 A JP 2008333807A JP 2010155184 A JP2010155184 A JP 2010155184A
Authority
JP
Japan
Prior art keywords
carrier
biological reaction
reaction tank
separation plate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333807A
Other languages
Japanese (ja)
Other versions
JP5468251B2 (en
Inventor
Junichi Imoto
順一 井元
Hagumu Tanaka
育 田中
Koji Ishikawa
幸二 石川
Koji Watanabe
浩司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2008333807A priority Critical patent/JP5468251B2/en
Publication of JP2010155184A publication Critical patent/JP2010155184A/en
Application granted granted Critical
Publication of JP5468251B2 publication Critical patent/JP5468251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a support feeding type reaction apparatus capable of avoiding the clogging of a support separation panel for separating the support from a biological reaction tank mixed solution and efficiently operating a first settling tank when water flows in a waste water treatment plant in raining or in a quantity equal to or above a designed value in a treatment plant in which a support feeding type activated sludge method is applied. <P>SOLUTION: The support feeding type biological reaction apparatus comprises a biological reactor 1 for carrying out the biological treatment using a support S, a transporting pipe 3 which is provided with a flow-in port and supplies flow-in water to the biological reactor 1, a support separation plate 2 which is arranged in the biological reactor 1 and separates the support S from the biological reactor mixed solution and a downstream side flow-in port 4 which is arranged in the transporting pipe 3 and opened on the downstream side of the support separation plate 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、担体投入活性汚泥法を適用した下水等の処理場において、雨天時や設計値以上の水量が処理場に流入した場合に、担体と生物反応槽混合液を分離する担体分離板の閉塞を回避することができる担体投入型生物反応装置に関するものである。   The present invention provides a carrier separation plate that separates a carrier and a biological reaction tank mixed solution in a treatment plant such as sewage to which the carrier input activated sludge method is applied, in rainy weather or when an amount of water greater than the design value flows into the treatment plant. The present invention relates to a carrier input type bioreactor capable of avoiding clogging.

従来の活性汚泥処理法を適用した汚水処理装置として、微生物を付着させる担体を生物反応槽内に投入して汚水処理を行う担体投入型生物反応装置は知られている(例えば、特許文献1参照)。
ところが、例えば既設の生物反応槽内に担体を単に投入して生物処理を行ったのでは、生物反応槽混合液とともに担体が生物反応槽から流出してしまい、その担体が汚水処理系統のポンプに吸いこまれると、該ポンプが故障する等の問題があった。
2. Description of the Related Art As a sewage treatment apparatus to which a conventional activated sludge treatment method is applied, a carrier input type bioreaction apparatus that performs a sewage treatment by introducing a carrier to which microorganisms are attached into a biological reaction tank is known (see, for example, Patent Document 1). ).
However, for example, when the biological treatment is performed by simply putting the carrier into the existing biological reaction tank, the carrier flows out of the biological reaction tank together with the biological reaction tank mixed solution, and the carrier is fed to the pump of the sewage treatment system. When sucked, there was a problem such as failure of the pump.

そこで従来、担体の流出防止対策として生物反応槽内に担体分離板を設置し、この担体分離板によって担体が生物反応槽内に留まるようにした担体投入型生物反応装置も開発されている。   Therefore, conventionally, as a countermeasure for preventing the carrier from flowing out, a carrier input type bioreaction apparatus has been developed in which a carrier separation plate is installed in the biological reaction tank so that the carrier stays in the biological reaction tank.

図25は従来の担体投入型生物反応装置の概念的構成を示す斜視図である。この担体投入型生物反応装置は、最初沈殿池(以後、「初沈」と表記)から固液分離後の上澄液を流入させる生物反応槽1内に担体Sを投入して生物処理を行い、生物反応槽1内に設置された担体分離板2によって混合液と担体Sとを分離し、担体分離板2を通過した分離液を最終沈殿池を介して系外に排出するようになっており、前記担体分離板2によって担体Sを生物反応槽1内に留まらせる構造となっている。   FIG. 25 is a perspective view showing a conceptual configuration of a conventional carrier-feeding biological reaction apparatus. This carrier input type bioreactor performs biological treatment by introducing a carrier S into a bioreactor 1 into which a supernatant liquid after solid-liquid separation flows from a first sedimentation basin (hereinafter referred to as “primary sedimentation”). The mixed liquid and the carrier S are separated by the carrier separation plate 2 installed in the biological reaction tank 1, and the separation liquid that has passed through the carrier separation plate 2 is discharged out of the system through the final sedimentation basin. The carrier separation plate 2 allows the carrier S to remain in the biological reaction tank 1.

このような担体投入型生物反応装置が設置される汚水処理場では、基本的に設計水量以上の汚水は流入させないようになっている。設計水量以上の汚水は、生物処理による有機物分解を行わずに、簡易処理である初沈での固液分離を行い、消毒処理後に河川等に放流している。初沈では設計水量以上の固液分離処理を行わなければならないため、初沈に汚泥を溜めない運転を心がけており、通常時より初沈汚泥引抜回数と引抜量を増加させて運転している。
初沈での固液分離による簡易処理でも対応できず、設計水量以上の汚水が生物反応槽に流入する場合には、
a)担体分離板2の上流側での洗浄ばっ気量を増加させる。
b)担体Sの返送量を増加させる。
c)生物反応槽1内のばっ気を停止して担体Sを沈降させる。
などで対応している。
In a sewage treatment plant in which such a carrier input type bioreactor is installed, sewage exceeding the designed amount of water is basically prevented from flowing. Sewage exceeding the design water volume is released into rivers after disinfection by performing solid-liquid separation by primary sedimentation, which is a simple treatment, without decomposing organic matter by biological treatment. In the initial settling, solid-liquid separation treatment must be performed in excess of the design water volume, so we are trying to keep the sludge from accumulating in the initial settling. .
Even if simple treatment by solid-liquid separation in the first sedimentation is not possible, if sewage more than the design water flows into the biological reaction tank,
a) Increase the amount of cleaning aeration on the upstream side of the carrier separation plate 2.
b) Increase the return amount of the carrier S.
c) Aeration in the biological reaction tank 1 is stopped and the carrier S is allowed to settle.
It corresponds by such.

特開昭58−67395号公報(実施例および図1)JP 58-67395 A (Example and FIG. 1)

図25に示す担体分離板2を備えた従来の担体投入型生物反応装置が有する課題を以下に列挙する。
(1)処理場流入水量が急激に増加し、設計水量以上の汚水が処理場に流入してしまう場合、生物反応槽1内の流下速度が急激に上昇するため、担体Sが担体分離板2付近に滞留し、担体分離板2が閉塞してしまうという課題があった。
(2)担体分離板が担体Sで閉塞しても対策をとらずにそのままにしておくと、生物反応槽1の水位が上昇し、生物反応槽混合液が溢れ出すという課題があった。生物反応槽混合液は、微生物が主体の汚泥と汚水が含まれているため、生物反応槽1から溢れ出ると非常に汚いばかりか、病人の排泄物に含まれる雑菌や病原性微生物が含まれている可能性も高く、衛生面での課題もあった。
(3)また、処理場流入水が増加した場合、担体分離板2の洗浄ばっ気や担体返送量を増加したり生物反応槽1内のばっ気を停止したりするなどの処置をとっていたが、処置開始のタイミングは人為的判断の場合が多く、熟練技術者でないと判断が難しく処置が遅れるなどの課題があった。通常、降雨増水時に現場作業員が直ちに排除(分配)水量を判断・決定できないため、対応が遅れて生物反応槽1での生物処理に悪影響を及ぼしてしまう課題があった。
(4)簡易処理を前提としている下水処理場においては、初沈汚泥を溜めない運転を心がけるため、初沈汚泥引抜回数と引抜量を増加させて運転する必要があった。従って、低濃度の初沈汚泥を多量に引き抜く結果となり、初沈汚泥の濃縮効率が低下し、別途汚泥処理量が大幅に増加し汚泥処分費が高くなる、作業が繁雑になるなどの課題があった。
(5)設計水量以上の汚水が一気に流入してくると、生物反応槽1の滞留時間が極端に短くなり、生物処理に必要な時間が確保できないうちに生物反応槽1から流出してしまうことがあった。滞留時間が短すぎると有機物処理が十分でなく、さらに処理に必要な担体や浮遊汚泥の生物フロックが正常に成長できずバラバラになったり、酸化不足状態になり固液分離不能になったり、その後の生物処理が悪化したりする課題があった。
(6)さらに、高度処理を適用した処理場では、初沈汚泥の汚泥滞留時間が短くなることから生物反応槽流入水のBODが低下し、高度処理に必要なBODが確保できなくなる課題があった。
The problems of the conventional carrier input type bioreactor provided with the carrier separation plate 2 shown in FIG. 25 are listed below.
(1) When the amount of inflow water in the treatment plant increases abruptly and sewage more than the designed amount of water flows into the treatment plant, the flow rate in the biological reaction tank 1 increases rapidly, so that the carrier S becomes the carrier separation plate 2. There was a problem that the carrier separation plate 2 was blocked in the vicinity and closed.
(2) Even if the carrier separation plate is blocked by the carrier S, if it is left as it is without taking any countermeasure, the water level of the biological reaction tank 1 rises and the biological reaction tank mixture overflows. Since the biological reaction tank mixture contains sludge and sewage mainly composed of microorganisms, it overflows from the biological reaction tank 1 and is not only very dirty, but also contains various germs and pathogenic microorganisms contained in the excrement of the sick. There was also a high possibility of being hygienic, and there were also problems in hygiene.
(3) In addition, when the inflow water of the treatment plant increases, measures such as increasing the cleaning aeration of the carrier separation plate 2 and the carrier return amount or stopping the aeration in the biological reaction tank 1 have been taken. However, there are many cases where the timing of starting treatment is artificially judged, and it is difficult to judge unless it is a skilled engineer, and there is a problem that the treatment is delayed. In general, when the rainfall increases, field workers cannot immediately determine or determine the amount of water to be removed (distributed), and there is a problem that the response is delayed and the biological treatment in the biological reaction tank 1 is adversely affected.
(4) In a sewage treatment plant that is premised on simple treatment, it was necessary to increase the number of initial sludge extractions and the amount of extraction in order to keep the initial sludge from accumulating. As a result, a large amount of low-concentration primary sedimentation sludge is extracted, and the concentration efficiency of primary sedimentation declines, the amount of sludge treatment increases significantly, sludge disposal costs increase, and work becomes complicated. there were.
(5) When sewage more than the design water flows in at once, the residence time of the biological reaction tank 1 becomes extremely short, and the biological reaction tank 1 flows out before the time required for biological treatment cannot be secured. was there. If the residence time is too short, the organic matter treatment will not be sufficient, and the carrier flocs necessary for the treatment and the floating floc of the sludge will not grow normally, will fall apart, become insufficiently oxidized and become unable to separate solid and liquid, and then There was a problem that the biological treatment of the aggravated.
(6) Furthermore, in the treatment plant to which advanced treatment is applied, the sludge retention time of the first settling sludge is shortened, so that the BOD of the biological reaction tank inflow water is lowered and the BOD necessary for advanced treatment cannot be secured. It was.

この発明は、上述のような課題を解決するためになされたもので、担体投入活性汚泥法を適用した処理場において、雨天時や設計値以上の水量が処理場に流入した場合、担体と生物反応槽混合液を分離する担体分離板の閉塞を回避することができると共に、初沈の効率的運用を図ることが可能な担体投入型生物反応装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. In a treatment plant to which the carrier-added activated sludge method is applied, the carrier and the living organism can be used in the case of rain or when the amount of water exceeding the design value flows into the treatment plant. It is an object of the present invention to provide a carrier input type bioreactor capable of avoiding clogging of a carrier separation plate for separating a reaction tank mixed liquid and capable of efficiently performing initial sedimentation.

この発明に係る担体投入型生物反応装置は、担体を用いて生物処理を行う生物反応槽と、流入口を備え、該生物反応槽に流入水を供給する移送管と、前記生物反応槽に配設され、生物反応槽混合液から前記担体を分離する担体分離板と、前記移送管に配設され、前記担体分離板の下流側で開口する下流側流入口とからなることを特徴とする。 The carrier input type bioreaction apparatus according to the present invention comprises a bioreaction tank that performs biological treatment using a support, an inflow port, a transfer pipe that supplies inflow water to the bioreaction tank, and a bioreaction tank. And a carrier separation plate that separates the carrier from the biological reaction tank mixture, and a downstream inlet that is disposed in the transfer pipe and opens downstream of the carrier separation plate.

この発明に係る担体投入型生物反応装置の前記移送管には、複数の流入口が設けられていることを特徴とする。   The transfer pipe of the carrier input type bioreactor according to the present invention is provided with a plurality of inflow ports.

この発明に係る担体投入型生物反応装置の前記生物反応槽には、複数の担体分離板が設けられていることを特徴とする。   The biological reaction tank of the carrier input type bioreactor according to the present invention is provided with a plurality of carrier separation plates.

この発明に係る担体投入型生物反応装置は、前記生物反応槽へ供給される流入水および/または返送汚泥から夾雑物を除去するスクリーンが設けられていることを特徴とする。 The carrier input type bioreactor according to the present invention is characterized in that a screen for removing contaminants from the inflow water and / or the return sludge supplied to the bioreactor is provided.

この発明の担体投入型生物反応装置によれば、次のような幾多の効果が得られる。
(1)汚水(流入水)を担体分離板よりも下流側の下流側流入口から流入させることにより、担体分離板を通過する水量は常に設計値以下になるため、担体分離板が閉塞する危険性がなく、このため、急激な大量の流入水が流入してきても、通常通りの安定した生物処理を維持することができる。
(2)設計水量以上の大量の流入水が流入してきても、担体分離板が閉塞することはないため、対策を取らなくても生物反応槽混合液が溢れ出たり、雑菌や病原性微生物による汚染が起こったりする心配がない。
(3)担体分離板より下流側に下流側流入口を設置し、あらかじめゲート等で水量の分配を設定しておけば、急な大量の降雨があっても、独自で判断できる熟練技術者が不在でも、人為的判断が不要のため判断や対策が遅れることなく、流入水を的確に分配することができる。処理場の管理者が降雨に気がつかなくても、さらに何も対応しなくても流入水の必要量を分配できるため、急激な降雨対応を不要にできる。
(4)担体分離板の下流側に下流側流入口から設計水量以上の流入水が流入してきても、生物反応槽上流から流入してくる流入水量は設計水量以下になるため生物処理に必要な生物反応槽での滞留時間を保持することができる。担体分離板の上流側で十分な滞留時間を保持することができるため、生物反応槽の担体および浮遊の活性汚泥の生物は良好な状態で維持することができる。担体分離板を通過した浮遊活性汚泥は良好な状態を維持しているため、下流側流入口から大量の流入水と接触しても有機物(SS・BOD)を吸着することができる。浮遊汚泥は最終沈殿池で清透な処理水と生物汚泥とに固液分離することができる。
(5)担体分離板の下流側に下流側流入口を設置し、設計値以上の過剰流入水が流入してきても、流入水全量を簡易処理以上の生物処理が可能となるため、初沈汚泥を溜めない運転等の対策を行う必要がない。引抜き汚泥量が増加することもなく、汚泥処分費が増加することもない。
(6)さらに高度処理を適用している処理場では、初沈汚泥の滞留時間を保持するよう初沈を通過せず、直接下流側流入口から流入させることも可能であるため、高度処理に必要なBODを確保することができる。そのため窒素・リン除去などの高度処理を適用している処理場では有利となる。
(7)現在の下水処理場の多くは、生物反応槽末端まで流入水路が隣接している場合が多いので、改造工事などを行わずに下流側流入口を設置するだけで改造することができる。また、現在使用されていないステップ流入ゲートがあれば移設するだけで改造することができる。
(8)緊急流入口(下流側流入口)は堰でもゲートでもよい。堰であれば、人為的判断を行う必要がなく、設計値以上の過剰流入水が流入してきた場合は自動的に堰を越流し、生物反応槽に流入させることができる。水位や水量で自動制御できるタイプの自動ゲートであっても、一度設定しておけば人為的判断を行う必要がなく常に安定した処理を行うことができる。
(9)生物反応槽流入水路(移送管)に前ゲート(流入調整具)を設置すれば、前ゲート(流入調整具)から下流側流入口までの水路(移送管)は常時汚水(流入水)を溜めておく必要がないため、腐敗した汚水が水路(移送管)に滞留することはない。
(10)生物反応槽の担体分離板下流側に撹拌設備やばっ気設備を設置すれば、汚水と活性汚泥の撹拌が促進される上、活性汚泥が担体分離板下流側で沈降堆積することない。また、担体分離板の上流側に撹拌設備やばっ気設備を設置しても担体分離板面が閉塞するのを防ぐことができる。
According to the carrier input type biological reaction apparatus of the present invention, the following many effects can be obtained.
(1) Since the amount of water passing through the carrier separation plate is always less than or equal to the design value by flowing sewage (inflow water) from the downstream inlet of the carrier separation plate, there is a risk that the carrier separation plate will be clogged. Therefore, even when a large amount of influent water flows in, a stable biological treatment as usual can be maintained.
(2) Even if a large amount of inflow water exceeding the design water amount flows in, the carrier separation plate will not be clogged. Therefore, the biological reaction tank mixture overflows without taking measures, and it is caused by various germs and pathogenic microorganisms. There is no worry of contamination.
(3) If a downstream inlet is installed on the downstream side of the carrier separation plate and the water distribution is set in advance using a gate, a skilled engineer who can judge independently even if there is a sudden heavy rainfall Even in the absence, inflowing water can be distributed accurately without delaying judgment and countermeasures because human judgment is unnecessary. Even if the manager of the treatment plant is unaware of the rain or does not take any action, the necessary amount of inflow water can be distributed.
(4) Even if inflow water more than the design water volume flows from the downstream inlet to the downstream side of the carrier separation plate, the inflow water flowing in from the upstream of the biological reaction tank is less than the design water volume, which is necessary for biological treatment. The residence time in the biological reaction tank can be maintained. Since a sufficient residence time can be maintained on the upstream side of the carrier separation plate, the biological reaction tank carrier and floating activated sludge organisms can be maintained in good condition. Since the suspended activated sludge that has passed through the carrier separation plate maintains a good state, organic matter (SS / BOD) can be adsorbed even if it comes into contact with a large amount of influent from the downstream inlet. The suspended sludge can be separated into solid and liquid in the final sedimentation basin into clear treated water and biological sludge.
(5) A downstream inlet is installed on the downstream side of the carrier separation plate, and even if excess inflow water exceeding the design value flows in, the entire amount of inflow water can be biologically processed more than simple treatment. It is not necessary to take measures such as driving that does not accumulate energy. The amount of extracted sludge does not increase, and the sludge disposal cost does not increase.
(6) In the treatment plant where advanced treatment is applied, it is possible to flow directly from the downstream inlet without passing through the primary sedimentation so as to maintain the residence time of the primary sedimentation sludge. Necessary BOD can be secured. For this reason, it is advantageous in treatment plants to which advanced treatment such as nitrogen / phosphorus removal is applied.
(7) Many of the current sewage treatment plants are often connected to the inflow water channel to the end of the biological reaction tank. . In addition, if there is a step inflow gate that is not currently used, it can be modified by simply moving it.
(8) The emergency inlet (downstream inlet) may be a weir or a gate. If it is a weir, it is not necessary to make an artificial judgment, and when excess inflow water exceeding the design value flows in, it can automatically overflow the weir and flow into the biological reaction tank. Even if it is an automatic gate of the type that can be automatically controlled by the water level and the amount of water, once it is set, it is not necessary to make an artificial judgment, and stable processing can be performed at all times.
(9) If a front gate (inflow adjuster) is installed in the biological reaction tank inflow channel (transfer pipe), the water channel (transfer pipe) from the front gate (inflow adjuster) to the downstream inlet is always sewage (inflow water). ) Does not need to be stored, and therefore, the sewage water that has been spoiled does not stay in the water channel (transfer pipe).
(10) If stirring equipment and aeration equipment are installed on the downstream side of the carrier separation plate in the biological reaction tank, stirring of sewage and activated sludge is promoted, and activated sludge does not settle and accumulate on the downstream side of the carrier separation plate. . Moreover, even if an agitation facility or an aeration facility is installed on the upstream side of the carrier separation plate, the carrier separation plate surface can be prevented from being blocked.

実施の形態1.
図1はこの発明の実施の形態1による担体投入型生物反応装置の概念的構成を示す斜視図であり、図25と同一部分には同一符号を付して説明する。
この実施の形態1の担体投入型生物反応装置は、微生物を付着させる担体Sを用いて流入水の生物処理を行う生物反応槽1と、この生物反応槽1内に配設され、生物反応槽1内の混合液から前記担体を捕捉分離する担体分離板2と、流入水を移送する移送管3と、この移送管3に設けられ、前記担体分離板2の下流側に位置して流入水を生物反応槽1に供給する下流側流入口4とからなる基本構造となっている。移送管3は生物反応槽1に流入水を移送する管、水路、溝など流入水を移送できれば管状に限らない。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 1 of the present invention. The same parts as those in FIG.
The carrier input type bioreaction apparatus of the first embodiment includes a bioreaction tank 1 that performs biological treatment of influent water using a carrier S to which microorganisms are attached, and a bioreaction tank disposed in the bioreaction tank 1. 1, a carrier separation plate 2 that captures and separates the carrier from the mixed liquid in 1, a transfer pipe 3 that transfers inflow water, and an inflow water that is provided in the transfer pipe 3 and is located downstream of the carrier separation plate 2. It has the basic structure which consists of the downstream inflow port 4 which supplies the to the biological reaction tank 1. The transfer pipe 3 is not limited to a tubular shape as long as it can transfer the inflowing water such as a pipe, a water channel, and a groove for transferring the inflowing water to the biological reaction tank 1.

この実施の形態1において、前記生物反応槽1は、上流側に初沈から流入水が供給される流入口(図示せず)を有し、前記担体分離板2を通過した分離液を最終沈殿池に流出させる構造となっている。また、前記移送管3は、生物反応槽1の側面上部に設置され、その下流側流入口4は、生物反応槽1の基準水位よりも高い位置で開口して過剰流入水を生物反応槽1内における担体分離板2の下流側に流入させるようになっている。生物反応槽1への流入水は初沈流出水の場合が多いが、ポンプ水からの流入、流入水貯留槽からの流入、直接流入など、あるいは生物反応槽1が複数設置されている場合や前段に他の処理設備や処理方式などの反応槽が設置されている場合、初沈は設置されているが流入水量が大幅に増加したため初沈を通過せずに流入させる場合などもあり、初沈からの流入水に限らない。   In the first embodiment, the biological reaction tank 1 has an inlet (not shown) to which inflow water is supplied from primary sedimentation on the upstream side, and the separation liquid that has passed through the carrier separation plate 2 is subjected to final sedimentation. It is structured to drain into the pond. The transfer pipe 3 is installed at the upper part of the side surface of the biological reaction tank 1, and the downstream inlet 4 thereof opens at a position higher than the reference water level of the biological reaction tank 1 to remove excess influent water from the biological reaction tank 1. It is made to flow in the downstream of the carrier separation plate 2 inside. The inflow water to the biological reaction tank 1 is often the first settling effluent, but the inflow from the pump water, the inflow from the inflow water storage tank, the direct inflow, etc. When reaction tanks such as other treatment equipment or treatment methods are installed in the previous stage, the initial sedimentation is installed, but the amount of inflow water has increased significantly, so it may flow in without passing through the primary sedimentation. Not limited to inflow water from sinking.

このように構成された実施の形態1の担体投入型生物反応装置によれば、雨天時や設計値以上の水量(過剰流入水)が処理場に発生した場合、その過剰流入水は、移送管3を通って担体分離板2の下流側に設けられた下流側流入口4から生物反応槽1内における担体分離板2の下流側に流入後、最終沈殿池に流入する。図1は概念的構成を示した図であるため、生物反応槽1が複数設置されている場合は、図1の生物反応槽1は担体投入型生物反応槽の最終槽を示しているが、最終槽に限ったことではなく後段に別途処理方式があっても良く、生物反応槽1からの流出先は最終沈殿池に限ったことではない。このように過剰流入水を移送管3によって生物反応槽1内の担体分離板2下流側に分配流入させることができることにより、前記担体分離板2に生物反応槽1の流入水量(設計水量)以上の水量負荷がかからないので、担体Sが担体分離板2付近の上流側に集中するようなことがなく、担体Sによる担体分離板2の閉塞を回避することができるという効果がある。   According to the carrier input type biological reaction apparatus of the first embodiment configured as described above, when the amount of water (excess inflow water) exceeding the design value is generated in the treatment field, the excess inflow water is transferred to the transfer pipe. 3 flows into the final sedimentation basin after flowing into the downstream side of the carrier separation plate 2 in the biological reaction tank 1 from the downstream inlet 4 provided on the downstream side of the carrier separation plate 2. Since FIG. 1 is a diagram showing a conceptual configuration, when a plurality of biological reaction tanks 1 are installed, the biological reaction tank 1 of FIG. 1 shows the final tank of the carrier-added biological reaction tank, It is not limited to the final tank, and there may be a separate treatment system in the subsequent stage, and the outflow destination from the biological reaction tank 1 is not limited to the final sedimentation tank. As described above, the excess inflow water can be distributed and flowed to the downstream side of the carrier separation plate 2 in the biological reaction tank 1 by the transfer pipe 3, so that the amount of inflow water (design water amount) of the biological reaction tank 1 to the carrier separation plate 2 is more than. Therefore, there is no effect that the carrier S is concentrated on the upstream side in the vicinity of the carrier separation plate 2 and the blockage of the carrier separation plate 2 by the carrier S can be avoided.

実施の形態2.
図2はこの発明の実施の形態2による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態2では、前記実施の形態1における移送管3の上流側を初沈に接続し、その移送管3に初沈から流入水を生物反応槽1内の上流側に流入させる流入口5を設けると共に、前記移送管3における流入口5と下流側流入口4との間に流入調整具(ゲート)6を設けたものであり、この点が前記実施の形態1と異なる。
Embodiment 2. FIG.
FIG. 2 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 2 of the present invention.
In the second embodiment, the upstream side of the transfer pipe 3 in the first embodiment is connected to the initial settling, and the inflow water from the initial settling into the transfer pipe 3 flows into the upstream side in the biological reaction tank 1. 5, and an inflow adjuster (gate) 6 is provided between the inlet 5 and the downstream inlet 4 in the transfer pipe 3, and this point is different from the first embodiment.

この実施の形態2において、前記流入調整具6は、堰構造のゲート(図示せず)からなり、初沈からの流入水が設計値水量を超えた過剰流入水であるとき、その過剰流入水がゲートを超えて下流側流入口4へと流れ、該下流側流入口4から生物反応槽1内の担体分離板2よりも下流側に流入するように構成されている。
すなわち、この実施の形態2の担体投入型生物反応装置は、生物反応槽1の流下方向に沿って設置された移送管3に、上流側から流入口5と流入調整具6と下流側流入口4を設け、通常時は、初沈からの流入水が流入口5から生物反応槽1の上流側内部に流入し、その流入水が降雨増水等により設計値水量を超えた過剰流入水であるとき、その過剰流入水が流入調整具6のゲートを超えて下流側流入口4から生物反応槽1の下流側に流入するものである。また、前記流入調整具6は、移送管3の流入口5の下流側に設置した開閉可能なゲートであってもよく、この場合、前記ゲートは、通常時は閉じておき、過剰流入水発生時に開くようにする。
In this Embodiment 2, the said inflow regulator 6 consists of a gate (not shown) of a dam structure, and when the inflow water from primary sedimentation is the excess inflow water exceeding design amount water quantity, the excess inflow water Flows over the gate to the downstream inlet 4 and flows from the downstream inlet 4 to the downstream side of the carrier separation plate 2 in the biological reaction tank 1.
That is, the carrier input type bioreactor according to the second embodiment has an inlet 5, an inflow adjuster 6, and a downstream inlet from the upstream side to the transfer pipe 3 installed along the flow-down direction of the biological reaction tank 1. In normal times, the inflow water from the initial sink flows into the upstream side of the biological reaction tank 1 from the inflow port 5, and the inflow water is excessive inflow water exceeding the design value water amount due to rainfall increase etc. At that time, the excess influent water flows from the downstream inlet 4 to the downstream side of the biological reaction tank 1 beyond the gate of the inflow regulator 6. The inflow adjuster 6 may be an openable / closable gate installed on the downstream side of the inlet 5 of the transfer pipe 3. In this case, the gate is normally closed to generate excessive inflow water. Open it sometimes.

このように構成した実施の形態2の担体投入型生物反応装置によれば、生物反応槽1の流下方向に設置した移送管3に流入口5と流入調整具6を設けたことにより、通常時は流入水が移送管3上流側の流入口5から生物反応槽1内に流入するが、過剰流入水が流入したときは、その過剰流入水が流入調整具6のゲートを超えて下流側流入口4から生物反応槽1に流入するので、前記実施の形態1と同様の作用効果が得られる。   According to the carrier input type bioreaction apparatus of the second embodiment configured as described above, the inflow port 5 and the inflow adjuster 6 are provided in the transfer pipe 3 installed in the flow-down direction of the bioreaction tank 1, so that the normal time Inflow water flows into the biological reaction tank 1 from the inlet 5 upstream of the transfer pipe 3. However, when excess inflow water flows in, the excess inflow water passes through the gate of the inflow regulator 6 and flows downstream. Since it flows into the biological reaction tank 1 from the inlet 4, the same effect as the first embodiment can be obtained.

また、前記流入調整具6として、移送管3の流入口5の下流側にゲートを開閉可能に設置した場合、通常時はゲートを閉じておくことにより、初沈からの流入水を流入口5から生物反応槽1内に流入させることができ、前記ゲートの下流側には流入水が流れないので、過剰流入水がない場合に、移送管3内のゲートより下流側に汚水が滞留するのを抑止でき、該移送管3内での汚水滞留による腐敗を防止することができるという効果がある。   When the gate is installed as the inflow adjuster 6 on the downstream side of the inlet 5 of the transfer pipe 3 so that the gate can be opened and closed, the inflow water from the initial settling can be supplied by closing the gate in normal times. Since the inflow water does not flow downstream from the gate, when there is no excess inflow water, sewage stays downstream from the gate in the transfer pipe 3. It is possible to prevent the rot due to sewage stagnation in the transfer pipe 3.

実施の形態3.
図3はこの発明の実施の形態3による担体投入型生物反応装置の概念的構成を示す平面図、図4(A)は図3中の流入調整具6のゲート設置部をゲート開状態で示す断面図、図4(B)は図4(A)のゲート閉状態を示す断面図、図4(C)は半開状態で示す断面図であり、図2と同一部分には同一符号を付して説明する。
この実施の形態3では、前記実施の形態2における流入調整具6として電動ゲート(自動ゲート)6Aを適用し、この電動ゲート6Aを移送管3の流入口5近傍の下流側に設置したものである。前記電動ゲート6Aは通常時には閉じておき(図4(B)参照)、降雨増水等による過剰流入水が流入してきた緊急時に開動(図4(A)または(C)参照)させるものである。
Embodiment 3 FIG.
FIG. 3 is a plan view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 3 of the present invention, and FIG. 4 (A) shows a gate installation portion of the inflow adjuster 6 in FIG. 4B is a cross-sectional view showing the gate closed state of FIG. 4A, FIG. 4C is a cross-sectional view showing the half-open state, and the same parts as those in FIG. I will explain.
In the third embodiment, an electric gate (automatic gate) 6A is applied as the inflow adjuster 6 in the second embodiment, and this electric gate 6A is installed on the downstream side in the vicinity of the inlet 5 of the transfer pipe 3. is there. The electric gate 6A is normally closed (see FIG. 4 (B)), and is opened (see FIG. 4 (A) or (C)) in an emergency when excessive inflow water due to rainfall increase or the like flows.

この実施の形態3では、前記緊急時に電動ゲート6Aを開動させることにより、過剰流入水は移送管3の下流側流入口4から生物反応槽1内に流入し、生物反応槽混合液と混合・接触し、有機物は微生物に吸着され除去される。
このように実施の形態3では、流入調整具として電動ゲート6Aを設置したことにより、流入水量が急激に増加した場合に前記電動ゲート6Aを瞬時に操作対応させることが可能となり、前記電動ゲート6Aは遠隔操作も可能であることから、対策が遅れることもなく雨天時でも安全に対応可能となる。
In this Embodiment 3, by opening the electric gate 6A in the case of an emergency, excess influent water flows into the biological reaction tank 1 from the downstream inlet 4 of the transfer pipe 3, and is mixed with the biological reaction tank mixture. In contact, the organic matter is adsorbed and removed by the microorganisms.
As described above, in the third embodiment, since the electric gate 6A is installed as an inflow adjusting tool, the electric gate 6A can be instantaneously operated when the amount of inflow water suddenly increases. Since remote control is possible, countermeasures are not delayed and can be handled safely even in rainy weather.

実施の形態4.
図5はこの発明の実施の形態4による担体投入型生物反応装置の概念的構成を示す横断平面図、図6(A)は図5中の手動ゲート設置部をゲート開状態で示す断面図、図6(B)は図6(A)のゲート閉状態を示す断面図である。
この実施の形態4では、流入調整具6として手動ゲート6Bを適用し、この手動ゲート6Bを移送管3の下流側流入口4に設置したものである。
従って、この実施の形態4の場合においても、通常時は手動ゲート6B(図6(B)参照)を閉じておき、緊急時に手動ゲート6B(図6(A)参照)を開くことにより、過剰流入水が混入してきても、担体分離板2が閉塞することなく、流入有機物は微生物に吸着されることで除去されるので、安定した活性汚泥処理が継続できるという効果がある。また、手動ゲート6Bをあらかじめ設定した高さ位置まで開けておく(図6(C)参照)ことで、急激に流入水が増水し設定した高さ位置を越えた場合に下流側流入口4から自動で流入させることができる。さらに流入水の水量増加が収まり流入水量が減少し、設計水量以下に収まれば移送管3の水位も低下し、自然に下流側流入口4からの流入は停止することができる。これらは自動で行われるため人為的なミスや対応の遅れなどがなく、確実に実施できる効果がある。
Embodiment 4 FIG.
FIG. 5 is a cross-sectional plan view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 4 of the present invention, FIG. 6 (A) is a sectional view showing a manual gate installation portion in FIG. FIG. 6B is a cross-sectional view illustrating the gate closed state of FIG.
In the fourth embodiment, a manual gate 6B is applied as the inflow adjuster 6, and this manual gate 6B is installed at the downstream inlet 4 of the transfer pipe 3.
Therefore, even in the case of the fourth embodiment, the manual gate 6B (see FIG. 6B) is normally closed and the manual gate 6B (see FIG. 6A) is opened in an emergency, so Even if the inflowing water is mixed, since the inflowing organic substances are removed by being adsorbed by the microorganisms without clogging the carrier separation plate 2, there is an effect that a stable activated sludge treatment can be continued. Further, by opening the manual gate 6B to a preset height position (see FIG. 6C), when the inflow water suddenly increases and exceeds the set height position, the downstream side inlet 4 Can flow automatically. Further, the increase in the amount of inflow water is reduced and the amount of inflow water is decreased. If the amount is less than the design water amount, the water level of the transfer pipe 3 is also lowered, and the inflow from the downstream inflow port 4 can be stopped naturally. Since these are performed automatically, there is no human error or delay in response, and there is an effect that can be surely performed.

実施の形態5.
図7はこの発明の実施の形態5による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態5では、移送管3の流入口5近傍の下流側において、前記移送管3の底部に流入調整具としての固定越流堰6Cを設置したものであり、その他の構造は前記実施の形態1〜4と同様である。
Embodiment 5 FIG.
FIG. 7 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 5 of the present invention.
In the fifth embodiment, a fixed overflow weir 6C as an inflow adjusting tool is installed at the bottom of the transfer pipe 3 on the downstream side in the vicinity of the inlet 5 of the transfer pipe 3, and the other structure is the same as that of the embodiment described above. This is the same as the first to fourth embodiments.

この実施の形態5による担体投入型生物反応装置は、通常の運転時に流入水は流入口5から生物反応槽1内に流入するが、設計値水量以上の過剰流入水が流入した場合、その過剰流入水は固定越流堰6Cを超えて移送管3の下流側流入口4から生物反応槽1内に流入する。流入した過剰流入水は、生物反応槽1混合液と接触・混合し、流入有機物は生物反応槽混合液の生物に吸着され、最終沈殿池で固液分離処理される。従って、この実施の形態5の場合も、過剰流入水が混入してきても、担体分離板2が閉塞することなく、流入有機物は微生物に吸着されることで除去されるので、安定した活性汚泥処理が継続できるという効果がある。
固定越流堰6Cを越えた過剰流入水は、下流側に向かって緩やかに取られている移送管3の下降勾配に従って下流側に流下し、下流側流入口4から生物反応槽1に流入する。移送管3の下降勾配は処理施設では、通常下流側に生物反応槽混合液が流下するように設計されており、実施の形態5に限ったものではない。
In the carrier input type bioreactor according to the fifth embodiment, inflow water flows into the bioreaction tank 1 from the inflow port 5 during normal operation. The influent water flows into the biological reaction tank 1 from the downstream inlet 4 of the transfer pipe 3 beyond the fixed overflow weir 6C. The inflowing excess influent water contacts and mixes with the biological reaction tank 1 mixture, and the inflowing organic matter is adsorbed by the organism in the biological reaction tank mixture and is subjected to solid-liquid separation treatment in the final sedimentation basin. Therefore, even in the case of the fifth embodiment, even if excessive influent water is mixed in, the inflowing organic matter is removed by being adsorbed by the microorganisms without clogging the carrier separation plate 2, and thus stable activated sludge treatment. Has the effect of being able to continue.
Excess inflow water exceeding the fixed overflow weir 6C flows down to the downstream side according to the descending gradient of the transfer pipe 3 that is gently taken toward the downstream side, and flows into the biological reaction tank 1 from the downstream inlet 4. . The descending gradient of the transfer pipe 3 is usually designed so that the biological reaction tank mixed solution flows down to the downstream side in the processing facility, and is not limited to the fifth embodiment.

実施の形態6.
図8はこの発明の実施の形態6による担体投入型生物反応装置の概念的構成を示す斜視図、図9は図8の概略的な平面図である。
この実施の形態6では、生物反応槽1を図9に示すように平面ほぼコ字形状に形成することによって、生物反応槽1の上流側に設けた流入口5と下流側流入口4とが前記生物反応槽1の移送管3を挟んで対向位置に設置させると共に、移送管3の下流側流入口4に差込式の板状越流堰6Dを流入調整具として昇降開閉可能に設置したものである。
この実施形態6では生物反応槽1が敷地の関係でコ字形状に形成されているため、通常なら上流側と下流側は離れて設置されるところ移送管3を間において、流入口5と下流側流入口4が対向位置に設置されるものである。流入口5と下流側流入口4が移送管3の近い位置に設置されているため、下流側流入口4を流入口5の高さ位置より高く設置している。また、図9では生物反応槽1がコ字形状に記載されているが、共通の移送管3を使用する2槽の生物反応槽の上流側と下流側が隣接して設置されていてもよい。
Embodiment 6 FIG.
FIG. 8 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 6 of the present invention, and FIG. 9 is a schematic plan view of FIG.
In the sixth embodiment, the biological reaction tank 1 is formed in a substantially U-shaped plane as shown in FIG. 9 so that the inlet 5 provided on the upstream side of the biological reaction tank 1 and the downstream inlet 4 are formed. The transfer tube 3 of the biological reaction tank 1 is installed at the opposite position, and a plug-type plate overflow weir 6D is installed at the downstream inlet 4 of the transfer tube 3 so as to be opened and closed as an inflow adjuster. Is.
In the sixth embodiment, since the biological reaction tank 1 is formed in a U shape because of the site, normally, the upstream side and the downstream side are installed apart from each other, but the inlet pipe 5 and the downstream side are placed between the transfer pipes 3. The side inlet 4 is installed at the opposite position. Since the inflow port 5 and the downstream inflow port 4 are installed at positions close to the transfer pipe 3, the downstream inflow port 4 is installed higher than the height position of the inflow port 5. Moreover, although the biological reaction tank 1 is described in U shape in FIG. 9, the upstream side and the downstream side of the two biological reaction tanks using the common transfer pipe 3 may be installed adjacent to each other.

以上のような構成の実施の形態6によれば、差込式の板状越流堰6Dを昇降させて位置調整を行うことができるので、越流させたい水量に応じて板状越流堰6Dの高さを調節することができ、その高さ調節を予め行っておくことで、設計値水量以上の過剰流入水が突然流入してきた時にも担体分離板2が閉塞することなく対応できるという効果がある。さらに人手を煩わさず、何もせずに大量の過剰流入水を処理できるため、対応の遅れや人為的ミスなどが起きる心配がなく、手間もかからない上に安全を確保できる優れた効果がある。また、前記板状越流堰6Dを最底部にまで下ろすことで、通常運転時は流入口5から流入水が流入するが、流入水が過剰になった場合には移送管3内の水位が上昇して板状越流堰6Dを超えると、下流側流入口4から過剰流入水が流入してくる。なお、差込式の板状越流堰6Dは、高さ調整可能な可動堰であれば、いかなるものでもよく、この場合も同様の作用効果が期待できる。移送管3内の流入口5と下流側流入口4の間に流入調節具6を設置してもよい。   According to the sixth embodiment configured as described above, the position of the plug-type plate overflow weir 6D can be raised and lowered, so that the plate overflow overflow weir can be adjusted according to the amount of water to be overflowed. The height of 6D can be adjusted, and by adjusting the height in advance, it is possible to handle the carrier separation plate 2 without clogging even when excessive inflow water exceeding the design amount of water suddenly flows in. effective. Furthermore, since a large amount of excess influent water can be treated without bothering people and doing nothing, there is no fear of delays in response or human error, and there is an excellent effect of ensuring safety and ensuring safety. Further, by lowering the plate overflow weir 6D to the bottom, inflowing water flows in from the inlet 5 during normal operation, but when the inflowing water becomes excessive, the water level in the transfer pipe 3 is reduced. When the plate overflows and exceeds the plate overflow weir 6D, excess inflow water flows from the downstream inlet 4. The plug-type plate overflow dam 6D may be any movable weir that can be adjusted in height. In this case, the same effect can be expected. An inflow regulator 6 may be installed between the inlet 5 in the transfer pipe 3 and the downstream inlet 4.

実施の形態7.
図10はこの発明の実施の形態7による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態7では、前記実施の形態6における移送管3の下流側流入口4に落し込み式の板状越流堰6Eを設置したものである。この落し込み式の板状越流堰6Eは、高さが予め設定されるものである。従って、大量の流入水が急激に流入してきても問題なく安定運転が可能となる。また、下流側流入口4から大量の流入水が流入することで、担体分離板2より生物反応槽1に逆流したとしても、この場合、落し込み越流堰6Eや流入口5の大きさは、適宜選択決定することが可能であるため、過剰流入水が大量に流入してきても、生物反応槽1の水位は一定以上に上がることはない。また、担体分離板2は、生物反応槽1の通常水位よりも上部まで設置されるので、担体Sが担体分離板2を超えて越流することはない。一時期過剰流入水の影響で水流が生物反応槽1内を逆流しても、過剰流入水の流入が落ち着けば、生物反応槽1を下流側に流入水が流れるように設計・施工されているため、安定した汚水処理を継続できる。生物反応槽1の形状はコ字形状であってもよく形は図10に限らない。
Embodiment 7 FIG.
FIG. 10 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 7 of the present invention.
In the seventh embodiment, a drop-type plate overflow dam 6E is installed at the downstream inlet 4 of the transfer pipe 3 in the sixth embodiment. The drop-type plate overflow dam 6E has a predetermined height. Therefore, even if a large amount of inflow water suddenly flows in, stable operation is possible without any problem. Further, even if a large amount of inflow water flows from the downstream inlet 4 and flows backward from the carrier separation plate 2 to the biological reaction tank 1, in this case, the size of the falling overflow weir 6E and the inlet 5 is as follows. Since it is possible to select and determine as appropriate, even if a large amount of excess influent flows in, the water level in the biological reaction tank 1 does not rise above a certain level. Moreover, since the carrier separation plate 2 is installed up to the upper part of the normal water level of the biological reaction tank 1, the carrier S does not flow over the carrier separation plate 2. Even if the water flow reversely flows through the biological reaction tank 1 due to the influence of excess influent water for a period of time, if the inflow of excess inflow water settles down, it is designed and constructed so that the influent water flows downstream in the biological reaction tank 1. , Can continue stable sewage treatment. The biological reaction tank 1 may have a U shape, and the shape is not limited to FIG.

実施の形態8.
図11はこの発明の実施の形態8による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態8では、生物反応槽1内に複数(図11では2つ)の担体分離板2A,2Bを上流側と下流側に離して設置するともに、移送管3の流入口5と下流側流入口4との間にステップ流入口7を設け、このステップ流入口7を生物反応槽1における上流側の担体分離板2Aの上流側に開口させたものである。図11ではステップ流入口7が1箇所記載してあるが、2箇所以上複数設けてもよく、複数設ける場合はステップ流入口7の上流側に担体分離板を設置してもよい。
Embodiment 8 FIG.
FIG. 11 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 8 of the present invention.
In the eighth embodiment, a plurality (two in FIG. 11) of carrier separation plates 2A and 2B are installed in the biological reaction tank 1 apart from the upstream side and the downstream side, and the inlet 5 of the transfer pipe 3 and the downstream side A step inlet 7 is provided between the side inlet 4 and the step inlet 7 is opened to the upstream side of the upstream carrier separation plate 2 A in the biological reaction tank 1. Although one step inlet 7 is shown in FIG. 11, two or more step inlets 7 may be provided. When a plurality of step inlets 7 are provided, a carrier separation plate may be provided on the upstream side of the step inlet 7.

この実施の形態8によれば、生物反応槽1内に複数の担体分離板2A,2Bを設置移送管3の流入口5とステップ流入口7を生物反応槽1内の担体分離板2Aの上流側に開口させたことにより、生物反応槽1内での活性汚泥処理を効率よく安定して行うことができるという効果がある。   According to the eighth embodiment, a plurality of carrier separation plates 2A and 2B are installed in the biological reaction tank 1, and the inlet 5 and the step inlet 7 of the transfer pipe 3 are arranged upstream of the carrier separation plate 2A in the biological reaction tank 1. By making it open to the side, there exists an effect that the activated sludge process in the biological reaction tank 1 can be performed efficiently and stably.

実施の形態9.
図12はこの発明の実施の形態9による担体投入型生物反応装置の概念的構成を示す斜視図であり、図11と同一部分には同一符号を付して重複説明を省略する。
この実施の形態9では、前記実施の形態8の担体投入型生物反応装置における移送管3の流入口5とステップ流入口7のそれぞれに担体分離設備8,9を設けたものである。
これらの担体分離設備8,9は、生物反応槽1の担体Sが移送管3に流出するのを防ぐことができる材料、例えばパンチングメタルタイプやスクリーンタイプでもメッシュタイプでも格子タイプでもよく、要するに前述のように担体Sの流出を防止できるものであればよい。
Embodiment 9 FIG.
FIG. 12 is a perspective view showing a conceptual configuration of a carrier input type bioreaction apparatus according to Embodiment 9 of the present invention. The same parts as those in FIG.
In the ninth embodiment, carrier separation facilities 8 and 9 are provided at the inlet 5 and the step inlet 7 of the transfer pipe 3 in the carrier-added biological reaction apparatus of the eighth embodiment, respectively.
These carrier separation facilities 8 and 9 may be made of a material capable of preventing the carrier S of the biological reaction tank 1 from flowing out to the transfer pipe 3, for example, a punching metal type, a screen type, a mesh type or a lattice type. As long as it can prevent the carrier S from flowing out, it is sufficient.

この実施の形態9によれば、前記流入口5とステップ流入口7に担体分離設備8,9を設けたことにより、過剰流入水が混入した場合に、生物反応槽1の水位が上昇することで生物反応槽1の担体Sが移送管に流出するのを防止することができるという効果がある。ステップ流入口7は複数設けてもよく、ステップ流入口7に担体分離設備9が設置されているため生物反応槽1の担体Sが逆流して移送管3に流出するのを防ぐことができる。また、担体分離板2A,2Bはステップ流入口7ごとに異なる形状や部材を使用してもよい。   According to the ninth embodiment, by providing the carrier separation facilities 8 and 9 at the inlet 5 and the step inlet 7, the water level of the biological reaction tank 1 rises when excess influent water is mixed. Thus, it is possible to prevent the carrier S in the biological reaction tank 1 from flowing out to the transfer pipe. A plurality of step inlets 7 may be provided, and since the carrier separation facility 9 is installed at the step inlet 7, it is possible to prevent the carrier S of the biological reaction tank 1 from flowing backward and flowing out to the transfer pipe 3. Further, the carrier separation plates 2A and 2B may use different shapes and members for each step inlet 7.

実施の形態10.
図13はこの発明の実施の形態10による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態10では、前記実施の形態1による担体投入型生物反応装置の生物反応槽1内に担体返送ポンプ10を設置したものである。
この担体返送ポンプ10は、生物反応槽1内の担体Sを生物反応槽1の下流側から上流側に返送する担体返送管11と、この担体返送管11内に下流側から圧縮空気を供給する空気供給管(圧縮空気供給手段)12とからなっている。前記担体返送管11は、生物反応槽1内における担体分離板2の上流側近傍で汚水中に垂下する吸引管部11aと、この吸引管部11aの上端に連続して生物反応槽1内の水面よりも上方で生物反応槽1内の上流側に延出する吐出管部11bとからなっており、前記空気供給管12からの圧縮空気が前記吸引管部11aの下部から供給されるようになっている。なお、前記空気供給管12は圧縮空気供給源に接続されている。
Embodiment 10 FIG.
FIG. 13 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 10 of the present invention.
In the tenth embodiment, a carrier return pump 10 is installed in the biological reaction tank 1 of the carrier input type bioreactor according to the first embodiment.
The carrier return pump 10 supplies a carrier return pipe 11 that returns the carrier S in the biological reaction tank 1 from the downstream side to the upstream side of the biological reaction tank 1, and supplies compressed air from the downstream side into the carrier return pipe 11. It consists of an air supply pipe (compressed air supply means) 12. The carrier return pipe 11 includes a suction pipe part 11a that hangs down in the sewage in the vicinity of the upstream side of the carrier separation plate 2 in the biological reaction tank 1, and an upper end of the suction pipe part 11a. It comprises a discharge pipe part 11b extending above the water surface and upstream in the biological reaction tank 1, so that the compressed air from the air supply pipe 12 is supplied from the lower part of the suction pipe part 11a. It has become. The air supply pipe 12 is connected to a compressed air supply source.

このように構成された担体返送ポンプ10は、空気供給管12を介して担体返送管11の吸引管部11aに圧縮空気を供給することにより、担体返送管11内部の混合液中に気泡を生じさせる。これによって、担体返送管11内部の混合液は、外部の生物反応槽混合液(生物反応槽1内部の混合液)よりも見かけ比重が小さくなり、この比重差相当分だけ生物反応槽混合液と担体Sが担体返送管11内に吸引される。担体返送管11内部に吸引された混合液と担体Sは担体返送管11内部で気泡との混合流体となって吸引管部11a内部で押し上げられた後、吐出管部11bを流れて該吐出管部11bの先端出口から生物反応槽1の上流側に吐出返送される。   The carrier return pump 10 configured in this manner generates bubbles in the liquid mixture inside the carrier return pipe 11 by supplying compressed air to the suction pipe portion 11a of the carrier return pipe 11 via the air supply pipe 12. Let As a result, the apparent specific gravity of the mixed liquid inside the carrier return pipe 11 is smaller than that of the external biological reaction tank mixed liquid (the mixed liquid inside the biological reaction tank 1), and the biological reaction tank mixed liquid is equivalent to this specific gravity difference. The carrier S is sucked into the carrier return tube 11. The mixed liquid sucked into the carrier return pipe 11 and the carrier S are mixed with bubbles inside the carrier return pipe 11 and pushed up inside the suction pipe portion 11a, and then flow through the discharge pipe portion 11b to flow into the discharge pipe. It is discharged and returned to the upstream side of the biological reaction tank 1 from the tip outlet of the part 11b.

以上説明した実施の形態10によれば、生物反応槽1内において、設計値以上の過剰流入水が流入してきた場合に下流側流入口4から過剰流入水を生物反応槽1に流入させるが、担体分離板2の上流側の生物反応槽1には設計水量以下の流入水しか流入していないため、担体Sの流下には影響がない。担体分離板2の上流側の生物反応槽1内において、下流側の担体分離板2付近まで流下してきた担体Sを担体返送ポンプ10によって生物反応槽1の上流側に返送することができるので、生物反応槽1内部での担体密度を均一化することができると共に、生物反応槽1内部の流入水が増加した場合には、前述の担体返送量を増加させることで担体分離板2の閉塞を防止することができる。また、前記担体返送ポンプ10において、担体返送管11の吐出管部11bは生物反応槽1の水面よりも上方に保持されているので、生物反応槽1が複数槽に分かれていても使用することができる。   According to the tenth embodiment described above, in the biological reaction tank 1, when excess inflow water of a design value or more flows in, the excess inflow water is caused to flow into the bioreaction tank 1 from the downstream inlet 4. Since only the inflow water below the design water amount flows into the biological reaction tank 1 on the upstream side of the carrier separation plate 2, the flow of the carrier S is not affected. Since the carrier S flowing down to the vicinity of the downstream carrier separation plate 2 in the biological reaction tank 1 upstream of the carrier separation plate 2 can be returned to the upstream side of the biological reaction tank 1 by the carrier return pump 10. The density of the carrier in the biological reaction tank 1 can be made uniform, and when the inflow water in the biological reaction tank 1 increases, the carrier separation plate 2 is blocked by increasing the amount of returned carrier. Can be prevented. Further, in the carrier return pump 10, the discharge pipe portion 11b of the carrier return pipe 11 is held above the water surface of the biological reaction tank 1, so that it is used even if the biological reaction tank 1 is divided into a plurality of tanks. Can do.

実施の形態11.
図14はこの発明の実施の形態11による担体投入型生物反応装置の概念的構成を示す斜視図であり、図13と同一および相当部分には同一符合を付して重複説明を省略する。
この実施の形態11では、前記実施の形態10による担体返送ポンプ10の担体返送管11全体を生物反応槽1内部の混合液中に設置したものである。この場合、担体返送管11は、吐出管部11bを上向きにして吸引管部11aを生物反応槽1の底部に沿わせた状態に設置され、前記吐出管部11bに空気供給管12を接続した構造としている。
Embodiment 11 FIG.
FIG. 14 is a perspective view showing a conceptual configuration of a carrier input type biological reaction apparatus according to Embodiment 11 of the present invention. The same reference numerals are given to the same and corresponding parts as in FIG.
In the eleventh embodiment, the entire carrier return pipe 11 of the carrier return pump 10 according to the tenth embodiment is installed in a mixed solution inside the biological reaction tank 1. In this case, the carrier return pipe 11 is installed with the discharge pipe section 11b facing upward and the suction pipe section 11a along the bottom of the biological reaction tank 1, and an air supply pipe 12 is connected to the discharge pipe section 11b. It has a structure.

このように構成された担体返送ポンプ10は、空気供給管12を介して吐出管部11bに圧縮空気を供給することにより、前記実施の形態10の場合と同様に、担体分離板2付近まで流下してきた担体Sを担体返送ポンプ10によって生物反応槽1の上流側に返送することができるので、生物反応槽1内部での担体密度を均一化することができると共に、生物反応槽1内部の流入水が増加した場合には、前述の担体返送量を増加させることで担体分離板2の閉塞を防止することができるという前記実施の形態10と同様の作用効果が得られる。
また、前記担体返送ポンプ10は全体を生物反応槽1内部の混合液中に設置したので、担体Sを含んだ生物反応槽混合液を移送するための必要とするエネルギーが少なくて済むという効果がある。
なお、前記担体返送ポンプ10の担体返送管11は、担体を含んだ生物混合液を返送できる形状であればよく、その形状は特定されるものではない。また、実施の形態10と同様に設計値以上の過剰流入水が流入してきた場合に下流側流入口4から過剰流入水を生物反応槽1に流入させるが、担体分離板2の上流側の生物反応槽1には設計水量以下の流入水しか流入していないため、担体Sの流下には影響がない。
The carrier return pump 10 configured as described above flows down to the vicinity of the carrier separation plate 2 by supplying compressed air to the discharge pipe portion 11b via the air supply pipe 12 as in the case of the tenth embodiment. Since the carrier S thus returned can be returned to the upstream side of the biological reaction tank 1 by the carrier return pump 10, the carrier density in the biological reaction tank 1 can be made uniform and the inflow into the biological reaction tank 1 can be achieved. When the amount of water increases, the same effect as that of the tenth embodiment can be obtained in which the carrier separation plate 2 can be prevented from being blocked by increasing the carrier return amount.
In addition, since the entire carrier return pump 10 is installed in the mixed liquid inside the biological reaction tank 1, there is an effect that less energy is required for transferring the biological reaction tank mixed liquid containing the carrier S. is there.
The carrier return tube 11 of the carrier return pump 10 may have any shape that can return the biological mixture containing the carrier, and the shape is not specified. Similarly to the tenth embodiment, when excess inflow water of a design value or more flows in, the excess inflow water flows into the biological reaction tank 1 from the downstream inflow port 4. Since only the inflow water below the design water amount flows into the reaction tank 1, the flow of the carrier S is not affected.

実施の形態12.
図15はこの発明の実施の形態12による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態12では、移送管3の流入口5と下流側流入口4のそれぞれに、流入水に含まれた夾雑物を除去するための夾雑物除去設備(スクリーン)13,14を設けると共に、生物反応槽1の上流側に接続された汚泥返送管15にも返送汚泥に含まれた夾雑物を除去するための夾雑物除去設備(スクリーン)16を設けたものである。
Embodiment 12 FIG.
FIG. 15 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 12 of the present invention.
In the twelfth embodiment, the contaminant removal facilities (screens) 13 and 14 for removing contaminants contained in the inflowing water are provided at the inlet 5 and the downstream inlet 4 of the transfer pipe 3 respectively. The sludge return pipe 15 connected to the upstream side of the biological reaction tank 1 is also provided with a contaminant removal facility (screen) 16 for removing contaminants contained in the return sludge.

このように、移送管3の流入口5と下流側流入口4および汚泥返送管15のそれぞれに夾雑物除去設備13,14,16を設けたことで、担体分離板2の開口率が低く、流入水や返送汚泥に含まれている夾雑物が生物反応槽1に入ると担体分離板2が閉塞する可能性が高い場合に、有効である。   Thus, by providing the contaminant removal equipments 13, 14, 16 in the inlet 5, the downstream inlet 4, and the sludge return pipe 15 of the transfer pipe 3, the opening ratio of the carrier separation plate 2 is low, This is effective when there is a high possibility that the contaminants contained in the inflowing water and the returned sludge enter the biological reaction tank 1 and the carrier separation plate 2 is clogged.

開口率が低い担体分離板2にはスクリーンタイプがある。小さい担体Sを採用する場合には、小さい担体Sを捕捉するために担体分離板2の目開きも小さくする必要があるので、スクリーンタイプを採用する場合がある。担体Sが小さいため担体2を捕捉するためのスクリーンタイプの担体分離板2の目開きは小さく、流入水に含まれる夾雑物や上空から落下する落ち葉やゴミなどが生物反応槽1に含まれると、スクリーンタイプの担体分離板2をすぐに閉塞させてしまう。その場合は、スクリーンタイプの担体分離板2が閉塞するのを防止するために、流入水や返送汚泥に含まれる夾雑物を除去する必要がある。また、スクリーンタイプの担体分離板2は閉塞し易いため、生物反応槽1内に設置する場合も担体分離板2の上流側に整流板(図示せず)を設置したり、担体分離板2を生物反応槽1の水位に潜るように設置したりする。パンチングメタルタイプの担体分離板2を設置している生物反応槽1の流入口5や下流側流入口4に夾雑物除去設備のスクリーン13,14を設置しても問題ないが、パンチングメタルタイプの担体分離板2は閉塞し難いためスクリーンは不要である。   The carrier separation plate 2 having a low aperture ratio includes a screen type. When a small carrier S is employed, a screen type may be employed because the mesh of the carrier separation plate 2 needs to be reduced in order to capture the small carrier S. Since the carrier S is small, the screen-type carrier separation plate 2 for capturing the carrier 2 has a small mesh opening, and if the biological reaction tank 1 contains impurities contained in the inflowing water, fallen leaves or dust falling from the sky. The screen type carrier separating plate 2 is immediately closed. In that case, in order to prevent the screen-type carrier separation plate 2 from being blocked, it is necessary to remove impurities contained in the inflowing water and the return sludge. Further, since the screen type carrier separation plate 2 is easily blocked, even when it is installed in the biological reaction tank 1, a rectifying plate (not shown) is installed upstream of the carrier separation plate 2, or the carrier separation plate 2 is It is installed so as to be submerged in the water level of the biological reaction tank 1. There is no problem if the screens 13 and 14 of the contaminant removal equipment are installed at the inlet 5 and the downstream inlet 4 of the biological reaction tank 1 where the punching metal type carrier separation plate 2 is installed. Since the carrier separation plate 2 is difficult to close, a screen is unnecessary.

パンチングメタルタイプの担体分離板2は以下の特徴を有する。
(1)担体分離板2は、担体を通過させずに生物反応槽1の混合液を通過させる担体−混合液の分離機能を有する。その形状は、例えばパンチングメタルタイプやスクリーンタイプ、斜め格子タイプなどがあるが、担体と混合液を分離できるものであれば、これらに特定されるものではない。
(2)担体分離板2がパンチングメタルタイプである場合、その設置方向は、図16に示すように生物反応槽1の上流側に打ち抜き表面(=滑らか面)が向き、下流側に打ち抜き裏面(=粗い面)が向くようにする。
(3)粗い面を上流側に向けると、担体が摩耗・劣化するため担体が消費され交換頻度が早まり、生物処理に支障を来すばかりか、ランニングコストの上昇を招く。
(4)パンチングメタルタイプの担体分離板2の設置角度は、図17に示すように90度以下(底面から垂直に立設するか下流側に傾斜させる。)がよかった。
(5)パンチングメタルタイプの担体分離板2は開口率が30〜65%のものを適用するとよい。
(6)担体形状が12mm×12mm×15mmの場合は、開口直径が2〜15mmφのパンチングメタルタイプの担体分離板2がよかった。担体形状がφ3.0mm×5.0mmの小さい担体の場合は、1.0〜5.0mm間隔のスクリーンタイプの担体分離板2を適用するとよかった。
(7)パンチングメタルタイプの担体分離板2の穴は2mmφでも担体と生物反応槽混合液の分離性が得られ、担体によって担体分離性が閉塞することもなかったが、やや担体が担体分離板近くに集まった。15mmφの穴でも良かったが、8mmφの穴が最も担体と生物反応槽混合液の分離がスムーズで良好であった。
(8)図18に示すように、担体分離板2の上流側や下流側にも、汚泥沈殿(堆積)防止用や担体分離板の閉塞解消用の散気設備や撹拌設備が設けられていて、ばっ気を行っているため、水位差の解消(流速の均等化)に寄与する。
The punching metal type carrier separation plate 2 has the following characteristics.
(1) The carrier separating plate 2 has a function of separating a carrier-mixed liquid that allows the mixed liquid in the biological reaction tank 1 to pass through without passing through the carrier. The shape includes, for example, a punching metal type, a screen type, and an oblique lattice type. However, the shape is not specified as long as it can separate the carrier and the mixed liquid.
(2) When the carrier separation plate 2 is a punching metal type, the installation direction is such that the punching surface (= smooth surface) faces the upstream side of the biological reaction tank 1 as shown in FIG. (= Rough surface).
(3) If the rough surface is directed to the upstream side, the carrier is worn out and deteriorated, so that the carrier is consumed and the exchange frequency is increased, which not only hinders biological treatment but also increases the running cost.
(4) As shown in FIG. 17, the installation angle of the punching metal type carrier separation plate 2 is preferably 90 degrees or less (standing vertically from the bottom surface or inclined to the downstream side).
(5) A punching metal type carrier separation plate 2 having an aperture ratio of 30 to 65% may be applied.
(6) When the carrier shape was 12 mm × 12 mm × 15 mm, the punching metal type carrier separation plate 2 having an opening diameter of 2 to 15 mmφ was good. In the case of a small carrier having a carrier shape of φ3.0 mm × 5.0 mm, the screen type carrier separation plate 2 having an interval of 1.0 to 5.0 mm was preferably applied.
(7) Even when the hole of the punching metal type carrier separation plate 2 is 2 mmφ, the separation of the carrier and the biological reaction tank mixture was obtained, and the carrier separation property was not blocked by the carrier, but the carrier was somewhat Gathered nearby. A hole with a diameter of 15 mmφ was acceptable, but the hole with an diameter of 8 mmφ was the most smooth and good separation between the carrier and the biological reaction tank mixture.
(8) As shown in FIG. 18, an air diffuser and an agitator for preventing sludge sedimentation (deposition) and for eliminating the blockage of the carrier separator are also provided on the upstream and downstream sides of the carrier separator 2. Because aeration is performed, it contributes to elimination of water level difference (equalization of flow velocity).

スクリーンタイプの担体分離板は以下の特徴を有する。
(1)スクリーンタイプの担体分離板は傾斜させて設置する。なお、スクリーンタイプの担体分離板の上流面には整流板を設ける必要がある。
(2)スクリーンタイプの担体分離板は、水没するように設置してもよい。スクリーンタイプの担体分離板の目開き幅が小さいため生物反応槽混合液が担体分離板を通過する際に抵抗がかかり、担体分離板を水没させないと、図19に示すように担体分離板の前後において、防止板(整流板)の抵抗により水位差(上流側が高く、下流側が低い)が生じる。そのため、担体分離板の前後で水頭差ができ、担体分離板の開孔での通過速度や担体分離板の下流側での流速が速くなり、さらに抵抗が大きくなり閉塞し易くなる。
The screen type carrier separator has the following characteristics.
(1) The screen-type carrier separation plate is installed at an angle. It is necessary to provide a current plate on the upstream surface of the screen type carrier separation plate.
(2) The screen type carrier separation plate may be installed so as to be submerged. Since the screen-type carrier separation plate has a small opening width, resistance is applied when the biological reaction tank mixture passes through the carrier separation plate, and if the carrier separation plate is not submerged, as shown in FIG. , A difference in water level (high on the upstream side and low on the downstream side) occurs due to the resistance of the prevention plate (rectifying plate). Therefore, a water head difference is generated before and after the carrier separation plate, the passing speed at the opening of the carrier separation plate and the flow velocity at the downstream side of the carrier separation plate are increased, and the resistance is increased and the blockage is likely to occur.

実施の形態13.
図20はこの発明の実施の形態13による担体投入型生物反応装置の概念的構成を示すブロック図である。
この実施の形態13では、複数(図20では二つ)の生物反応槽1A,1Bを並列に配置している。
この実施の形態13では、パンチングメタルタイプの担体分離板21が垂直に設置された第1の生物反応槽1Aと、スクリーンタイプの担体分離板22が所定の傾斜角度で設置された第2の生物反応槽1Bを並列に設置している。これらの生物反応槽1A,1Bにおいてもそれぞれに下流側流入口が設けられており、それらの下流側流入口から過剰流入水が流入するようになっている。また、最初沈殿池(初沈)23からの流入水を生物反応槽1A,1Bに流入させる移送管3は、生物反応槽1A系統の分岐管3aと生物反応槽1B系統の分岐管3bとに分岐されている。これと同様に汚泥返送管15も前記両系統に分岐されている。
Embodiment 13 FIG.
FIG. 20 is a block diagram showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 13 of the present invention.
In the thirteenth embodiment, a plurality (two in FIG. 20) of biological reaction tanks 1A and 1B are arranged in parallel.
In the thirteenth embodiment, the first biological reaction tank 1A in which the punching metal type carrier separation plate 21 is installed vertically and the second organism in which the screen type carrier separation plate 22 is installed at a predetermined inclination angle. Reaction tank 1B is installed in parallel. Each of these biological reaction tanks 1A and 1B is also provided with a downstream inlet, and excess inflow water flows from these downstream inlets. In addition, the transfer pipe 3 through which the inflow water from the first sedimentation basin (first sedimentation) 23 flows into the biological reaction tanks 1A and 1B is connected to the branch pipe 3a of the biological reaction tank 1A system and the branch pipe 3b of the biological reaction tank 1B system. Branched. Similarly to this, the sludge return pipe 15 is also branched into the both systems.

スクリーンタイプの担体分離板22の場合、流入水の夾雑物が生物反応槽混合液に混入すると、担体分離板22が閉塞するため、移送管3における生物反応槽1B系統の分岐管3bには夾雑物除去用のスクリーン25を設置している。パンチングメタルタイプの担体分離板21が設置された生物反応槽1Aの場合、夾雑物が流入してきても担体分離板21が閉塞する懸念がないため、夾雑物除去用のスクリーンは設置していない。そのためスクリーンタイプの担体分離板22が設置された生物反応槽1Bに最終沈殿池から返送される汚泥には生物反応槽1Aに流入した夾雑物が混入しており、この系統の汚泥返送管15から生物反応槽1Bへ返送する分岐管にも夾雑物除去用のスクリーン26を設置している。夾雑物除去用のスクリーン25,26を設けたことにより、前記両生物反応槽1A,1B内の混合液に夾雑物が混入しないようにできる。   In the case of the screen-type carrier separation plate 22, if contaminants in the inflow water are mixed into the biological reaction tank mixed solution, the carrier separation plate 22 is blocked, and therefore the branch pipe 3 b of the biological reaction tank 1 </ b> B system in the transfer pipe 3 is contaminated. An object removal screen 25 is installed. In the case of the biological reaction tank 1A in which the punching metal type carrier separating plate 21 is installed, there is no concern that the carrier separating plate 21 will be blocked even if foreign substances flow in, so no screen for removing foreign substances is installed. Therefore, the sludge returned from the final sedimentation basin to the biological reaction tank 1B in which the screen type carrier separation plate 22 is installed is contaminated with contaminants that have flowed into the biological reaction tank 1A. A screen 26 for removing contaminants is also installed in the branch pipe returned to the biological reaction tank 1B. By providing the screens 25 and 26 for removing contaminants, it is possible to prevent contaminants from being mixed into the mixed liquid in the biological reaction tanks 1A and 1B.

前記夾雑物除去用のスクリーン25,26は以下の特徴を有する。
(1)夾雑物除去用のスクリーンは、流入水あるいは返送汚泥に含まれる夾雑物やし渣類を除去する。
(2)夾雑物除去用のスクリーンを設置しないと、流入水や返送汚泥に含まれる夾雑物が生物反応槽に混入し、スクリーンタイプの担体分離板を閉塞してしまい、混合液が溢れ、最悪の場合は活性汚泥処理ができなくなる。
(3)夾雑物除去用のスクリーンは、微細目スクリーン、あるいは0.5〜5.0mm間隔のものを適用するが、夾雑物を捕捉除去できるものであれば、これに限らない。担体投入型の生物反応槽と担体投入型以外の生物反応槽を並列設置して使用する場合は、担体投入型以外の生物反応槽には夾雑物除去用のスクリーンは必要ないが、並列している担体投入型生物反応槽には夾雑物除去用のスクリーンがないと担体分離板が目詰まりを起こし、活性汚泥処理ができなくなるため、流入水および/または返送汚泥の夾雑物除去用スクリーンが必要となる。
(4)処理施設が屋外にある場合、スクリーンを担体分離板に使用するとゴミ(木の葉や紙類など)の混入によるスクリーンの閉塞が生じる恐れがある。そのため、生物反応槽は覆蓋仕様とする必要がある。これに対して、パンチングメタルタイプの担体分離板は混入するゴミ等で閉塞することはないため、特段覆蓋仕様にする必要はない。
The screens 25 and 26 for removing foreign substances have the following characteristics.
(1) The screen for removing foreign substances removes foreign substances and residue contained in the influent water or returned sludge.
(2) If a screen for removing contaminants is not installed, contaminants contained in the influent water and return sludge will enter the biological reaction tank, blocking the screen-type carrier separation plate, overflowing the liquid mixture, and the worst In this case, activated sludge treatment cannot be performed.
(3) As a screen for removing foreign substances, a fine screen or a screen having an interval of 0.5 to 5.0 mm is applied. However, the screen is not limited thereto as long as it can capture and remove foreign substances. When the biological reaction tank of the carrier input type and the biological reaction tank other than the carrier input type are installed and used in parallel, the biological reaction tank other than the carrier input type does not require a screen for removing contaminants. If there is no screen for removing contaminants in the carrier input type bioreactor, the carrier separation plate will be clogged and it will not be possible to treat activated sludge. Therefore, a screen for removing contaminants from the incoming water and / or return sludge is required. It becomes.
(4) When the processing facility is outdoors, if the screen is used as a carrier separation plate, the screen may be clogged due to mixing of dust (such as leaves or paper). For this reason, the biological reaction tank needs to be covered. On the other hand, the punching metal type carrier separation plate does not need to be specially covered because it does not become clogged with mixed dust.

このように、パンチングメタルタイプの担体分離板21が設置された生物反応槽1Aと、スクリーンタイプの担体分離板22が設置された生物反応槽1Bとを並列に設置して処理を行う場合であっても、担体の大きさや形状および担体分離板の目開きの大きさや、形状が異なった場合であっても、それらの方式が混在していても、担体分離板の下流側に下流側流入口を設置することで、設計値以上の過剰流入水が突然流入してきても、安定した処理が確保できる効果がある。すなわち夾雑物が混入すると閉塞する程の目開きの小さい担体分離板を設置した場合でも、夾雑物が混入しても閉塞しない開口率の担体分離板を設置した場合でも、それらの方式が混在していても、複数設置されていても、下流側に下流側流入口を設置することで、設計値以上の過剰流入水が突然流入することによる担体分離板の閉塞を防ぐことが可能となり、担体分離板や担体の大きさに効果は影響されず、担体を利用し、担体分離板などの部材を利用した方式であれば効果を得ることが可能となる効果がある。   In this way, the biological reaction tank 1A in which the punching metal type carrier separation plate 21 is installed and the biological reaction tank 1B in which the screen type carrier separation plate 22 is installed are installed in parallel to perform processing. However, even if the size and shape of the carrier and the size and shape of the openings of the carrier separation plate are different, even if these methods are mixed, the downstream side inlet port on the downstream side of the carrier separation plate By installing, there is an effect that stable treatment can be ensured even if excessive inflow water exceeding the design value suddenly flows. In other words, even if a carrier separation plate is installed that has a small opening enough to be closed when impurities are mixed in, or a carrier separation plate is installed that has an opening ratio that does not block even if impurities are mixed, these methods are mixed. Even if multiple installations are installed, installing a downstream inlet on the downstream side makes it possible to prevent blockage of the carrier separation plate due to sudden inflow of excess inflow water above the design value. The effect is not affected by the size of the separation plate or the carrier, and there is an effect that it is possible to obtain the effect by using a carrier and using a member such as a carrier separation plate.

実施の形態14.
図21はこの発明の実施の形態14による担体投入型生物反応装置の概念的構成を示すブロック図である。
前記実施の形態13では、スクリーンタイプの担体分離板22が設置された生物反応槽1Bに返送汚泥の夾雑物が混入しないように、その系統の汚泥返送管15から生物反応槽1B内に返送する分岐管にのみ夾雑物除去用のスクリーン26を設置したが、この実施の形態14では、返送汚泥中の夾雑物を前記両方の生物反応槽1A,1Bのいずれにも混入させない汚泥返送管15の位置に夾雑物除去用のスクリーン26を設置したものである。
Embodiment 14 FIG.
FIG. 21 is a block diagram showing a conceptual configuration of a carrier input type biological reaction apparatus according to Embodiment 14 of the present invention.
In the thirteenth embodiment, the return sludge is returned from the sludge return pipe 15 of the system to the bioreactor 1B so that the contaminants of the return sludge are not mixed into the bioreactor 1B in which the screen type carrier separation plate 22 is installed. Although the screen 26 for removing contaminants is installed only in the branch pipe, in the fourteenth embodiment, the sludge return pipe 15 that does not allow the contaminants in the returned sludge to be mixed into both the biological reaction tanks 1A and 1B. A screen 26 for removing impurities is installed at the position.

実施の形態15.
図22(A)はこの発明の実施の形態16による担体投入型生物反応装置を示す概要構成説明図、図22(B)は図22(A)中の下流側流入口を示す説明図である。
この実施の形態15では、生物反応槽1に並列に設置されている移送管3が流入水路からなり、その移送管3に管状の流入水路が形成されているものである。そして、前記移送管3には、流入口5の下流側近傍に越流堰27を設けた構造となっている。
Embodiment 15 FIG.
FIG. 22 (A) is a schematic configuration explanatory view showing a carrier input type bioreactor according to Embodiment 16 of the present invention, and FIG. 22 (B) is an explanatory view showing a downstream inlet in FIG. 22 (A). .
In the fifteenth embodiment, the transfer pipe 3 installed in parallel with the biological reaction tank 1 is composed of an inflow water path, and a tubular inflow water path is formed in the transfer pipe 3. The transfer pipe 3 has a structure in which an overflow weir 27 is provided in the vicinity of the downstream side of the inflow port 5.

この実施の形態15では、下流側流入口4には流入量を制御するゲートや弁、越流堰等も設置されていないため、移送管3を通過してくる過剰流入水は生物反応槽1にそのまま流入する。流入水量の調整は、移送管3に設置され図7、図8、図10に記載した越流堰や、図3に記載した自動ゲート、図4に記載した手動ゲートなどによって設計水量以下の通水量の場合は、下流側流入口4から流入水が流入するように制御している。   In the fifteenth embodiment, the downstream inlet 4 is not provided with a gate, a valve, an overflow weir, or the like for controlling the amount of inflow, so that excess inflow water passing through the transfer pipe 3 is the biological reaction tank 1. It flows in as it is. The amount of inflow water is adjusted by using the overflow weir shown in FIGS. 7, 8, and 10, the automatic gate shown in FIG. 3, the manual gate shown in FIG. In the case of the amount of water, the inflowing water is controlled to flow from the downstream inlet 4.

また、前記実施の形態15での移送管3は、前述のように断面管状となって水路が密閉されているため、臭気が外に漏れず、また、外部から落ち葉やゴミなどが入り込む心配がない。さらに、物や人が落ちる事故も避けることができる。流入水路形状に施工するよりも安全設備等が不要もしくは簡易で済むため、安価である。   In addition, since the transfer pipe 3 in the fifteenth embodiment has a tubular cross section as described above and the water channel is sealed, odors do not leak to the outside, and there is a concern that fallen leaves or dust may enter from the outside. Absent. In addition, accidents where people or people fall can be avoided. Since safety facilities are unnecessary or simpler than construction in the shape of the inflow channel, it is inexpensive.

実施の形態16.
図23はこの発明の実施の形態16による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態16による担体投入型生物反応装置は、生物反応槽1内における担体分離板2の上流側に洗浄ばっ気設備30を設置したものである。この洗浄ばっ気設備30は、担体分離板2に担体Sが密着しないように、ばっ気による担体分離板2の洗浄を行うものである。図23には担体分離板2の上流側に洗浄ばっ気設備30が記載されているが、担体分離板2を洗浄できれば下流側や横側正面などに設置してもよく、これに限ったことではない。流入水が増加した場合に、ばっ気風量を増加させることで、下流側流入口4から過剰流入水を流入させ担体分離板2の閉塞を防止する効果をさらに強める効果を得ることができる。また、洗浄ばっ気設備30を設置することで流入水が流入してきた場合に、担体Sを分離した後の生物反応槽混合液と下流側流入口4から流入してきた流入水とを効率よく混合させることができるため、有機物がフロックに吸着し易くなり、活性汚泥処理効率が上がるなどの効果がある。
Embodiment 16 FIG.
FIG. 23 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 16 of the present invention.
The carrier input type bioreactor according to the sixteenth embodiment has a cleaning aeration facility 30 installed upstream of the carrier separation plate 2 in the biological reaction tank 1. The cleaning and aeration equipment 30 is for cleaning the carrier separation plate 2 by aeration so that the carrier S does not adhere to the carrier separation plate 2. In FIG. 23, the cleaning and aeration equipment 30 is described on the upstream side of the carrier separation plate 2. However, if the carrier separation plate 2 can be cleaned, it may be installed on the downstream side, the front side of the side, etc. is not. When the inflowing water increases, an effect of further strengthening the effect of preventing the clogging of the carrier separation plate 2 by allowing the excess inflowing water to flow in from the downstream inflow port 4 can be obtained by increasing the amount of aeration air. Further, when the inflowing water flows in by installing the cleaning aeration equipment 30, the biological reaction tank mixed liquid after separating the carrier S and the inflowing water flowing in from the downstream inlet 4 are efficiently mixed. Therefore, the organic substance is easily adsorbed on the floc, and the activated sludge treatment efficiency is increased.

前記洗浄ばっ気設備30を設置する場合、該洗浄ばっ気設備30として、担体分離板2の上流側下部に、流入側方向へ延在する散気装置を設置する。担体分離板2は平板状であることを基本とするが、これに限らず、コ字形状やL字形状などであってもよく、図22の撹拌設備をばっ気設備に変更する配列でもよく、流入水の流下流速で担体分離板2の形状は適宜決定されるものである。   When the cleaning aeration equipment 30 is installed, as the cleaning aeration equipment 30, an air diffuser extending in the inflow direction is installed in the lower part on the upstream side of the carrier separation plate 2. The carrier separation plate 2 is basically flat, but is not limited thereto, and may be U-shaped or L-shaped, or may be an arrangement in which the stirring equipment in FIG. 22 is changed to an aeration equipment. The shape of the carrier separation plate 2 is appropriately determined depending on the flow velocity of the incoming water.

実施の形態17
図24はこの発明の実施の形態17による担体投入型生物反応装置の概念的構成を示す斜視図である。
この実施の形態17では、生物反応槽1内における担体分離板2の下流側に撹拌設備31を設置したものである。この撹拌設備31は、担体分離板2の下流側の生物反応槽混合液が低速になり、沈降し、槽下部に溜まるのを防ぐため、さらに担体分離板2に担体Sが密着しないように、担体分離板2を洗浄するものである。生物反応槽1の流入水が増加した場合に、撹拌設備31の撹拌動力を上げることで担体分離板2の閉塞を防止することができる。また、過剰流入水が下流側流入口から流入してきた場合には、担体Sを分離した後の生物反応槽混合液と下流側流入口4から流入してきた流入水とを効率よく混合できるため、有機物がフロックに吸着し易くなり、処理効率が上がるなどの効果がある。過剰流入水と活性汚泥の接触を促進させ、また汚泥の沈降も防止できる効果がある。
この実施の形態17では、撹拌設備31のみを図示したが、前記実施の形態16の洗浄ばっ気設備30と共用してよく、図18などのよう洗浄ばっ気設備や撹拌設備を設置してもよく、洗浄ばっ気設備30と撹拌設備31の両方を設置することで、担体分離板2の洗浄効率および処理効率がさらに上昇するという効果がある。
Embodiment 17
FIG. 24 is a perspective view showing a conceptual configuration of a carrier input type bioreactor according to Embodiment 17 of the present invention.
In the seventeenth embodiment, an agitation facility 31 is installed on the downstream side of the carrier separation plate 2 in the biological reaction tank 1. This agitation equipment 31 prevents the carrier S from adhering to the carrier separation plate 2 in order to prevent the biological reaction tank mixture on the downstream side of the carrier separation plate 2 from slowing down, settling, and accumulating in the lower part of the tank. The carrier separation plate 2 is washed. When the inflow water of the biological reaction tank 1 increases, the carrier separation plate 2 can be prevented from being blocked by increasing the stirring power of the stirring facility 31. In addition, when excessive influent water flows in from the downstream inlet, the biological reaction tank mixed liquid after separating the carrier S and the influent water flowing in from the downstream inlet 4 can be efficiently mixed. Organic substances are more likely to be adsorbed on the floc, resulting in increased processing efficiency. It has an effect of promoting contact between the excess influent water and activated sludge and preventing sedimentation of sludge.
In the seventeenth embodiment, only the agitation equipment 31 is shown, but it may be shared with the cleaning aeration equipment 30 of the sixteenth embodiment, and even if the cleaning aeration equipment and the agitation equipment are installed as shown in FIG. Well, by installing both the cleaning aeration equipment 30 and the stirring equipment 31, there is an effect that the cleaning efficiency and the processing efficiency of the carrier separation plate 2 are further increased.

実施例1.
図1に示す実施の形態1における生物反応槽1において、設計処理水量7,500m3/日に対し、運転時に15,000m3/日以上の流入水量まで増加してきたため、流入調整具(自動ゲート)を開とし、担体分離板の下流側流入口に流入させた。
その結果、生物反応槽1の流入水量は設計値以下に維持可能であったため、担体分離板付近での担体の滞留や閉塞もなく、通常の運転が維持可能であった。
流入水BOD濃度は通常時200mg/Lであったのに対し、流入水量ピーク時には120mg/Lまで低下した。緊急用流入口が設置される前までは、消毒処理前の簡易処理後にはBOD濃度が80mg/Lで放流していた。緊急用流入口を設置してからは流入水の120mg/LのBODは、担体分離板の下流側で生物反応槽混合液に吸着されることで、7mg/Lまで低減できた。
また、流入水量が設計値相当まで低下してきた時点で、流入調整具(自動ゲート)を閉とし、通常運転に復帰させた。
Example 1.
In the biological reaction tank 1 in Embodiment 1 shown in FIG. 1, the inflow regulator (automatic gate) has increased to an influent water amount of 15,000 m 3 / day or more during operation with respect to the designed treated water amount of 7,500 m 3 / day. ) Was opened and allowed to flow into the downstream inlet of the carrier separation plate.
As a result, since the amount of inflow water in the biological reaction tank 1 could be maintained below the design value, normal operation could be maintained without stagnation or blockage of the carrier in the vicinity of the carrier separation plate.
The inflow water BOD concentration was normally 200 mg / L, but decreased to 120 mg / L at the inflow water peak. Before the emergency inlet was installed, the BOD concentration was discharged at 80 mg / L after the simple treatment before the disinfection treatment. After the emergency inlet was installed, the 120 mg / L BOD of the influent water could be reduced to 7 mg / L by being adsorbed by the biological reaction tank mixture on the downstream side of the carrier separation plate.
In addition, when the inflow water amount decreased to the design value, the inflow adjuster (automatic gate) was closed and returned to normal operation.

実施例2.
図3に示す実施の形態2における生物反応槽1において、設計処理水量10,000m3/日に対し、下水道管渠が埋設されている道路近隣の水道管等の事故により30,000m3/日以上の流入水量まで増加した。事故の連絡を受けた時点で、雨天時越流堰(流入調整具)から越流し、過剰流入水が担体分離板の下流側流入口から流入した。このとき、生物反応槽1の流入水量は設計値以下で維持されていたため、担体分離板付近での担体の滞留も閉塞もなく、通常の運転が維持可能であった。流入水BODは、増量した水の大半が水道水であったためにBOD80mg/L程度であった。
Example 2
In the biological reaction tank 1 in Embodiment 2 shown in FIG. 3, the design treated water amount is 10,000 m 3 / day, and 30,000 m 3 / day is caused by an accident such as a water pipe near the road where the sewer pipe is buried. The amount of inflow water increased. At the time of receiving notification of the accident, it overflowed from the overflow weir (inflow adjuster) during rainy weather, and excess influent flowed from the downstream inlet of the carrier separation plate. At this time, since the amount of inflow water in the biological reaction tank 1 was maintained below the design value, normal operation could be maintained without stagnation or blockage of the carrier in the vicinity of the carrier separation plate. Inflow water BOD was about 80 mg / L BOD because most of the increased water was tap water.

実施例3.
図7に示す実施の形態4における生物反応槽1において、設計処理水量2,000m3/日に対し、気象災害による大量の不明水が流入し、10,000m3/日以上の流入水量まで増加した。固定越流堰(流入調整具)から越流し、過剰流入水が担体分離板の下流側流入口から流入した。生物反応槽1の流入水量は、設計値以下で維持していたため、担体分離板付近での担体の滞留や閉塞もなく、通常の運転が維持可能であった。
また、流入水量が設計値相当まで低下した時点で、固定越流堰(流入調整具)からの越流はなくなり、通常運転に戻った。
Example 3 FIG.
In biological reactor 1 in the fourth embodiment shown in FIG. 7, increasing to design processing water 2,000 m 3 / day, up to a large amount of unknown water flows, 10,000 m 3 / day or more inflow water amount by weather disasters did. Overflowing from the fixed overflow weir (inflow regulator), excess inflow water flowed in from the downstream inlet of the carrier separation plate. Since the amount of inflow water in the biological reaction tank 1 was maintained below the design value, normal operation could be maintained without stagnation or blockage of the carrier in the vicinity of the carrier separation plate.
Moreover, when the inflow water amount was reduced to the design value, the overflow from the fixed overflow weir (inflow regulator) disappeared and the normal operation was resumed.

この発明の実施の形態1による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 1 of this invention. この発明の実施の形態2による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 2 of this invention. この発明の実施の形態3による担体投入型生物反応装置を示す概略的な横断平面図である。It is a schematic cross-sectional top view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 3 of this invention. 図4(A)は図3中のゲート設置部をゲート開状態で示す断面図、図4(B)は図4(A)のゲート閉状態を示す断面図、図4(C)は図3中のゲート設置部を半開状態で示す断面図である。4A is a cross-sectional view showing the gate installation portion in FIG. 3 in the gate open state, FIG. 4B is a cross-sectional view showing the gate closed state in FIG. 4A, and FIG. 4C is FIG. It is sectional drawing which shows a gate installation part in a half open state. この発明の実施の形態4による担体投入型生物反応装置を示す概略的な横断平面図である。It is a schematic cross-sectional top view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 4 of this invention. 図6(A)は図5中の手動ゲート設置部をゲート開状態で示す断面図、図6(B)は図6(A)のゲート閉状態を示す断面図、図6(C)は図6(A)のゲート開状態と閉状態の変化を示す断面図である。6A is a cross-sectional view showing the manual gate installation portion in FIG. 5 in the gate open state, FIG. 6B is a cross-sectional view showing the gate closed state in FIG. 6A, and FIG. It is sectional drawing which shows the change of the gate open state of 6 (A), and a closed state. この発明の実施の形態5による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 5 of this invention. この発明の実施の形態6による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 6 of this invention. この発明の実施の形態7による担体投入型生物反応装置を示す概略的な平面図である。It is a schematic top view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 7 of this invention. この発明の実施の形態8による担体投入型生物反応装置の概略的な斜視図である。It is a schematic perspective view of the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 8 of this invention. この発明の実施の形態9による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 9 of this invention. この発明の実施の形態10による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 10 of this invention. この発明の実施の形態11による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 11 of this invention. この発明の実施の形態12による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 12 of this invention. この発明の実施の形態13による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 13 of this invention. 担体分離板の概略断面図である。It is a schematic sectional drawing of a carrier separation plate. 担体分離板の設置例を洗浄ばっ気設備との関連で示す概略図である。It is the schematic which shows the example of installation of a carrier separation board in relation to a cleaning aeration equipment. 担体分離板と洗浄ばっ気設備と撹拌設備との関連を示す配置図である。It is a layout view showing the relationship among the carrier separation plate, cleaning aeration equipment, and stirring equipment. 担体分離板の設置例を示す概略図である。It is the schematic which shows the example of installation of a carrier separation board. この発明の実施の形態14による担体投入型生物反応装置を示すブロック図である。It is a block diagram which shows the carrier injection | throwing-in type bioreaction apparatus by Embodiment 14 of this invention. この発明の実施の形態15による担体投入型生物反応装置を示すブロック図である。It is a block diagram which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 15 of this invention. 図22(A)はこの発明の実施の形態16による担体投入型生物反応装置を示す概要構成説明図、図22(B)は図22(A)中の下流側流入口を示す説明図である。FIG. 22 (A) is a schematic configuration explanatory view showing a carrier input type bioreactor according to Embodiment 16 of the present invention, and FIG. 22 (B) is an explanatory view showing a downstream inlet in FIG. 22 (A). . この発明の実施の形態17による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 17 of this invention. この発明の実施の形態18による担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the support | carrier injection | throwing-in type bioreaction apparatus by Embodiment 18 of this invention. 従来の担体投入型生物反応装置を示す概略的な斜視図である。It is a schematic perspective view which shows the conventional carrier injection | throwing-in type bioreaction apparatus.

符号の説明Explanation of symbols

1,1A,1B 生物反応槽
2,2A,2B 担体分離板
3 移送管
3a,3b 分岐管
4 下流側流入口
5 流入口
6 流入調整具
6A 電動ゲート
6B 手動ゲート
6C 固定越流堰
6D 差込式板状越流堰
6E 落し込み式板状越流堰
7 ステップ流入口
8,9 担体分離設備
10 担体返送ポンプ
11 担体返送管
11a 吸引管部
11b 吐出管部
12 空気供給管
13,14 夾雑物除去設備(スクリーン)
15 汚泥返送管
16 夾雑物除去設備(スクリーン)
21,22担体分離板
23 最初沈殿池
24 最終沈殿池
25,26 スクリーン
27 越流堰
30 洗浄ばっ気設備
31 撹拌設備
61A 開口
61B 開口
1, 1A, 1B Biological reaction tank 2, 2A, 2B Carrier separation plate 3 Transfer pipe 3a, 3b Branch pipe 4 Downstream inlet 5 Inlet 6 Inflow regulator 6A Electric gate 6B Manual gate 6C Fixed overflow weir 6D Insertion Type plate overflow dam 6E Drop type plate overflow weir 7 Step inlet 8, 9 Carrier separation equipment 10 Carrier return pump 11 Carrier return pipe 11a Suction pipe part 11b Discharge pipe part 12 Air supply pipes 13, 14 Contaminants Removal equipment (screen)
15 Sludge return pipe 16 Contaminant removal equipment (screen)
21, 22 Carrier separation plate 23 First sedimentation basin 24 Final sedimentation basin 25, 26 Screen 27 Overflow weir 30 Cleaning aeration equipment 31 Stirring equipment 61A Opening 61B Opening

Claims (4)

担体を用いて生物処理を行う生物反応槽と、
流入口を備え、該生物反応槽に流入水を供給する移送管と、
前記生物反応槽に配設され、生物反応槽混合液から前記担体を分離する担体分離板と、
前記移送管に配設され、前記担体分離板の下流側で開口する下流側流入口と
からなることを特徴とする担体投入型生物反応装置。
A biological reaction tank for biological treatment using a carrier;
A transfer pipe having an inlet and supplying influent water to the biological reaction tank;
A carrier separation plate disposed in the biological reaction tank and separating the carrier from the biological reaction tank mixture;
A carrier input type bioreactor comprising a downstream inflow port disposed on the transfer pipe and opening on the downstream side of the carrier separation plate.
前記移送管には、複数の流入口が設けられていることを特徴とする請求項1記載の担体投入型生物反応装置。 2. The carrier input type bioreactor according to claim 1, wherein the transfer pipe is provided with a plurality of inlets. 前記生物反応槽には、複数の担体分離板が設けられていることを特徴とする請求項1または請求項2記載の担体投入型生物反応装置。 The carrier input type bioreaction apparatus according to claim 1 or 2, wherein the biological reaction tank is provided with a plurality of carrier separation plates. 前記生物反応槽へ供給される流入水および/または返送汚泥から夾雑物を除去するスクリーンが設けられていることを特徴とする請求項1から3のいずれかに記載の担体投入型生物反応装置。 4. The carrier input type bioreactor according to any one of claims 1 to 3, further comprising a screen for removing contaminants from the inflow water and / or the returned sludge supplied to the bioreactor.
JP2008333807A 2008-12-26 2008-12-26 Supporting bioreactor Active JP5468251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333807A JP5468251B2 (en) 2008-12-26 2008-12-26 Supporting bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333807A JP5468251B2 (en) 2008-12-26 2008-12-26 Supporting bioreactor

Publications (2)

Publication Number Publication Date
JP2010155184A true JP2010155184A (en) 2010-07-15
JP5468251B2 JP5468251B2 (en) 2014-04-09

Family

ID=42573492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333807A Active JP5468251B2 (en) 2008-12-26 2008-12-26 Supporting bioreactor

Country Status (1)

Country Link
JP (1) JP5468251B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000585A (en) * 2010-06-18 2012-01-05 Kubota Corp Wastewater treatment facility, wastewater treatment method and method of reconstructing wastewater treatment facility
JP2016179437A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016179438A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016203086A (en) * 2015-04-21 2016-12-08 Jfeエンジニアリング株式会社 Carrier-charging type sewage treatment apparatus

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125969A (en) * 1975-04-24 1976-11-02 Kurita Water Ind Ltd Active sludge process
JPS5684695A (en) * 1979-12-13 1981-07-10 Nishihara Environ Sanit Res Corp Sewage treatment method
JPH0338299A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH0338298A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH04371298A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Treatment of organic sewage and equipment
JPH0576704A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Mehtod for filtering sewage
JPH07116692A (en) * 1993-10-28 1995-05-09 Ebara Res Co Ltd Treating device for nitrification and denitrification of sewage
JPH07275886A (en) * 1994-04-12 1995-10-24 Kubota Corp Biological denitration apparatus
JPH07313990A (en) * 1994-05-30 1995-12-05 Nkk Corp Treatment of sewage
JPH07328675A (en) * 1994-06-03 1995-12-19 Ebara Res Co Ltd Aerobic organism treating device
JPH0884997A (en) * 1994-09-16 1996-04-02 Sanki Eng Co Ltd Fluidized bed type denitrification device
JPH0938678A (en) * 1995-07-26 1997-02-10 Kubota Corp Treatment of carrier added activated sludge
JPH10128364A (en) * 1996-10-29 1998-05-19 Nkk Corp Carrier-separating screen apparatus
JPH10128362A (en) * 1996-10-29 1998-05-19 Nkk Corp Method for treating waste water using microorganism-immobilized carrier
JPH10272485A (en) * 1997-03-31 1998-10-13 Nkk Corp Treating device for waste water
JPH1170390A (en) * 1997-06-19 1999-03-16 Nkk Corp Waste water treatment method and apparatus therefor
JPH11179386A (en) * 1997-12-24 1999-07-06 Hitachi Plant Eng & Constr Co Ltd Detour flow type waste water treating apparatus
JPH11290880A (en) * 1998-04-13 1999-10-26 Kubota Corp Nitrogen removing apparatus
JP2001070968A (en) * 1999-09-08 2001-03-21 Nkk Corp Waste water treatment apparatus
JP2001296880A (en) * 2000-03-27 2001-10-26 Lucent Technol Inc Method and device to generate plural plausible pronunciation of intrinsic name
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
JP2003010877A (en) * 2001-06-29 2003-01-14 Kurita Water Ind Ltd Activated sludge treatment method for sewage and its apparatus
JP2004209452A (en) * 2002-11-12 2004-07-29 Kobe Steel Ltd Biological treatment tank and biological treatment method for wastewater
JP2005074365A (en) * 2003-09-02 2005-03-24 Ngk Insulators Ltd Bioreaction tank provided with screen
JP2005279386A (en) * 2004-03-29 2005-10-13 Kurita Water Ind Ltd Waste water treatment apparatus
JP2005313081A (en) * 2004-04-28 2005-11-10 Nishihara Environment Technology Inc Water treatment apparatus
JP2006007033A (en) * 2004-06-23 2006-01-12 Kobe Steel Ltd Biological treatment tank for waste water and biologically treating method
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
JP2008229466A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Biological treatment method for sewage including hairs

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125969A (en) * 1975-04-24 1976-11-02 Kurita Water Ind Ltd Active sludge process
JPS5684695A (en) * 1979-12-13 1981-07-10 Nishihara Environ Sanit Res Corp Sewage treatment method
JPH0338299A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH0338298A (en) * 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
JPH04371298A (en) * 1991-06-20 1992-12-24 Ebara Infilco Co Ltd Treatment of organic sewage and equipment
JPH0576704A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Mehtod for filtering sewage
JPH07116692A (en) * 1993-10-28 1995-05-09 Ebara Res Co Ltd Treating device for nitrification and denitrification of sewage
JPH07275886A (en) * 1994-04-12 1995-10-24 Kubota Corp Biological denitration apparatus
JPH07313990A (en) * 1994-05-30 1995-12-05 Nkk Corp Treatment of sewage
JPH07328675A (en) * 1994-06-03 1995-12-19 Ebara Res Co Ltd Aerobic organism treating device
JPH0884997A (en) * 1994-09-16 1996-04-02 Sanki Eng Co Ltd Fluidized bed type denitrification device
JPH0938678A (en) * 1995-07-26 1997-02-10 Kubota Corp Treatment of carrier added activated sludge
JPH10128364A (en) * 1996-10-29 1998-05-19 Nkk Corp Carrier-separating screen apparatus
JPH10128362A (en) * 1996-10-29 1998-05-19 Nkk Corp Method for treating waste water using microorganism-immobilized carrier
JPH10272485A (en) * 1997-03-31 1998-10-13 Nkk Corp Treating device for waste water
JPH1170390A (en) * 1997-06-19 1999-03-16 Nkk Corp Waste water treatment method and apparatus therefor
JPH11179386A (en) * 1997-12-24 1999-07-06 Hitachi Plant Eng & Constr Co Ltd Detour flow type waste water treating apparatus
JPH11290880A (en) * 1998-04-13 1999-10-26 Kubota Corp Nitrogen removing apparatus
JP2001070968A (en) * 1999-09-08 2001-03-21 Nkk Corp Waste water treatment apparatus
JP2001296880A (en) * 2000-03-27 2001-10-26 Lucent Technol Inc Method and device to generate plural plausible pronunciation of intrinsic name
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
JP2003010877A (en) * 2001-06-29 2003-01-14 Kurita Water Ind Ltd Activated sludge treatment method for sewage and its apparatus
JP2004209452A (en) * 2002-11-12 2004-07-29 Kobe Steel Ltd Biological treatment tank and biological treatment method for wastewater
JP2005074365A (en) * 2003-09-02 2005-03-24 Ngk Insulators Ltd Bioreaction tank provided with screen
JP2005279386A (en) * 2004-03-29 2005-10-13 Kurita Water Ind Ltd Waste water treatment apparatus
JP2005313081A (en) * 2004-04-28 2005-11-10 Nishihara Environment Technology Inc Water treatment apparatus
JP2006007033A (en) * 2004-06-23 2006-01-12 Kobe Steel Ltd Biological treatment tank for waste water and biologically treating method
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP2008000697A (en) * 2006-06-23 2008-01-10 Ngk Insulators Ltd Primary treatment method of combined sewage
JP2008229466A (en) * 2007-03-20 2008-10-02 Metawater Co Ltd Biological treatment method for sewage including hairs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000585A (en) * 2010-06-18 2012-01-05 Kubota Corp Wastewater treatment facility, wastewater treatment method and method of reconstructing wastewater treatment facility
JP2016179437A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016179438A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016203086A (en) * 2015-04-21 2016-12-08 Jfeエンジニアリング株式会社 Carrier-charging type sewage treatment apparatus

Also Published As

Publication number Publication date
JP5468251B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5468251B2 (en) Supporting bioreactor
CN104703927B (en) Waste water outflow system and method
JP2004268005A (en) Waste water treating equipment
KR101402687B1 (en) Odor reduction apparatus and odor reduction method using air-apply and sob media
KR100904214B1 (en) Improved secondary sedimentation basins of biological sewage and waste water treatment plant.
JP2006007033A (en) Biological treatment tank for waste water and biologically treating method
KR100957695B1 (en) Sludge-reducing apparatus in sewage treatment plant
KR101080805B1 (en) Apparatus and method for combined sewer overflows treatment
KR101185763B1 (en) apparatus for treating rainwater
KR100861022B1 (en) Improved rectangular sedimentation basins
CN106237670A (en) A kind of efficiently up-flow anisotropic flow inclined-plate clarifying basin
KR101431649B1 (en) Apparatus for treating simultaneously wastewater and first flush and method thereof
KR100684964B1 (en) Partition wall of settling pond for wastewater treatment
KR100879788B1 (en) Apparatus for treatment of wastewater capable of removing pollutant produced by cso efficiently, method, and system thereof
KR100237606B1 (en) Biological treatment device of wastewater with perpendicular and single unit for denitrification, reaction and sedimentation
KR100427461B1 (en) Combined Sewer Treatment equipment by filtration and specific gravity
CN110818060A (en) Horizontal sedimentation tank with aeration deironing function
KR20160048500A (en) Perforated drain pipe for back-washing wastewater, and dissolved air flotation type water treatment apparatus
US11286185B1 (en) System and method of scum collection in wastewater treatment systems
CN219709262U (en) Vertical flow sedimentation tank for collecting and treating floating sludge
US6193888B1 (en) Primary and secondary clarifier&#39;s effluent launder dam
RU2144005C1 (en) Plant for water treatment
KR101180338B1 (en) a sewage disposal plant
JP2004188255A (en) Oxidation ditch
KR20190007819A (en) Simplicity wastewater disposal systems

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250