JP6534245B2 - Breeding water circulation system for closed circulation type breeding - Google Patents
Breeding water circulation system for closed circulation type breeding Download PDFInfo
- Publication number
- JP6534245B2 JP6534245B2 JP2014094184A JP2014094184A JP6534245B2 JP 6534245 B2 JP6534245 B2 JP 6534245B2 JP 2014094184 A JP2014094184 A JP 2014094184A JP 2014094184 A JP2014094184 A JP 2014094184A JP 6534245 B2 JP6534245 B2 JP 6534245B2
- Authority
- JP
- Japan
- Prior art keywords
- breeding
- tank
- water
- breeding water
- rearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 137
- 238000009395 breeding Methods 0.000 title claims description 106
- 230000001488 breeding effect Effects 0.000 title claims description 106
- 239000002245 particle Substances 0.000 claims description 36
- 241000894006 Bacteria Species 0.000 claims description 33
- 238000000746 purification Methods 0.000 claims description 30
- 230000000384 rearing effect Effects 0.000 claims description 21
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 18
- 238000005273 aeration Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 16
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 230000001546 nitrifying effect Effects 0.000 claims description 12
- -1 nitrogen-containing organic compound Chemical class 0.000 claims description 12
- 241000251468 Actinopterygii Species 0.000 claims description 8
- 235000015170 shellfish Nutrition 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- RECVMTHOQWMYFX-UHFFFAOYSA-N oxygen(1+) dihydride Chemical compound [OH2+] RECVMTHOQWMYFX-UHFFFAOYSA-N 0.000 claims 1
- 239000001301 oxygen Substances 0.000 description 34
- 229910052760 oxygen Inorganic materials 0.000 description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 33
- 238000000034 method Methods 0.000 description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 20
- 229940005654 nitrite ion Drugs 0.000 description 16
- 229910021529 ammonia Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 9
- 125000001477 organic nitrogen group Chemical group 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 230000001651 autotrophic effect Effects 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000909 electrodialysis Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241001453382 Nitrosomonadales Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002101 nanobubble Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Biological Treatment Of Waste Water (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、閉鎖循環型飼育用の飼育水循環システムに関する。The present invention relates to a breeding water circulation system for closed circulation breeding.
飼育の分野においては、飼育水の水質管理が重要であり、アンモニア、亜硝酸イオン、硝酸イオンなど生体に悪影響を与える汚染物質の上昇は飼育魚介類の生死に直結する。特にアンモニアは酸素に比べ、血液の成分の一つで全身の細胞に酸素を運搬する役目を担うヘモグロビンと結合し易く、このためアンモニアが増加すると、魚介類は窒息状態となり死に至る。上記汚染物質は飼育魚介類の残餌、または排泄物からなる残滓をバクテリアが分解した際に生じる。
残滓はタンパク質を始めとした有機窒素化合物からなり、この有機窒素は、不溶性と水溶性に分かれる。酵素などの働きにより、不溶性有機窒素である残渣は水溶性有機窒素である尿素等へ分解され、水溶性有機窒素はアンモニアに分解される。例えば排泄物の内、水溶性有機窒素である尿素は尿素分解酵素であるウレアーゼによって二酸化炭素とアンモニアに分解される。アンモニアは、水溶性であり、水中ではアンモニウムイオンとして存在する。アンモニウムイオンは、好気性雰囲気においてアンモニア酸化菌により、亜硝酸イオンを生成する。次いで、亜硝酸イオンは、好気性雰囲気で亜硝酸酸化菌により、硝酸イオンを生成する。
亜硝酸イオンおよび硝酸イオンの処理方法としては、大別して物理学的方法と生物学的方法の2種類がある。このうち、物理学的方法としては、イオン交換法、電気透析法、逆浸透膜法、触媒脱窒法が知られており、一方、生物学的方法としては、従属栄養性脱窒法、独立栄養性脱窒法等が知られている。
イオン交換法は、イオン交換樹脂中のイオンと交換することにより水中から亜硝酸イオン、硝酸イオンを除去する方法である。しかし、設備費が高く、イオン交換樹脂の再生に多量の塩化ナトリウムを必要とするため、その処理が問題となる。
電気透析法は、イオン選択性のある膜で処理水を仕切り、電極電荷による誘導によって亜硝酸イオンおよび硝酸イオンを分離する方法である。逆浸透膜法は、水を通しイオンや塩類など水以外の不純物は透過しない性質を持つ膜を利用し、亜硝酸イオンおよび硝酸イオンと水とを分離する方法である。これらいずれの方法も設備費、維持費が高く、分離した高濃度の亜硝酸イオン、硝酸イオンの処理が別途必要という問題がある。
脱触媒窒法は水素供与体として水素ガスを直接用いて、触媒の存在下で硝酸性窒素を窒素ガスにまで還元方法であるが、水素ガスの使用コストが高い。
従属栄養性脱窒法は、従属栄養性脱窒菌が付着、増殖した粒状濾層に、亜硝酸イオンおよび硝酸イオンを含有する水を通水させ、窒素ガスに還元する方法であり、独立栄養性脱窒法は、独立栄養菌である硫黄脱窒菌を付着、増殖した濾層を用いて、前記方法と同様に処理する方法である。これらの処理方法では、処理効率の水温への依存性が高く、特に独立栄養性脱窒法では顕著である。さらには副産物として硫酸が生成し易く、装置の運転管理に当り高度な技術が必要になる。In the field of breeding, quality control of breeding water is important, and the rise of pollutants that adversely affect living bodies such as ammonia, nitrite ion and nitrate ion is directly linked to the life and death of breeding fish and shellfish. In particular, ammonia is easier to combine with hemoglobin, which is one of the components of blood and responsible for transporting oxygen to the cells of the whole body, as compared with oxygen, and as a result, when ammonia is increased, fish and shellfish are suffocated and die. The above-mentioned pollutants are produced when bacteria break down the remaining food or the excrement of reared fish and shellfish.
The residue consists of protein and other organic nitrogen compounds, which are divided into insoluble and water soluble. By the function of the enzyme or the like, the residue which is insoluble organic nitrogen is decomposed into urea which is water-soluble organic nitrogen, and the water-soluble organic nitrogen is decomposed into ammonia. For example, of the excrement, urea, which is a water-soluble organic nitrogen, is decomposed into carbon dioxide and ammonia by the urea degrading enzyme urease. Ammonia is water soluble and in water is present as ammonium ion. Ammonium ions produce nitrite ions by ammonia oxidizing bacteria in an aerobic atmosphere. Then, nitrite ion produces nitrate ion by nitrite oxidizing bacteria in an aerobic atmosphere.
There are two types of processing methods of nitrite ion and nitrate ion: physical method and biological method. Among them, as physical methods, ion exchange method, electrodialysis method, reverse osmosis membrane method, catalytic denitrification method are known, while as biological methods, heterotrophic denitrification method, autotrophic property The denitrification method etc. are known.
The ion exchange method is a method of removing nitrite ion and nitrate ion from water by exchanging with ions in the ion exchange resin. However, the equipment cost is high, and the treatment is a problem because a large amount of sodium chloride is required to regenerate the ion exchange resin.
The electrodialysis method is a method of separating treated water with a membrane having ion selectivity and separating nitrite ion and nitrate ion by induction by electrode charge. The reverse osmosis membrane method is a method of separating water from nitrite ion and nitrate ion using a membrane having a property of passing water and impermeability of impurities other than water such as ions and salts. Both of these methods are expensive in equipment cost and maintenance cost, and there is a problem that the treatment of the separated high concentration of nitrite ion and nitrate ion is separately required.
The de-catalytic nitrogen method directly uses hydrogen gas as a hydrogen donor and reduces nitrate nitrogen to nitrogen gas in the presence of a catalyst, but the cost of using hydrogen gas is high.
The heterotrophic denitrification method is a method of passing water containing nitrite ion and nitrate ion through a particulate filter layer to which heterotrophic denitrifying bacteria have adhered and grown, and reducing it to nitrogen gas The nitrogen method is a method in which the autotrophic bacteria sulfur denitrifying bacteria are treated in the same manner as the above-mentioned method using a filter layer which has been adhered and grown. In these treatment methods, the treatment efficiency is highly dependent on the water temperature, particularly in the autotrophic denitrification method. Furthermore, sulfuric acid is apt to be generated as a by-product, and advanced technology is required to control the operation of the apparatus.
汚染水の処理方法としては様々な方法が考案されているが、例えば特許文献1〜5に記載の方法として循環式硝化脱窒法と呼ばれるものがある。これは酸素を利用してアンモニアを含む有機窒素を亜硝酸イオンまたは硝酸イオンに分解する硝化菌と、0.5〜1.0ppm以下程度の貧酸素の状態で炭素源を利用して亜硝酸イオンまたは硝酸イオンを窒素に分解する脱窒菌の2種の微生物の生物化学的性質を利用している。
装置は脱窒菌を含む脱窒槽と硝化菌を含む硝化槽からなり、脱窒槽では貧酸素状態とするために、汚染水に空気を吹き込まず撹拌のみを行い、硝化槽では汚染水に空気を吹き込み溶解させる。装置に投入された汚染水は脱窒槽および硝化槽に貯められる。まず硝化槽でアンモニアを含む有機窒素が亜硝酸イオンまたは硝酸イオンに分解される反応が生じ、この処理された汚染水の一部は脱窒槽に戻される。このとき処理された汚染水中の酸素は硝化菌の分解反応によって消費されており、貧酸素かつ亜硝酸イオンまたは硝酸イオンを含む汚染水が脱窒槽に供給されることになる。脱窒槽に亜硝酸イオンまたは硝酸イオンが供給されると、これらは窒素と酸素に分解され、汚染水から汚染物質が取り除かれた状態となる。この浄化された水を硝化槽に送ることで酸素を供給することができ、硝化槽に送る酸素を低減できる。以上の操作を繰り返すことで汚染水中の汚染物質を所定の濃度まで低下させることが可能となる。Although various methods have been devised as a method for treating contaminated water, for example, there are methods called cyclic nitrification and denitrification methods as methods described in Patent Documents 1 to 5. This is a nitrifying bacteria that decomposes organic nitrogen containing ammonia into nitrite ion or nitrate ion using oxygen, and nitrite ion using carbon source in the state of poor oxygen of 0.5 to 1.0 ppm or less Alternatively, it utilizes the biochemical properties of two kinds of denitrifying bacteria that decompose nitrate ions into nitrogen.
The device consists of a denitrification tank containing denitrifying bacteria and a nitrification tank containing nitrifying bacteria. In order to make the denitrification tank a poor oxygen state, only the agitation is performed without blowing air into the contaminated water, and the air is blown into the contaminated water in the nitrification tank Let it dissolve. Contaminated water introduced into the equipment is stored in the denitrification tank and the nitrification tank. First, in the nitrification tank, a reaction occurs in which the organic nitrogen containing ammonia is decomposed into nitrite ions or nitrate ions, and a part of the treated contaminated water is returned to the denitrification tank. At this time, the oxygen in the treated contaminated water is consumed by the decomposition reaction of the nitrifying bacteria, and the contaminated water containing poor oxygen and nitrite ion or nitrate ion is supplied to the denitrification tank. When nitrite ions or nitrate ions are supplied to the denitrification tank, they are decomposed into nitrogen and oxygen, and the polluted water is in a state where contaminants are removed. By sending the purified water to the nitrification tank, oxygen can be supplied, and the oxygen to be sent to the nitrification tank can be reduced. By repeating the above operation, it is possible to reduce the concentration of contaminants in the contaminated water to a predetermined concentration.
しかしながら、上記処理方法は、汚泥や下水など汚染物質が高濃度かつ処理量が大量である場合には、高効率かつ低コストであるものの、閉鎖循環型飼育の飼育水に対してはむしろ処理能力が過大であり、硝化槽と脱窒槽との循環用ポンプを必要とするため、単位汚染物質処理量当たりの設備費および運転費が甚大となる。また、浄化効率を維持するためにpH変動抑制を必要とするが、処理量が微量であるため中和剤の添加量調整に高度な制御技術が要求される。さらに、前記処理方法では硝化槽の底から空気を供給しており、水への酸素溶解量は水深に比例して増加するため、通常4m以上の水深を確保する必要があるが、閉鎖循環型飼育では建物の高さの制約やコストの点から、水深4m以上の水槽や硝化槽を使用することは現実的ではない。
従って、閉鎖循環型飼育の飼育水の浄化方法には、例えば特許文献6に記載の間歇濾床方式が用いられている。これは排水管にサイフォンがかかる装置を備えており、間歇的かつ急激に処理水が排水されることにより、自動的に濾過槽の水位が上下し、濾材の浸漬と干出の繰り返しにより効率的な濾材と処理水との接触および酸素供給を実現している。このような閉鎖循環型飼育の飼育水浄化システムは濾材部とサイフォン部をそれぞれ設ける必要があり、装置の所要面積が過大となる問題がある。また、処理水が濾材空隙部に全通しないため、処理水と濾材の接触状態に偏りが生じ、浄化効率が不安定であるといった問題や、汚染物質の付着により徐々に濾材やサイフォン部が目詰まりすることによる所要動力の増加や、1〜2年周期の清掃が必要となるといった問題がある。また、上記浄化方法で取り扱われているのは硝化槽のみであり、例えば特許文献7に記載の閉鎖循環型飼育の飼育水浄化システムでは飼育水が水槽と硝化槽を循環する主経路と間歇的に脱窒槽に飼育水を流す補助経路からなる設備構成が採用されており、閉鎖循環型飼育において標準的なシステムとなっている。しかし、このシステムでは脱窒槽を間歇的に使用するための別ラインと、飼育水中の亜硝酸イオンまたは硝酸イオン濃度の管理により飼育水の処理経路を切り替える機構が必要となり、設備費が過大となる。However, although the above-mentioned treatment method is highly efficient and low-cost when pollutants such as sludge and sewage are in high concentration and the treatment amount is large, the treatment capacity is rather for the breeding water of closed circulation type rearing Since it requires a pump for circulation between the nitrification tank and the denitrification tank, the facility cost and operating cost per unit amount of treated pollutants become enormous. Although it is necessary to suppress pH fluctuation in order to maintain the purification efficiency, since the amount of treatment is very small, advanced control technology is required to adjust the amount of addition of the neutralizing agent. Furthermore, in the above treatment method, air is supplied from the bottom of the nitrification tank, and the amount of oxygen dissolved in water increases in proportion to the water depth, so it is usually necessary to secure a water depth of 4 m or more. In breeding, it is not realistic to use a water tank or nitrification tank with a water depth of 4 m or more in view of the constraints on the height of the building and the cost.
Therefore, for example, an intermittent filter bed system described in Patent Document 6 is used as a method for purifying breeding water of closed circulation type breeding. This is equipped with a device that siphons in the drainage pipe, and the water level of the filtration tank automatically goes up and down by intermittent draining of treated water, and it is more efficient by repeating soaking and drying out of the filter medium Filter media and treated water, and oxygen supply. In such a closed circulation type rearing breeding water purification system, it is necessary to provide a filter medium part and a siphon part respectively, and there is a problem that the required area of the device becomes excessive. In addition, since the treated water does not pass through the pores of the filter medium, the contact state of the treated water and the filter medium is uneven, and the purification efficiency is unstable. There is a problem that the required power increases due to the clogging, and the one to two year cleaning is required. In addition, only the nitrification tank is handled by the above purification method, for example, in the breeding water purification system of the closed circulation type breeding described in Patent Document 7, breeding water alternates with the main route in which the breeding water circulates in the water tank and the nitrification tank. In the denitrification tank, an equipment configuration consisting of an auxiliary route for feeding breeding water is adopted, and it is a standard system for closed circulation type breeding. However, this system requires a separate line to use denitrification tanks intermittently and a mechanism to switch the processing route of breeding water by managing nitrite ion or nitrate ion concentration in breeding water, and the equipment cost becomes excessive. .
一方、飼育魚介類の生育および硝化能力の維持の点から、飼育水または処理水への酸素溶解が重要となる。水への酸素の溶解量は温度や圧力によって決まり、常温常圧では10ppm程度が限度である。しかしながら、この溶解反応は水と酸素の間の境界層(以下境膜)における酸素の移動が律速となっているため、水と酸素の接触面積を増加させることにより、より短時間で所定の酸素溶解量を得ることができる。標準的な閉鎖循環型飼育システムではマイクロバブルやナノバブルといったような空気を小径の気泡として水中に注入する方式をとっており、同じ量の空気を扱う場合、気泡の径が小さいほど気泡の数が多く水との接触面積が大きくなるため、気泡の小径化が志向されている。例えば特許文献8に記載の方法では数μm程度の気泡を用いており、良好な酸素溶解性能が得られているが、このような小さな気泡を生成するためには径の小さなノズルや多孔質材に空気を通気させるか、気泡を解砕する必要があり、いずれも所要動力の増加につながる。また特にノズルや多孔質材を使用する場合、飼育水中の汚染物質の付着により目詰まりを起こし易く、設備トラブルにつながる。 On the other hand, oxygen dissolution in breeding water or treated water is important from the viewpoint of growth of breeding fish and shellfish and maintenance of nitrification capacity. The amount of oxygen dissolved in water is determined by the temperature and pressure, and the limit is about 10 ppm at normal temperature and pressure. However, since this dissolution reaction is rate-limiting for the movement of oxygen in the boundary layer (hereinafter referred to as the boundary film) between water and oxygen, the contact area between water and oxygen is increased, so that the predetermined oxygen can be reached in a shorter time. The amount dissolved can be obtained. In a standard closed circulation type breeding system, air such as micro bubbles or nano bubbles is injected into water as small-sized bubbles, and when handling the same amount of air, the smaller the bubble size, the more the number of bubbles. Since the contact area with water is large, it is intended to reduce the diameter of the bubbles. For example, in the method described in
上記の設備の複雑化の問題に対し改善を図ったものとして、例えば特許文献9および10の方法がある。前者では硝化槽と脱窒槽を並列ではなく同一ライン上に設けることで設備の簡素化を図っているが、飼育水の密度に応じた生物担体を用いなければ、担体が浮上または沈降した状態が維持されるため、担体の詰まりや飼育水偏流により、十分な浄化性能が得られない恐れがある。
後者では、硝化槽と脱窒槽を一体化することで設備の簡素化を図っているが、硝化菌と脱窒菌で反応が進行する酸素濃度条件が異なるため、十分な浄化性能を得るには硝化菌担体と脱窒担体の存在領域を槽の内部で区切る必要があり、大きな設置面積削減にはならない。また安定的な浄化性能を得るためには、槽の形状や処理水量に応じた水流と酸素濃度分布を詳細に制御するシステムが別途必要となるため現実的ではない。As an improvement to the problem of the above-mentioned equipment complexity, there are methods of
In the latter case, the facilities are simplified by integrating the nitrification tank and the denitrification tank, but since the oxygen concentration conditions in which the reaction proceeds between the nitrifying bacteria and the denitrifying bacteria differ, nitrification is required to obtain sufficient purification performance. It is necessary to separate the existing area of the carrier for bacteria and the carrier for denitrification inside the tank, which does not reduce the installation area. In addition, in order to obtain stable purification performance, it is not practical because a separate system for controlling the water flow and the oxygen concentration distribution according to the shape of the tank and the amount of treated water is separately required.
本発明は閉鎖循環型飼育の飼育水の浄化システムに関し、上記の浄化効率向上に伴う装置構成の複雑化と設備費および運転費および清掃コストの増大といった課題を解決し、簡潔でコンパクトかつ、低コストのシステムを提供するものである。 The present invention relates to a purification system for rearing water of closed circulation type, and solves the problems such as the complication of the device configuration and the increase of the installation cost, the operation cost and the cleaning cost accompanying the above-mentioned purification efficiency improvement. It provides a cost system.
本発明の目的は安定的な浄化効率の向上と装置構成の簡素化および低コスト化の両立である。そこで本発明では内部に硝化および脱窒菌担持粒子が充填された粒子流動型濾過槽と、液膜式気体溶解装置と、再曝気槽からなる閉鎖循環型飼育用の飼育水浄化システムを用いることで、飼育水の浄化効率と酸素溶解速度を向上させ、濾過装置のダウンサイジングと処理水循環量の低減により、装置の所要面積と所要エネルギー、および清掃コストの削減を達成することができる。 An object of the present invention is to achieve both stable improvement in purification efficiency, simplification of the apparatus configuration and cost reduction. Therefore, in the present invention, by using a particle circulation type filtration tank filled with nitrifying and denitrifying bacteria carrying particles inside, a liquid membrane type gas dissolving device, and a closed circulation type breeding water purification system for breeding using a reaeration tank. By improving the purification efficiency and oxygen dissolution rate of breeding water, downsizing the filtration device and reducing the amount of circulation of treated water, it is possible to achieve the reduction of the required area of the device, the required energy and the cleaning cost.
本発明によれば、閉鎖循環型飼育用の飼育水浄化システムの装置構成を簡素化することができ、また濾過槽のダウンサイジングとポンプ電力の削減が期待できる。また、装置の簡素化と縮小化、および所要電力の削減により、装置の初期費用と運転費を従来の閉鎖循環型飼育のものと比べ50%以上低減することが可能となる。これにより、小規模の会社でも閉鎖循環型飼育に参入し易くなり、雇用の創出と食物自給率の向上、および技術開発レベルの向上につながる。 ADVANTAGE OF THE INVENTION According to this invention, the apparatus structure of the breeding water purification system for closed circulation type breeding can be simplified, and downsizing of a filtration tank and reduction of pump electric power can be expected. In addition, the simplification and downsizing of the device and the reduction of the required power make it possible to reduce the initial cost and the operation cost of the device by 50% or more as compared with the conventional closed circulation type breeding. This makes it easier for small-scale companies to enter closed-loop breeding, leading to job creation, improved food self-sufficiency, and improved technology development.
図1に示すように、標準的な閉鎖循環型飼育用の飼育水浄化システムは、飼育水が飼育水槽(1)、曝気槽(6)、硝化槽(7)を循環する主経路(4)と、飼育水を間歇的に脱窒槽(5)に通水させる補助回路(3)と循環ポンプ(2)からなる。まず飼育槽から曝気槽に送られた飼育水は、曝気槽への空気注入と撹拌により硝化菌が硝化反応を起こすのに十分な酸素を供給される。次に飼育水は曝気槽から硝化槽に送られ、飼育水中の有機窒素およびアンモニアは亜硝酸イオンまたは硝酸イオンまで分解される。この亜硝酸イオン、硝酸イオン濃度が上限の100mg/L未満である場合は処理した飼育水を再び飼育槽に戻し、100mg/Lを越えた場合は脱窒槽に送る。脱窒槽に送られた飼育水は脱窒槽内の脱窒菌の働きにより、その亜硝酸イオンと硝酸イオンを窒素に変えられ、有害物質の濃度が上限未満に低減されるまで飼育槽と脱窒槽の循環を繰り返される。このシステムでは脱窒槽を間歇的に使用するための別ラインと、飼育水中の亜硝酸イオンまたは硝酸イオン濃度の管理により飼育水の処理経路を切り替える機構が必要となる。
上記に対し、図2に示す本発明の飼育水浄化システムは、飼育水と液膜式気体溶解装置(8)、再曝気槽(11)、硝化菌担持粒子(14)を内部に充填した粒子流動型硝化槽(9)、脱窒菌担持粒子(18)を内部に充填した粒子流動型脱窒槽(10)と循環ポンプ(2)及びブロワ(12)からなる。飼育水槽では魚介類の飼育に十分な酸素が供給される必要があるが、液膜式気体溶解装置を用いることで、飼育水中への酸素溶解速度は標準的なシステムの約2倍となるため、必要な溶解酸素濃度が一定である場合、単位時間当たりに処理する飼育水量は2分の1となり、所要動力も2分の1となる。この飼育水は浄化処理のため再曝気槽に送られ、曝気ノズル(13)からの空気の吹き込みにより魚介類の飼育により消費された酸素を補うとともに残渣を浮遊させ、次の硝化槽へと輸送される。硝化槽に送られた飼育水は標準的なシステムと同様、硝化菌の作用により含有する有機窒素とアンモニアが亜硝酸イオンと硝酸イオンへと分解されるが、粒子流動を利用することで、硝化反応速度が3〜4倍となるため、標準的なシステムと同じ硝化効率を目標とした場合、処理水の処理量つまり硝化槽の貯蔵容量を標準的なシステムの2分の1から3分の1まで低減することができ、硝化槽の所要面積を低減できる。また、流動化した充填層は充填層に比べ通液時の抵抗が少ないため所要動力を低減できる。さらに流動化した充填層には残滓が付着し難く、付着したとしてもすぐに剥離するため、濾材の目詰まりが生じない。従って、安定した硝化効率が得られ、清掃が不要となる。硝化槽にて処理された飼育水は次に脱窒槽に送られる。ここでも硝化槽と同様に図1のシステムに比べ反応速度が2倍程度と高いため、所要動力と所要面積の低減が可能となる。さらに安定した脱窒効率が得られ、清掃が不要となる。脱窒槽では飼育水中の溶存酸素濃度が0.5〜1.0ppm以下程度の貧酸素条件である必要があるが、この酸素濃度は再曝気槽および硝化槽に具備された曝気ノズルからの空気吹き込み量により調整可能である。As shown in FIG. 1, a standard closed circulation type rearing water purification system is a main route (4) in which rearing water circulates the rearing tank (1), the aeration tank (6) and the nitrification tank (7). And an auxiliary circuit (3) for intermittently feeding breeding water to the denitrification tank (5) and a circulating pump (2). First, the breeding water sent from the breeding tank to the aeration tank is supplied with oxygen sufficient for nitrifying bacteria to cause a nitrification reaction by air injection into the aeration tank and agitation. Next, the breeding water is sent from the aeration tank to the nitrification tank, and the organic nitrogen and ammonia in the breeding water are decomposed to nitrite ions or nitrate ions. When the nitrite ion concentration is lower than the upper limit of 100 mg / L, the treated breeding water is returned to the breeding tank again, and when it exceeds 100 mg / L, it is sent to the denitrification tank. The breeding water sent to the denitrification tank can convert its nitrite ion and nitrate ion into nitrogen by the function of denitrifying bacteria in the denitrification tank until the concentration of harmful substances is reduced to less than the upper limit. The cycle is repeated. In this system, a separate line for using the denitrification tank intermittently and a mechanism for switching the processing route of the breeding water by managing the concentration of nitrite ion or nitrate ion in the breeding water are required.
In contrast to the above, the breeding water purification system of the present invention shown in FIG. 2 is a particle in which breeding water and liquid membrane type gas dissolving apparatus (8), re-aeration tank (11), and nitrifying bacteria carrying particles (14) are filled inside. It comprises a fluid type nitrification tank (9), a particle flow type denitrification tank (10) internally filled with denitrifying bacteria-supporting particles (18), a circulation pump (2) and a blower (12). In the breeding aquarium, sufficient oxygen needs to be supplied for breeding fish and shellfish, but by using a liquid membrane gas dissolving device, the rate of oxygen dissolution in breeding water is about twice that of the standard system. When the required dissolved oxygen concentration is constant, the amount of breeding water to be treated per unit time is 1/2 and the required power is also 1/2. This rearing water is sent to the re-aeration tank for purification treatment, air is blown from the aeration nozzle (13) to compensate for the oxygen consumed by the breeding of fish and shellfish, and the residue is suspended to be transported to the next nitrification tank. Be done. In the breeding water sent to the nitrification tank, organic nitrogen and ammonia contained are decomposed into nitrite ion and nitrate ion by the action of nitrifying bacteria as in the standard system, but nitrification is achieved by utilizing particle flow. Since the reaction rate is 3 to 4 times faster than the standard system, the throughput of treated water, that is, the storage capacity of the nitrification tank is 1/2 to 3 minutes of that of the standard system. It can be reduced to 1 and the required area of the nitrification tank can be reduced. In addition, since the fluidized bed has less resistance when flowing as compared to the packed bed, the required power can be reduced. Furthermore, debris does not easily adhere to the fluidized bed, and even if it adheres, the filter medium is not clogged because it peels off immediately. Therefore, stable nitrification efficiency can be obtained and cleaning becomes unnecessary. The breeding water treated in the nitrification tank is then sent to the denitrification tank. Here too, as in the case of the nitrification tank, the reaction rate is about twice as high as that of the system of FIG. 1, so the required power and the required area can be reduced. In addition, stable denitrification efficiency can be obtained and cleaning is not necessary. In the denitrification tank, it is necessary to have poor oxygen conditions in which the dissolved oxygen concentration in breeding water is about 0.5 to 1.0 ppm or less, but this oxygen concentration can be blown into the air from the aeration nozzle provided in the reaeration tank and the nitrification tank. It can be adjusted by the amount.
前記の菌担持充填粒子は、粒子径が小さいほど粒子と飼育水の接触面積が増加し反応速度が増加するため、粒子径が小さい方が望ましいが、充填粒子が小さ過ぎると配管への流出や配管の詰まりを生じる恐れがあるため、直径2mm以上8mm以下程度が適当である。また飼育水の比重は1.00g/cm3以上1.05g/cm3以下であるため、これより粒子の密度が小さいと水面に浮きあがって飼育水との接触面積が低下し、逆にこれより密度が大きいと底面に沈んでしまい飼育水との接触面積が低下する。従って粒子の密度は1.00g/cm3以上1.05g/cm3以下が適当である。また、これが単純な球形粒子である場合、担持された菌が粒子の流動により剥離する恐れがあるため、粒子の中心部まで貫通している孔が設けられていることが望ましい。この孔の径は小さすぎると表面張力により内部に飼育水が浸透せず、逆に大きすぎると担持された菌が剥離する恐れがあるため、径5μm以上40μm以下が適当である。これらの条件を満たす粒子であれば何を用いても良いが、菌との親和性の良いセラミック、プラスチック、樹脂などを用いるのが望ましい。The smaller the particle diameter of the bacteria-loaded packed particles, the larger the contact area between the particles and the breeding water, and the reaction speed increases. Therefore, smaller particle sizes are preferable, but if the packed particles are too small, outflow to piping or A diameter of 2 mm or more and 8 mm or less is appropriate because there is a possibility of clogging of piping. Moreover, since the specific gravity of breeding water is 1.00 g / cm 3 or more and 1.05 g / cm 3 or less, when the density of particles is smaller than this, it floats on the water surface and the contact area with breeding water decreases, conversely this If the density is higher, the surface sinks to the bottom and the contact area with the breeding water decreases. Therefore, the density of the particles is suitably 1.00 g / cm 3 or more and 1.05 g / cm 3 or less. In the case where the particle is a simple spherical particle, it is desirable that a hole penetrating to the center of the particle is provided, because there is a risk that the supported bacteria may be exfoliated by the flow of the particle. If the diameter of this hole is too small, breeding water will not penetrate inside due to surface tension, and if it is too large on the contrary there is a risk that the loaded bacteria will peel off, so a diameter of 5 μm to 40 μm is appropriate. Any particle may be used as long as it satisfies these conditions, but it is desirable to use a ceramic, plastic, resin or the like having a high affinity for bacteria.
脱窒槽では反応促進と脱ガスのため、撹拌羽(17)と撹拌モーター(16)が設けられており、モーター回転数が高い程反応と脱ガスの効率は向上するが、回転数の上昇に伴い所要電力も増加するため、10〜120rpmが望ましい。また脱窒反応には炭素を必要とするため、炭素源供給装置が設けられている。この炭素源は炭素を含んでいるものなら何でも良いが、菌は細胞から炭素を取り込むため、炭素源は水溶性であることが望ましい。さらに菌の多くは炭素元素が一つであるような化合物、例えばメタンやメタノールしか分解できないため、これらの炭素元素が一つであるような化合物を用いることが望ましい。固体の炭素源としては、ポリヒドロキシ酪酸などの生体分解性プラスチックを用いるのが望ましい。これらの炭素源の供給速度は菌による消費速度と同等であることが望ましいが、菌による消費速度を上回り飼育水に残存した炭素源は再曝気槽に送られた際に分解され無害化されるため問題ない。 In the denitrification tank, stirring blades (17) and a stirring motor (16) are provided for reaction promotion and degassing, and the higher the motor rotation speed, the higher the reaction and degassing efficiency, but the rotation speed increases. Accordingly, the power requirement is also increased, so 10 to 120 rpm is desirable. In addition, since carbon is required for denitrification reaction, a carbon source supply device is provided. Although this carbon source may be anything containing carbon, it is desirable that the carbon source be water-soluble because bacteria take in carbon from cells. Furthermore, since many bacteria can decompose only a compound having one carbon element, such as methane and methanol, it is desirable to use a compound having one carbon element. As a solid carbon source, it is desirable to use a biodegradable plastic such as polyhydroxybutyric acid. Although it is desirable that the supply rate of these carbon sources be equal to the consumption rate by bacteria, the carbon sources remaining in the breeding water exceeding the consumption rate by bacteria are decomposed and harmlessized when they are sent to the reaeration tank Because there is no problem.
前記の液膜式気体溶解装置は液をシャボン玉状としており、膜の内と外両側で気体と接触しているため、通常の気泡を用いた気体溶解装置に対し、液と気体の接触面積が大きくできることが特徴である。液膜式気体溶解装置は、飼育水の吸引部と、空気注入ノズル(21)と、飼育水と空気の混合部(23)と、飼育水の排出部(26)とからなる。吸引部から吸引された飼育水はノズルから注入された空気と混合され、エアーポンプ(20)による押圧と装置外部の飼育水との密度差により気泡壊砕部まで上昇する。この密度差は飼育水と注入する空気の比率によって定まり、飼育水の比率が高すぎると所要動力が増大し、逆に飼育水の比率が低すぎると酸素の溶解量が不足するため、この比率は1:1〜3:1であることが望ましい。 The liquid film type gas dissolving apparatus described above has the solution in the form of soap bubbles and contacts the gas on both the inside and the outside of the film, so the contact area between the liquid and the gas with respect to the gas dissolving apparatus using normal bubbles. Is characterized in that it can be The liquid film type gas dissolving apparatus comprises a suction unit for breeding water, an air injection nozzle (21), a mixing unit (23) for breeding water and air, and a discharging unit (26) for breeding water. The breeding water sucked from the suction unit is mixed with the air injected from the nozzle, and rises to the bubble breaking portion due to the difference in density between the pressure by the air pump (20) and the breeding water outside the apparatus. This density difference is determined by the ratio of the breeding water to the air to be injected. If the ratio of breeding water is too high, the required power increases, and if the ratio of breeding water is too low, the amount of dissolved oxygen is insufficient. Is preferably 1: 1 to 3: 1.
標凖的なシステムに対する前記液膜式気体溶解装置の酸素溶解速度の有意性は、飼育水槽および再曝気槽の水深が低い程高くなるが、飼育魚介類体高0.1m以上は確保する必要がある。従って液膜式気体溶解装置を設置する槽の水深は0.1m以上1.5m以下とすることが望ましい。 The significance of the oxygen dissolution rate of the liquid film type gas dissolution apparatus to a standard system is higher as the water depth of the breeding tank and re-aeration tank is lower, but it is necessary to secure the breeding fish shell 0.1 m or more in height. is there. Therefore, it is desirable that the water depth of the tank in which the liquid film gas dissolving apparatus is installed be 0.1 m or more and 1.5 m or less.
1 飼育水槽
2 ポンプ
3 飼育水浄化の補助経路
4 飼育水浄化の主経路
5 脱窒槽
6 曝気槽
7 硝化槽
8 液膜式気体溶解装置
9 粒子流動型硝化槽
10 粒子流動型脱窒槽
11 再曝気槽
12 ブロワ
13 曝気ノズル
14 硝化菌担持粒子
15 液抜き
16 攪拌機用モーター
17 撹拌羽
18 脱窒菌担持粒子
19 炭素源供給装置
20 エアーポンプ
21 ノズル
22 飼育水の吸引方向
23 酸素溶解処理前飼育水と空気の混合物
24 ガス排出方向
25 酸素溶解処理後の飼育水
26 飼育水の排出方向DESCRIPTION OF SYMBOLS 1
Claims (5)
前記液膜式気体溶解装置は、一端部および他端部を下方に向けた逆U字管の頂部に開放部をなす開放管を設けてなるh字管であって、前記一端部は、空気注入手段を介して空気を注入する空気注入部と、前記空気の注入にともなって前記飼育水を吸引する飼育水吸引部と、を有し、前記他端部は、前記飼育水と前記空気との混合物を排出する混合物排出部をなし、なおかつ、前記開放管は、前記混合物の形成に使用されない前記空気を排出する空気排出部をなして、前記逆U字管内でバブルの前記空気を含む前記飼育水の液膜を形成することを特徴とする、閉鎖循環型飼育用の飼育水浄化システム。 A closed circulation consisting of a particle flow type nitrification tank filled with nitrifying bacteria supported particles inside, a particle flow type denitrification tank filled inside with denitrifying bacteria supported particles inside, a liquid film type gas dissolving device, and a reaeration tank In the breeding water purification system for type breeding,
The liquid film type gas dissolving apparatus is an h-shaped pipe provided with an open pipe forming an open section at the top of an inverted U-shaped pipe whose one end and the other end are directed downward, the one end being air An air injection unit for injecting air via injection means; and a breeding water suction unit for suctioning the breeding water as the air is injected; and the other end portion includes the breeding water and the air. Forming a mixture discharge portion for discharging the mixture, and the open pipe forms an air discharge portion for discharging the air which is not used to form the mixture, and includes the air of the bubble in the reverse U-shaped tube. A breeding water purification system for closed circulation type breeding, characterized by forming a liquid film of breeding water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014094184A JP6534245B2 (en) | 2014-04-11 | 2014-04-11 | Breeding water circulation system for closed circulation type breeding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014094184A JP6534245B2 (en) | 2014-04-11 | 2014-04-11 | Breeding water circulation system for closed circulation type breeding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015202102A JP2015202102A (en) | 2015-11-16 |
JP6534245B2 true JP6534245B2 (en) | 2019-06-26 |
Family
ID=54595991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014094184A Active JP6534245B2 (en) | 2014-04-11 | 2014-04-11 | Breeding water circulation system for closed circulation type breeding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6534245B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107279031B (en) * | 2017-07-04 | 2023-10-27 | 浙江工商大学 | Device and method for purifying water in fish tank |
JP7553233B2 (en) * | 2018-11-06 | 2024-09-18 | ダイセン・メンブレン・システムズ株式会社 | Water quality control system for land-based recirculating aquaculture and its operation method |
WO2020095800A1 (en) * | 2018-11-06 | 2020-05-14 | ダイセン・メンブレン・システムズ株式会社 | System for managing quality of rearing water for land-based recirculating aquaculture and method for operating same |
CN112616764B (en) * | 2020-12-21 | 2023-08-01 | 安徽省鸿图生态农业有限公司 | Oxygenation and bacteria culturing device for crayfish pond culture |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0553465U (en) * | 1991-12-26 | 1993-07-20 | 株式会社クラレ | Aquarium for ornamental fish |
JPH0677897U (en) * | 1993-04-16 | 1994-11-01 | 恒栄株式会社 | Water purification equipment |
CN1228008A (en) * | 1996-06-24 | 1999-09-08 | 德克萨斯州立大学董事会 | Automated closed recirculating aquaculture filtration system |
JP3328641B2 (en) * | 2000-06-13 | 2002-09-30 | 幹雄 井上 | Water purification device |
JP2004298840A (en) * | 2003-04-01 | 2004-10-28 | Tetsuhiko Fujisato | Vessel for adjusting amount of gas to be dissolved |
KR101179313B1 (en) * | 2007-03-30 | 2012-09-03 | 이세한 | Aerating unit, aerating apparatus equipped therewith and method of aerating |
JP5097024B2 (en) * | 2008-06-17 | 2012-12-12 | シャープ株式会社 | Water treatment apparatus and water treatment method |
-
2014
- 2014-04-11 JP JP2014094184A patent/JP6534245B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015202102A (en) | 2015-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4508694B2 (en) | Water treatment method and apparatus | |
JP3335500B2 (en) | Wastewater treatment device and wastewater treatment method | |
CN103112991B (en) | Coking wastewater treatment system and coking wastewater treatment method | |
JP2009202038A (en) | Floating body type water purifier by water circulation, filtration, and aeration using photovoltaic power generation | |
JP2008055291A (en) | Water treating device | |
JP6534245B2 (en) | Breeding water circulation system for closed circulation type breeding | |
CN1318324C (en) | Sewage treatment appts. using self-granulating active sludge and sewage treatment process | |
JP5238002B2 (en) | Organic waste water treatment apparatus and treatment method | |
JP3370576B2 (en) | Ultrapure water production equipment | |
JP5597002B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP4876343B2 (en) | Denitrification method and denitrification apparatus | |
JP2003024985A (en) | Dentrification apparatus and dentrification method | |
JP2016047490A (en) | Oil- and fat-containing wastewater treatment method and apparatus | |
KR20090057339A (en) | Fish farming water oxygen supply and water quality improvement device | |
JP2007296499A (en) | Waste water treatment method | |
JP2009202146A (en) | Water treatment equipment and method of water treatment | |
KR101278475B1 (en) | Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor | |
JP2009233551A (en) | Water treatment apparatus and method | |
JP4870708B2 (en) | Water treatment apparatus and water treatment method | |
CN203173917U (en) | Coking waste water coal tar treatment equipment | |
CN203173936U (en) | Coking waste water oxidation and biochemical treatment equipment | |
KR102153994B1 (en) | Volume change type water treatment device for circulation type upper focusing aeration | |
JP2010253404A (en) | Method and apparatus of denitrifying digested sludge separation liquid | |
CN104045206A (en) | UV (ultraviolet)/O3+BAF (biological aerated filter) advanced oxidation sewage treatment facility | |
KR102059988B1 (en) | Membrane water treatment apparatus using micro-bubble |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170404 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180213 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20180515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180601 |
|
A603 | Late request for extension of time limit during examination |
Free format text: JAPANESE INTERMEDIATE CODE: A603 Effective date: 20180601 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190528 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6534245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S303 | Written request for registration of pledge or change of pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316303 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S303 | Written request for registration of pledge or change of pledge |
Free format text: JAPANESE INTERMEDIATE CODE: R316303 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |