JPS6321554B2 - - Google Patents

Info

Publication number
JPS6321554B2
JPS6321554B2 JP3518682A JP3518682A JPS6321554B2 JP S6321554 B2 JPS6321554 B2 JP S6321554B2 JP 3518682 A JP3518682 A JP 3518682A JP 3518682 A JP3518682 A JP 3518682A JP S6321554 B2 JPS6321554 B2 JP S6321554B2
Authority
JP
Japan
Prior art keywords
wastewater
carrier particles
treated water
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3518682A
Other languages
Japanese (ja)
Other versions
JPS58153590A (en
Inventor
Chiaki Shimodaira
Yoshinori Yushina
Akinori Kurima
Shoichi Nojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP57035186A priority Critical patent/JPS58153590A/en
Publication of JPS58153590A publication Critical patent/JPS58153590A/en
Publication of JPS6321554B2 publication Critical patent/JPS6321554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排水の好気的微生物処理方法およびそ
の装置に関する。さらに詳しくは水に浮上性の担
体粒子に微生物を付着せしめて排水処理槽に充填
すると共に排水を下向流で導入して前記担体粒子
に付着した微生物と好気的条件下で接触させて処
理し、その際に該担体粒子の充填層の下部又は下
方より曝気して排水と向流的に接触させることに
よつて酸素の溶解効率を飛躍的に増大せしめて効
率的に排水を処理する方法およびその装置に関す
るものである。 微生物を利用する排水処理法は従来から活性汚
泥に代表される微生物単独の浮遊処理法や散水
床、浸漬式床、回転円板法に見られるような微
生物をプラスチツク板に付着させる固定微生物膜
処理法等が存在し、これらが何れも広く用いられ
ていることは周知のとおりである。 さらに、最近では水に浮上性の粒子を微生物の
担体として使用し、排水を下向流で通水して好気
的に処理する方法や装置が提案されている。この
場合、処理水の一部を揚水、循環して排水と共に
下向流を形成せしめて連続的に処理する方法や装
置が知られており、揚水手段としては処理槽内に
設けたドラフトチユーブなどの揚水部に散気機構
から通気してエアリフト効果によつて行なう方法
や処理槽外に設けたポンプを利用する方法が主た
るものである。たとえば前者の例として実開昭
53−69171号、特開昭54−85542号および特開
昭56−76295号がある。〜の技術の共通点は
酸素供給を行なう曝気部と浮上性担体粒子の存在
する好気的微生物反応部とが区分され、両者が連
通して曝気部で供給された酸素、すなわち溶存酸
素が微生物反応部へ移行し、下向流で反応するこ
とおよびそのために曝気部はエアリフト効果によ
り水を循環せしめる機能と酸素を溶解せしめる機
能の2つを持たしめることである。また、は処
理槽内の担体粒子充填層の下部より直接に、空気
等を吹き込んで対流状の循環流を生ぜしめている
ことが特色となつている。さらに後者の例として
特開昭54−142863号がある。 水に浮上性の担体粒子を使用する排水の好気的
微生物処理法は従来の活性汚泥法や生物接触酸化
法に比べ微生物の保持量を増大することができ、
反応速度を高くとれる利点がある。たとえば、活
性汚泥法などの従来技術ではBODの反応速度が
約1KgBOD/m3・日であるのに対して5〜10Kg
BOD/m3・日もしくはそれ以上の反応速度とす
ることができる。このような利点を十分に活かす
ためには反応に必要な酸素を十分に供給すること
ができなければならない。 しかしながら、前述した如く従来のエアリフト
型エアレーシヨン方式等によつて溶存酸素を増大
させて微生物反応部へ移送する方法では、飽和溶
存酸素濃度が一定であるため、多量の酸素を必要
とする場合には循環水量を増加させなければなら
ない。しかし、たとえば水深3mの位置よりガス
吹き込みを行なつた場合のエアリフト型エアレー
シヨン方式の酸素溶解効率は4〜12%程度であ
り、循環水量を増加させるために多量の空気等を
吹き込むと酸素の溶解効率はむしろ低下する。 本発明は、このような問題点を解消した排水の
好気的微生物処理方法およびその装置を提供する
ことを目的としている。 本発明は第一に、微生物を付着した見掛け比重
が1.0以下で且つ水に浮上する担体粒子(以下、
単に担体粒子と云うことがある。)の充填層に排
水を排水デイストリビユーターを経て下向流で導
入し、該層を通過する際に好気的条件下で微生物
と接触することによつて排水を処理し、得られる
処理水の一部を揚水して循環し排水と共に下向流
を形成せしめて連続的に排水を処理し、処理水を
回収することよりなる排水の好気的微生物処理方
法において、前記担体粒子の充填層の下部又は下
方より空気、純酸素ガスまたは酸素含有ガスを該
充填層の単位断面積当り1〜50Nm3/m2・hrの割
合で吹き込んで排水と向流的に接触させ、かつ前
記排水デイストリビユーターの下方に溜つてくる
気泡を気泡抜き口より抜くとともに、前記担体粒
子の充填層より流出する担体粒子を担体粒子戻り
口より返送するようにしたことを特徴とする排水
の好気的微生物処理方法である。 本発明の第二は処理槽の最上部に排水の導入
口、上部に多孔板型排水デイストリビユーター、
中間部に微生物を付着した見掛け比重が1.0以下
で且つ水に浮上する担体粒子の充填部、底部に処
理水の抜出し口を備え、かつ処理水の一部を揚水
する手段を備えた排水の処理槽において、前記担
体粒子の充填部の下部又は下方全面に空気、純酸
素ガスまたは酸素含有ガスの曝気手段を設け、か
つ前記デイストリビユーターに気泡抜き口と前記
担体粒子戻り口を設けたことを特徴とする排水の
好気的微生物処理装置である。本発明で言う充填
層の下部とは充填層内の下方部分を意味し、通常
は充填層の下端より約30%程度以内の位置を言
う。また、充填層の下方とは充填層外の下方部分
を意味し、通常は充填層の下端より約1m以内を
言う。 微生物を付着した担体粒子の充填層に直接曝気
することは、微生物の剥離を促進し反応速度の低
下が避けられず、しかも該担体粒子の存在する微
生物反応部へ曝気を行なうことは気泡の合体、合
一を促進し曝気効果が低減すると考えられていた
が、本発明者らは実験を重ねて検討した結果、こ
のような予想された現象は生起せず、むしろ本発
明による効果は顕著であることを確認したのであ
る。すなわち、本発明は浮上性の担体粒子に微生
物を付着させ、該担体粒子の充填層に排水を下向
流で導入して処理することを基本とし、この際に
該充填層の下部又は下方全面より曝気を行ない、
下向流の排水と向流的に接触せしめると、浮上す
る気泡が下向流によつて上昇を抑えられ、滞溜時
間が長くなり、接触時間が長くなるため、効率的
な酸素の溶解が可能となるのである。また、気泡
は担体粒子(微生物)表面に付着して止まること
が観察され、その結果気泡の合体、合一が促進さ
れることなく効率よく酸素の溶解が行なわれるの
である。この場合、溶存酸素は微生物によつて旺
盛に消費されるため、溶存酸素濃度は飽和に達す
ることがなく、常に高い酸素溶解率を維持するこ
とができるのである。 一方、微生物の剥離に関しては、担体粒子とし
て合成樹脂を素材として表面に微生物が付着しや
すい細かな凹凸があるものを使用することおよび
本発明では酸素溶解効率が非常に高いため、担体
粒子充填層の下部又は下方より供給する通気量は
少量でよいことの理由によつて全くトラブルが生
じない。 本発明の方法を実施する場合、微生物付着担体
粒子の充填層単位断面積当りの下向流流速を1〜
720m/hr、好ましくは1〜150m/hrとし、該充
填層単位断面積当りの吹き込みガス量を1〜50N
m3/m2・hr、好ましくは1〜30Nm3/m2・hrとす
ることにより酸素の溶解効率を高い値に維持し、
高い反応速度で排水の処理を行なうことができ
る。以上の数値範囲は向流接触のフローパターン
を破壊せず、酸素溶解を向上させる上に必要であ
り、また担体粒子表面に付着した微生物の顕著な
剥離を生じさせない曝気条件である。しかも空気
等の吹き込み量ならびに消費電力等を節減するこ
とができる。なお、排水を下向流で導入すること
により前記担体粒子の充填層は所定の下向流速以
上では膨張し、流動層を形成するが、このときの
膨張率は1.0〜2.5となるように調節することが望
ましい。 本発明において使用する担体粒子は、見掛け比
重が1.0以下の粒子であつて水中に存在するとき
水を吸収して沈降しないものが適している。一般
的には発泡合成樹脂に無機物質を添加して造粒し
たもの、発泡合成樹脂粒子の表面に無機物質およ
び有機物質の中から選ばれた1種または2種以上
の物質を付着させたもの等があげられる。この場
合に用いられる合成樹脂としてはポリエチレン、
ポリプロピレン、ポリスチレン、ポリ塩化ビニル
などがあり、粒子の形状は球形、角柱形、円柱形
など任意である。また、無機物質としては砂、天
然の砕石、活性炭、パーライト、シラスバルー
ン、石こう、アルミナ、ゼオライト、セラミツク
ス等があり、有機物質としてはアンスラサイト、
石炭、コークス、ピツチ、廃イオン交換樹脂、ゴ
ム等がある。この担体粒子の表面には微細な凹凸
が多数形成されるため、微生物は付着しやすく、
かつ剥離し難いという特色がある。 次に、本発明の装置の実施例について図面によ
り説明する。第1図は本発明の基本原理を示して
いる。すなわち、排水aは排水導入管5より処理
槽1の上部に設けてある排水デイストリビユータ
ー3を経て担体粒子充填層2を下向流にて流下
し、処理槽1の底部に設けてある処理水抜出し管
6より処理水bとして回収される。この際、担体
粒子充填層2において微生物と接触することによ
り浄化される。この浄化の際に好気性微生物処理
に必要とされる酸素は、処理槽1の底部に設けて
ある曝気手段4よりガス(空気、純酸素ガスある
いは酸素含有ガス)cを吹き込むことによつて供
給される。曝気手段4としてはデイフユーザーな
どが用いられる。なお、図中7はガス吹き込み管
である。 第2図a,bおよび第3図は処理水の一部を揚
水する手段としてドラフトチユーブ8等の揚水部
と散気機構9を備えている場合を示しており、第
2図a,bは多孔板型排水デイストリビユーター
3を排水分散用のみに使用する例であり、第3図
は担体粒子の浮上防止と排水分散とを兼ねている
例である。この排水デイストリビユーター3の下
方に気泡が溜つてくるため、気泡抜き口10が設
けてあり、さらに担体粒子がドラフトチユーブ等
や該気泡抜き口より排水デイストリビユーターの
上部に流出してくるため、該担体粒子を担体粒子
充填層に戻すための担体粒子戻り口11が設けて
ある。気泡抜き口10は排水デイストリビユータ
ー上部の水面より上方の位置に上部開口を有して
おり、担体粒子戻り口11の上部開口は水面と同
じかやや下方に位置せしめる。また、担体粒子戻
り口の下部開口部は排水デイストリビユーターよ
りも下方に位置しており、該開口部の下側には下
方より上昇してくる気泡の流入を防止するための
バツフル板を設けておくことが望ましい。 第4図a,bおよび第5図は処理水の一部を揚
水する手段としてポンプ12を用いる場合を示し
ており、第4図a,bは多孔板型排水デイストリ
ビユーター3が浮上している型式であり、第5図
は該排水デイストリビユーターが浸漬している型
式である。図中13および14は配管である。な
おドラフトチユーブ8は一部の担体粒子循環のた
めに設けてある。 本発明では、上記した如き手段によつて揚水さ
れた処理水の一部は排水デイストリビユーター3
より排水と共に下向流として処理槽1に導入さ
れ、担体粒子充填層2の下部又は下方全面より供
給される空気等と向流的に接触する。本発明にお
いて該担体粒子充填層2の下部又は下方全面より
供給するガスとして純酸素ガスや酸素含有ガスを
使用する場合、これらガスを有効に利用するため
に処理槽を密閉構造として該処理槽上部に設けた
ガス循環口よりガスを配管を経てブロワー等によ
り吸引して再び処理槽内へ流入させることができ
る。 第6図aとbは多孔板型排水デイストリビユー
ター3の実施例の平面図である。図中15は孔で
ある。また、第7図は曝気手段たるデイフユーザ
ーの配置例を示す平面図である。第8図および第
9図は担体粒子戻り口についての詳細説明図であ
る。図から明らかなように、担体粒子戻り口の上
部開口は水面17と同じかあるいはやや下方に位
置している。図中16は担体粒子、18はバツフ
ル板である。 次に、本発明を実験例および実施例によつて詳
しく説明する。 実験例 (水道水を使用した向流式曝気テスト) 処理槽としてポリ塩化ビニル製の直径100mm×
高さ5000mmの装置を用い、曝気手段として散気板
(ダイセル化学工業(株)製BP―23)を使用した。ま
た、処理槽内のガス吹き込み位置は水面下1.6m
または3.2mとし、ガスとして空気を使用した。
担体粒子として巾3.0mm×高さ2.5mm×長さ3.0mmで
比重0.56の無機材(タルク)含有発泡ポリプロピ
レン粒子を使用して処理槽に充填した。実験結果
を第1表に示す。
The present invention relates to a method for aerobic microbial treatment of wastewater and an apparatus therefor. More specifically, microorganisms are attached to carrier particles that float on water and filled into a wastewater treatment tank, and the wastewater is introduced in a downward flow and brought into contact with the microorganisms attached to the carrier particles under aerobic conditions. A method of efficiently treating wastewater by dramatically increasing oxygen dissolution efficiency by aerating from the bottom or below the packed bed of carrier particles and bringing them into contact with the wastewater in a countercurrent manner. and its equipment. Wastewater treatment methods that utilize microorganisms have traditionally included floating treatment methods using individual microorganisms, as typified by activated sludge, and fixed microbial membrane treatment, in which microorganisms are attached to plastic plates, as seen in sprinkler beds, submerged beds, and rotating disk methods. It is well known that there are laws and regulations, and they are all widely used. Furthermore, recently, methods and devices have been proposed in which particles that float on water are used as carriers for microorganisms, and wastewater is treated aerobically by passing the water through it in a downward direction. In this case, methods and devices are known in which a portion of the treated water is pumped up and circulated to form a downward flow together with the wastewater for continuous treatment.The pumping means includes a draft tube installed in the treatment tank, etc. The main methods are to use an air lift effect by ventilating the pumping part of the water from an aeration mechanism, and to use a pump installed outside the treatment tank. For example, as an example of the former,
53-69171, JP-A-54-85542, and JP-A-56-76295. The common feature of the technologies in ~ is that the aeration section that supplies oxygen and the aerobic microbial reaction section where floating carrier particles are present are separated, and the two communicate with each other so that the oxygen supplied in the aeration section, that is, the dissolved oxygen, is absorbed by microorganisms. It moves to the reaction section and reacts in a downward flow, and for this purpose the aeration section has two functions: one to circulate water through an air lift effect, and the other to dissolve oxygen. Another feature of the process is that air or the like is blown directly from the bottom of the carrier particle packed bed in the processing tank to generate a convection-like circulating flow. Further, as an example of the latter, there is JP-A-54-142863. Aerobic microbial treatment of wastewater using carrier particles that float on water can increase the amount of microorganisms retained compared to conventional activated sludge methods and biological catalytic oxidation methods.
It has the advantage of high reaction rate. For example, in conventional technologies such as the activated sludge method, the BOD reaction rate is approximately 1KgBOD/ m3・day, whereas
Reaction rates of BOD/m 3 ·day or more can be achieved. In order to take full advantage of these advantages, it is necessary to be able to supply a sufficient amount of oxygen necessary for the reaction. However, as mentioned above, in the conventional method of increasing dissolved oxygen and transferring it to the microbial reaction zone using the air lift type aeration method, the saturated dissolved oxygen concentration is constant, so when a large amount of oxygen is required, The amount of circulating water must be increased. However, the oxygen dissolution efficiency of the airlift aeration method when gas is blown from a depth of 3 m is about 4 to 12%, and if a large amount of air is blown in to increase the amount of circulating water, the oxygen will dissolve. Efficiency will actually decrease. An object of the present invention is to provide a method for aerobic microbial treatment of wastewater and an apparatus therefor, which eliminates such problems. The present invention firstly provides carrier particles (hereinafter referred to as
Sometimes they are simply called carrier particles. ), wastewater is introduced in a downward flow through a wastewater distributor into a packed bed, and the wastewater is treated by contacting with microorganisms under aerobic conditions as it passes through the bed. In an aerobic microbial treatment method for wastewater, which comprises pumping and circulating a portion of the water to form a downward flow together with the wastewater to continuously treat the wastewater and recovering the treated water, the filling of the carrier particles Air, pure oxygen gas, or oxygen-containing gas is blown from the bottom or below the bed at a rate of 1 to 50 Nm 3 /m 2 ·hr per unit cross-sectional area of the packed bed to bring it into countercurrent contact with the waste water, and the said waste water An aerobic system for wastewater, characterized in that air bubbles accumulated below the distributor are removed through an air vent port, and carrier particles flowing out from the packed bed of carrier particles are returned through a carrier particle return port. This is a microbial treatment method. The second aspect of the present invention is a wastewater inlet at the top of the treatment tank, a perforated plate type wastewater distributor at the top,
A treatment for wastewater that is equipped with a middle part filled with carrier particles with apparent specific gravity of 1.0 or less that have microorganisms attached to them and float on water, a treated water outlet in the bottom part, and a means for pumping up a part of the treated water. In the tank, an aeration means for air, pure oxygen gas, or oxygen-containing gas is provided at the bottom or the entire lower surface of the part filled with the carrier particles, and the distributor is provided with an air vent port and the carrier particle return port. This is an aerobic microbial treatment device for wastewater that is characterized by: The lower part of the packed bed in the present invention means the lower part within the packed bed, and usually refers to a position within about 30% of the bottom end of the packed bed. Further, the term "below the packed bed" means the lower part outside the packed bed, and usually means within about 1 m from the lower end of the packed bed. Direct aeration to a packed bed of carrier particles to which microorganisms are attached promotes the detachment of microorganisms and inevitably reduces the reaction rate, and furthermore, aeration to the microbial reaction area where the carrier particles are present may cause coalescence of air bubbles. It was thought that this would promote coalescence and reduce the aeration effect, but as a result of repeated experiments, the inventors found that this expected phenomenon did not occur, and rather the effect of the present invention was remarkable. I have confirmed that there is. That is, the present invention is based on the process of attaching microorganisms to floating carrier particles and introducing wastewater into a bed filled with carrier particles in a downward flow for treatment. Perform more aeration,
When brought into contact with the downward flowing wastewater in a countercurrent manner, the floating bubbles are suppressed from rising by the downward flow, prolonging the residence time and contact time, resulting in efficient oxygen dissolution. It becomes possible. Furthermore, it has been observed that the air bubbles adhere to the surface of the carrier particles (microorganisms) and stop there, and as a result, oxygen is efficiently dissolved without promoting coalescence or aggregation of the air bubbles. In this case, since dissolved oxygen is actively consumed by microorganisms, the dissolved oxygen concentration never reaches saturation, and a high oxygen dissolution rate can always be maintained. On the other hand, regarding the removal of microorganisms, it is necessary to use carrier particles made of synthetic resin with fine irregularities on the surface to which microorganisms can easily adhere, and because the present invention has a very high oxygen dissolution efficiency, it is necessary to use a carrier particle packed layer. Since only a small amount of air is supplied from the lower part or below, no trouble occurs. When carrying out the method of the present invention, the downward flow rate per unit cross-sectional area of the packed bed of microorganism-adhered carrier particles is 1 to 1.
720 m/hr, preferably 1 to 150 m/hr, and the amount of blown gas per unit cross-sectional area of the packed bed to 1 to 50 N.
m 3 /m 2 ·hr, preferably 1 to 30Nm 3 /m 2 ·hr, to maintain oxygen dissolution efficiency at a high value,
Wastewater can be treated at a high reaction rate. The above numerical range is necessary for improving oxygen dissolution without destroying the flow pattern of countercurrent contact, and is an aeration condition that does not cause significant detachment of microorganisms attached to the surface of carrier particles. Moreover, the amount of air, etc. blown, power consumption, etc. can be reduced. By introducing the wastewater in a downward flow, the packed bed of carrier particles expands at a predetermined downward flow velocity or higher to form a fluidized bed, but the expansion coefficient at this time is adjusted to be 1.0 to 2.5. It is desirable to do so. The carrier particles used in the present invention are suitably particles with an apparent specific gravity of 1.0 or less and which do not absorb water and settle when present in water. In general, foamed synthetic resin is granulated by adding an inorganic substance, or foamed synthetic resin particles have one or more substances selected from inorganic and organic substances adhered to the surface. etc. can be mentioned. The synthetic resins used in this case include polyethylene,
Examples include polypropylene, polystyrene, and polyvinyl chloride, and the particles can have any shape such as spherical, prismatic, or cylindrical. Inorganic substances include sand, natural crushed stone, activated carbon, perlite, shirasu balloons, gypsum, alumina, zeolite, ceramics, etc., and organic substances include anthracite,
Coal, coke, pitch, waste ion exchange resin, rubber, etc. Since many fine irregularities are formed on the surface of these carrier particles, microorganisms can easily adhere to them.
It also has the characteristic of being difficult to peel off. Next, embodiments of the apparatus of the present invention will be described with reference to the drawings. FIG. 1 shows the basic principle of the invention. That is, the wastewater a flows downward through the carrier particle packed bed 2 from the wastewater introduction pipe 5 through the wastewater distributor 3 provided at the top of the treatment tank 1, and flows downward through the carrier particle packed bed 2 provided at the bottom of the treatment tank 1. The treated water is recovered from the treated water extraction pipe 6 as treated water b. At this time, the particles are purified by coming into contact with microorganisms in the carrier particle packed bed 2. Oxygen required for aerobic microbial treatment during this purification is supplied by blowing gas (air, pure oxygen gas or oxygen-containing gas) c from the aeration means 4 provided at the bottom of the treatment tank 1. be done. As the aeration means 4, a defuser or the like is used. In addition, 7 in the figure is a gas blowing pipe. Figures 2a, b and 3 show a case where a pumping section such as a draft tube 8 and an aeration mechanism 9 are provided as a means for pumping a part of the treated water; This is an example in which the perforated plate type wastewater distributor 3 is used only for dispersing wastewater, and FIG. 3 shows an example in which it is used both to prevent floating of carrier particles and to disperse wastewater. Since air bubbles accumulate below this drainage distributor 3, an air bubble vent 10 is provided, and the carrier particles flow out from the draft tube or the like and the air bubble vent to the upper part of the drainage distributor. A carrier particle return port 11 is provided for returning the carrier particles to the carrier particle packed bed. The air bubble removal port 10 has an upper opening located above the water surface in the upper part of the drainage distributor, and the upper opening of the carrier particle return port 11 is located at the same level as or slightly below the water surface. In addition, the lower opening of the carrier particle return port is located below the drainage distributor, and a buttful plate is installed below the opening to prevent air bubbles rising from below from flowing in. It is desirable to have one. 4a, b and 5 show the case where the pump 12 is used as a means for pumping a part of the treated water, and FIGS. 4a, b show that the perforated plate type drainage distributor 3 is floating. Figure 5 shows a type in which the drainage distributor is immersed. In the figure, 13 and 14 are piping. Note that the draft tube 8 is provided for circulating some of the carrier particles. In the present invention, a portion of the treated water pumped by the above-described means is transferred to the waste water distributor 3.
It is introduced into the treatment tank 1 as a downward flow along with the waste water, and comes into contact with air etc. supplied from the lower part or the entire lower surface of the carrier particle packed bed 2 in a countercurrent manner. In the present invention, when pure oxygen gas or oxygen-containing gas is used as the gas supplied from the lower part or the entire lower surface of the carrier particle packed bed 2, the processing tank is designed to have a closed structure in order to effectively utilize these gases. From the gas circulation port provided in the tank, gas can be sucked through piping by a blower or the like and flowed into the processing tank again. 6a and 6b are plan views of an embodiment of the perforated plate type drainage distributor 3. FIG. In the figure, 15 is a hole. Further, FIG. 7 is a plan view showing an example of the arrangement of a differential user, which is an aeration means. FIGS. 8 and 9 are detailed explanatory diagrams of the carrier particle return port. As is clear from the figure, the upper opening of the carrier particle return port is located at or slightly below the water level 17. In the figure, 16 is a carrier particle, and 18 is a baffle plate. Next, the present invention will be explained in detail using experimental examples and examples. Experimental example (countercurrent aeration test using tap water) A polyvinyl chloride diameter 100 mm x treatment tank
An apparatus with a height of 5000 mm was used, and a diffuser plate (BP-23 manufactured by Daicel Chemical Industries, Ltd.) was used as an aeration means. Additionally, the gas injection position inside the treatment tank is 1.6m below the water surface.
or 3.2m, and air was used as the gas.
Inorganic material (talc)-containing foamed polypropylene particles having a width of 3.0 mm, a height of 2.5 mm, and a length of 3.0 mm and a specific gravity of 0.56 were used as carrier particles and filled into a treatment tank. The experimental results are shown in Table 1.

【表】【table】

【表】 実施例および比較例 処理槽として第1図に示した基本型式でポリ塩
化ビニル製の直径500mm×高さ5000mmの装置(有
効容積785)を用い、ドラフトチユーブ(直径
100cm×長さ4000cm)を設置した。曝気手段は実
験例と同じものを用いた。また、担体粒子してタ
ルク含有発泡ポリプロピレン粒子(直径3.5mm×
長さ4.0mm)を使用し、排水として有機性人工排
水(BOD73〜210mg/、基質:グルコース、ク
エン酸ソーダ、魚肉エキスの混合物)を使用し
た。処理条件と結果を第2表に示す。一方、比較
として従来のエアリフト型装置を用いたときの結
果を第3表に示す。装置の寸法や処理条件は同一
とした。
[Table] Examples and Comparative Examples A polyvinyl chloride device (effective volume: 785 mm) with a diameter of 500 mm and a height of 5000 mm as shown in Figure 1 was used as the treatment tank, and a draft tube (diameter
100cm x length 4000cm) was installed. The aeration means used were the same as in the experimental example. In addition, talc-containing foamed polypropylene particles (diameter 3.5 mm x
4.0 mm in length), and organic artificial waste water (BOD 73-210 mg/substrate: mixture of glucose, sodium citrate, and fish meat extract) was used as waste water. The treatment conditions and results are shown in Table 2. On the other hand, Table 3 shows the results when a conventional air lift type device was used for comparison. The dimensions of the equipment and processing conditions were the same.

【表】 *2 ブロワーにて空気を流入させた場合と
して算出
[Table] *2 Calculated assuming air is introduced using a blower.

【表】 *1 全空気量と同じ
表から明らかなように、本発明では曝気用空気
の酸素溶解効率は従来法に比べ極めて高い値を示
しているので、BOD負荷が低高いずれの場合も
安定した高いBOD除去率を示している。なお充
填層の下部に吹き込んだ場合も同様の結果を確認
できた。一方、比較例の場合は溶存酸素が律速と
なりBOD負荷が高負荷となるとBOD除去率は極
端に低下している。 本発明において担体粒子充填層の下部又は下方
に設置する曝気手段は該充填層の全面に散気する
ように適当な間隔で設置することが望ましい。こ
れにより吹き込みガスと液との向流接触が有効に
行なわれ酸素溶解効率が大きくなり、その結果ガ
スの吹き込み量を低減でき、それに伴なつて消費
動力を節減することができる。本発明者らの試算
では消費電力が標準活性汚泥法の場合約1/2〜1/5
となる。さらに、本発明では担体粒子充填層単位
容積当りの担体表面積が従来の固定微生物膜法の
装置よりも10〜20倍大きいため、単位容積当りの
保持微生物量が大きくなり、反応速度は標準活性
汚泥法に比べ5倍以上も大きくなる。それ故、処
理槽の小型化が可能で建設用地も縮少できる。ま
た、本発明では酸素溶解量はガス吹き込み量にほ
ぼ比例するので負荷変動に対処することが非常に
容易である。しかも、負荷変動に対しても下向流
の流速を変動させる必要がないため、担体粒子充
填層の微生物保持量を常に一定に保つことができ
る。さらに、本発明によれば担体粒子充填層の下
部又は下方より吹き込まれるガスは気泡として該
充填層を液と向流接触により上昇して行くため、
酸素溶解を生ぜしめる推進力が該充填層全域にわ
たり常に大きい。しかも、微生物反応に必要な酸
素量に応じてガス吹き込み量を調節することがで
き、その場合でも酸素溶解効率はほぼ一定となる
ので負荷に応じて適量のガスを吹き込めばよく省
エネルギーを図ることができる。
[Table] *1 Same as total air volume As is clear from the table, in the present invention, the oxygen dissolution efficiency of the aeration air is extremely high compared to the conventional method, so regardless of whether the BOD load is low or high, It shows a stable and high BOD removal rate. Similar results were confirmed when the gas was blown into the lower part of the packed bed. On the other hand, in the case of the comparative example, dissolved oxygen is rate-determining, and when the BOD load becomes high, the BOD removal rate decreases extremely. In the present invention, it is desirable that the aeration means installed at or below the carrier particle packed bed be installed at appropriate intervals so as to diffuse air over the entire surface of the packed bed. As a result, countercurrent contact between the blown gas and the liquid is effectively carried out, increasing oxygen dissolution efficiency, and as a result, the amount of gas blown can be reduced, and power consumption can be reduced accordingly. According to the inventors' calculations, the power consumption is approximately 1/2 to 1/5 in the case of the standard activated sludge method.
becomes. Furthermore, in the present invention, the surface area of the carrier per unit volume of the carrier particle packed bed is 10 to 20 times larger than that of the conventional fixed microbial membrane method equipment, so the amount of microorganisms retained per unit volume is increased, and the reaction rate is lower than that of standard activated sludge. It is more than five times larger than the law. Therefore, it is possible to downsize the treatment tank and reduce the amount of construction land. Further, in the present invention, since the amount of oxygen dissolved is approximately proportional to the amount of gas blown, it is very easy to deal with load fluctuations. Moreover, since there is no need to vary the flow velocity of the downward flow even with load variations, the amount of microorganisms retained in the carrier particle packed bed can always be kept constant. Furthermore, according to the present invention, the gas blown from the lower part or below of the carrier particle packed bed rises in the form of bubbles through the packed bed by countercurrent contact with the liquid.
The driving force causing oxygen dissolution is always large throughout the packed bed. Moreover, the amount of gas blown can be adjusted according to the amount of oxygen required for microbial reactions, and even in that case, the oxygen dissolution efficiency remains almost constant, so energy savings can be achieved by blowing the appropriate amount of gas depending on the load. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の基本原理の説明図、第
2図〜第5図は本発明の装置の実施例の説明図、
第6図a,bは排水デイストリビユーターの1態
様の平面図、第7図は曝気手段の1態様の平面図
である。第8図および第9図は担体粒子戻り口の
詳細説明図である。 a…排水、b…処理水、c…ガス、1…処理
槽、2…担体粒子充填層、3…排水デイストリビ
ユーター、4…曝気手段、5…排水導入管、6…
処理水抜出し管、7…ガス吹き込み管、8…ドラ
フトチユーブ、10…気泡抜き口、11…担体粒
子戻り口、12…ポンプ。
FIG. 1 is an explanatory diagram of the basic principle of the apparatus of the present invention, FIGS. 2 to 5 are explanatory diagrams of embodiments of the apparatus of the present invention,
6a and 6b are plan views of one embodiment of the drainage distributor, and FIG. 7 is a plan view of one embodiment of the aeration means. FIGS. 8 and 9 are detailed explanatory diagrams of the carrier particle return port. a... Waste water, b... Treated water, c... Gas, 1... Treatment tank, 2... Carrier particle packed bed, 3... Waste water distributor, 4... Aeration means, 5... Waste water introduction pipe, 6...
Treated water extraction pipe, 7... Gas blowing pipe, 8... Draft tube, 10... Air bubble removal port, 11... Carrier particle return port, 12... Pump.

Claims (1)

【特許請求の範囲】 1 微生物を付着した見掛け比重が1.0以下で且
つ水に浮上する担体粒子の充填層に排水を排水デ
イストリビユーターを経て下向流で導入し、該層
を通過する際に好気的条件下で微生物と接触する
ことによつて排水を処理し、得られる処理水の一
部を揚水して循環し排水と共に下向流を形成せし
めて連続的に排水を処理し、処理水を回収するこ
とよりなる排水の好気的微生物処理方法におい
て、前記担体粒子の充填層の下部又は下方より空
気、純酸素ガスまたは酸素含有ガスを該充填層の
単位断面積当り1〜50Nm3/m2・hrの割合で吹き
込んで排水と向流的に接触させ、かつ前記排水デ
イストリビユーターの下方に溜つてくる気泡を気
泡抜き口より抜くとともに、前記担体粒子の充填
層より流出する担体粒子を担体粒子戻り口より返
送するようにしたことを特徴とする排水の好気的
微生物処理方法。 2 処理水の一部をエアリフトによつて揚水する
特許請求の範囲第1項記載の方法。 3 処理水の一部をポンプを用いて揚水する特許
請求の範囲第1項記載の方法。 4 処理槽の最上部に排水の導入口、上部に多孔
板型排水デイストリビユーター、中間部に微生物
を付着した見掛け比重が1.0以下で且つ水に浮上
する担体粒子の充填部、底部に処理水の抜出し口
を備え、かつ処理水の一部を揚水する手段を備え
た排水の処理槽において、前記担体粒子の充填部
の下部又は下方全面に空気、純酸素ガスまたは酸
素含有ガスの曝気手段を設け、かつ前記デイスト
リビユーターに気泡抜き口と前記担体粒子戻り口
を設けたことを特徴とする排水の好気的微生物処
理装置。 5 処理水の一部を揚水する手段が排水の処理槽
内に設けた揚水部と散気機構である特許請求の範
囲第4項記載の装置。 6 処理水の一部を揚水する手段が排水の処理槽
の下部と上部を連通する配管および該配管の途中
に設けたポンプである特許請求の範囲第4項記載
の装置。
[Scope of Claims] 1. When wastewater is introduced in a downward flow through a wastewater distributor into a packed bed of carrier particles having an apparent specific gravity of 1.0 or less and floating on water, and passing through the bed. Treating wastewater by contacting it with microorganisms under aerobic conditions, and pumping and circulating a portion of the resulting treated water to form a downward flow together with the wastewater to continuously treat the wastewater, In an aerobic microbial treatment method for wastewater that involves recovering treated water, air, pure oxygen gas, or oxygen-containing gas is introduced from below or below the packed bed of carrier particles at 1 to 50 Nm per unit cross-sectional area of the packed bed. 3 /m 2 ·hr to contact the wastewater in a countercurrent manner, and remove the air bubbles that have accumulated below the waste water distributor from the air vent port, and flow out from the packed bed of carrier particles. An aerobic microbial treatment method for wastewater, characterized in that the carrier particles are returned through a carrier particle return port. 2. The method according to claim 1, in which a portion of the treated water is pumped up using an air lift. 3. The method according to claim 1, in which a part of the treated water is pumped up using a pump. 4 A wastewater inlet at the top of the treatment tank, a perforated plate-type wastewater distributor at the top, a part filled with carrier particles with an apparent specific gravity of 1.0 or less that has microorganisms attached to it in the middle, and which floats on water, and a treatment at the bottom. In a wastewater treatment tank equipped with a water outlet and a means for pumping a part of the treated water, an aeration means for aerating air, pure oxygen gas or oxygen-containing gas to the lower part or the entire lower surface of the part filled with carrier particles. An aerobic microbial treatment device for wastewater, characterized in that the distributor is provided with an air bubble outlet and the carrier particle return port. 5. The device according to claim 4, wherein the means for pumping up a portion of the treated water is a pumping section and an aeration mechanism provided in the wastewater treatment tank. 6. The device according to claim 4, wherein the means for pumping up a portion of the treated water is a pipe that communicates the lower part and the upper part of the wastewater treatment tank, and a pump provided in the middle of the pipe.
JP57035186A 1982-03-08 1982-03-08 Method and apparatus for treating waste water with aerobic microorganisms Granted JPS58153590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035186A JPS58153590A (en) 1982-03-08 1982-03-08 Method and apparatus for treating waste water with aerobic microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035186A JPS58153590A (en) 1982-03-08 1982-03-08 Method and apparatus for treating waste water with aerobic microorganisms

Publications (2)

Publication Number Publication Date
JPS58153590A JPS58153590A (en) 1983-09-12
JPS6321554B2 true JPS6321554B2 (en) 1988-05-07

Family

ID=12434813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035186A Granted JPS58153590A (en) 1982-03-08 1982-03-08 Method and apparatus for treating waste water with aerobic microorganisms

Country Status (1)

Country Link
JP (1) JPS58153590A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041837A1 (en) * 2001-11-16 2003-05-22 Japan System Products Co., Ltd. Water-floating zeolite composites
JP2006087969A (en) * 2004-09-21 2006-04-06 Shin Meiwa Ind Co Ltd Sewage treatment device and underwater decomposition type garbage treatment apparatus provided with the same
JP5293109B2 (en) * 2008-11-21 2013-09-18 Jfeスチール株式会社 Waste water treatment apparatus and waste water treatment method
DK2508488T3 (en) 2011-04-04 2015-09-14 Veolia Water Solutions & Tech Improved biological wastewater treatment reactor and process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687193U (en) * 1979-12-10 1981-07-13

Also Published As

Publication number Publication date
JPS58153590A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
US4256573A (en) Process for biological treatment of waste water in downflow operation
JP4910415B2 (en) Organic wastewater treatment method and apparatus
JPH07100157B2 (en) Biological purification method of wastewater, biological reactor and water purification equipment
JP3452143B2 (en) Method and apparatus for biological purification of wastewater
JPS6321554B2 (en)
JP6534245B2 (en) Breeding water circulation system for closed circulation type breeding
JPS6319239B2 (en)
JP4581211B2 (en) Biological denitrification equipment
JPH03118891A (en) Treatment of organic sewage
JP2544712B2 (en) Wastewater treatment facility
JPS6323999Y2 (en)
JP3605683B2 (en) Wastewater treatment equipment using microorganisms
JPS6340597B2 (en)
JPS58214392A (en) Microbic treatment of waste water by multi-stage aeration
JPS59115789A (en) Activated sludge method using packing material
JPS6216239Y2 (en)
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
JPH0214118B2 (en)
JPH0434960Y2 (en)
JPH0623065A (en) Biological treatment method and apparatus for organic sewage
JPH025154B2 (en)
JPS586555Y2 (en) Biological treatment equipment for wastewater
JPH05138185A (en) Treatment of organic sewage and equipment
KR970061789A (en) Apparatus and method for treating wastewater using microbial carrier
JPS5938833B2 (en) Biological treatment equipment for high concentration wastewater