JPH0338298A - Fluidized-bed type waste water treatment apparatus - Google Patents
Fluidized-bed type waste water treatment apparatusInfo
- Publication number
- JPH0338298A JPH0338298A JP1169873A JP16987389A JPH0338298A JP H0338298 A JPH0338298 A JP H0338298A JP 1169873 A JP1169873 A JP 1169873A JP 16987389 A JP16987389 A JP 16987389A JP H0338298 A JPH0338298 A JP H0338298A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- screen
- specific gravity
- tank
- carriers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000005484 gravity Effects 0.000 claims abstract description 31
- 238000005273 aeration Methods 0.000 claims abstract description 16
- 239000004743 Polypropylene Substances 0.000 claims abstract description 12
- -1 polypropylene Polymers 0.000 claims abstract description 12
- 229920001155 polypropylene Polymers 0.000 claims abstract description 12
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000969 carrier Substances 0.000 abstract description 13
- 230000005587 bubbling Effects 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 238000005243 fluidization Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000035587 bioadhesion Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
[産業上の利用分野]
本発明は、流動床式廃水処理装置、特にそのリアクター
に関するものである。
[従来の技術〕
都市下水、産業廃水等の廃水処理方法として、活性汚泥
法、流動床法等が使用されているが、活性汚泥法は、一
般に処理設備が大型になり、また散気のために膨大なエ
ネルギーを必要とすることなどからコンパクト化、省エ
ネルギー化の面から難点がある。このため、最近はこの
ような欠点の少い流動床法が次第に用いられるようにな
ってきている。
第4図は従来の流動床法に用いられるドラフトチューブ
式リアクターの構成を示す概念図であり、図において、
1は外筒、2は外筒1内に同軸に配設された内筒、3は
このりアクタ−内に入れられた微生物付着用の粒子(以
下、担体と呼ぶ。)で、通常、砂、活性炭、プラスチッ
ク等から成るものである。4は外筒1の上部の拡大部に
おいて担体重力分離部5を形成する仕切板、6は原水供
給管、7は内筒2の下方外筒1の底部上に配設された散
気装置、8は散気装置7に酸素含有ガス(空気等)を供
給するためのコンプレッサまたはプロワ−9は処理水排
水管、10は気泡である。
上記のように構成されたドラフトチューブ式リアクター
においては、処理すべき廃水を原水供給管6よりリアク
ター内に供給し、次いで、散気装置7よりガスを吹き込
むと、内筒2の内側においては上昇流が生じ、内筒2の
外側においては下降流が生じる。担体3はこれらの流れ
に乗って流動するとともに、廃水処理に関与する微生物
が担体3の表面に付着、成長し、表面に生物膜が形成さ
れる。そして、廃水中の汚濁物質はこの微生物により分
解される。散気装置7により吹き込まれるガスは酸素含
有気体(空気等)であり、このガスの吹込みにより微生
物への酸素供給と、担体3の流動及び水の攪拌が行われ
る。リアクター内には気体、液体、固体が存在するため
三相流動床となる。処理水と担体3の一部は担体重力分
離部5に入り、担体3の沈降速度が水の上昇速度より大
となるように担体重力分離部5は設計されているので、
担体3は再びリアクターへと戻り、処理水は処理水配水
管9より取り出される。
[発明が解決しようとする課題]
しかしながら、この流動床式リアクターにおいても次の
ような問題が指摘されている。
■酸素溶解効率が低い。すなわち、担体が存在している
液中では散気装置から放出された気泡の合一が担体の存
在により促進され、微細気泡が粗大気泡に変るため、気
液接触面積が減少し、そのため酸素溶解効率が低下する
。また、気泡存在部は、液流束が上向きであるため、気
泡は短時間で水面に達してしまう。つまり、気液接触時
間が短い。
この、ため酸素溶解効率はさらに低下する。したがって
、同じ量の酸素を液側に移動させるための吹込みガス量
は、担体なしの時よりも増大し、ブロワ−コンプレッサ
等のガス吹込み装置の消費エネルギーは大となる(ラン
ニングコストの上昇)。
また、ブロワ−コンプレッサ等も大型の装置が必要とな
る(イニシャルコストの上昇)。
■流動性が悪い。砂、活性炭等の比重の大きい担体を使
用する場合、径の大きい粒子では、流動性が極端に低い
ため、通常0.05m+sφ〜0.3mmφ程度の小粒
子が使用されてきた。
流動性の一指標と言える単一粒子の沈降速度は、レイノ
ズル数が1〜500の範囲(流動床法で使用される担体
はほとんどこの範囲内である。)では次のアレン(AL
LEN)の式で示される。
DP
・・・ (1)
但し、
ρF=流体密度(g/as3)
μF=流体の粘度(g/3・see )DP:粒子径(
am )
g:重力加速度(am/see 2)
この式から、確かに径の小さい粒子を使用することが有
利であることはわかる。しかし、(1)式は生物膜が付
着すると、D 、ρ が変化し、 s
流動性が変化することを示している。
実プロセスでは、流量、濃度の時間変動が大きく、それ
に伴って生物膜厚が変化するため、担体の流動性の変化
は大きい。しかも生物膜厚をコントロールすることはき
わめて難しい。このため、吹込みガス量が不足の場合は
担体の沈積が生じ、反対に過剰の場合は担体のリアクタ
ー外への飛び出し等のトラブルが発生する。
したがって、従来の流動床式廃水処理装置では、小型化
、省エネルギー化を図るうえで依然として諸種の問題が
ある。
本発明は、上記の問題を解決するためになされたもので
、小型化、省エネルギー化を実現し得る流動床式廃水処
理装置を得ることを目的とする。
[課題を解決するための手段]
本発明に係る流動床式廃水処理装置は、原水を供給する
タンクの底部全体に散気装置を設け、このタンクに入れ
られる担体はポリプロピレン製で、かつ比重が1.00
〜1.02のものを使用し、タンクの処理水排出側に担
体分離用のスクリーンを設けたものである。
好ましくは、上記スクリーンの近傍に担体の付着による
スクリーンの目づまり防止のため、気泡発生装置を設け
る。
また、タンクの原水供給側には毛髪や繊維状のゴミ等の
繊維状夾雑物をあらかじめ除去するためのスクリーンを
設けるとよい。
[作 用]
本発明において、ポリプロピレン製の担体に限定したの
は、実験の結果、他のプラスチック製担体に比べて付着
汚泥量が多いことが主な理由である。
一般に担体に求められる性能には、以下のようなものが
ある。
■流動性が良い(比重1.00〜1.02)こと■生物
の付着性が良いこと
■安価であること
■寿命が長いこと
これらの条件を満足する担体としては、プラスチック系
のものが優れている。ただし、比重が1以上のものは、
比重を1.00〜1.02にコントロールすることは困
難であり、発泡処理をして比重1.00〜1.02にコ
ントロールできたとしても、長期使用により、担体内部
の気泡中に水が浸透し、比重が変化してしまうため好ま
しくない。このため、比重1以下のプラスチックにタル
ク、炭酸カルシウム、硫酸バリウム等の比重調製材を添
加したものが好ましい。そこで、比重1゜0以下のプラ
スチックに対して、実排水を用いた生物付着性確認実験
を行った結果(第1表参照)、ポリプロピレンが最適で
あるという結論に達した。
第1表
このようして得られたポリプロピレン製担体は水の比重
と同等か、またはそれよりも若干大きい程度のものであ
るため、流動性が良い。さらに、全面曝気方式であるた
め、気液接触時間が大であり、酸素溶解効率が向上する
。
上記担体はタンクの処理水排出側に設けられたスクリー
ンによって処理水と分離され、タンク外へ排出されるこ
とはない。さらに、気泡発生装置により発生した気泡に
より担体が該スクリーンに付着するのを防止する。
また、原水供給側のスクリーンにより原水中に含まれる
繊維状夾雑物をあらかじめ除去するので、これらの夾雑
物で担体分離用スクリーンが目づまりするのを防止する
。[Industrial Field of Application] The present invention relates to a fluidized bed wastewater treatment apparatus, and particularly to a reactor thereof. [Conventional technology] Activated sludge method, fluidized bed method, etc. are used as wastewater treatment methods for urban sewage, industrial wastewater, etc. However, activated sludge method generally requires large-sized treatment equipment and requires a large amount of water due to aeration. Since it requires a huge amount of energy, it is difficult to make it compact and save energy. For this reason, fluidized bed methods, which have fewer such drawbacks, have recently been increasingly used. FIG. 4 is a conceptual diagram showing the configuration of a draft tube type reactor used in the conventional fluidized bed method.
1 is an outer cylinder, 2 is an inner cylinder disposed coaxially within the outer cylinder 1, and 3 is a particle (hereinafter referred to as a carrier) for attaching microorganisms that is placed inside the actor. , activated carbon, plastic, etc. Reference numeral 4 denotes a partition plate forming the carrier weight separation section 5 in the enlarged upper part of the outer cylinder 1; 6, the raw water supply pipe; 7, an air diffuser disposed on the bottom of the outer cylinder 1 below the inner cylinder 2; 8 is a compressor or blower for supplying oxygen-containing gas (air, etc.) to the aeration device 7; 9 is a treated water drain pipe; and 10 is a bubble. In the draft tube type reactor configured as described above, when wastewater to be treated is supplied into the reactor from the raw water supply pipe 6 and then gas is blown from the aeration device 7, the inside of the inner cylinder 2 rises. A downward flow occurs outside the inner cylinder 2. As the carrier 3 flows along with these flows, microorganisms involved in wastewater treatment adhere to and grow on the surface of the carrier 3, forming a biofilm on the surface. The pollutants in the wastewater are then decomposed by these microorganisms. The gas blown by the aeration device 7 is an oxygen-containing gas (air, etc.), and the blowing of this gas supplies oxygen to the microorganisms, causes the carrier 3 to flow, and stirs the water. Since gas, liquid, and solid are present in the reactor, it becomes a three-phase fluidized bed. The treated water and part of the carrier 3 enter the carrier gravity separation unit 5, and the carrier gravity separation unit 5 is designed so that the sedimentation rate of the carrier 3 is greater than the rising rate of the water.
The carrier 3 returns to the reactor again, and the treated water is taken out from the treated water distribution pipe 9. [Problems to be Solved by the Invention] However, the following problems have been pointed out also in this fluidized bed reactor. ■Lower oxygen dissolution efficiency. In other words, in a liquid where a carrier exists, the coalescence of the bubbles emitted from the air diffuser is promoted by the presence of the carrier, and fine bubbles change into coarse bubbles, which reduces the gas-liquid contact area and reduces oxygen dissolution. Efficiency decreases. Moreover, since the liquid flux is upward in the bubble existing portion, the bubbles reach the water surface in a short time. In other words, the gas-liquid contact time is short. This further reduces the oxygen dissolution efficiency. Therefore, the amount of gas blown to transfer the same amount of oxygen to the liquid side is larger than when no carrier is used, and the energy consumption of gas blowing devices such as blowers and compressors becomes large (increasing running costs). ). Further, a large-sized device such as a blower compressor is required (initial cost increases). ■Poor liquidity. When using a carrier with a large specific gravity such as sand or activated carbon, small particles of about 0.05 m+sφ to 0.3 mmφ have been used, since large-diameter particles have extremely low fluidity. The sedimentation velocity of a single particle, which can be said to be an index of fluidity, is the following arene (AL) when the Raynozzle number is in the range of 1 to 500 (most carriers used in the fluidized bed method are within this range).
LEN). DP... (1) However, ρF=fluid density (g/as3) μF=fluid viscosity (g/3・see) DP: particle diameter (
am ) g: Gravitational acceleration (am/see 2) From this equation, it can be seen that it is certainly advantageous to use particles with a small diameter. However, equation (1) shows that when a biofilm attaches, D and ρ change, and the fluidity of s changes. In actual processes, the flow rate and concentration vary greatly over time, and the biofilm thickness changes accordingly, resulting in large changes in the fluidity of the carrier. Furthermore, it is extremely difficult to control biofilm thickness. For this reason, if the amount of blown gas is insufficient, the carriers will be deposited, whereas if it is excessive, troubles such as the carriers flying out of the reactor will occur. Therefore, the conventional fluidized bed wastewater treatment apparatus still has various problems in achieving miniaturization and energy saving. The present invention was made in order to solve the above problems, and an object of the present invention is to obtain a fluidized bed type wastewater treatment device that can realize downsizing and energy saving. [Means for Solving the Problems] The fluidized bed wastewater treatment device according to the present invention is provided with an aeration device throughout the bottom of a tank for supplying raw water, and the carrier placed in this tank is made of polypropylene and has a specific gravity of 1.00
~1.02 was used, and a screen for carrier separation was provided on the treated water discharge side of the tank. Preferably, a bubble generator is provided near the screen to prevent clogging of the screen due to adhesion of the carrier. Further, it is preferable to provide a screen on the raw water supply side of the tank to remove fibrous impurities such as hair and fibrous dirt in advance. [Function] In the present invention, the main reason for limiting the use to polypropylene carriers is that, as a result of experiments, the amount of adhered sludge is larger than that of other plastic carriers. Performances generally required of carriers include the following. ■ Good fluidity (specific gravity 1.00 to 1.02) ■ Good adhesion of living organisms ■ Inexpensive ■ Long life As a carrier that satisfies these conditions, plastic-based carriers are excellent. ing. However, for those with specific gravity of 1 or more,
It is difficult to control the specific gravity to 1.00 to 1.02, and even if it is possible to control the specific gravity to 1.00 to 1.02 by foaming, water will accumulate in the air bubbles inside the carrier after long-term use. This is not desirable because it will penetrate and change the specific gravity. For this reason, it is preferable to use a plastic having a specific gravity of 1 or less to which a specific gravity adjusting agent such as talc, calcium carbonate, or barium sulfate is added. Therefore, as a result of conducting an experiment to confirm the bioadhesion of plastics with a specific gravity of 1.0 or less using actual wastewater (see Table 1), we came to the conclusion that polypropylene is optimal. Table 1 The polypropylene carrier thus obtained has good fluidity because its specific gravity is equal to or slightly greater than that of water. Furthermore, since the entire surface is aerated, the gas-liquid contact time is long and the oxygen dissolution efficiency is improved. The carrier is separated from the treated water by a screen provided on the treated water discharge side of the tank, and is not discharged outside the tank. Furthermore, the carrier is prevented from adhering to the screen due to bubbles generated by the bubble generator. Furthermore, since fibrous impurities contained in the raw water are removed in advance by the screen on the raw water supply side, the carrier separation screen is prevented from being clogged with these impurities.
【実施例】
以下、本発明の一実施例を図により説明する。
第1図は本発明の実施例を示す概念図であり、第4図と
同一符号は同一または相当部分を示す。
この実施例においては、タンク11の底部全体に散気装
置7を設けて全面曝気方式を採用し、担体3にはポリプ
ロピレン製で、かつ比重が1.00〜1.02の範囲内
のものを使用する。また、処理水の排出側には担体分離
用のスクリーン12を設け、好ま七くはスクリーン12
に担体3が付着し目づまりを起こすのを避けるため、ス
クリーン12に近い下方に気泡発生装置13を設置する
とよい。
さらに、原水は供給管6より直接タンク11に供給して
もよいが、原水中に含まれる毛髪や繊維状のゴミ等の繊
維状夾雑物をあらかじめ取り除くためのスクリーン14
を介して供給するとよい。
担体分離用のスクリーン12がこれらの繊維状夾雑物で
目づまりを起こすとその清掃が大変であるので、原水供
給側で除去することにより目づまりを防止する。また、
原水供給側のスクリーン14の清掃はスクリーン12に
比べて目も粗いので比較的簡単にできる。
タンク11に入れられる担体3は上述のようにポリプロ
ピレン製で、かつ比重が1.OO〜1゜02のもので構
成する。例えば、第2図(a)〜(b)に示すような1
個以上の貫通孔を有する成形粒子である。成形粒子3a
はポリプロピレンの熱可塑性樹脂に、比重調製材として
タルク、炭酸カルシウム、硫酸バリウム等の無機質材料
を添加したものである。またその外径は3.0〜20−
1位1貫通孔3bの内径は1.0〜18mm位、長さと
外径の比は0.8〜1.2位が適当である。成形粒子3
aの形状は一般には円筒体であるが、球状、楕円体状、
四角柱状、多角柱状、三角錐状等自由に定め得る。また
、成形粒子3aは成形時の発泡処理により、表面を凹凸
にすることができる。
このような担体3の比重が1.00未満の場合は全面曝
気により担体が上層に集合して流動し難くなり、比重が
1.02を越えると流動化のために多量のガス吹込み量
が必要となり、コンプレッサまたはブロワ−8の消費エ
ネルギーが大となる。
スクリーン12はそのスクリーンでの流速が1m/hr
〜120m/hrで使用され、材質は十分な強度を有す
るとともに、耐食性にすぐれたもので生物の付着し難い
ものがよい。−膜内にはステンレスが用いられる。
この実施例は以上のように構成されており、散気装置7
による全面曝気により酸素溶解効率が向上する。その程
度は、第4図に示した従来のドラフトチューブ式リアク
ターに比べて約1.25倍であった。その理由は、ドラ
フトチューブ方式では、気泡存在部における水の流れは
上向きであり(この水の上向きの速度をV とする)、
また、気泡が水に対する気泡の浮上速度(vS)を有す
るため、気泡の上昇速度はv 十v となり、気S
酸接触時間が短くなるためである。これによって省エネ
ルギーの効果が得られる。
また、担体3の流動性が良いため、生物反応に必要な少
量のガスの吹き込みで安定した流動状態を達成できる。
第3図は種々の比重の円柱状(4mmφX4+n)の担
体を用いて行った担体の流動化実験の結果を示したもの
である。実験は、幅3m、奥行1m。
高さ5mの水槽を用いて行った。散気はディスク型のデ
イフユーザーを用いて全面曝気方式で行った。担体のみ
かけ充填率は44%であった。
第3図より、ごく僅かな比重の増大により、流動性が極
端に低下することがわかる。これは、前記(1)式で示
されるように、流動性が“担体と水との比重差”に強く
影響されるためである。
ここで、比重1.04の担体は、吹き込み空気3
3−
量(速度)を5. 3Nm −A1r/m リア
クター/hr程度とすれば、90%以上の担体が流動す
る。しかしながら、−膜内組成の下水を高負荷処理(リ
アクター内滞留時間2時間・・・標準活性汚泥法の3〜
4倍の負荷)で処理し、処理水に対する吹き込み空気量
の容積比(通気倍率)を7倍(標準活性汚泥法では3〜
7倍)としても、吹き込み空気量は、3.5Nm −
Alt/m3−リアクター/hrである。このため、比
重1.04の担体では、
(生物反応のために必要とされる吹き込み空気ff1)
く(流動化のために必要とされる吹き込み空気量)・・
・(2)
となり、担体流動化のために、余分なエネルギーが消費
されることになる。
これに対して、比重1.005.1.02の担3
3−
体はこの1. 3Nm −Air/m リアクタ
ー/hr程度の吹1き込み空気量で、90%以上の担体
が流動化しく2)式の不等号が逆転し、高いエネルギー
効率が得られる。
なお、微生物による有機物の分解速度は、一般に有機物
濃度が高いほど大であるため、リアクターの排水の流れ
をプラグフローに近づける(例えば、多段直列にリアク
ターを接続する)ことは、リアクターの小型化に効果が
あるが、この場合、出口近く(後段)での「生物反応の
ために必要とされる吹き込み空気量」は、かなり小さく
なる。
また、排水中のアンモニア態窒素を亜硝酸、硝酸態窒素
に硝化する場合も、低負荷処理となるため、「生物反応
のために必要とされる吹き込み空気量」は小となる。こ
れらの場合には、比重1.00〜1.02程度の担体を
使用することによる省エネルギー効果はさらに明確とな
る。
さらに、担体3はスクリーン12によって処理水と分離
されるので、担体3の損失量はほとんどない。また、担
体3のタンク11外への飛び出しもない。
この実施例と従来の活性汚泥法と比較した場合、100
m3/日の処理能力を得るのに従来例では25m3の容
量を必要とするに対してこの実施例では4m3の容量の
もので足り、約1/6に小型化できた。
[発明の効果]
以上のように本発明によれば、全面曝気式の採用と特定
の比重を持つポリプロピレン製担体を使用することによ
り小型、省エネルギーの流動床式廃水処理装置が得られ
る。また、該担体は処理水排出側に設けられたスクリー
ンによって分離され、損失を防ぐことができる。
また、該スクリーンに担体が付着しようとするのを気泡
発生装置の発生気泡により阻止しその目づまりを防止す
る。
原水中の繊維状夾雑物をあらかじめ除去するスクリーン
を設けることにより、担体分離用スクリーンの目づまり
はさらに防止されるなどの効果が得られる。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 4 indicate the same or corresponding parts. In this embodiment, an air diffuser 7 is installed at the entire bottom of the tank 11 to adopt a full-surface aeration system, and the carrier 3 is made of polypropylene and has a specific gravity within the range of 1.00 to 1.02. use. In addition, a screen 12 for carrier separation is provided on the discharge side of the treated water, preferably the screen 12
In order to prevent the carrier 3 from adhering to the screen and causing clogging, it is preferable to install the bubble generator 13 near and below the screen 12. Further, the raw water may be directly supplied to the tank 11 from the supply pipe 6, but a screen 14 is used to remove in advance fibrous impurities such as hair and fibrous dust contained in the raw water.
It is best to supply it via . If the carrier separation screen 12 becomes clogged with these fibrous contaminants, it will be difficult to clean them, so clogging is prevented by removing them on the raw water supply side. Also,
Cleaning of the screen 14 on the raw water supply side can be done relatively easily since the mesh is coarser than that of the screen 12. The carrier 3 placed in the tank 11 is made of polypropylene as described above and has a specific gravity of 1. Consists of OO~1°02. For example, 1 as shown in FIGS.
It is a shaped particle having more than one through hole. Molded particles 3a
is a polypropylene thermoplastic resin to which inorganic materials such as talc, calcium carbonate, and barium sulfate are added as specific gravity adjusting agents. Also, its outer diameter is 3.0 to 20-
The inner diameter of the first through hole 3b is suitably about 1.0 to 18 mm, and the ratio of length to outer diameter is suitably about 0.8 to 1.2. Molded particles 3
The shape of a is generally cylindrical, but it can also be spherical, ellipsoidal,
It can be freely defined as a quadrangular prism, a polygonal prism, a triangular pyramid, etc. Moreover, the surface of the molded particles 3a can be made uneven by foaming treatment during molding. If the specific gravity of the carrier 3 is less than 1.00, the carrier will aggregate in the upper layer due to full-scale aeration, making it difficult to fluidize; if the specific gravity exceeds 1.02, a large amount of gas will have to be blown for fluidization. This increases the energy consumption of the compressor or blower 8. The flow rate on the screen 12 is 1 m/hr.
It is used at ~120 m/hr, and the material should have sufficient strength, excellent corrosion resistance, and be resistant to the attachment of living things. - Stainless steel is used inside the membrane. This embodiment is configured as described above, and the air diffuser 7
Oxygen dissolution efficiency is improved by full-scale aeration. The degree was about 1.25 times that of the conventional draft tube type reactor shown in FIG. The reason for this is that in the draft tube method, the flow of water in the bubble-existing area is upward (the upward velocity of this water is V).
Further, since the bubble has a floating speed (vS) of the bubble relative to water, the rising speed of the bubble is v 10v , and the contact time of the gas S with the acid is shortened. This provides an energy saving effect. Further, since the carrier 3 has good fluidity, a stable fluid state can be achieved by blowing in a small amount of gas necessary for biological reaction. FIG. 3 shows the results of carrier fluidization experiments conducted using cylindrical (4 mmφX4+n) carriers of various specific gravity. The experiment was 3m wide and 1m deep. The experiment was conducted using a water tank with a height of 5 m. Aeration was performed using a full-surface aeration method using a disc-type diffuser. The apparent filling rate of the carrier was 44%. From FIG. 3, it can be seen that a very small increase in specific gravity causes an extreme decrease in fluidity. This is because the fluidity is strongly influenced by the "difference in specific gravity between the carrier and water" as shown in the above formula (1). Here, the carrier with a specific gravity of 1.04 is blown with 3
3- Amount (speed) 5. If it is about 3Nm-A1r/m reactor/hr, 90% or more of the carrier will flow. However, - high-load treatment of sewage with a membrane composition (retention time in the reactor of 2 hours... standard activated sludge method 3~
4 times the load), and the volume ratio of the amount of blown air (aeration ratio) to the treated water is increased to 7 times (in the standard activated sludge method, the
7 times), the amount of blown air is 3.5 Nm −
Alt/m3-reactor/hr. Therefore, for a carrier with a specific gravity of 1.04, (blow air ff1 required for biological reaction)
(amount of blown air required for fluidization)...
・(2) As a result, extra energy is consumed for carrier fluidization. On the other hand, carrier 3 with a specific gravity of 1.005.1.02
3- The body is like this 1. At a blowing air amount of about 3Nm-Air/m reactor/hr, more than 90% of the carrier becomes fluidized, and the inequality sign in equation 2) is reversed, resulting in high energy efficiency. In addition, the rate of decomposition of organic matter by microorganisms generally increases as the concentration of organic matter increases, so making the flow of wastewater from the reactor closer to a plug flow (for example, connecting multiple reactors in series) is an effective way to downsize the reactor. Although it is effective, in this case, the amount of blown air required for the biological reaction near the outlet (later stage) is considerably smaller. Furthermore, when ammonia nitrogen in wastewater is nitrified into nitrite and nitrate nitrogen, the load is low, so the amount of blown air required for biological reactions is small. In these cases, the energy saving effect of using a carrier with a specific gravity of about 1.00 to 1.02 becomes even clearer. Furthermore, since the carrier 3 is separated from the treated water by the screen 12, there is almost no loss of the carrier 3. Further, the carrier 3 does not jump out of the tank 11. When this example is compared with the conventional activated sludge method, 100
While the conventional example requires a capacity of 25 m3 to obtain a processing capacity of m3/day, this embodiment only requires a capacity of 4 m3, making it possible to reduce the size to about 1/6. [Effects of the Invention] As described above, according to the present invention, a compact and energy-saving fluidized bed wastewater treatment apparatus can be obtained by employing a full-surface aeration system and using a polypropylene carrier having a specific specific gravity. In addition, the carrier is separated by a screen provided on the treated water discharge side to prevent loss. Further, the air bubbles generated by the air bubble generator prevent the carrier from adhering to the screen, thereby preventing the screen from clogging. By providing a screen to remove fibrous impurities in the raw water in advance, effects such as further prevention of clogging of the carrier separation screen can be obtained.
第1図は本発明の一実施例を示す概念図、第2図(a)
〜(b)は第1図の装置に使用する担体の実施例を示す
斜視図、第3図は担体の比重ごとの流動化実験の結果を
示す図、第4図は従来のドラフトチューブ式リアクター
を示す概念図である。
3・・・担体
6・・・原水供給管
7・・・散気装置
8・・・コンプレッサまたはブロワ−
9・・・処理水排水管
11・・・タンク
12・・・担体分離用スクリーン
13・・・気泡発生装置Figure 1 is a conceptual diagram showing one embodiment of the present invention, Figure 2 (a)
~(b) is a perspective view showing an example of the carrier used in the apparatus shown in Figure 1, Figure 3 is a diagram showing the results of a fluidization experiment for each specific gravity of the carrier, and Figure 4 is a conventional draft tube reactor. FIG. 3... Carrier 6... Raw water supply pipe 7... Aeration device 8... Compressor or blower 9... Treated water drain pipe 11... Tank 12... Carrier separation screen 13.・Bubble generator
Claims (3)
に設けられた散気装置と、前記タンク内に入れられた比
重が1.00〜1.02であるポリプロピレン製の担体
と、前記タンクの処理水排出側に設けられた前記担体の
分離用スクリーンとを備えたことを特徴とする流動床式
廃水処理装置。(1) A tank to which raw water is supplied, an aeration device provided on the entire bottom of the tank, a carrier made of polypropylene having a specific gravity of 1.00 to 1.02 placed in the tank, and the A fluidized bed wastewater treatment device comprising: a screen for separating the carrier provided on the treated water discharge side of a tank.
を設けたことを特徴とする請求項1記載の流動床式廃水
処理装置。(2) The fluidized bed wastewater treatment apparatus according to claim 1, further comprising a bubble generator provided in the vicinity of the carrier separation screen.
を除去するスクリーンを設けたことを特徴とする請求項
1記載の流動床式廃水処理装置。(3) The fluidized bed wastewater treatment apparatus according to claim 1, further comprising a screen provided on the raw water supply side of the tank for removing fibrous impurities in the raw water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1169873A JPH0338298A (en) | 1989-07-03 | 1989-07-03 | Fluidized-bed type waste water treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1169873A JPH0338298A (en) | 1989-07-03 | 1989-07-03 | Fluidized-bed type waste water treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0338298A true JPH0338298A (en) | 1991-02-19 |
Family
ID=15894539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1169873A Pending JPH0338298A (en) | 1989-07-03 | 1989-07-03 | Fluidized-bed type waste water treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0338298A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047279A (en) * | 1989-01-26 | 1991-09-10 | Shin-Kobe Electric Machinery Company, Ltd. | Multilayer printed circuit board |
EP1033348A4 (en) * | 1998-03-06 | 2002-02-06 | Nippon Kokan Kk | Method and apparatus for treating waste water |
JP2010155184A (en) * | 2008-12-26 | 2010-07-15 | Nishihara Environment Technology Inc | Support feeding type biological reaction apparatus |
US9604166B2 (en) | 2011-09-30 | 2017-03-28 | Evoqua Water Technologies Llc | Manifold arrangement |
US9630147B2 (en) | 2010-09-24 | 2017-04-25 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
US9675938B2 (en) | 2005-04-29 | 2017-06-13 | Evoqua Water Technologies Llc | Chemical clean for membrane filter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248499A (en) * | 1987-04-01 | 1988-10-14 | Nkk Corp | Treatment of waste water |
-
1989
- 1989-07-03 JP JP1169873A patent/JPH0338298A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248499A (en) * | 1987-04-01 | 1988-10-14 | Nkk Corp | Treatment of waste water |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047279A (en) * | 1989-01-26 | 1991-09-10 | Shin-Kobe Electric Machinery Company, Ltd. | Multilayer printed circuit board |
EP1033348A4 (en) * | 1998-03-06 | 2002-02-06 | Nippon Kokan Kk | Method and apparatus for treating waste water |
US6497819B1 (en) | 1998-03-06 | 2002-12-24 | Nkk Corporation | Method and apparatus for treating waste water |
US9675938B2 (en) | 2005-04-29 | 2017-06-13 | Evoqua Water Technologies Llc | Chemical clean for membrane filter |
JP2010155184A (en) * | 2008-12-26 | 2010-07-15 | Nishihara Environment Technology Inc | Support feeding type biological reaction apparatus |
US9630147B2 (en) | 2010-09-24 | 2017-04-25 | Evoqua Water Technologies Llc | Fluid control manifold for membrane filtration system |
US9604166B2 (en) | 2011-09-30 | 2017-03-28 | Evoqua Water Technologies Llc | Manifold arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4256573A (en) | Process for biological treatment of waste water in downflow operation | |
JP3452143B2 (en) | Method and apparatus for biological purification of wastewater | |
JPH07100157B2 (en) | Biological purification method of wastewater, biological reactor and water purification equipment | |
JPH09164392A (en) | Granular carrier for dirty wastewater treatment using tire, manufacture thereof, and dirty wastewater treatment apparatus using said carrier | |
JPH0338298A (en) | Fluidized-bed type waste water treatment apparatus | |
US7419594B2 (en) | Apparatus and method for controlling biomass growth in suspended carrier bioreactor | |
US8226828B2 (en) | SAF system and method involving specific treatments at respective stages | |
JP4119997B2 (en) | Wastewater septic tank | |
JPH11267677A (en) | Waste water treating device and waste water treating method | |
JP3136900B2 (en) | Wastewater treatment method | |
JPS63248499A (en) | Treatment of waste water | |
JPH0338299A (en) | Fluidized-bed type waste water treatment apparatus | |
JPS60197295A (en) | "tater-bed" biological treatment apparatus | |
JP3735959B2 (en) | Biological treatment equipment | |
JPH10202280A (en) | Biological treatment of organic sewage using light weight activated carbon | |
JP2000246272A (en) | Method for removing nitrogen of sewage | |
CN219341913U (en) | Integrated sewage treatment equipment | |
JPS58297A (en) | Flowing bed type contact oxidation device | |
JPS586555Y2 (en) | Biological treatment equipment for wastewater | |
JPH08290187A (en) | Treatment of waste water and device therefor | |
JPH0646558Y2 (en) | Sewage treatment equipment | |
JPH02102792A (en) | Waste water treatment apparatus | |
JPS6321554B2 (en) | ||
JPH0630783B2 (en) | Sewage purification method and device | |
JPH10296282A (en) | Structure of biological reaction tank using carrier combinedly |