JP2003024985A - Dentrification apparatus and dentrification method - Google Patents

Dentrification apparatus and dentrification method

Info

Publication number
JP2003024985A
JP2003024985A JP2001218432A JP2001218432A JP2003024985A JP 2003024985 A JP2003024985 A JP 2003024985A JP 2001218432 A JP2001218432 A JP 2001218432A JP 2001218432 A JP2001218432 A JP 2001218432A JP 2003024985 A JP2003024985 A JP 2003024985A
Authority
JP
Japan
Prior art keywords
denitrification
membrane
tank
nitrogen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218432A
Other languages
Japanese (ja)
Inventor
Akishi Hori
晃士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001218432A priority Critical patent/JP2003024985A/en
Publication of JP2003024985A publication Critical patent/JP2003024985A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform high load treatment by efficiently propagating ANAMMOX bacteria and holding the propagated ANAMMOX bacteria to high concentration in the system, in performing the biological denitrification of raw water containing ammonia nitrogen and nitrous nitrogen by the ANAMMOX bacteria being autotrophic denitrifying bacteria using ammonia nitrogen as an electron doner and nitrous nitrogen as an electron acceptor. SOLUTION: The denitrified treated liquid of a denitrification tank 1 holding the ANAMMOX bacteria is subjected to membrane separation in a membrane separator 3 to obtain treated water. Both of or either one of the concentration of ammonia nitrogen and the concentration of nitrous nitrogen in the denitrified treated liquid separated in the membrane separator 3 is set to 0-3 mg/l.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
と亜硝酸性窒素を含有する原水を、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする独立
栄養性脱窒微生物の作用で生物脱窒する脱窒装置及び脱
窒方法に関する。
TECHNICAL FIELD The present invention relates to an autotrophic denitrifying microorganism in which raw water containing ammoniacal nitrogen and nitrite nitrogen is used as an electron donor for ammoniacal nitrogen and an electron acceptor for nitrite nitrogen. The present invention relates to a denitrification device and a denitrification method for biological denitrification by the action of

【0002】[0002]

【従来の技術】従来、水中の窒素除去方法として、硝化
細菌によりアンモニア性窒素を亜硝酸性窒素や硝酸性窒
素に酸化し、次にメタノール等の電子供与体を添加しつ
つ脱窒細菌により亜硝酸性窒素や硝酸性窒素を窒素ガス
に還元して、水中から窒素を除去する方法が知られてい
る。
2. Description of the Related Art Conventionally, as a method for removing nitrogen in water, nitrifying bacteria oxidize ammoniacal nitrogen to nitrite nitrogen or nitrate nitrogen, and then denitrifying bacteria by adding an electron donor such as methanol. A method is known in which nitrate nitrogen or nitrate nitrogen is reduced to nitrogen gas to remove nitrogen from water.

【0003】この方法はアンモニア性窒素を窒素ガスに
酸化するために必要な酸化力よりも過剰の酸素を必要と
するため、酸素を多く必要とし、この酸素を微生物に供
給するためのエネルギーコストが高くつく。また、脱窒
反応のために電子供与体としてメタノール等の有機物を
添加するためのコストがかかり、またこの有機物を摂取
して増殖した脱窒細菌が余剰汚泥となるため、廃棄物の
処分コストも高くつくという問題がある。特に、硝酸性
窒素は亜硝酸性窒素に比べてより酸化された状態にある
ため、このための酸素供給コストも高く、また、これを
還元するための電子供与体もより多く必要であり、発生
する余剰汚泥量も多い。
This method requires more oxygen than the oxidizing power required to oxidize ammoniacal nitrogen to nitrogen gas, and thus requires a large amount of oxygen, and the energy cost for supplying this oxygen to microorganisms is high. Expensive. In addition, there is a cost to add an organic substance such as methanol as an electron donor for the denitrification reaction, and denitrifying bacteria that ingested this organic substance and proliferated become excess sludge, so that the disposal cost of the waste is also increased. There is a problem of being expensive. In particular, nitrate nitrogen is in a more oxidized state as compared with nitrite nitrogen, so the cost of oxygen supply for this is also high, and more electron donors are needed to reduce it. There is also a large amount of excess sludge.

【0004】これに対して、近年、無酸素条件下でアン
モニア性窒素を電子供与体、亜硝酸性窒素を電子受容体
として両者を反応させ、窒素ガスを生成することができ
る独立栄養性の脱窒微生物群を利用した脱窒方法が知ら
れるようになった(Microbiology 142(1996), p2187-21
96等)。以下ではこの反応をANAMMOX反応と呼
び、この独立栄養性脱窒微生物群をANAMMOX菌と
呼ぶ。この方法によれば、亜硝酸性窒素の持つ酸化力を
利用してアンモニア性窒素を酸化することができるた
め、理論量と同程度の酸素消費量で窒素除去を行うこと
ができ、エネルギーを節約することができる。また、メ
タノール等の有機物を添加する必要がないため、そのた
めのコストも節約できる。この微生物は独立栄養細菌で
あり、有機物を利用して脱窒を行う細菌に比べると、還
元する亜硝酸性窒素当たりに発生する余剰汚泥量が5分
の1以下であり、廃棄物の発生量を大幅に低減すること
ができるという利点もある。
On the other hand, in recent years, under anoxic conditions, ammonia nitrogen is used as an electron donor and nitrite nitrogen is used as an electron acceptor to react them with each other to produce nitrogen gas. A denitrification method using nitrifying microorganisms has become known (Microbiology 142 (1996), p2187-21.
96 etc.). Hereinafter, this reaction is referred to as an ANAMMOX reaction, and this autotrophic denitrifying microorganism group is referred to as an ANAMMOX bacterium. According to this method, it is possible to oxidize ammoniacal nitrogen using the oxidizing power of nitrite nitrogen, so nitrogen can be removed with the same amount of oxygen consumption as the theoretical amount, thus saving energy. can do. Further, since it is not necessary to add an organic substance such as methanol, the cost for that can be saved. This microorganism is an autotrophic bacterium. Compared with bacteria that denitrify using organic matter, the amount of excess sludge generated per reducing nitrite nitrogen is one-fifth or less, and the amount of waste generated There is also an advantage that can be significantly reduced.

【0005】この脱窒反応を行う際に、亜硝酸性窒素は
排水中のアンモニア性窒素の一部を酸化することにより
生成させても良く、また、亜硝酸性窒素を含む他の排水
を混合しても良い。
When carrying out this denitrification reaction, nitrite nitrogen may be generated by oxidizing a part of the ammoniacal nitrogen in the wastewater, or by mixing with other wastewater containing nitrite nitrogen. You may.

【0006】ANAMMOX菌による生物脱窒槽の形式
としては、砂や合成樹脂、ゲルなどの微生物の付着に適
した担体を充填したカラムに上向流で原水を通水し、担
体表面で窒素化合物と微生物を接触させて脱窒反応を進
行させる方式が用いられる。この場合、担体としては比
表面積が大きいものが好適であり、特に粒径0.1〜1
0mm程度の顆粒状、ひも状、筒状、歯車状などの形状
が知られている。担体は水中で緩やかに流動しているこ
とが好ましく、脱窒により発生するガスや、外部から注
入するガス、撹拌機などにより流動される。
As a form of a biological denitrification tank using ANAMMOX bacteria, raw water is passed upward through a column packed with a carrier suitable for adhering microorganisms such as sand, synthetic resin and gel, and nitrogen compounds are formed on the surface of the carrier. A method is used in which microorganisms are brought into contact with each other to progress the denitrification reaction. In this case, a carrier having a large specific surface area is preferable, and a particle size of 0.1 to 1 is particularly preferable.
Shapes of about 0 mm, such as granules, strings, cylinders, and gears, are known. The carrier is preferably gently flowing in water, and is made to flow by a gas generated by denitrification, a gas injected from the outside, a stirrer, or the like.

【0007】一方、活性汚泥を用いて排水中の有機物や
窒素を除去し、この活性汚泥処理液からSSを殆ど含ま
ない処理水を取り出し、濃縮された微生物を反応槽に返
送するための手段の一つとして、膜分離法が知られてい
る。この方法は微生物と処理水との分離に精密濾過(M
F)膜や限外濾過(UF)膜を用いるもので、SSが0
〜2mg/L程度の清澄な処理水を取り出すことができ
るという利点を有する。また、反応槽内の微生物濃度を
通常5,000〜35,000mg/Lに高めて運転す
ることができるために、反応槽容積当りの負荷を大きく
取ることができるという利点もある。
On the other hand, the activated sludge is used to remove organic matter and nitrogen in the wastewater, the treated water containing almost no SS is taken out from the treated solution of the activated sludge, and the concentrated microorganisms are returned to the reaction tank. As one of them, a membrane separation method is known. This method uses microfiltration (M
F) or ultrafiltration (UF) membrane is used, SS is 0
It has the advantage that about 2 mg / L of clear treated water can be taken out. Further, since the microorganism concentration in the reaction tank can be usually increased to 5,000 to 35,000 mg / L for operation, there is also an advantage that a large load per reaction tank volume can be taken.

【0008】膜分離法をBOD除去に採用した場合の反
応槽の容積負荷は、通常0.5〜2kg−BOD/m
/dayであり、硝化・脱窒法に採用した場合の硝化負
荷は0.1〜0.5kg−N/m/day、脱窒負荷
は0.1〜1.0kg−N/m/dayの範囲がよく
用いられる。また、反応槽内の汚泥の滞留時間(SR
T)は、負荷にもよるが、通常5〜100日、特に10
〜50日程度が採用される。
When the membrane separation method is adopted for BOD removal, the volumetric load of the reaction tank is usually 0.5 to 2 kg-BOD / m 3
/ Day, the nitrification load when adopted in the nitrification / denitrification method is 0.1 to 0.5 kg-N / m 3 / day, and the denitrification load is 0.1 to 1.0 kg-N / m 3 / day. The range of is often used. Also, the retention time of the sludge in the reaction tank (SR
T) is usually 5 to 100 days, especially 10 depending on the load.
~ 50 days is adopted.

【0009】この場合、膜面の目詰まりを防止するため
に、通常膜面と平行な方向に5〜400cm/sec程
度の水流(クロスフロー)を与えることで、膜面に濃縮
される懸濁物質を拡散させ、連続的に濾過を行う。クロ
スフローを与えるための手段は、ポンプによるもの、曝
気により生起される水流を利用するもの、膜自身を移動
例えば回転させて相対的な水流を生じさせるもの等が知
られている。膜濾過の駆動力となる膜間差圧(以下「濾
過差圧」とも呼ぶ)を得るには、ポンプにより生起され
る正圧や負圧を利用したり、水頭差を利用したり、また
はその両方が利用される。
[0009] In this case, in order to prevent clogging of the membrane surface, the suspension concentrated on the membrane surface is usually provided by applying a water flow (cross flow) of about 5 to 400 cm / sec in a direction parallel to the membrane surface. The material is diffused and continuously filtered. As means for giving a cross flow, there are known a pump, a method of utilizing a water flow generated by aeration, a means of moving, for example, rotating the membrane itself to generate a relative water flow. In order to obtain the transmembrane pressure difference (hereinafter also referred to as “filtration pressure difference”) that is the driving force for membrane filtration, the positive pressure or the negative pressure generated by the pump is used, the head difference is used, or Both are used.

【0010】膜の種類によっては定期的に洗浄水又は空
気などのガスを逆流させることで膜面に付着した汚泥を
剥離する逆洗操作が行われる。また、膜濾過を継続する
ことで、クロスフローや逆洗では剥離しきれない膜汚染
が生じ、濾過抵抗が大きくなり、濾過差圧が増大するか
膜フラックス(透過流束)が低下して所定水量を得られ
なくなる。この場合には、スポンジボールやスプレーな
どで膜面の汚染物を物理的に剥離させる物理洗浄が行わ
れたり、苛性ソーダなどのアルカリや硫酸、蓚酸、クエ
ン酸などの酸、又は次亜塩素酸ソーダや過酸化水素水な
どの酸化剤を用いて膜面の汚染物質を溶解したり分解し
つつ除去する薬品洗浄が行われる。このような物理洗浄
又は薬品洗浄は通常2〜10ヶ月に1回程度の頻度で行
われる。
[0010] Depending on the type of membrane, a backwashing operation is carried out in which the sludge adhering to the membrane surface is peeled off by periodically backwashing a gas such as washing water or air. In addition, by continuing membrane filtration, membrane contamination that cannot be completely removed by crossflow or backwash occurs, filtration resistance increases, filtration differential pressure increases or membrane flux (permeation flux) decreases, and You cannot get the amount of water. In this case, physical cleaning is performed to physically remove contaminants on the film surface with a sponge ball or spray, or an alkali such as caustic soda, an acid such as sulfuric acid, oxalic acid, citric acid, or sodium hypochlorite. Chemical cleaning is performed to remove contaminants by dissolving or decomposing the contaminants on the film surface using an oxidizing agent such as hydrogen peroxide solution. Such physical cleaning or chemical cleaning is usually performed about once every 2 to 10 months.

【0011】膜汚染の原因は、膜面に付着した汚泥が脱
水ケーキ状になって強固に付着するケーク汚染や、原水
から流入したり微生物が産出する高分子有機物のうち、
膜を透過しないものが膜面に濃縮されてゲル化するゲル
汚染や、膜面で微生物がスライム状に成長することによ
るスライム汚染などである。
The cause of membrane contamination is cake contamination in which sludge attached to the membrane surface becomes a dehydrated cake and adheres firmly, and high molecular weight organic matter that flows in from raw water or is produced by microorganisms.
Those that do not pass through the membrane are gel contamination in which the membrane surface is concentrated and gelled, and slime contamination due to the growth of microorganisms in the form of slime on the membrane surface.

【0012】また、分離膜は2〜10年程度で劣化して
所定の性能を発揮しなくなるために、定期的に交換する
必要がある。
Further, since the separation membrane deteriorates in about 2 to 10 years and does not exhibit a predetermined performance, it needs to be replaced regularly.

【0013】ところで、ANAMMOX菌の比増殖速度
は、最大で約0.065day−1(1日当り1.06
5倍に増殖)と遅く、多量の菌体を確保することが非常
に困難である。一方で自然界に存在するANAMMOX
菌の量は非常に少ないため、ANAMMOX菌を利用し
た脱窒装置を立ち上げるためには、まず菌体を十分に増
殖させる必要があり、このためにはANAMMOX菌を
理想的な環境において最大増殖速度付近で増殖させ、な
おかつ増殖したANAMMOX菌を効率良く系内に留め
る必要がある。
By the way, the maximum specific growth rate of ANAMMOX is about 0.065 day -1 (1.06 per day).
It grows 5 times slower and it is very difficult to secure a large amount of bacterial cells. On the other hand, ANAMMOX that exists in the natural world
Since the amount of bacteria is very small, it is necessary to sufficiently grow the bacterial cells in order to start up the denitrification device using the ANAMMOX bacteria. For this purpose, the ANAMMOX bacteria can be grown to the maximum in an ideal environment. It is necessary to allow the ANAMMOX bacterium, which has grown near the speed and has grown, to remain in the system efficiently.

【0014】ANAMMOX菌を最大速度で増殖させる
ためには、アンモニア性窒素、亜硝酸性窒素、炭酸根等
のこの菌の基質となる物質を十分に供給する必要がある
が、担体に付着させて増殖させた場合には、付着した生
物膜の内側まで基質を浸透させることが難しく、従って
最大速度よりも遅い速度で増殖させることになり、効率
が悪い。また、生物膜の内側深くまで基質を浸透させる
ためには液中の基質濃度を高く保つ必要があるが、一方
で、基質、特に亜硝酸性窒素が高濃度に存在するとAN
AMMOX菌が阻害を受け、増殖しなくなったり死滅し
たりして逆効果となる問題もある。また、実際の脱窒装
置として稼動させる場合に、担体表面でANAMMOX
菌が十分増殖するまでには最大負荷をかけられないた
め、立ち上がりが遅い。これを回避するために予めAN
AMMOX菌が十分に付着した担体を脱窒槽に投入する
ことも可能であるが、このためには稼動させる脱窒装置
と同等の大きさの反応槽で、予めANAMMOX菌を培
養しておく必要があり、培養装置のコストがかかり、設
置スペースも必要となる。また、培養したANAMMO
X菌の運搬費用もかさむ。
In order to grow the ANAMMOX bacterium at the maximum rate, it is necessary to sufficiently supply substances such as ammoniacal nitrogen, nitrite nitrogen, and carbonate radicals, which are substrates for this bacterium, but they must be attached to a carrier. When grown, it is difficult to penetrate the substrate to the inside of the attached biofilm, and thus the growth rate is slower than the maximum rate, which is inefficient. Further, in order to penetrate the substrate deep inside the biofilm, it is necessary to maintain the substrate concentration in the liquid at a high level. On the other hand, if the substrate, especially nitrite nitrogen, is present at a high concentration, AN
There is also a problem that the AMMOX bacterium is inhibited, and it does not proliferate or is killed, which has the opposite effect. Also, when operating as an actual denitrification device, the ANAMMOX on the carrier surface
Since the maximum load cannot be applied until the bacteria grow sufficiently, the start-up is slow. In order to avoid this
It is possible to add a carrier with sufficient adherence of AMMOX bacteria to the denitrification tank, but for this purpose, it is necessary to pre-culture ANAMMOX bacteria in a reaction tank of the same size as the denitrification device to be operated. Therefore, the cost of the culture device is high and the installation space is required. In addition, cultured ANAMMO
The cost of transporting X bacteria is also high.

【0015】更に担体表面でANAMMOX菌を増殖さ
せる際の問題点として、担体表面のANAMMOX菌の
一部は常に液中へ剥離し、処理水へ流出しているという
ことがある。特に、最終的には担体表面はANAMMO
X菌で飽和し、増殖するANAMMOX菌量と剥離する
ANAMMOX菌量はバランスすることとなるため、A
NAMMOX菌の付着量が増加するほど、剥離量も増加
し、ANAMMOX菌の増殖及びそれに伴う脱窒能力の
増加率は見掛け上、上述の0.065day よりも
低くなる。実際、本発明者がプラスチック製の担体や、
メタン生成細菌を主体としたグラニュールにANAMM
OX菌を付着させて増殖を試みたところ、増殖したAN
AMMOX菌が系内に留まる割合は10〜75%であ
り、ANAMMOX菌の増殖と共に系外へ流出する菌量
が増加した。
Further, a problem in growing the ANAMMOX bacteria on the surface of the carrier is that a part of the ANAMMOX bacteria on the surface of the carrier is always exfoliated into the liquid and flows out to the treated water. Especially, finally, the surface of the carrier is ANAMMO.
Saturated with X bacteria, the amount of ANAMMOX bacteria that grows and the amount of ANAMMOX bacteria that exfoliate will be balanced.
As the amount of adhered NAMMOX bacteria increases, the amount of peeling also increases, and the growth rate of the ANAMMOX bacteria and the accompanying increase in denitrification capacity are apparently lower than the above-mentioned 0.065day - 1 . In fact, the inventor
Granules mainly composed of methanogenic bacteria
An attempt was made to grow by attaching OX bacteria to the grown AN.
The proportion of AMMOX bacteria remaining in the system was 10 to 75%, and the amount of bacteria flowing out of the system increased with the growth of ANAMMOX bacteria.

【0016】本発明者は、このような、担体を用いてA
NAMMOX菌を増殖させる場合の問題を解決するため
に検討した結果、ANAMMOX菌を懸濁状態で増殖さ
せて利用することも可能であることを知見した。この場
合には、菌体は粒径0.1mm以下の比較的小さなフロ
ックを形成しているため、基質の浸透が律速となって増
殖が妨げられることはなく、容易に最大能力を発揮して
脱窒を行うことができる。また、このようにして増殖し
た菌体は時間をかけて沈降させたり、機械的濃縮手段を
用いることにより、高濃度に濃縮して運転することがで
きるため、装置を立ち上げる際のANAMMOX菌の供
給も容易である。
The present inventor uses the carrier as described above to
As a result of studies to solve the problem in the case of growing NAMMOX bacteria, it was found that it is also possible to grow and use ANAMMOX bacteria in suspension. In this case, since the bacterial cells form relatively small flocs with a particle size of 0.1 mm or less, the permeation of the substrate does not limit the growth and the growth is not hindered. Denitrification can be performed. In addition, the bacterial cells thus grown can be concentrated to a high concentration for operation by precipitating them over time or by using a mechanical concentrating means. Supply is also easy.

【0017】このようにANAMMOX菌を懸濁状態で
増殖させ、窒素除去を行わせるためには、反応を終えた
後の菌体を処理水から分離し、濃縮された菌体を再び反
応槽へ戻す必要がある。このための分離・濃縮手段とし
ては、活性汚泥の場合と同様に、沈殿、遠心濃縮、濾
過、加圧浮上濃縮等が考えられるが、最も安価で操作も
簡単なのが沈殿による方法である。
As described above, in order to grow the ANAMMOX bacteria in suspension and remove nitrogen, the cells after the reaction are separated from the treated water, and the concentrated cells are transferred to the reaction tank again. Need to bring back. As the separation / concentration means for this purpose, precipitation, centrifugal concentration, filtration, pressure floating concentration, etc. can be considered as in the case of activated sludge, but the method by precipitation is the cheapest and the operation is simple.

【0018】図6は、ANAMMOX菌の分離に沈殿槽
を用いた脱窒装置を示す。この脱窒装置は脱窒槽1と沈
殿槽2とで主に構成され、脱窒槽1には撹拌機1Mが設
けられ、沈殿槽2には脱窒処理液が流入するフィードウ
ェル2Fと集泥用のレーキ2Mが設けられている。これ
ら脱窒槽1及び沈殿槽2は密閉構造とされており、各槽
1,2から脱窒ガスを排出する脱窒ガス排出管15A,
15B及び15が設けられている。
FIG. 6 shows a denitrification device using a settling tank for the separation of ANAMMOX bacteria. This denitrification device is mainly composed of a denitrification tank 1 and a sedimentation tank 2. The denitrification tank 1 is provided with a stirrer 1M, and the sedimentation tank 2 has a feed well 2F into which a denitrification treatment liquid flows and a mud collecting unit. Rake 2M is provided. The denitrification tank 1 and the precipitation tank 2 have a closed structure, and a denitrification gas discharge pipe 15A for discharging the denitrification gas from each of the tanks 1 and 2,
15B and 15 are provided.

【0019】原水は原水流入管11より脱窒槽1に導入
され、脱窒処理された後、連通管12より沈殿槽2に移
送されて沈殿分離される。沈殿槽2で分離された分離液
は処理水流出管13より処理水として系外へ排出され、
分離汚泥はポンプPを備える汚泥返送管14により脱窒
槽1に返送される。
Raw water is introduced into the denitrification tank 1 through a raw water inflow pipe 11, is subjected to denitrification treatment, and is then transferred to a settling tank 2 through a communication pipe 12 for precipitation separation. The separated liquid separated in the settling tank 2 is discharged out of the system as treated water through the treated water outflow pipe 13.
The separated sludge is returned to the denitrification tank 1 by a sludge return pipe 14 equipped with a pump P.

【0020】脱窒槽1は、アンモニア性窒素負荷が例え
ば0.1〜2kg−N/m/dayとなるように容積
が決定される。また、沈殿槽2は流入原水量に対して水
面積負荷が例えば1〜20m/dayとなるように面積
が決定される。
The volume of the denitrification tank 1 is determined so that the ammonia nitrogen load is, for example, 0.1 to 2 kg-N / m 3 / day. The area of the settling tank 2 is determined so that the water area load is, for example, 1 to 20 m / day with respect to the inflowing raw water amount.

【0021】[0021]

【発明が解決しようとする課題】しかし、本発明者が沈
殿によりANAMMOX菌を含むフロックの分離を試み
たところ、一部は沈殿したが、一部は浮上したために、
うまく分離を行えず、このため、ANAMMOX菌を系
内に高濃度に保持できず、脱窒槽の性能を高く維持し得
ないという問題が生じた。また、良好に分離が行える場
合であっても、見掛け上の比増殖速度は0.035〜
0.055day−1となり、増殖したANAMMOX
菌が系内に留まる割合は55〜85%であった。
However, when the present inventor attempted to separate flocs containing ANAMMOX bacteria by precipitation, part of them precipitated, but part of them floated, and
Since the separation could not be performed well, the ANAMMOX bacteria could not be maintained at a high concentration in the system, and the performance of the denitrification tank could not be maintained high. In addition, the apparent specific growth rate is 0.035 to 50 even if good separation can be achieved.
0.055 day -1 and propagated ANAMMOX
The proportion of the bacteria remaining in the system was 55 to 85%.

【0022】ところで、ANAMMOX菌は亜硝酸性窒
素が高濃度に存在すると阻害されて活性を失う。この阻
害が始まる濃度は50〜200mg/Lであり、高濃度
であるほど阻害は激しくなる。このような亜硝酸性窒素
による阻害を受けた場合や、適正なpH範囲である6〜
9のpH範囲をはずれた場合、溶存酸素を含む水に触れ
た場合など、菌の生育に不適となる条件下では、生物膜
方式であればANAMMOX菌は剥離して流出しやすく
なり、また沈殿槽では通常よりも処理水への流出量が増
大する。一方、このような阻害環境から回復させるため
には、阻害の原因をできるだけ早く取り除くことが重要
であり、そのためには亜硝酸性窒素が200mg/L以
下、好ましくは50mg/L以下でpH6〜9、好まし
くは6.5〜8.5、溶存酸素0〜0.1mg/L、好
ましくは0〜0.05mg/Lの水でANAMMOX反
応槽内を置換し、ANAMMOX菌が阻害を受けない環
境とすることが望ましい。
By the way, the anammox bacterium loses its activity when nitrite nitrogen is present at a high concentration and is inhibited. The concentration at which this inhibition starts is 50 to 200 mg / L, and the higher the concentration, the more severe the inhibition. In the case of being hindered by such nitrite nitrogen, or in an appropriate pH range of 6 to
Under conditions that are unsuitable for the growth of bacteria, such as when the pH value is out of the range of 9 or when water containing dissolved oxygen is touched, the biofilm method makes it easy for ANAMMOX to peel off and precipitate. In the tank, the amount of outflow to treated water is higher than usual. On the other hand, in order to recover from such an inhibitory environment, it is important to remove the cause of inhibition as soon as possible, and for that purpose, the nitrite nitrogen is 200 mg / L or less, preferably 50 mg / L or less and the pH is 6 to 9 , Preferably 6.5 to 8.5, dissolved oxygen 0 to 0.1 mg / L, preferably 0 to 0.05 mg / L water is used to replace the inside of the ANAMMOX reaction tank, and an environment where ANAMMOX bacteria are not inhibited It is desirable to do.

【0023】しかし、従来の生物膜を利用した方法や沈
殿分離を利用した方法では、阻害を受けると同時に微生
物と処理水との分離が困難になるため、上述のような阻
害作用の無い水で置換しようとすると、ANAMMOX
菌が同時に流出してしまうため、速やかにANAMMO
X反応槽内の阻害物質を取り除けないという欠点があっ
た。
However, in the conventional method using a biofilm or the method using precipitation separation, since it is difficult to separate the microorganism from the treated water at the same time as the inhibition, water having no inhibitory effect as described above is used. Trying to replace it, ANAMMOX
Since bacteria will flow out at the same time, promptly ANAMMO
There is a drawback that the inhibitor in the X reaction tank cannot be removed.

【0024】本発明は、このような問題を解決し、AN
AMMOX菌を懸濁状態で増殖させて生物脱窒を行い、
脱窒処理液からANAMMOX菌を効率的に分離して、
系内にANAMMOX菌を高濃度に保持することにより
効率的な生物脱窒を行うことができ、また、阻害物質が
系内に蓄積した場合でもこれを速やかに取り除くことが
できる脱窒装置及び脱窒方法を提供することを目的とす
る。
The present invention solves such a problem, and
AMMOX bacteria are grown in suspension to perform biological denitrification,
Efficiently isolate the ANAMMOX bacteria from the denitrification treatment liquid,
A denitrification device and a denitrification device that can perform efficient biological denitrification by maintaining a high concentration of ANAMMOX bacteria in the system, and can quickly remove the inhibitor even if it accumulates in the system The purpose is to provide a method of nitrification.

【0025】[0025]

【課題を解決するための手段】本発明の脱窒装置は、ア
ンモニア性窒素を含有する原水の流入口と処理液の流出
口とを有し、アンモニア性窒素を電子供与体とし、亜硝
酸性窒素を電子受容体とする脱窒微生物の作用により亜
硝酸性窒素の存在下に生物脱窒する脱窒槽と、該脱窒槽
の流出液又は該脱窒槽内の液を膜分離して前記脱窒微生
物と処理水とに分離する膜分離手段とを備えることを特
徴とする。
A denitrification apparatus of the present invention has an inlet for raw water containing ammoniacal nitrogen and an outlet for a treatment liquid, and uses ammoniacal nitrogen as an electron donor and nitrite A denitrification tank that biologically denitrifies in the presence of nitrite nitrogen by the action of a denitrifying microorganism that uses nitrogen as an electron acceptor, and the effluent of the denitrification tank or the liquid in the denitrification tank is membrane-separated to perform the denitrification. It is characterized by comprising a membrane separation means for separating microorganisms and treated water.

【0026】本発明の脱窒方法は、アンモニア性窒素を
含有する原水を、アンモニア性窒素を電子供与体とし、
亜硝酸性窒素を電子受容体とする脱窒微生物の作用によ
り亜硝酸性窒素の存在下に生物脱窒する脱窒工程と、該
脱窒工程の処理液を膜分離して前記脱窒微生物を含む汚
泥と処理水とに分離する膜分離工程とを有する脱窒方法
において前記膜分離工程で分離する脱窒工程の処理液中
のアンモニア性窒素濃度と亜硝酸性窒素濃度の両方又は
いずれか一方を0〜5mg/Lとすることを特徴とす
る。
The denitrification method of the present invention uses raw water containing ammoniacal nitrogen as an electron donor with ammoniacal nitrogen,
A denitrification step of biologically denitrifying in the presence of nitrite nitrogen by the action of a denitrifying microorganism having nitrite nitrogen as an electron acceptor, and a treatment liquid of the denitrifying step is subjected to membrane separation to remove the denitrifying microorganism. In a denitrification method having a membrane separation step of separating into sludge containing water and treated water, either or both of the concentration of ammonia nitrogen and the concentration of nitrite nitrogen in the treatment liquid of the denitrification step of separating in the membrane separation step Is 0 to 5 mg / L.

【0027】本発明者は、ANAMMOX菌を脱窒処理
液から効率的に分離すべく検討を重ね、ANAMMOX
菌を含むフロックの分離に膜分離手段を用いたところ、
SSの流出は全く無くなり、比増殖速度として0.06
0〜0.065day−1という理想的な値が得られ、
また増殖したANAMMOX菌が系内に留まる割合は9
5%以上となることから、ANAMMOX菌を効率良く
増殖させるには膜分離手段を用いるのが最適であること
を見出し、本発明の脱窒装置に到達した。
The present inventor has repeatedly studied to efficiently separate the ANAMMOX bacteria from the denitrification treatment liquid, and
When using a membrane separation means to separate flocs containing bacteria,
Outflow of SS completely disappeared, and specific growth rate was 0.06
An ideal value of 0 to 0.065 day -1 is obtained,
In addition, the ratio of the propagated ANAMMOX bacteria in the system is 9
Since it is 5% or more, it has been found that it is optimal to use a membrane separation means to efficiently grow the ANAMMOX bacteria, and the present invention has arrived at the denitrification device of the present invention.

【0028】即ち、沈殿槽を用いてANAMMOX菌を
固液分離した場合に、ANAMMOX菌の一部が処理水
中に流出してしまい、効果的にANAMMOX菌量を増
加させることができない理由は、ANAMMOX菌のフ
ロック形成能力が弱いためであり、フロックに取り込ま
れていない分散状の菌体の沈降速度が遅いために沈降分
離が困難であったと考えられる。
That is, when solid-liquid separation of ANAMMOX bacteria is carried out using a settling tank, a part of ANAMMOX bacteria flows out into the treated water, and the reason why the amount of ANAMMOX bacteria cannot be effectively increased is that ANAMMOX bacteria. It is considered that the flocculation ability of the bacteria was weak, and the sedimentation separation was difficult because the dispersed cells that were not incorporated into the flocs had a slow sedimentation rate.

【0029】一方、フロック形成能力が弱いことは、菌
体外へのコロイド様物質の分泌が少ないためであると推
察された。そこで、本発明者はANAMMOX菌のこの
ような特性を利用することにより、活性汚泥等の膜分離
の際に問題となる高分子コロイド物質由来のゲル汚染
を、ANAMMOX菌の場合には低減でき、安定した膜
濾過を行えると考えた。
On the other hand, the weak floc forming ability was presumed to be due to the small amount of colloid-like substances secreted out of the cells. Therefore, the present inventor can reduce gel contamination derived from a polymer colloidal substance, which is a problem in membrane separation of activated sludge and the like, in the case of ANAMMOX bacteria by utilizing such characteristics of ANAMMOX bacteria, We thought that stable membrane filtration could be performed.

【0030】実際にANAMMOX菌の固液分離に膜分
離手段を用いて運転し、菌体外に産出されるコロイド物
質のうち膜分離により阻止される物質の量を、槽内液を
遠心分離した上澄み液と膜透過水とのTOC濃度の差で
評価したところ、この値は5mg/L以下になっている
ことがわかり、コロイド様物質の産出がわずかであるこ
とが確認された。通常の活性汚泥に膜分離法を適用した
場合、この値は20〜300mg/L程度であり、特に
100mg/L以上の時に膜面でのゲル汚染が激しく生
じる。
In practice, the membrane separation means was used for solid-liquid separation of ANAMMOX bacterium, and the amount of the substance, which was blocked by the membrane separation, of the colloidal substances produced outside the cells was centrifuged. When the difference in TOC concentration between the supernatant and the membrane-permeated water was evaluated, it was found that this value was 5 mg / L or less, and it was confirmed that the production of colloid-like substances was slight. When the membrane separation method is applied to ordinary activated sludge, this value is about 20 to 300 mg / L, and particularly when it is 100 mg / L or more, gel contamination on the membrane surface occurs violently.

【0031】また、膜分離手段であれば、ANAMMO
X菌が失活するなどの原因により、沈降性が極度に悪化
した場合でも、ANAMMOX菌を流出させることなく
速やかに処理水のみを排出することができる。このた
め、阻害物質が槽内に蓄積した場合にも、阻害作用を持
たない水を供給する手段を設けて膜分離手段と共に稼動
させることにより、系内の阻害物質を迅速に洗い出し、
ANAMMOX反応槽内を速やかに阻害のない環境に戻
すことができる。
Further, if it is a membrane separation means, ANAMMO
Even when the sedimentation property is extremely deteriorated due to the inactivation of X bacteria, it is possible to quickly discharge only the treated water without causing the ANAMMOX bacteria to flow out. Therefore, even when the inhibitor accumulates in the tank, by providing a means for supplying water having no inhibitory effect and operating it together with the membrane separating means, the inhibitor in the system can be quickly washed out,
The inside of the ANAMMOX reaction tank can be quickly returned to a non-inhibitory environment.

【0032】しかし、膜分離手段を用いた場合、運転を
継続するに従って、膜面に付着物の存在が認められるよ
うになった。この付着物はANAMMOX菌と同様の赤
色を呈していたことから、浮遊しているANAMMOX
菌が膜面に濃縮されてケーク化したか、或いは膜面でA
NAMMOX菌がスライム状に増殖したものと推定され
た。
However, when the membrane separating means was used, the presence of deposits on the membrane surface was observed as the operation was continued. Since this adherent had a red color similar to that of ANAMMOX bacteria, the suspended ANAMMOX
Bacteria were concentrated on the surface of the film and caked, or A on the surface of the film
It was estimated that NAMMOX bacteria grew in a slime form.

【0033】一方で、濾過差圧は急速な上昇を見せたた
め、安定した膜濾過を行うためには2〜4週間に1回の
頻度で薬品洗浄を行う必要が生じた。
On the other hand, since the filtration pressure difference showed a rapid rise, it was necessary to perform chemical cleaning once every 2 to 4 weeks in order to perform stable membrane filtration.

【0034】しかし、このように頻繁に薬品洗浄を行う
ことは、手間とコストがかかるだけでなく、膜の劣化を
早め、膜交換コストの増大を招く。即ち、膜が劣化する
主要因の一つは洗浄薬液と接触することによる化学反応
であり、洗浄頻度が増加すればするほど膜の寿命は短く
なる。また、薬品洗浄頻度の増加は、膜洗浄で発生する
廃薬品の処理においても問題である。この廃薬品は膜面
から溶解した有機物を多量に含んでおり、また次亜塩素
酸ソーダなどの酸化剤が残留している。また、蓚酸、ク
エン酸等の酸は有機物そのものである。
However, such frequent chemical cleaning not only takes time and cost, but also accelerates the deterioration of the membrane and increases the membrane replacement cost. That is, one of the main causes of deterioration of the film is a chemical reaction caused by contact with the cleaning chemical liquid, and the life of the film becomes shorter as the cleaning frequency increases. Further, the increase in the frequency of chemical cleaning also poses a problem in the treatment of waste chemicals generated in membrane cleaning. This waste chemical contains a large amount of dissolved organic matter from the film surface, and an oxidizing agent such as sodium hypochlorite remains. Acids such as oxalic acid and citric acid are organic substances themselves.

【0035】活性汚泥に対して膜濾過手段を適用した場
合には、これらの廃薬品は活性汚泥で処理することが容
易であった。即ち、膜面から溶出した有機物や蓚酸、ク
エン酸等の有機酸は、活性汚泥の有機物除去能力によっ
て容易に除去することができ、また、次亜塩素酸ソーダ
などの酸化剤も活性汚泥に投入すれば、一部の菌体と反
応して容易にその酸化力を失い中和される。しかし、A
NAMMOX菌は有機物の除去能力を持たないために廃
薬品を処理することができないだけでなく、仮にこのよ
うな多量の有機物を投入すればANAMMOX菌に阻害
作用を示し、脱窒能力を失わせる。また、次亜塩素酸ソ
ーダのような酸化剤もANAMMOX菌に対して強力な
阻害作用を示す。ANAMMOX菌を殺菌することで次
亜塩素酸ソーダの酸化力は失われるが、活性汚泥と異な
りANAMMOX菌は増殖に多大の時間を要するため
に、次亜塩素酸ソーダにより失活したANAMMOX菌
の活性は容易に回復されない。このように、ANAMM
OX菌の膜分離では、膜の薬品洗浄で発生した廃薬品
は、活性汚泥の場合のように系内で処理をすることがで
きず、系外に排出して廃棄処理を行う必要があるため、
一層の手間とコストがかかるという問題がある。
When the membrane filtration means was applied to the activated sludge, it was easy to treat these waste chemicals with the activated sludge. That is, organic substances such as oxalic acid and citric acid eluted from the membrane surface can be easily removed by the organic matter removal ability of the activated sludge, and an oxidizing agent such as sodium hypochlorite is also added to the activated sludge. If so, it reacts with a part of the bacterial cells, easily loses its oxidizing power and is neutralized. However, A
Since NAMMOX bacteria do not have the ability to remove organic substances, they cannot process waste chemicals, and if such a large amount of organic substances are added, they will exert an inhibitory effect on ANAMMOX bacteria and lose their denitrifying ability. Further, an oxidizing agent such as sodium hypochlorite also has a strong inhibitory effect on ANAMMOX bacteria. The oxidative power of sodium hypochlorite is lost by sterilizing ANAMMOX bacteria, but unlike activated sludge, since ANAMMOX bacteria take a long time to grow, the activity of ANAMOX bacteria inactivated by sodium hypochlorite is low. Is not easily recovered. Thus, ANAMM
In the membrane separation of OX bacteria, the waste chemical generated by the chemical cleaning of the membrane cannot be treated in the system like in the case of activated sludge, and it is necessary to discharge it to the outside of the system for disposal. ,
There is a problem that it takes more labor and cost.

【0036】また、膜分離装置は高価であるために、こ
れを採用することはコスト的な観点からは有利とは言え
ないが、これに加えて更に上述のように頻繁な薬品洗浄
の手間とコスト、高い膜交換コストを考慮すると、AN
AMMOX菌を利用することによるコスト削減効果は低
いものとなる。
Further, since the membrane separation device is expensive, it cannot be said that it is advantageous from the viewpoint of cost, but in addition to this, as described above, the frequent labor of chemical cleaning and Considering cost and high membrane replacement cost, AN
The cost reduction effect by using AMMOX bacteria is low.

【0037】ANAMMOX菌を膜分離した際の膜汚染
は、ANAMMOX菌が膜面で増殖し、スライムを形成
するためと考えられる。本発明者の観察によれば、AN
AMMOX菌は特に流速の速いところで付着しやすく、
膜面に限らず水槽壁面や膜分離装置への導水パイプ壁面
等にも多量のANAMMOXスライムが付着した。
It is considered that the membrane contamination during the membrane separation of the ANAMMOX bacteria is due to the proliferation of the ANAMMOX bacteria on the membrane surface to form slime. According to the inventor's observation, AN
AMMOX bacteria tend to attach especially at high flow rates,
A large amount of ANAMMOX slime adhered not only to the membrane surface but also to the wall surface of the water tank and the wall surface of the water pipe to the membrane separation device.

【0038】しかし、本発明者は、アンモニア性窒素濃
度と亜硝酸性窒素濃度の少なくとも一方の濃度が低いと
きには、このスライム汚染が生じにくいことを発見し
た。
However, the present inventors have discovered that this slime contamination is unlikely to occur when the concentration of at least one of the ammonia nitrogen concentration and the nitrite nitrogen concentration is low.

【0039】即ち、ANAMMOX菌の付着力が強い理
由は、自然界中でのANAMMOX菌の生息環境が限ら
れているために、水流により他の場所へ移動することは
最適な生息環境から流されることを意味する場合が多
く、これに抵抗して増殖に適した環境に留まる必要が特
に強いためであると思われる。一方で、基質のないとこ
ろに留まることはむしろANAMMOX菌にとって不利
に働くために、このようなところでは付着現象が起こら
ず、むしろ積極的に剥離していると考えられる。従っ
て、基質であるアンモニア性窒素と亜硝酸性窒素のいず
れか一方が少なければ、ANAMMOX菌が膜面で増殖
することによるスライムの付着は防止される。そして、
本発明者は更に検討を重ね、膜汚染を防止し得る基質の
濃度を特定したところ、アンモニア性窒素と亜硝酸性窒
素のいずれか一方の濃度が0〜5mg/L、好ましくは
0〜2mg/Lであれば、ANAMMOXスライムによ
る膜汚染を防止して、薬品洗浄頻度を低減できることを
見出し、本発明の脱窒方法に到達した。
That is, the reason why the adherence of the ANAMMOX bacteria is strong is that the movement of the ANMMOX bacteria to other places by the flow of water is carried out from the optimum habitat because the habitat of the ANAMMOX bacteria in nature is limited. This is probably because it is particularly necessary to resist this and stay in an environment suitable for growth. On the other hand, since it is disadvantageous for the ANAMMOX bacterium to remain in a place without a substrate, it is considered that the adhesion phenomenon does not occur in such a place, and rather, the peeling is rather positive. Therefore, if one of the substrates, ammoniacal nitrogen and nitrite nitrogen, is small, slime attachment due to the growth of ANAMMOX bacteria on the membrane surface is prevented. And
The present inventor has conducted further studies and specified the concentration of a substrate capable of preventing membrane contamination. As a result, the concentration of either ammoniacal nitrogen or nitrite nitrogen is 0 to 5 mg / L, preferably 0 to 2 mg / L. When L, it was found that the membrane contamination by ANAMMOX slime can be prevented and the frequency of chemical cleaning can be reduced, and the denitrification method of the present invention was reached.

【0040】本発明の脱窒方法により、膜汚染を軽減す
ることにより、膜の薬品洗浄にかかるコストや、膜の交
換費用が低減されるため、膜分離方式を実用的なコスト
で採用することが可能となる。
Since the denitrification method of the present invention reduces membrane contamination, the cost for chemical cleaning of the membrane and the membrane replacement cost are reduced. Therefore, the membrane separation method should be adopted at a practical cost. Is possible.

【0041】[0041]

【発明の実施の形態】以下に本発明の脱窒装置及び脱窒
方法の実施の形態を詳細に説明する。
Embodiments of the denitrification apparatus and denitrification method of the present invention will be described in detail below.

【0042】本発明の脱窒装置は、ANAMMOX菌を
保持する脱窒槽とこの脱窒槽の脱窒処理液を膜処理する
膜分離装置とで主に構成される。
The denitrification apparatus of the present invention is mainly composed of a denitrification tank for holding ANAMMOX bacteria and a membrane separation apparatus for membrane-treating the denitrification treatment liquid in this denitrification tank.

【0043】本発明に係る脱窒槽は、亜硝酸性窒素を含
む排水又は溶液とアンモニア性窒素を含む排水又は溶液
を供給する手段、或いはアンモニア性窒素と亜硝酸性窒
素とを含む排水又は溶液を供給する手段を備え、好まし
くは脱窒槽内を緩やかに撹拌するための撹拌手段、例え
ば撹拌機や水中ポンプ、ガスの吹き込み手段を備えるこ
とが好ましい。
The denitrification tank according to the present invention is a means for supplying wastewater or solution containing nitrite nitrogen and wastewater or solution containing ammonia nitrogen, or wastewater or solution containing ammonia nitrogen and nitrite nitrogen. It is preferable to provide a supply means, preferably a stirring means for gently stirring the inside of the denitrification tank, for example, a stirrer, a submersible pump, or a gas blowing means.

【0044】脱窒槽内にはpHの検知手段を設け、必要
に応じて酸又はアルカリ剤、或いはその両方を供給する
手段を備えることが好ましい。用いる酸としては塩酸、
硫酸、炭酸などが好ましく、アルカリとしては水酸化ナ
トリウム溶液などが好ましい。
It is preferable that a pH detecting means is provided in the denitrification tank, and a means for supplying an acid or an alkaline agent or both is provided if necessary. The acid used is hydrochloric acid,
Sulfuric acid, carbonic acid and the like are preferable, and as the alkali, sodium hydroxide solution and the like are preferable.

【0045】また、脱窒槽は空気が混入しないよう通常
は密閉構造とし、脱窒反応で発生する脱窒ガスは外部か
ら空気が逆流するのを防ぐためにチャッキ弁や水封部を
通じて外部に排出される。
Further, the denitrification tank is usually of a closed structure so that air is not mixed therein, and the denitrification gas generated by the denitrification reaction is discharged to the outside through a check valve or a water seal part in order to prevent backflow of air from the outside. It

【0046】更に脱窒槽上部にはスカムが発生すること
が多いために、スカムの破砕手段を設けることが好まし
く、浮上したスカムを破砕するための泡切り用カッター
を水面付近に備えたり、水面付近を撹拌羽で撹拌するこ
とで水面を波立たせたり、また水槽に旋回流を引き起こ
して水面付近に浮上濃縮される汚泥を十分に脱窒槽内部
に巻き込むことが有効である。特に、旋回流を引き起こ
す手段としては嫌気性のガスを吹き込むことがよく、こ
の場合、脱窒槽上部の脱窒ガスをブロワやコンプレッサ
により昇圧して、脱窒槽内に吹き込むことが簡便であ
る。ガスの吹き込み量は脱窒槽の底面積に対して1〜5
0Nm−ガス/m−底面/hr程度が好ましく、更
に好ましくは2〜20Nm−ガス/m−底面/hr
程度が良い。ガス吹き込みは連続でも良く間欠でも良い
が、スカムが発生したときのみ間欠的に1日1〜50回
程度、より好ましくは4〜20回程度、1回当りの吹き
込み時間は1〜60分間、好ましくは3〜30分間程度
で行うのが好ましい。ガスの吹き込み部はバッフル板な
どにより仕切り、上昇部と下降部を仕切る方が、撹拌効
果や消泡作用の面から好ましい。
Further, since scum is often generated in the upper part of the denitrification tank, it is preferable to provide a scum crushing means, and a foam cutting cutter for crushing the floating scum is provided near the water surface or near the water surface. It is effective to stir the water surface by stirring with a stirring blade, or to cause the swirling flow in the water tank to sufficiently entrain sludge that floats and concentrates near the water surface into the denitrification tank. Particularly, as a means for causing the swirling flow, it is preferable to blow an anaerobic gas, and in this case, it is easy to blow the denitrifying gas in the upper part of the denitrification tank into the denitrification tank by pressurizing it with a blower or a compressor. The amount of gas blown is 1 to 5 with respect to the bottom area of the denitrification tank
0 Nm 3 −gas / m 2 −bottom surface / hr is preferable, and more preferably 2 to 20 Nm 3 −gas / m 2 −bottom surface / hr.
The degree is good. The gas may be blown continuously or intermittently, but only when scum occurs intermittently about 1 to 50 times a day, more preferably about 4 to 20 times, and the blowing time per one time is 1 to 60 minutes, preferably Is preferably performed for about 3 to 30 minutes. It is preferable to partition the gas blowing part with a baffle plate or the like and partition the rising part and the descending part from the viewpoint of the stirring effect and the defoaming effect.

【0047】この際に生ずるガスリフト作用による上昇
水流の中に浸漬膜を設置して膜分離を行うことは特に動
力の節約になり好ましい。また、脱窒槽内液を外部に取
り出して槽外に設置した膜分離装置に循環通水して膜分
離を行う場合において、反応槽内に戻される濃縮液で水
面のスカムを破砕したり、この濃縮液を水面上に横向き
又は下向きに吹き込むことでスカムを脱窒槽内に巻き込
んで撹拌することも動力の節約になり好ましい。
It is particularly preferable to install a submerged membrane in the rising water flow due to the gas lift action generated at this time to carry out the membrane separation, as this saves power. Also, when the liquid inside the denitrification tank is taken out to the outside and is circulated through a membrane separation device installed outside the tank to perform membrane separation, the concentrated liquid returned to the reaction tank breaks down the scum on the water surface, It is also preferable to blow the concentrated liquid sideways or downward on the water surface so that the scum is rolled into the denitrification tank and is stirred to save the power.

【0048】一方、脱窒槽の脱窒処理液を膜分離する膜
分離装置の分離膜の材質としては、ポリエチレン、ポリ
プロピレン、ポリオレフィン、ポリスルフォン、ポリエ
ーテルスルフォン、ポリアミド、PVDF(ポリフッ化
ビニリデン)、PTFE(ポリテトラフルオロエチレ
ン)、セラミック、不織布など特に材質を問わずに使用
することができるが、特に親水性の素材がANAMMO
X菌の付着による膜汚染を防止するのに好適である。
On the other hand, as the material of the separation membrane of the membrane separator for separating the denitrification treatment liquid in the denitrification tank, polyethylene, polypropylene, polyolefin, polysulfone, polyethersulfone, polyamide, PVDF (polyvinylidene fluoride), PTFE. (Polytetrafluoroethylene), ceramic, non-woven fabric, etc. can be used regardless of the material, but especially hydrophilic material is ANAMMO.
It is suitable for preventing membrane contamination due to the attachment of X bacteria.

【0049】分離膜の形式は中空糸膜、チューブラ膜、
平膜などいずれの形式でも良い。
The types of separation membranes are hollow fiber membranes, tubular membranes,
Any form such as flat membrane may be used.

【0050】膜分離方式はデッドエンド濾過方式、クロ
スフロー濾過方式、浸漬膜方式、ダイナミック濾過方式
などのいずれでもよいが、特にクロスフロー濾過方式
と、浸漬膜方式は、上述の如く脱窒槽内の撹拌やスカム
破砕手段と兼用することができるために好適である。
The membrane separation system may be any of a dead end filtration system, a cross flow filtration system, a submerged membrane system and a dynamic filtration system. Particularly, the cross flow filtration system and the submerged membrane system are used in the denitrification tank as described above. It is suitable because it can be used also as a stirring or scum crushing means.

【0051】膜分離のための圧力はポンプや水圧を利用
した正圧と負圧の両方を利用することができるが、膜面
において透過液が負圧になると透過液から脱窒ガスが発
生し、流路に気泡が溜ることで透過液流路の圧力が不均
一になったり、また透過液をポンプで排出する場合には
ポンプがエアを巻き込むことによる膜分離効率の低下が
起こり、また透過液をサイフォンで排出する場合にはサ
イフォンがブレークするなどの障害を生じやすい。この
ため、透過液側は正圧として運転することが好ましい。
As the pressure for membrane separation, both positive pressure and negative pressure using a pump or water pressure can be used, but when the permeate becomes negative pressure on the membrane surface, denitrifying gas is generated from the permeate. , The pressure in the permeate flow path becomes non-uniform due to the accumulation of bubbles in the flow path, and when the permeate is discharged by the pump, the pump entrains air to reduce the membrane separation efficiency. When the liquid is discharged with a siphon, the siphon breaks easily. Therefore, it is preferable that the permeate side is operated at a positive pressure.

【0052】膜の薬品洗浄には、水酸化ナトリウム溶液
などのアルカリ液、次亜塩素酸ソーダや過酸化水素など
の酸化剤、塩酸、硫酸、クエン酸、蓚酸などの酸、各種
の界面活性剤など、通常、膜の洗浄に用いられる各種の
薬剤が使用可能である。特にANAMMOX菌は酸素の
存在に対して弱いため、膜に付着して膜汚染原因となっ
たANAMMOX菌を効率良く剥離するためには、洗浄
薬液が溶存酸素を1mg/L以上含むことが好ましく、
より好ましくは溶存酸素を3mg/L以上含むものが良
い。また、酸素含有気体でバブリングしたり空気逆洗す
ることも効果的である。溶存酸素は他の薬剤と併用する
と最も有効であるが、溶存酸素単独でも膜汚染回復効果
がある。
For chemical cleaning of the membrane, an alkaline solution such as sodium hydroxide solution, an oxidizing agent such as sodium hypochlorite and hydrogen peroxide, an acid such as hydrochloric acid, sulfuric acid, citric acid and oxalic acid, and various surfactants. For example, various chemicals that are usually used for cleaning the membrane can be used. In particular, since the ANAMMOX bacterium is weak against the presence of oxygen, it is preferable that the cleaning chemical contains 1 mg / L or more of dissolved oxygen in order to efficiently remove the ANAMMOX bacterium that adheres to the film and causes the film contamination.
More preferably, it contains 3 mg / L or more of dissolved oxygen. Further, bubbling with an oxygen-containing gas or backwashing with air is also effective. Dissolved oxygen is most effective when used in combination with other drugs, but dissolved oxygen alone has a membrane fouling recovery effect.

【0053】本発明は特にANAMMOX菌を効率的に
増殖させる点で優れており、この装置で増殖させたAN
AMMOX菌を含む汚泥を他の装置で利用することで、
他の装置の立ち上げ時間を短縮したり、また他の装置で
一時的に処理能力を増殖させる場合や、トラブルなどで
劣化した処理能力を回復させることに役立てることもで
きる。
The present invention is particularly excellent in that it efficiently proliferates the ANAMMOX bacterium, and the AN proliferated by this apparatus is used.
By using sludge containing AMMOX bacteria with other equipment,
It can also be useful for shortening the startup time of other devices, for temporarily increasing the processing capacity of other devices, and for recovering the processing capacity that has deteriorated due to a trouble or the like.

【0054】この目的に対しては、ANAMMOX菌を
含む汚泥を保管する装置を備えることが好ましい。この
保管装置としては、無酸素環境を保つ密閉構造であり、
好ましくは撹拌機やガス撹拌などの撹拌手段を持ち、ま
た保管中のpH変動を調整するためのpH調製手段を備
えることがより好ましい。更に、保管中にANAMMO
X菌の活性を保つためにアンモニア性窒素、亜硝酸性窒
素を補給する手段を備えることも有効である。また、こ
の汚泥を搬出する際には濃縮して濃度を高めることがよ
り好ましいため、濃縮手段を備えることがより有効であ
る。濃縮手段としては、汚泥を沈降させた後の上澄み液
を排出する手段や、下方に濃縮された汚泥を排出する手
段、汚泥を浮上濃縮するための微細気泡を発生させる手
段、膜分離や遠心分離等の機械的濃縮手段が挙げられる
が、本発明の脱窒装置の構成要素としての膜分離手段を
利用できる構造としても良い。必要に応じて水温を調節
することも好ましく、適切な水温は5〜40℃、より好
ましくは10〜25℃である。
For this purpose, it is preferable to provide an apparatus for storing sludge containing ANAMMOX bacteria. As this storage device, it has a closed structure that maintains an oxygen-free environment,
It is more preferable to have a stirrer such as a stirrer or a gas stirrer, and to further include a pH adjusting means for adjusting pH fluctuation during storage. Furthermore, during storage, ANAMMO
It is also effective to provide a means for replenishing ammonia nitrogen and nitrite nitrogen in order to maintain the activity of X bacteria. In addition, since it is more preferable to concentrate the sludge to increase its concentration when it is carried out, it is more effective to provide the concentration means. Concentration means include means for discharging the supernatant liquid after sedimentation of sludge, means for discharging sludge concentrated below, means for generating fine bubbles for floating concentration of sludge, membrane separation and centrifugation. And the like, but a structure in which the membrane separation means as a constituent element of the denitrification device of the present invention can be used may be used. It is also preferable to adjust the water temperature as necessary, and a suitable water temperature is 5 to 40 ° C, more preferably 10 to 25 ° C.

【0055】また、汚泥を保管する容器として本発明の
脱窒装置の構成要素としての脱窒槽で兼用させることも
でき、この場合には本発明の脱窒方法の膜分離手段に、
汚泥濃度上昇に対する余裕率を10〜200%、より好
ましくは20〜100%持たせることが好ましい。膜分
離手段に余裕率を取る方法としては、膜面積を増加させ
る方法、膜面の循環流速や気泡流を速める方法、予備の
膜分離装置を稼働させる方法、予備の脱窒槽を利用する
方法などが挙げられる。
Further, the denitrification tank as a constituent element of the denitrification apparatus of the present invention can also be used as a container for storing sludge, and in this case, the membrane separation means of the denitrification method of the present invention,
It is preferable that the allowance ratio for increasing the sludge concentration is 10 to 200%, and more preferably 20 to 100%. As a method of taking a margin ratio in the membrane separation means, a method of increasing the membrane area, a method of accelerating the circulation flow velocity or bubble flow on the membrane surface, a method of operating a spare membrane separation device, a method of using a spare denitrification tank, etc. Is mentioned.

【0056】このような手段は汚泥を搬出する必要があ
る時に用いる臨時手段としても良い。
Such means may be temporary means used when it is necessary to carry out sludge.

【0057】本発明の装置には、脱窒槽内に高濃度の亜
硝酸性窒素などの阻害物質が蓄積した場合には、これを
速やかに洗い流せるように、好ましくは滞留時間0.5
〜12時間、更に好ましくは1〜6時間で溶存酸素を除
去した水を供給できる手段を設けることが好ましい。こ
の水には亜硝酸性窒素濃度200mg/L以下、好まし
くは50mg/L以下のものを用いる必要がある。溶存
酸素の除去手段としては、脱酸素剤の投入や、嫌気性ガ
スによるバブリングなどを用いることができ、ANAM
MOX脱窒槽内に連通した気密式の水槽でこれらの手段
を使用することができる。この気密式水槽の大きさは上
述の水量に対して滞留時間が好ましくは1〜60分間、
更に好ましくは5〜30分間あれば良いが、他の目的の
ために設置された水槽を流用したためにこの範囲を超え
て滞留時間が長いことは特に本発明の実施を妨げるもの
ではない。またこの脱酸素手段は原水の脱酸素手段と共
用することもできる。
The apparatus of the present invention preferably has a residence time of 0.5 so that if a high concentration of an inhibitor such as nitrite nitrogen is accumulated in the denitrification tank, it can be quickly washed away.
It is preferable to provide a means capable of supplying water from which dissolved oxygen has been removed in -12 hours, and more preferably in 1-6 hours. It is necessary to use water having a nitrite nitrogen concentration of 200 mg / L or less, preferably 50 mg / L or less. As a means for removing dissolved oxygen, introduction of an oxygen absorber or bubbling with an anaerobic gas can be used.
These means can be used in an airtight water tank communicating with the MOX denitrification tank. The size of this airtight water tank is preferably 1 to 60 minutes for the above-mentioned amount of water,
More preferably, it should be 5 to 30 minutes, but a long residence time exceeding this range because a water tank installed for other purposes is diverted does not particularly hinder the practice of the present invention. Further, this deoxidizing means can be shared with the deoxidizing means of raw water.

【0058】本発明の脱窒方法では、膜分離手段に供給
される脱窒処理液のアンモニア性窒素濃度及び亜硝酸性
窒素濃度のいずれか一方又は双方を0〜5mg/L、特
に好ましくは0〜2mg/Lとして膜分離を行う。
In the denitrification method of the present invention, one or both of the concentration of ammonia nitrogen and the concentration of nitrite nitrogen of the denitrification treatment liquid supplied to the membrane separation means are 0 to 5 mg / L, particularly preferably 0. Membrane separation is performed at ˜2 mg / L.

【0059】なお、ANAMMOX菌による脱窒処理で
は、硝酸性窒素が生成するため、通常の場合、本発明に
係る生物脱窒装置の後段には硝酸性窒素を除去するため
の脱窒装置が設けられ、膜分離装置からの処理水は更に
脱窒処理される。この脱窒処理においては、亜硝酸性窒
素も同時に除去される。従って、処理水中に亜硝酸性窒
素が残留しても後段の脱窒装置で除去できるが、アンモ
ニア性窒素が残留した場合には、更に残留するアンモニ
ア性窒素を除去するための硝化脱窒装置を設ける必要が
生じることから、本発明では、亜硝酸性窒素よりもアン
モニア性窒素を低濃度に維持することが後段での処理水
質の向上や装置構成の簡略化の面で好ましい。従って、
一般的には、膜分離する脱窒処理液のアンモニア性窒素
濃度が0〜5mg/L、好ましくは0〜2mg/Lとな
るように処理を行うのが好ましい。
In the denitrification treatment with ANAMMOX bacteria, nitrate nitrogen is produced. Therefore, in the usual case, a denitrification device for removing nitrate nitrogen is provided at the subsequent stage of the biological denitrification device according to the present invention. The treated water from the membrane separator is further denitrified. In this denitrification process, nitrite nitrogen is also removed at the same time. Therefore, even if nitrite nitrogen remains in the treated water, it can be removed by the denitrification device at the subsequent stage, but if ammonia nitrogen remains, a nitrification denitrification device for removing the remaining ammonia nitrogen should be installed. In the present invention, it is preferable to maintain the ammoniacal nitrogen at a lower concentration than the nitrite nitrogen, from the viewpoints of improving the quality of treated water in the latter stage and simplifying the configuration of the apparatus. Therefore,
In general, it is preferable to perform the treatment so that the concentration of ammonia nitrogen in the denitrification treatment liquid for membrane separation is 0 to 5 mg / L, preferably 0 to 2 mg / L.

【0060】このような本発明の方法を効果的に実施す
るためには、膜分離装置への供給水中のアンモニア性窒
素濃度及び/又は亜硝酸性窒素濃度を監視し、アンモニ
ア性窒素濃度を低く保つ場合において、該供給水のアン
モニア性窒素濃度が高いようであれば、この脱窒装置に
流入するアンモニア性窒素負荷を下げるか亜硝酸性窒素
負荷を上げる操作を行い、亜硝酸性窒素濃度を低く保つ
場合において、該供給水の亜硝酸性窒素濃度が高いよう
であれば、この脱窒装置に流入する亜硝酸性窒素負荷を
下げるかアンモニア性窒素負荷を上げる操作を行えば良
い。
In order to effectively carry out such a method of the present invention, the ammonia nitrogen concentration and / or the nitrite nitrogen concentration in the feed water to the membrane separation device are monitored to reduce the ammonia nitrogen concentration. If the concentration of ammonia nitrogen in the supply water seems to be high in the case of keeping, the operation of decreasing the load of ammonia nitrogen flowing into the denitrification device or increasing the load of nitrite nitrogen is performed to reduce the nitrite nitrogen concentration. If the concentration of nitrite nitrogen in the feed water is high when it is kept low, the operation of reducing the load of nitrite nitrogen flowing into the denitrification device or increasing the load of ammonia nitrogen may be performed.

【0061】なお、膜分離装置への供給水中のアンモニ
ア性窒素濃度及び亜硝酸性窒素濃度のいずれか一方が十
分に低い場合でも他方の残留濃度が大きく、全窒素濃度
が高い場合には、不足している側の窒素負荷を上げる
か、過剰となっている側の窒素負荷を下げることにより
全窒素濃度を下げることが望ましい。
Even when either the concentration of ammonia nitrogen or the concentration of nitrite nitrogen in the water supplied to the membrane separation device is sufficiently low, the residual concentration of the other is large, and when the total nitrogen concentration is high, it is insufficient. It is desirable to reduce the total nitrogen concentration by increasing the nitrogen load on the operating side or reducing the nitrogen load on the excess side.

【0062】このような濃度の監視は、脱窒装置の膜分
離装置が脱窒槽内に浸漬された浸漬型膜分離装置である
場合には、膜分離装置を浸漬した脱窒槽内液の濃度を監
視すれば良い。また、脱窒槽の脱窒処理液を脱窒槽外の
膜分離装置で膜分離する場合には、例えば脱窒槽から膜
分離装置への脱窒処理液の移送配管や、脱窒槽内におい
て濃度を監視すれば良い。膜面に供給される汚泥中のア
ンモニア性窒素濃度や亜硝酸性窒素濃度は、膜透過水の
それとほぼ同等と見なすことができるから、膜透過水の
濃度を監視することで代用しても良い。
When the membrane separation device of the denitrification device is an immersion type membrane separation device immersed in the denitrification tank, the concentration is monitored by measuring the concentration of the liquid in the denitrification tank in which the membrane separation device is immersed. Just watch. When the denitrification treatment liquid in the denitrification tank is subjected to membrane separation with a membrane separation device outside the denitrification tank, for example, the concentration of the denitrification treatment liquid transfer pipe from the denitrification tank to the membrane separation device or the concentration in the denitrification tank is monitored. Just do it. The ammonia nitrogen concentration and nitrite nitrogen concentration in the sludge supplied to the membrane surface can be considered to be almost the same as that of the membrane permeate water, so monitoring the concentration of the membrane permeate water may be used instead. .

【0063】このような負荷調整は、脱窒槽におけるA
NAMMOX反応速度や流入する原水のアンモニア性窒
素と亜硝酸性窒素との比率が既知であるか、容易に推測
できる場合には、このような濃度測定を行わずに机上計
算のみで対応することもできる。
Such load adjustment is performed in A in the denitrification tank.
If the NAMMOX reaction rate or the ratio of ammonia nitrogen to nitrite nitrogen in the raw water flowing in is known, or if it can be easily estimated, it may be possible to use only a desktop calculation without performing such concentration measurement. it can.

【0064】また、上記の濃度の監視は一定時間毎に手
動又は自動の水質分析、好ましくは自動の水質分析によ
り行われる。このための測定手段としては、特に制限は
なく、フローインジェクション法による測定手段、イオ
ン電極による測定手段、紫外線分析計による測定手段、
水質試験紙などの簡易分析手段、その他従来公知の測定
手段をいずれも用いることができる。
The monitoring of the above-mentioned concentration is carried out at regular intervals by manual or automatic water quality analysis, preferably automatic water quality analysis. The measuring means for this is not particularly limited, the measuring means by the flow injection method, the measuring means by the ion electrode, the measuring means by the ultraviolet analyzer,
Any of simple analysis means such as water quality test paper and other conventionally known measurement means can be used.

【0065】原水の水質や脱窒槽の運転条件が安定して
いる場合には、一旦アンモニア性窒素濃度及び/又は亜
硝酸性窒素濃度を調整した後は、通常一定期間は同様の
状態を維持できるため、負荷調整は必ずしも毎日行う必
要はなく、半年程度調整が不要な場合もある。
When the water quality of the raw water and the operating conditions of the denitrification tank are stable, the same state can be usually maintained for a certain period of time after once adjusting the ammonia nitrogen concentration and / or the nitrite nitrogen concentration. Therefore, it is not always necessary to adjust the load every day, and in some cases it may not be necessary to adjust the load for about half a year.

【0066】本発明の脱窒方法において、膜分離供給水
のアンモニア性窒素濃度及び/又は亜硝酸性窒素濃度を
安定して保つには、脱窒槽を2槽以上直列に配置するの
が特に好ましく、この場合、最低1槽には膜分離装置へ
の給泥槽又は膜浸漬槽よりも高い汚泥負荷をかけると良
い。この場合には、この高負荷とする脱窒槽における処
理水質から、現在のANAMMOX菌の持つANAMM
OX反応速度を算出することができ、この値から膜分離
装置への給泥槽又は膜浸漬槽における処理水質を予測す
ることができ、好ましい。特に、膜分離装置への給泥槽
又は膜浸漬槽における汚泥負荷よりも高い汚泥負荷をか
けている脱窒槽において、脱窒処理液のアンモニア性窒
素濃度及び亜硝酸性窒素濃度のいずれかが3mg/L以
下となっていれば、膜分離装置への給泥槽又は膜浸漬槽
におけるこれらの窒素濃度も3mg/L以下になってい
ることが期待できる。ただし、他の栄養塩や炭酸根、p
H、温度等の条件はこれらの脱窒槽間で一定であるか、
膜分離装置への給泥槽又は膜浸漬槽の環境がよりANA
MMOX反応に適した環境である方が良い。
In the denitrification method of the present invention, it is particularly preferable to arrange two or more denitrification tanks in series in order to stably maintain the ammoniacal nitrogen concentration and / or the nitrite nitrogen concentration of the membrane separation feed water. In this case, it is advisable to apply a higher sludge load to at least one tank than to the mud supply tank to the membrane separation device or the membrane dipping tank. In this case, from the quality of the treated water in the denitrification tank with this high load, the current ANAMM possessed by ANAMMOX bacteria
The OX reaction rate can be calculated, and the quality of treated water in the mud feed tank or the membrane immersion tank to the membrane separation device can be predicted from this value, which is preferable. In particular, in a denitrification tank under a sludge load higher than the sludge load in the sludge supply tank or the membrane immersion tank to the membrane separation device, either the ammonia nitrogen concentration or the nitrite nitrogen concentration of the denitrification treatment liquid is 3 mg. If / L or less, it can be expected that the nitrogen concentration of these in the mud supply tank or the membrane dipping tank to the membrane separation device is also 3 mg / L or less. However, other nutrients, carbonates, p
Whether conditions such as H and temperature are constant between these denitrification tanks,
The environment of the mud supply tank or the membrane immersion tank to the membrane separation device is more ANA
It is better to have an environment suitable for the MMOX reaction.

【0067】また、本発明の脱窒方法における窒素濃度
を維持した上で、窒素の除去能力を高く保つために、系
外へ排出する汚泥量を少なく保つことが重要であり、系
内の汚泥保持量から1日当たりの汚泥排出量を割った値
である汚泥滞留時間(SRT)が16日以上、好ましく
は20日以上、特に好ましくは30〜300日とするこ
とが望ましい。例えば、SRTが18日では1割程度の
負荷変動により容易に本発明の窒素の濃度範囲を超える
おそれがあり、綿密な濃度監視と負荷調整が必要であ
る。これに対して、SRTを例えば30日とした場合に
は、4割程度の負荷変動を許容することができ、SRT
を100日とすれば2倍程度の負荷変動を許容すること
ができる。
Further, it is important to keep the amount of sludge discharged to the outside of the system small in order to keep the nitrogen removal capacity high while maintaining the nitrogen concentration in the denitrification method of the present invention. The sludge retention time (SRT), which is a value obtained by dividing the amount of sludge discharged per day by the retained amount, is 16 days or longer, preferably 20 days or longer, and particularly preferably 30 to 300 days. For example, when the SRT is 18 days, there is a possibility that the concentration range of nitrogen of the present invention may easily be exceeded due to a load fluctuation of about 10%, and thus careful concentration monitoring and load adjustment are necessary. On the other hand, if the SRT is set to 30 days, for example, a load fluctuation of about 40% can be tolerated.
If 100 is 100 days, a load fluctuation of about twice can be allowed.

【0068】本発明では脱窒槽内の汚泥濃度は、懸濁物
質濃度(SS)として1〜40kg/m、特に3〜2
0kg/mが好適である。特に、汚泥濃度を3〜10
kg−SS/mとして運転すれば、膜の汚染をさらに
軽減することができ、膜の薬品洗浄頻度が少なくなり、
膜の寿命が長くなり、膜交換コストが安くなる上に、膜
のフラックスを高く設定することができるために、必要
な膜面積が少なくなり、膜コストを安価にすることがで
きる。
In the present invention, the sludge concentration in the denitrification tank is 1 to 40 kg / m 3 as the suspended solid concentration (SS), and particularly 3 to 2
0 kg / m 3 is preferred. Especially, sludge concentration of 3-10
If it is operated at kg-SS / m 3 , the contamination of the membrane can be further reduced, the frequency of chemical cleaning of the membrane is reduced,
The life of the membrane is extended, the membrane replacement cost is reduced, and the flux of the membrane can be set high, so that the required membrane area is reduced and the membrane cost can be reduced.

【0069】なお、脱窒槽への懸濁物質の流入量が多い
場合は、ANAMMOX菌以外の懸濁物質が増加し、S
S当たりのANAMMOX反応速度が低下するため、そ
の分SS濃度を高く保つ必要がある。この問題を回避す
るためには脱窒槽の上流側で固液分離を行ってSSを除
去したり、BOD除去を行って脱窒槽内で増殖する従属
栄養細菌量を減少させたりする方法が効果的である。た
だし、これらの前処理装置を設置するためのスペースが
なかったり、技術的・経済的理由によりこれらの前処理
が困難である場合などには、SS濃度上昇による膜分離
能力の低下を、膜分離装置の能力を通常よりも増大させ
ることで補うことができる。
When the amount of suspended solids flowing into the denitrification tank is large, the amount of suspended solids other than ANAMMOX bacteria increases, and S
Since the ANAMMOX reaction rate per S decreases, it is necessary to keep the SS concentration high accordingly. In order to avoid this problem, it is effective to perform solid-liquid separation on the upstream side of the denitrification tank to remove SS or to remove BOD to reduce the amount of heterotrophic bacteria growing in the denitrification tank. Is. However, if there is no space to install these pretreatment devices, or if these pretreatments are difficult due to technical and economic reasons, the decrease in membrane separation capacity due to the increase in SS concentration may cause This can be supplemented by increasing the capacity of the device above normal.

【0070】また、ANAMMOX菌の搬出に備えて菌
体量を多く保持しておきたい場合にも、脱窒槽内のSS
濃度を高く保持しておくことが望ましい。SS濃度が高
くなったことにより膜分離能力が不足する場合には、予
備の膜分離装置を稼働したり仮設の膜分離装置を設置す
ることが好ましい。また、流入排水のうち比較的濃度の
低いものの流入を停止し、高濃度の排水を選択して通水
することも効果的である。また、汚泥中のANAMMO
X菌の割合を特に高めるために、比較的濃度の高いアン
モニア性窒素と亜硝酸性窒素を含む溶液を添加して、脱
窒槽内のANAMMOX菌濃度を高めることも効果的で
ある。
When it is desired to keep a large amount of bacterial cells in preparation for carrying out the ANAMMOX bacteria, the SS in the denitrification tank is also used.
It is desirable to keep the concentration high. When the membrane concentration is insufficient due to the high SS concentration, it is preferable to operate a spare membrane separator or install a temporary membrane separator. It is also effective to stop the inflow of relatively low-concentration inflow drainage and select high-concentration drainage for passage. In addition, ANAMMO in sludge
In order to increase the proportion of X bacteria particularly, it is also effective to increase the concentration of ANAMMOX bacteria in the denitrification tank by adding a solution containing relatively high concentrations of ammonia nitrogen and nitrite nitrogen.

【0071】本発明の脱窒槽では、ANAMMOX菌以
外の硝酸性窒素の脱窒能力を持つ脱窒細菌を共存させる
こともでき、この場合、残留する硝酸性窒素濃度を低下
させることができ、窒素除去率が向上する。このため、
後段の脱窒の処理プロセスを小型化したり、省略したり
することができる。この脱窒反応を行わせるために添加
する電子供与体の量は、有機物の場合には原水から流入
する硝酸性窒素と系内で生成する硝酸性窒素の和に対し
てCODCrとして0.5〜3倍量、より好ましくは
1.5〜2.5倍量を加えるのがよく、硫化物の場合に
は同様に硝酸性窒素の和に対して0.5〜1.7倍、硫
黄の場合には0.8〜2.2倍が好適である。このよう
に外部から電子供与体を添加すると槽内ではANAMM
OX菌以外の菌体が増加し、汚泥濃度が増加するか、ま
たは汚泥濃度が増加しないように汚泥を引き抜いた場合
にはANAMMOX菌の濃度が低くなりANAMMOX
反応速度が低下する。
In the denitrification tank of the present invention, it is possible to coexist with a denitrifying bacterium having a nitrate denitrifying ability other than ANAMMOX bacteria. In this case, the concentration of residual nitrate nitrogen can be reduced, The removal rate is improved. For this reason,
The subsequent denitrification treatment process can be miniaturized or omitted. In the case of organic substances, the amount of the electron donor added to carry out this denitrification reaction is 0.5 as COD Cr with respect to the sum of nitrate nitrogen flowing from raw water and nitrate nitrogen generated in the system. ˜3 times, more preferably 1.5 to 2.5 times, it is preferable to add 0.5 to 1.7 times the amount of sulfur in the case of sulfide, similarly to the sum of nitrate nitrogen. In this case, 0.8 to 2.2 times is preferable. Thus, when the electron donor is added from the outside, ANAMM is added in the tank.
When the sludge concentration is increased by increasing the number of cells other than OX bacteria, or when the sludge is drawn out so that the sludge concentration does not increase, the concentration of ANAMMOX bacteria decreases and ANAMMOX
The reaction rate decreases.

【0072】ただし、汚泥の分離に膜分離手段を用いて
いるため、汚泥濃度が増加しても膜面積を増やしたり、
膜面流速を高めたり、膜面のガススクラビング量を増や
したり、膜フラックスを下げたり、逆洗頻度を上げた
り、薬品洗浄頻度を増加することにより、これにより膜
分離装置に係わるコストは増大するものの、汚泥濃度の
増加に対応することが可能であり、場合によっては後処
理として別途脱窒槽を設けるよりも有利である場合があ
る。
However, since the membrane separation means is used to separate the sludge, the membrane area is increased even if the sludge concentration is increased,
By increasing the membrane surface velocity, increasing the gas scrubbing amount on the membrane surface, lowering the membrane flux, increasing the backwash frequency, and increasing the chemical cleaning frequency, this increases the cost of the membrane separation device. However, it is possible to cope with an increase in sludge concentration, and in some cases, it may be more advantageous than providing a separate denitrification tank as a post-treatment.

【0073】これらの脱窒菌はANAMMOX菌の基質
である亜硝酸性窒素も脱窒することがあるため、ANA
MMOX反応が終了後に電子供与体を添加して脱窒させ
るのが良い。このためには、亜硝酸性窒素を主に与える
期間と硝酸性窒素を脱窒するために与える電子供与体を
主に与える期間を時間的に区分するか、または別々の脱
窒槽に添加するのが良い。
Since these denitrifying bacteria may also denitrify nitrite nitrogen, which is a substrate of ANAMMOX bacteria,
After completion of the MMOX reaction, it is preferable to add an electron donor to denitrify. For this purpose, the period during which nitrite nitrogen is mainly supplied and the period during which electron donors are mainly supplied for denitrifying nitrate nitrogen are mainly divided, or they are added to separate denitrification tanks. Is good.

【0074】この場合、膜分離装置への給泥槽又は膜浸
漬槽における硝酸性窒素濃度は1〜10,000mg/
Lであることが好ましく、更に好ましくは5〜2,00
0mg/Lであることが好ましい。硝酸性窒素濃度がこ
の範囲よりも低い場合には、膜汚染が激しくなり、処理
水のCOD濃度悪化、悪臭発生が生ずる。これは、従属
栄養細菌と液中の有機物が腐敗を開始して、硫化物イオ
ンや有機酸を生ずることにより、これらの腐敗産物によ
りANAMMOX菌の一部が死滅し、更に腐敗を進行さ
せ、この腐敗産物が膜の目詰まりを引き起こしたり、処
理水の悪化を引き起こすためであると推定される。硝酸
性窒素濃度を増加させるためには、流入する電子供与体
を減らすか、流入する脱窒菌の量を減らすか、槽内の脱
窒菌を排出して濃度を低減するか、ANAMMOX菌に
対して負荷を増加して生成する硝酸性窒素の量を増加さ
せるか、硝酸性窒素を含む液を流入させる等の手段を取
ることができる。最も望ましい手段は流入する電子供与
体の量を減らすことであり、脱窒のために電子供与体を
添加している場合は添加している有機物量を減らせばよ
く、排水中に有機物等の電子供与体が含まれている場合
には生物処理装置、濾過装置、凝集分離装置、活性炭吸
着塔等を利用して有機物を減らすのが望ましい。硝酸性
窒素濃度を増加させるために、次に好ましい手段は、流
入する脱窒菌量を減らすことであり、このためには生物
処理装置や濾過装置や凝集分離装置などのSS除去能力
を有する装置を利用することができる。
In this case, the concentration of nitrate nitrogen in the mud feed tank or the membrane dipping tank to the membrane separator is 1 to 10,000 mg /
L is preferable, and more preferably 5 to 2,000.
It is preferably 0 mg / L. When the concentration of nitrate nitrogen is lower than this range, the film is contaminated, and the COD concentration of the treated water is deteriorated and the odor is generated. This is because heterotrophic bacteria and organic matter in the liquid start to decompose, and sulfide ions and organic acids are produced, and these spoilage products kill some of the ANAMMOX bacteria and further promote spoilage. It is presumed that this is because the spoilage product causes clogging of the membrane and deterioration of the treated water. In order to increase the concentration of nitrate nitrogen, decrease the electron donors that flow in, decrease the amount of denitrifying bacteria that flow in, discharge the denitrifying bacteria in the tank to reduce the concentration, and It is possible to take measures such as increasing the load to increase the amount of nitrate nitrogen produced, or introducing a liquid containing nitrate nitrogen. The most desirable means is to reduce the amount of electron donors flowing in.If electron donors are added for denitrification, the amount of organic substances added should be reduced. When a donor is included, it is desirable to reduce the organic matter by using a biological treatment device, a filtration device, a coagulation / separation device, an activated carbon adsorption tower, or the like. In order to increase the nitrate nitrogen concentration, the next preferable means is to reduce the inflowing denitrifying bacteria amount, and for this purpose, a device having an SS removing capacity such as a biological treatment device, a filtration device or a coagulation separation device is used. Can be used.

【0075】なお、本発明の脱窒装置はANAMMOX
菌を増殖させることに特に優れているため、排水中の窒
素除去装置として機能させつつ、他の装置のANAMM
OX活性を持つ汚泥を供給する供給源としても有用であ
る。他の装置のANAMMOX汚泥を供給するために特
に汚泥量を増加させたい場合は、一時的に膜汚染が促進
されることを犠牲にして、膜分離に供する脱窒処理液の
亜硝酸性窒素とアンモニア性窒素のいずれも5〜3,0
00mg/L、特に好ましくは10〜1,000mg/
Lとすることで、ANAMMOX菌の増殖を促進するこ
ともできる。但し、高濃度の亜硝酸性窒素はANAMM
OX菌に対して阻害作用を持つため、亜硝酸性窒素濃度
の上限は好ましくは200mg/L以下、更に好ましく
は50mg/L以下とする。
The denitrification device of the present invention is an ANAMMOX.
Since it is particularly good at growing bacteria, it can function as a device for removing nitrogen in wastewater while using the ANAMM of other devices.
It is also useful as a supply source for supplying sludge having OX activity. When it is desired to increase the amount of sludge in order to supply the ANAMOX sludge of another device, the nitrite nitrogen of the denitrification treatment liquid used for membrane separation should be sacrificed at the expense of temporarily promoting membrane contamination. 5 to 3,0 for all ammoniacal nitrogen
00 mg / L, particularly preferably 10-1,000 mg / L
By setting it to L, it is also possible to promote the growth of ANAMMOX bacteria. However, high concentration of nitrite nitrogen is
Since it has an inhibitory effect on OX bacteria, the upper limit of the nitrite nitrogen concentration is preferably 200 mg / L or less, more preferably 50 mg / L or less.

【0076】本発明において、処理対象となる原水は、
アンモニア性窒素及び亜硝酸性窒素を含む水であり、有
機物及び有機性窒素を含むものであっても良いが、これ
らは脱窒処理前に予めアンモニア性窒素になる程度まで
分解しておくことが好ましく、また、溶存酸素濃度が高
い場合には、必要に応じて溶存酸素を除去しておくこと
が好ましい。また、原水はアンモニア性窒素を含む液と
亜硝酸性窒素を含む液を混合したものであっても良い。
例えば、アンモニア性窒素を含む排水を硝化細菌の存在
下に好気性処理を行い、アンモニア性窒素の一部、好ま
しくはその50〜70%を亜硝酸に部分酸化したものを
原水とすることができる。更には、アンモニア性窒素を
含む排水の一部を硝化細菌の存在下に好気性処理を行
い、アンモニア性窒素を亜硝酸に酸化し、アンモニア性
窒素を含む排水の残部と混合したものを原水としても良
い。
In the present invention, the raw water to be treated is
Water containing ammoniacal nitrogen and nitrite nitrogen, which may contain organic matter and organic nitrogen, but these must be decomposed in advance to the extent of becoming ammoniacal nitrogen before denitrification treatment. Preferably, when the dissolved oxygen concentration is high, it is preferable to remove the dissolved oxygen as needed. Further, the raw water may be a mixture of a liquid containing ammoniacal nitrogen and a liquid containing nitrite nitrogen.
For example, wastewater containing ammoniacal nitrogen can be subjected to aerobic treatment in the presence of nitrifying bacteria, and a portion of the ammoniacal nitrogen, preferably 50 to 70% of which is partially oxidized to nitrous acid, can be used as raw water. . Further, a part of the wastewater containing ammoniacal nitrogen is subjected to aerobic treatment in the presence of nitrifying bacteria, the ammoniacal nitrogen is oxidized to nitrite, and the mixture with the rest of the wastewater containing ammoniacal nitrogen is used as raw water. Is also good.

【0077】一般的には、下水、し尿、汚泥消化脱離
液、その他工場排水、埋立浸出水等のアンモニア性窒
素、有機性窒素及び有機物を含む排水が処理対象となる
場合が多いが、この場合、これらを好気性又は嫌気性処
理して有機物を分解し、有機性窒素をアンモニア性窒素
に分解し、さらに部分亜硝酸化或いは、一部についての
亜硝酸化を行った液を原水とすることが好ましい。
Generally, sewage, human waste, sludge digestion and desorption liquid, other industrial wastewater, landfill leachate, and other wastewater containing ammonia nitrogen, organic nitrogen and organic matter are often treated. In this case, these are subjected to aerobic or anaerobic treatment to decompose organic substances, decompose organic nitrogen into ammonia nitrogen, and further carry out partial nitration or a part of nitrite is used as raw water. It is preferable.

【0078】以下に図面を参照して本発明の脱窒装置の
具体的な構成を説明する。
The specific configuration of the denitrification device of the present invention will be described below with reference to the drawings.

【0079】図1〜3は本発明の脱窒装置の実施の形態
を示す系統図である。
1 to 3 are system diagrams showing an embodiment of the denitrification device of the present invention.

【0080】図1の脱窒装置は、脱窒槽1と膜分離装置
3とで主に構成される。原水は、流量計21F及び流量
調整弁21Vを備える原水流入管21より脱窒槽1に導
入される。脱窒槽1には撹拌機1Mが設けられ、また、
槽下部の壁面には下方からの脱窒ガスの巻き込みを防止
するバッフル板1Bが設けられている。そして、このバ
ッフル板1Bに囲われた部分から、給泥ポンプPによ
り、脱窒処理液が取り出され、給泥管22を経て膜分離
装置3に供給される。この給泥ポンプPとしては、ス
ネークポンプや渦巻きポンプなど、汚泥の移送に適した
ポンプが用いられるが、汚泥に対する機械的衝撃の少な
さからスネークポンプが好適である。給泥ポンプP
は変速機が装備されるか、吐出側に流量調整弁が設けら
れ、吐出能力を調整できるようになっている。給泥管2
2には流量計22Fと圧力計22Pが設けられている。
The denitrification device of FIG. 1 mainly comprises a denitrification tank 1 and a membrane separation device 3. Raw water is introduced into the denitrification tank 1 through a raw water inflow pipe 21 equipped with a flow meter 21F and a flow rate adjusting valve 21V. The denitrification tank 1 is provided with a stirrer 1M, and
A baffle plate 1B that prevents entrapment of denitrifying gas from below is provided on the wall surface at the bottom of the tank. Then, from the portion enclosed by the baffle plate 1B, the sludge feeding pump P 1, denitrified liquid is taken out, fed to the membrane separation unit 3 via Kyudorokan 22. As the mud supply pump P 1 , a pump suitable for transferring sludge, such as a snake pump or a centrifugal pump, is used, but a snake pump is suitable because of its small mechanical impact on sludge. The mud supply pump P 1 is equipped with a transmission or a flow rate adjusting valve is provided on the discharge side so that the discharge capacity can be adjusted. Mud supply pipe 2
2 is provided with a flow meter 22F and a pressure gauge 22P.

【0081】脱窒槽1にはレベルスイッチ1Lが設けら
れ、水位が低いときには原水や希釈水の投入量を多くし
たり、膜濾過される流量が少なくなるような操作、例え
ば透過液の流量をバルブで絞ったり、給泥する流量及び
/又は圧力を低下させて透過液量を少なくしたりし、逆
に水位が高いときには原水や希釈水の投入量を少なくし
たり、膜濾過される流量が多くなるような操作、例えば
透過液側のバルブの開度を大きくしたり、給泥する流量
及び/又は圧力を増加させて透過液量を多くしたりする
ように構成されている。原水の供給や膜分離装置3の運
転を間欠的に行うことで水位調整しても良い。また、水
位と連動して間欠運転の間隔を変えても良い。
The denitrification tank 1 is provided with a level switch 1L so that when the water level is low, the amount of raw water or diluted water input is increased or the flow rate of membrane filtration is decreased, for example, the flow rate of permeate is controlled by a valve. To reduce the amount of permeated liquid by lowering the flow rate and / or pressure to feed mud, and conversely reduce the input amount of raw water or diluted water when the water level is high, or increase the flow rate of membrane filtration. Such an operation is performed, for example, to increase the opening degree of the valve on the permeate side, or to increase the flow rate and / or the pressure for supplying mud to increase the permeate amount. The water level may be adjusted by intermittently supplying the raw water or operating the membrane separation device 3. Further, the interval of intermittent operation may be changed in association with the water level.

【0082】脱窒槽1は、空気の混入を避けるために気
密構造とされ、脱窒反応で生成した脱窒ガスは脱窒ガス
排出管25より系外へ排出される。この脱窒ガス排出管
25には逆止弁25Vや水封等の逆流防止手段が設けら
れている。脱窒槽1を完全に気密に保つことは困難であ
る場合があるため、脱窒槽内の圧力は大気圧よりも高
め、例えば1〜10kPaに保つことにより、空気の混
入を防止しても良い。脱窒槽1にはpH調整手段と、必
要に応じて温度調整手段が設けられる。
The denitrification tank 1 has an airtight structure in order to avoid mixing of air, and the denitrification gas generated by the denitrification reaction is discharged from the system through the denitrification gas discharge pipe 25. The denitrifying gas discharge pipe 25 is provided with a check valve 25V and a backflow preventing means such as a water seal. Since it may be difficult to keep the denitrification tank 1 completely airtight, the pressure in the denitrification tank may be higher than the atmospheric pressure, and for example, maintained at 1 to 10 kPa, so that the inclusion of air may be prevented. The denitrification tank 1 is provided with pH adjusting means and, if necessary, temperature adjusting means.

【0083】膜分離装置3の透過液は処理水流出管23
より系外へ排出される。この処理水流出管23には流量
調整弁23Vと流量計23Fが設けられている。また、
処理水流出管23に分岐して開閉弁26Vを有するサン
プリング管26が設けられており、必要に応じて、サン
プリング水が水質管理のためのアンモニア性窒素濃度及
び亜硝酸性窒素濃度測定装置に送給され、濃度測定が行
われる。この濃度測定手段としては、脱窒処理液の濃度
監視のための手段として前述したものを用いることがで
きる。膜分離装置3の透過液はSSを含まないことか
ら、この測定に当たり、予めSSの除去操作を行う必要
はなく、容易かつ簡便に分析を行える。
The permeate of the membrane separator 3 is the treated water outflow pipe 23.
Is discharged outside the system. The treated water outflow pipe 23 is provided with a flow rate adjusting valve 23V and a flow meter 23F. Also,
A sampling pipe 26 having an on-off valve 26V is provided so as to branch to the treated water outflow pipe 23, and the sampling water is sent to an ammonia nitrogen concentration and nitrite nitrogen concentration measuring device for water quality control as needed. And a concentration measurement is made. As the concentration measuring means, the above-mentioned means for monitoring the concentration of the denitrification treatment liquid can be used. Since the permeated liquid of the membrane separation device 3 does not contain SS, it is not necessary to perform the SS removal operation in advance for this measurement, and the analysis can be performed easily and easily.

【0084】膜分離装置の濃縮液(濃縮汚泥)は、濃縮
汚泥返送管24により脱窒槽1に返送される。この濃縮
汚泥返送管24には流量調整弁24V、圧力計24P、
流量計24Fが設けられている。
The concentrated liquid (concentrated sludge) of the membrane separation device is returned to the denitrification tank 1 through the concentrated sludge return pipe 24. The concentrated sludge return pipe 24 has a flow rate adjusting valve 24V, a pressure gauge 24P,
A flow meter 24F is provided.

【0085】この濃縮液は、脱窒槽1の水面付近に横向
き、斜め下向き又は下向きに吐き出される。これにより
脱窒槽1の水面付近の撹拌状態が良くなり、スカムの浮
上が防止される。
The concentrated liquid is discharged laterally, obliquely downward or downward near the water surface of the denitrification tank 1. This improves the stirring condition near the water surface of the denitrification tank 1 and prevents the scum from floating.

【0086】図2の脱窒装置は、膜分離装置が2機設け
られ、また、ANAMMOX汚泥を貯留するための汚泥
貯留槽4が設けられたものである。図2において、図1
に示す部材と同一機能を奏する部材には同一符号を付
し、その説明を省略する。
The denitrification device of FIG. 2 is provided with two membrane separation devices and a sludge storage tank 4 for storing the ANAMMOX sludge. In FIG. 2, FIG.
The members having the same functions as the members shown in FIG.

【0087】第2の膜分離装置としての膜分離装置5に
は、給泥管22から分岐する第2の給泥管32を経て第
2の給泥ポンプPにより脱窒槽1の脱窒処理液が導入
され、第2の処理水流出管33から膜分離装置3の透過
液を取り出すと共に濃縮液を第2の濃縮汚泥返送管34
を経て脱窒槽1に返送することができるように構成され
ている。22V,32Vは開閉弁であり、33V,34
Vは流量調整弁である。32F,33F,34Fは流量
計、32P,34Pは圧力計である。
In the membrane separation device 5 as the second membrane separation device, the denitrification treatment of the denitrification tank 1 is performed by the second mud feed pump P 2 via the second mud feed pipe 32 branched from the mud feed pipe 22. The liquid is introduced, the permeate of the membrane separation device 3 is taken out from the second treated water outflow pipe 33, and the concentrated liquid is returned to the second concentrated sludge return pipe 34.
It is configured so that it can be returned to the denitrification tank 1 via. 22V and 32V are open / close valves, and 33V and 34V
V is a flow control valve. 32F, 33F and 34F are flowmeters and 32P and 34P are pressure gauges.

【0088】この脱窒装置では、膜分離装置3と第2の
膜分離装置5とのいずれか一方を運転し、例えば、一方
の膜分離装置の薬品洗浄時や膜交換時に他方の膜分離装
置を運転するようにすることもでき、また、両方を運転
して、脱窒槽1の脱窒処理液を2機の膜分離装置3,5
で膜分離処理することもできる。
In this denitrification device, either one of the membrane separation device 3 and the second membrane separation device 5 is operated, and, for example, when cleaning one of the membrane separation devices or when exchanging the membrane, the other membrane separation device is operated. It is also possible to operate both, and both are operated so that the denitrification treatment liquid in the denitrification tank 1 is operated by two membrane separation devices 3, 5
It is also possible to perform membrane separation treatment with.

【0089】汚泥貯留槽4は脱窒槽1と同様に撹拌機4
Mとバッフル板4Bを備え、また、気密構造とされてお
り、脱窒槽1から配管31よりANAMMOX菌を含む
汚泥を引き抜き、引き抜いた汚泥を適宜撹拌しながら貯
留するように構成されている。Pは汚泥引き抜きポン
プ、31Fは流量計、31Vは流量調整弁である。汚泥
貯留槽4のバッフル板4Bに囲われた部分には、開閉弁
35Vを有する汚泥引き抜き管35が設けられ、この汚
泥引き抜き管35は第2の膜分離装置5への給泥配管に
連結されている。また、第2の膜分離装置5の濃縮汚泥
返送管34から分岐する配管36が設けられている。3
6Vは流量調整弁である。37はガス抜き配管であり、
逆止弁37Vを備えている。汚泥貯留槽4には必要に応
じてpH調整手段、温度調整手段を設けることができ
る。
The sludge storage tank 4 is the same as the denitrification tank 1 with the agitator 4
It is provided with M and a baffle plate 4B, and has an airtight structure, and is configured to draw out sludge containing ANAMMOX bacteria from the denitrification tank 1 through the pipe 31 and store the extracted sludge while appropriately stirring. P 3 is a sludge drawing pump, 31 F is a flow meter, and 31 V is a flow rate adjusting valve. A sludge extraction pipe 35 having an on-off valve 35V is provided in a portion of the sludge storage tank 4 surrounded by the baffle plate 4B, and the sludge extraction pipe 35 is connected to a mud supply pipe to the second membrane separation device 5. ing. Further, a pipe 36 branched from the concentrated sludge return pipe 34 of the second membrane separation device 5 is provided. Three
6V is a flow control valve. 37 is a gas vent pipe,
A check valve 37V is provided. The sludge storage tank 4 can be provided with a pH adjusting means and a temperature adjusting means as required.

【0090】汚泥貯留槽4に貯留されている汚泥は、更
に多量の汚泥を貯留する目的で、或いは多量の汚泥を運
搬する目的で、或いは汚泥を廃棄する際の処分業者の引
き取り費用を低減するなどの目的で、濃縮を行うことが
できる。
The sludge stored in the sludge storage tank 4 is for the purpose of storing a larger amount of sludge, for the purpose of transporting a larger amount of sludge, or for reducing the collection cost of a disposal company when disposing of sludge. Concentration can be performed for the purpose such as.

【0091】汚泥の濃縮を行う場合には、汚泥貯留槽4
内の撹拌を停止して汚泥を自然沈降させた後に上部の上
澄み液を排出するか、下部に沈降した濃縮汚泥を取り出
す。また、汚泥の濃縮を第2の膜分離装置5を用いて行
うこともでき、この場合には、配管35,32を経て汚
泥貯留槽4内の汚泥を第2の膜分離装置5に送給して膜
分離処理し、透過液を配管33より系外へ排出すると共
に濃縮汚泥を配管34,36を経て汚泥貯留槽4に返送
して槽内の汚泥を濃縮すれば良い。
When sludge is concentrated, the sludge storage tank 4
After stirring inside is stopped and the sludge is allowed to settle naturally, the supernatant liquid in the upper part is discharged or the concentrated sludge settled in the lower part is taken out. Further, the sludge can be concentrated using the second membrane separation device 5, and in this case, the sludge in the sludge storage tank 4 is fed to the second membrane separation device 5 through the pipes 35 and 32. Then, the membrane separation treatment is performed, the permeated liquid is discharged to the outside of the system through the pipe 33, and the concentrated sludge is returned to the sludge storage tank 4 through the pipes 34 and 36 to concentrate the sludge in the tank.

【0092】汚泥貯留槽4にはレベルスイッチ4Lが設
けられているが、このような汚泥の濃縮を行うために、
レベルスイッチ4Lに例えば2点以上の水位制御点を設
けることが好ましい。この場合には、自動制御にて、上
方の水位制御点に達したときに濃縮操作を開始し、下方
の水位制御点に達したときに濃縮操作を停止することが
できる。
Although the sludge storage tank 4 is provided with a level switch 4L, in order to concentrate such sludge,
It is preferable to provide, for example, two or more water level control points on the level switch 4L. In this case, the automatic control can start the concentration operation when the upper water level control point is reached and stop the concentration operation when the lower water level control point is reached.

【0093】図3の脱窒装置は、膜分離装置として浸漬
型膜分離装置を用いたものである。この膜浸漬脱窒槽6
内は、バッフル板6Bで仕切られ、バッフル板6Bで仕
切られた領域内に平膜型又は外圧型中空糸膜等の浸漬膜
7が設けられ、この下方に散気管8が設けられている。
6Lはレベルスイッチである。
The denitrification device of FIG. 3 uses an immersion type membrane separation device as a membrane separation device. This membrane immersion denitrification tank 6
The inside is partitioned by a baffle plate 6B, an immersion membrane 7 such as a flat membrane type or an external pressure type hollow fiber membrane is provided in the area partitioned by the baffle plate 6B, and an air diffuser 8 is provided below this.
6L is a level switch.

【0094】膜浸漬脱窒槽6は空気が混入しないように
気密構造とされており、脱窒反応で発生した脱窒ガスは
配管42を経て排出される。この配管42には、配管4
3が分岐しており、脱窒ガスの一部がガス吹き込みブロ
ワ43Bにより散気管8に送給されて、浸漬膜7の下方
から散気されるように構成されている。42V,42
は開閉弁、43Vはガス流量調整弁、43Fは吹き
込みガス流量計である。
The membrane immersion denitrification tank 6 has an airtight structure so that air is not mixed therein, and the denitrification gas generated by the denitrification reaction is discharged through the pipe 42. In this pipe 42, the pipe 4
3 is branched, and a part of the denitrifying gas is sent to the diffuser pipe 8 by the gas blowing blower 43B and is diffused from below the submerged film 7. 42V 1 , 42
V 2 is an open / close valve, 43 V is a gas flow rate adjusting valve, and 43 F is a blown gas flow meter.

【0095】原水は、原水ポンプPにより配管41を
経て膜浸漬脱窒槽6に導入されて脱窒処理される。膜浸
漬脱窒槽6内の脱窒処理液は浸漬膜7で膜分離処理さ
れ、透過液は処理水ポンプPにより配管44を経て処
理水として取り出される。44Pは圧力計、44Vは流
量調整弁、44Fは流量計である。
Raw water is introduced into the membrane immersion denitrification tank 6 through the pipe 41 by the raw water pump P 4 and is denitrified. The denitrification treatment liquid in the membrane immersion denitrification tank 6 is subjected to membrane separation treatment by the immersion membrane 7, and the permeated liquid is taken out as treated water through the pipe 44 by the treated water pump P 5 . 44P is a pressure gauge, 44V is a flow rate adjusting valve, and 44F is a flow meter.

【0096】膜浸漬脱窒槽6内で濃縮された汚泥は、必
要に応じて汚泥引き抜きポンプPにより、配管45か
ら系外へ引き抜かれる。
The sludge concentrated in the membrane immersion denitrification tank 6 is drawn out of the system through the pipe 45 by the sludge drawing pump P 6 as needed.

【0097】この脱窒装置は、散気管8からの散気によ
るガス流で浸漬膜7の膜面への汚泥の蓄積が防止され
る。また、浸漬膜7の透過液側を処理水ポンプPで吸
引することで処理水が取り出されるが、この際、膜浸漬
脱窒槽6内に旋回流が発生するため、水面付近のスカム
様汚泥は、この旋回流に巻き込まれ、槽内に均一に分散
し、効率良くANAMMOX反応に寄与するようにな
る。また、このように処理水の取り出しで生じる旋回流
で槽内が効果的に撹拌されるために、他の撹拌手段を必
要としない場合も多い。
In this denitrification device, accumulation of sludge on the membrane surface of the submerged membrane 7 is prevented by the gas flow due to air diffusion from the air diffusion pipe 8. The treated water is taken out by sucking the permeate side of the immersion membrane 7 with the treated water pump P 5 , but at this time, since a swirling flow is generated in the membrane immersion denitrification tank 6, scum-like sludge near the water surface. Are involved in this swirling flow, uniformly dispersed in the tank, and efficiently contribute to the ANAMMOX reaction. Further, since the inside of the tank is effectively agitated by the swirling flow generated when the treated water is taken out as described above, another agitating means is often not required.

【0098】[0098]

【実施例】以下に比較例及び実施例を挙げて、本発明を
より具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Comparative Examples and Examples below.

【0099】比較例1 内径0.3mの円筒形USB反応槽に約20Lのメタン
細菌を主体とするグラニュールを充填すると共に、別途
フィル&ドロー方式で培養したANAMMOX菌約5g
を投入した。この反応槽に原水として、アンモニア性窒
素200mg/L、亜硝酸性窒素280mg/L、重炭
酸ナトリウム300mg/L及び微量のカルシウムイオ
ン、マグネシウムイオンその他の微量元素を含有する合
成排水を予め窒素ガスで脱酸素した水を通水した。この
原水からは無酸素環境下でANAMMOX菌がVSSと
して約22mg/L生成し、他の菌体は殆ど無視できる
程度しか生成しない。
Comparative Example 1 Approximately 5 g of ANAMMOX bacterium, which was prepared by filling a cylindrical USB reaction vessel having an inner diameter of 0.3 m with about 20 L of granules mainly composed of methane bacteria and separately culturing by the fill-and-draw method.
Was thrown in. Synthetic wastewater containing 200 mg / L of ammonia nitrogen, 280 mg / L of nitrite nitrogen, 300 mg / L of sodium bicarbonate and a trace amount of calcium ion, magnesium ion and other trace elements as raw water was previously supplied to this reaction tank by nitrogen gas. Deoxygenated water was passed through. From this raw water, ANAMMOX bacteria produce about 22 mg / L as VSS in anoxic environment, and other bacteria produce only negligible amount.

【0100】このUSB反応槽の下部から原水を通水し
てANAMMOX菌を増殖させ、窒素除去を行った。反
応槽は30℃の恒温室内に設置した。USB反応槽上部
にはガスの分離とグラニュールの沈降分離を目的とした
分離器であるGSS(気固液分離器;Gas Solid Separa
tor)を取り付け、GSSの沈殿部から処理水を循環
し、原水と合流させてUSB反応槽内部の上昇流速が1
m/hr(1.7m/day)となるように通水し
た。原水の導入量は当初5L/dayから開始し、その
後は常時アンモニア性窒素が5mg/L以上残留するよ
うに原水の導入量を増加した。なお、原水と循環水は合
流後にpH調整槽でpHを7.5に調整して反応槽下部
へ導いた。また、反応槽上部は密閉し、脱窒ガスは外部
へ排出し、空気が逆流しないように水封した。
Raw water was passed through the lower part of the USB reaction tank to grow ANAMMOX bacteria, and nitrogen was removed. The reaction tank was installed in a thermostatic chamber at 30 ° C. GSS (Gas Solid Separator; Gas Solid Separa) is a separator for the purpose of gas separation and granule sedimentation separation above the USB reaction tank.
tor), and the treated water is circulated from the settling part of the GSS and merged with the raw water so that the rising flow velocity inside the USB reaction tank is 1
Water was passed so that the flow rate would be m / hr (1.7 m 3 / day). The amount of raw water introduced was initially 5 L / day, and thereafter, the amount of raw water introduced was increased so that ammoniacal nitrogen remained at 5 mg / L or more. After the raw water and the circulating water were combined, the pH was adjusted to 7.5 with a pH adjusting tank and led to the lower part of the reaction tank. Further, the upper part of the reaction tank was sealed, the denitrifying gas was discharged to the outside, and water was sealed to prevent air from flowing backward.

【0101】この結果、アンモニア性窒素の容積負荷
1.5kg/m/day(原水150L/day)ま
では処理水に流出するVSS濃度は2〜8mg/Lであ
った。また、容積負荷3kg/m/day付近となっ
たときには流出するVSSは14〜17mg/Lとなっ
た。
As a result, the VSS concentration flowing into the treated water was 2 to 8 mg / L up to the volumetric load of ammoniacal nitrogen of 1.5 kg / m 3 / day (150 L / day of raw water). Further, when the volume load was around 3 kg / m 3 / day, the outflowing VSS was 14 to 17 mg / L.

【0102】即ち、生成する菌体量に対する流出する菌
体量の割合は、比較的負荷が低い立ち上げ初期で1〜4
割、負荷が高くなると8割程度に達することが明らかと
なった。
That is, the ratio of the amount of bacterial cells flowing out to the amount of bacterial cells produced is 1 to 4 at the initial stage of startup when the load is relatively low.
On the other hand, it became clear that when the load increased, it reached about 80%.

【0103】比較例2 図6に示すような脱窒槽容積1L、沈殿槽容積0.5
L、沈殿槽面積50cm の装置を用い、別途フィル&
ドロー方式で培養したANAMMOX菌を主体とする汚
泥をVSS1000mg/Lとなるように脱窒槽に投入
し、アンモニア性窒素濃度100mg/L、亜硝酸性窒
素濃度140mg/L、重炭酸ナトリウム200mg/
L及び微量のカルシウムイオン、マグネシウムイオンそ
の他の微量元素を含有する合成排水を予め窒素ガスで脱
酸素した水を原水として通水した。この原水からは無酸
素環境下でANAMMOX菌がVSSとして約11mg
/L生成し、他の菌体は殆ど無視できる程度しか生成し
ない。
Comparative Example 2 A denitrification tank volume of 1 L and a precipitation tank volume of 0.5 as shown in FIG.
L, settling tank area 50 cm TwoUsing the equipment of
Soil mainly composed of ANAMMOX bacteria cultivated by the draw method
Put the mud into the denitrification tank so that the VSS becomes 1000 mg / L.
Ammonia nitrogen concentration 100mg / L, nitrite nitrogen
Elementary concentration 140 mg / L, sodium bicarbonate 200 mg /
L and trace amounts of calcium and magnesium ions
The synthetic wastewater containing other trace elements of
Oxygenated water was passed as raw water. Acid free from this raw water
Approximately 11 mg of ANAMMOX bacteria as VSS in the natural environment
/ L is produced, and other bacteria produce only negligible
Absent.

【0104】脱窒槽と沈殿槽はそれぞれ密閉し、上部の
気相を連通し、脱窒ガスは外部へ導いて、空気が逆流し
ないように水封した。
The denitrification tank and the precipitation tank were each sealed, the upper gas phase was communicated, the denitrification gas was guided to the outside, and water was sealed so that air did not flow backward.

【0105】脱窒槽内はpH計を設置し、pHの上昇と
共に炭酸ガスを導入することによりpH7.5にpH調
整した。
A pH meter was installed in the denitrification tank, and the pH was adjusted to 7.5 by introducing carbon dioxide gas as the pH increased.

【0106】原水は2L/dayの流量で通水し、返送
汚泥量も2L/dayとして運転した。
Raw water was passed at a flow rate of 2 L / day, and the amount of sludge to be returned was 2 L / day.

【0107】その後、脱窒槽内の汚泥濃度の上昇と共に
徐々に通水量を増加したところ、約3ヶ月後には汚泥濃
度2000mg−VSS/Lまで増加し、原水通水量も
4L/dayまで増加した。
Then, when the sludge concentration in the denitrification tank was increased, the water flow rate was gradually increased. After about 3 months, the sludge concentration was increased to 2000 mg-VSS / L and the raw water water flow rate was also increased to 4 L / day.

【0108】この結果、アンモニア性窒素容積負荷0.
4kg−N/m/day、亜硝酸性窒素0.52kg
−N/m/dayまで除去されることが確認できた。
一方、硝酸性窒素は0.1kg−N/m/dayで増
加したため、窒素の除去速度としては0.82kg−N
/m/dayとなった。
As a result, the volumetric load of ammoniacal nitrogen was reduced to 0.
4 kg-N / m 3 / day, 0.52 kg of nitrite nitrogen
It was confirmed that it was removed up to −N / m 3 / day.
On the other hand, since nitrate nitrogen increased at 0.1 kg-N / m 3 / day, the nitrogen removal rate was 0.82 kg-N.
/ M 3 / day.

【0109】この間の処理水のVSS濃度は2〜5mg
/Lであり、流出する菌体量は生成する菌体量の2〜5
割になることが明らかとなった。
During this period, the VSS concentration of the treated water is 2 to 5 mg.
/ L, and the amount of bacterial cells flowing out is 2 to 5 of the amount of bacterial cells produced.
It became clear that it would be comparative.

【0110】このときの沈殿槽における水面積負荷は、
実装置で用いられるような1〜30m/dayよりも十
分低かったために、ANAMMOX菌の流出は沈殿槽の
問題ではなく、浮遊増殖するANAMMOX菌に特有の
性質であることが確認された。
The water area load in the settling tank at this time is
Since it was sufficiently lower than 1 to 30 m / day as used in an actual apparatus, it was confirmed that the outflow of ANAMMOX bacteria was not a problem of a sedimentation tank, but a characteristic peculiar to floating-proliferating ANAMMOX bacteria.

【0111】実施例1 図4に示す脱窒装置を用いて脱窒処理を行った。ただ
し、脱窒槽1にバッフル板1Bは設けず、また、脱窒槽
1から脱窒処理液を取り出して膜分離装置3に送給する
給泥管22の取り付け位置は、脱窒槽1の高さ方向の中
間位置とした。また、膜分離装置3の濃縮液を返送する
濃縮汚泥返送管24は、脱窒槽1内の槽内液中に、濃縮
液の吹き出し方向を下方に向けて設けた。脱窒槽1の外
側はウォータージャケットで覆い、30〜35℃の温水
を循環することで脱窒槽内の液温を30〜35℃に保っ
た。
Example 1 A denitrification process was performed using the denitrification apparatus shown in FIG. However, the baffle plate 1B is not provided in the denitrification tank 1, and the mounting position of the mud supply pipe 22 that takes out the denitrification treatment liquid from the denitrification tank 1 and sends it to the membrane separation device 3 is in the height direction of the denitrification tank 1. It was set to the middle position. Further, the concentrated sludge return pipe 24 for returning the concentrated liquid of the membrane separation device 3 was provided in the in-tank liquid in the denitrification tank 1 so that the concentrated liquid was blown downward. The outside of the denitrification tank 1 was covered with a water jacket, and hot water of 30 to 35 ° C was circulated to maintain the liquid temperature in the denitrification tank at 30 to 35 ° C.

【0112】この脱窒装置は、脱窒槽1と膜分離装置3
とで主に構成される点において、図1に示した脱窒装置
と同様の構成とされており、同一機能を奏する部材に同
一符号を付してその説明を省略する。
This denitrification device comprises a denitrification tank 1 and a membrane separation device 3.
In terms of mainly being configured by and, the denitrifying device has the same configuration as that shown in FIG. 1, and members having the same functions are designated by the same reference numerals and the description thereof will be omitted.

【0113】図4の脱窒装置では膜分離装置3の透過液
を透過液ポンプPで処理水流出管23より取り出す
が、この処理水流出管23に分岐して処理水返送管27
が設けられており、必要に応じて処理水が脱窒槽1に返
送されるように構成されている。23S,27Sは電磁
弁である。即ち、この脱窒装置では、膜分離装置3の膜
フラックスを一定に保つために透過液流量を比較的定量
性のあるチューブポンプPで制御する。また、原水投
入量及び膜フラックスを一定としながら、脱窒槽1内の
液面を一定に保つために、脱窒槽1の水位が低いときは
レベルスイッチ1Lで検知し、処理水返送電磁弁27S
を用いて透過液を自動的に脱窒槽1内へ返送する。脱窒
槽1の水位が上昇すると、処理水は処理水排出電磁弁2
3Sより排出される。
In the denitrification device of FIG. 4, the permeated liquid of the membrane separation device 3 is taken out from the treated water outflow pipe 23 by the permeated liquid pump P 7 , but is branched to this treated water outflow pipe 23 and the treated water return pipe 27.
Is provided and the treated water is returned to the denitrification tank 1 as needed. 23S and 27S are solenoid valves. That is, in this denitrification device, the permeate flow rate is controlled by the tube pump P 7 having a relatively quantitative property in order to keep the membrane flux of the membrane separation device 3 constant. Further, in order to keep the liquid level in the denitrification tank 1 constant while keeping the raw water input amount and the membrane flux constant, when the water level in the denitrification tank 1 is low, it is detected by the level switch 1L, and the treated water return electromagnetic valve 27S is detected.
The permeated liquid is automatically returned to the denitrification tank 1 using. When the water level in the denitrification tank 1 rises, the treated water will be discharged into the treated water discharge solenoid valve 2
It is discharged from 3S.

【0114】脱窒槽1の容積は5Lであり、膜分離装置
3は平膜型膜分離装置であり、使用した平膜は公称孔径
0.4μmの塩素化ポリエチレン製のMF膜である。
The denitrification tank 1 has a volume of 5 L, the membrane separator 3 is a flat membrane type membrane separator, and the flat membrane used is a chlorinated polyethylene MF membrane having a nominal pore diameter of 0.4 μm.

【0115】脱窒槽1の槽内液は変速機付きのスネーク
ポンプPにより膜分離装置3に供給され膜分離処理さ
れる。膜分離装置3では、一次側の出口をボールバルブ
24Vで絞ることにより、膜の一次側(原水側)の平均
圧力を100〜150MPaとし、膜の二次側(透過液
側)をチューブポンプPで定量的に吸引することによ
り処理水を得た。
The tank liquid in the denitrification tank 1 is supplied to the membrane separation device 3 by the snake pump P 1 equipped with a transmission and subjected to membrane separation treatment. In the membrane separation device 3, by squeezing the outlet on the primary side with the ball valve 24V, the average pressure on the primary side (raw water side) of the membrane is set to 100 to 150 MPa, and the secondary side (permeate side) of the membrane is pumped by the tube pump P. The treated water was obtained by quantitatively sucking in 7 .

【0116】脱窒槽1は撹拌機1Mで撹拌し、脱窒槽1
内部のpHをpH計(図示せず)で測定し、pHの上昇
と共に炭酸ガスを導入してpH調整を行い、pH7.5
に調整した。脱窒槽1は密閉し、脱窒ガスは外部へ導い
て、空気が逆流しないように水封した。
The denitrification tank 1 was agitated by a stirrer 1M,
The internal pH is measured by a pH meter (not shown), and carbon dioxide gas is introduced as the pH rises to adjust the pH to pH 7.5.
Adjusted to. The denitrification tank 1 was sealed, the denitrification gas was guided to the outside, and water was sealed so that air did not flow backward.

【0117】次に、図5を参照して本実施例で用いた膜
分離装置の平膜セルの構造を説明する。図5(a)はこ
の平膜セル50の平面図であり、図5(b)は図5
(a)のB−B線に沿う断面の拡大図である。
Next, the structure of the flat membrane cell of the membrane separation device used in this embodiment will be described with reference to FIG. FIG. 5A is a plan view of the flat film cell 50, and FIG.
It is an enlarged view of the section which follows the BB line of (a).

【0118】ボルト50B及びナット50Nによって連
結された上側ハウジング51と下側ハウジング52とに
よって外殻が構成されている。この平膜セル50の内部
には多孔質金属焼結板56が水平に配置され、該多孔質
金属焼結板56の上面に平膜53が配置されている。こ
の平膜53の上側が被処理液流路54となっており、多
孔質金属焼結板56の下側が透過液集水路55となって
いる。被処理液は、平膜セル50の長手方向の一端側の
入口57から被処理液流路54に導入され、他端側の濃
縮液出口58から濃縮水として流出する。被処理液が、
平膜53に沿って濃縮液出口58側へ流れる間に、平膜
53で膜分離処理され、透過液は多孔質金属焼結板56
の透過液流路から透過液集水路55及び透過液出口59
を経て取り出される。濃縮液は濃縮液出口58から取り
出される。
The upper housing 51 and the lower housing 52 connected by the bolt 50B and the nut 50N form an outer shell. Inside the flat membrane cell 50, a porous metal sintered plate 56 is horizontally arranged, and a flat membrane 53 is arranged on the upper surface of the porous metal sintered plate 56. The upper side of the flat membrane 53 is the liquid to be treated 54, and the lower side of the porous metal sintered plate 56 is the permeate collecting channel 55. The liquid to be treated is introduced into the liquid to be treated 54 from an inlet 57 on one end side in the longitudinal direction of the flat membrane cell 50, and flows out as a concentrated water from a concentrated liquid outlet 58 on the other end side. The liquid to be treated is
While flowing along the flat membrane 53 toward the concentrated liquid outlet 58, the flat membrane 53 performs membrane separation treatment, and the permeated liquid is the porous metal sintered plate 56.
From the permeate flow path of the permeate to the permeate collection channel 55 and the permeate outlet 59.
Is taken out through. The concentrated liquid is taken out from the concentrated liquid outlet 58.

【0119】膜分離装置3の有効膜面は流路幅40mm
×流路長860mm、膜面積3.44×10−2
した。一次側の流路高さは4mmであり、流路断面積は
1.6×10−4である。この膜分離装置3では、
脱窒槽1からの脱窒処理液通水量を5〜19L/min
とすることで、膜面流速0.5〜2m/secを確保す
ることができ、また、透過液の流量を10〜69L/d
ayとすることで、膜フラックス0.3〜2m/m
/dayとすることができる。前述の如く、透過液は脱
窒槽1内の水位をレベルスイッチ1Lで検知し、水位が
所定より低い時は脱窒槽1へ返送して槽内の水量低下を
防ぎ、水位が所定量より高い時は系外へ排出して処理水
とした。膜分離装置は同様のものを最大2系列、並列に
用いた。
The effective membrane surface of the membrane separation device 3 has a flow passage width of 40 mm.
× The flow path length was 860 mm, and the membrane area was 3.44 × 10 −2 m 2 . The flow path height on the primary side is 4 mm, and the flow path cross-sectional area is 1.6 × 10 −4 m 2 . In this membrane separation device 3,
Flow rate of denitrification treatment liquid from denitrification tank 1 is 5 to 19 L / min
As a result, a membrane surface flow velocity of 0.5 to 2 m / sec can be secured, and the permeate flow rate is 10 to 69 L / d.
By setting it as ay, the film flux is 0.3 to 2 m 3 / m 2
It can be / day. As described above, the permeated liquid detects the water level in the denitrification tank 1 with the level switch 1L, and when the water level is lower than the predetermined level, it is returned to the denitrification tank 1 to prevent a decrease in the amount of water in the tank, and when the water level is higher than the predetermined level. Was discharged out of the system to be treated water. The same membrane separation device was used in a maximum of two series and in parallel.

【0120】原水としては、比較例1で用いたものと同
一組成の合成排水を予め窒素ガスで脱酸素したものを脱
窒槽1に導入した。
As raw water, synthetic wastewater having the same composition as that used in Comparative Example 1 was previously deoxidized with nitrogen gas and introduced into the denitrification tank 1.

【0121】脱窒装置の運転開始時には別途培養したA
NAMMOX菌を含む汚泥をVSS400mg/Lとな
るよう脱窒槽1に投入し、原水流量を4L/dayとし
て通水を開始した。膜面流速は1m/sec、膜フラッ
クスは1m/m/dayとし、処理水のアンモニア
性窒素が20mg/L以下となるのを待って通水量を増
加した。
At the start of operation of the denitrification device, the separately cultured A
Sludge containing NAMMOX bacteria was put into the denitrification tank 1 so as to have a VSS of 400 mg / L, and the flow of raw water was started at 4 L / day. The membrane surface velocity was 1 m / sec, the membrane flux was 1 m 3 / m 2 / day, and the water flow rate was increased after waiting for the ammonia nitrogen in the treated water to be 20 mg / L or less.

【0122】この結果、1ヶ月後には脱窒槽1内の汚泥
はVSS2,500mg/Lに達し、原水通水量は30
L/day、アンモニア性窒素の容積負荷は1.2kg
/m /dayに達した。処理水のVSSは1mg/L
以下であり、増殖したANAMMOX菌の95%以上が
脱窒槽1内に留まっていることが確認された。この期
間、膜分離装置3に流入する脱窒処理液のアンモニア性
窒素濃度は10mg/L以上で推移し、亜硝酸性窒素濃
度は20mg/L以上で推移した。なお、処理水のアン
モニア性窒素濃度は12〜30mg/L、亜硝酸性窒素
濃度は25〜55mg/Lで、硝酸性窒素濃度は40〜
50mg/Lであった。
As a result, after one month, the sludge in the denitrification tank 1
Reaches VSS 2,500mg / L and the raw water flow rate is 30
L / day, the volumetric load of ammonia nitrogen is 1.2 kg
/ M Three/ Day has been reached. VSS of treated water is 1 mg / L
Below 95% or more of the propagated ANAMMOX bacteria
It was confirmed that it remained in the denitrification tank 1. This period
Ammonia content of the denitrification treatment liquid flowing into the membrane separation device 3 during
Nitrogen concentration remained above 10 mg / L, and nitrite nitrogen concentration
The degree remained at 20 mg / L or higher. In addition, the treated water
Monia nitrogen concentration is 12-30mg / L, nitrite nitrogen
The concentration is 25-55 mg / L, and the nitrate nitrogen concentration is 40-
It was 50 mg / L.

【0123】一方、濾過差圧は当初10kPa以下で推
移したが、約1週間経過後から急速に濾過差圧が上昇
し、1ヶ月後には100kPaとなった。この値はVS
S10,000〜15,000mg/Lの活性汚泥を膜
濾過する場合よりも2〜3倍程度高い膜汚染速度であ
り、特にANAMMOX菌がより高濃度になれば更に汚
染速度が増加する。このようなクロスフロー濾過方式を
適用する場合、濾過差圧の上限は100〜150kPa
程度が普通であり、この値に達するまでに薬品洗浄など
を行って膜汚染を回復する必要がある。また、濾過差圧
が100kPaを超えてからは処理水排出管23内に気
泡が観察されるようになり、このために排出される処理
水量の定量性を保つことが困難になり、頻繁にチューブ
ポンプPの流量を調整する必要が生じた。このように
透過液が気液混層流となった場合、透過液ポンプが例え
ば渦巻きポンプであれば、ポンプの吐出能力、吐出揚程
が低下するなどの問題が生ずる場合が多い。
On the other hand, the filtration differential pressure initially stayed at 10 kPa or less, but after about 1 week, the filtration differential pressure rapidly increased to 100 kPa after one month. This value is VS
The membrane fouling rate is about 2-3 times higher than that in the case of membrane filtration of S10,000 to 15,000 mg / L of activated sludge, and the fouling rate is further increased particularly when the concentration of ANAMMOX bacteria is higher. When applying such a cross flow filtration method, the upper limit of the filtration differential pressure is 100 to 150 kPa.
The degree is normal, and it is necessary to perform chemical cleaning or the like to recover the membrane contamination before reaching this value. Further, after the filtration differential pressure exceeds 100 kPa, air bubbles are observed in the treated water discharge pipe 23, which makes it difficult to maintain quantitativeness of the amount of treated water discharged, and frequently the tubes are used. It became necessary to adjust the flow rate of pump P 7 . When the permeated liquid becomes a gas-liquid mixed laminar flow in this way, if the permeated liquid pump is, for example, a spiral pump, problems often occur such that the discharge capacity and the discharge head of the pump are lowered.

【0124】以上の要素を考慮すると、本実施例1の運
転条件では、実用規模の膜濾過を行う場合に薬品洗浄頻
度が2〜4週間に1回と評価された。
Considering the above factors, under the operating conditions of this Example 1, the frequency of chemical cleaning was evaluated to be once every 2 to 4 weeks when performing membrane filtration on a practical scale.

【0125】この膜分離装置3の一次側に、0.2重量
%の水酸化ナトリウム水溶液を溶存酸素濃度1mg/L
以上となるよう維持して循環通液したところ、12時間
の薬品洗浄で9割以上の膜汚染が剥離し、性能を回復す
ることが確認された。一方、活性汚泥で汚染された膜の
場合、この条件での回復率は3〜7割程度である。この
ように効果的にANAMMOX菌による膜汚染が回復で
きた理由は、溶存酸素の存在により膜面に付着したAN
AMMOX菌が効率良く分解され、剥離が促進したため
と思われる。
On the primary side of this membrane separator 3, a 0.2 wt% sodium hydroxide aqueous solution was dissolved oxygen concentration of 1 mg / L.
When the solution was circulated while maintaining the above conditions, it was confirmed that 90% or more of the film contamination was peeled off by the chemical cleaning for 12 hours and the performance was recovered. On the other hand, in the case of a membrane contaminated with activated sludge, the recovery rate under this condition is about 30 to 70%. The reason why the membrane contamination by the ANAMMOX bacteria was effectively recovered was that the AN attached to the membrane surface due to the presence of dissolved oxygen.
It is considered that the AMMOX bacteria were efficiently decomposed and the exfoliation was promoted.

【0126】実施例2 実施例1の条件から、原水流量を落として25L/da
yとしたこと以外は実施例1と同様にして運転を行った
ところ、膜分離装置3に流入する脱窒処理液のアンモニ
ア性窒素を1mg/Lに落とすことができた。以降は1
週間ごとに3割通水量を増加し、その都度、アンモニア
性窒素濃度を測定したところ、期間を通じてアンモニア
性窒素濃度を3mg/L以下に保つことができた。特
に、通水量を上げる前の数日間は1mg/L以下のアン
モニア性窒素濃度であった。この結果、40日後には槽
内VSS濃度が10,000mg/Lを超え、アンモニ
ア性窒素の容積負荷は3kg/m/dayに達した。
Example 2 From the conditions of Example 1, the flow rate of raw water was reduced to 25 L / da.
When the operation was performed in the same manner as in Example 1 except that y was set, the ammoniacal nitrogen of the denitrification treatment liquid flowing into the membrane separation device 3 could be dropped to 1 mg / L. After that 1
The water flow rate was increased by 30% every week, and the ammoniacal nitrogen concentration was measured each time. As a result, the ammoniacal nitrogen concentration could be maintained at 3 mg / L or less throughout the period. In particular, the ammonia nitrogen concentration was 1 mg / L or less for several days before increasing the water flow rate. As a result, after 40 days, the VSS concentration in the tank exceeded 10,000 mg / L, and the volumetric load of ammoniacal nitrogen reached 3 kg / m 3 / day.

【0127】このとき、濾過差圧の上昇速度は2kPa
/day以下であり、概ね0.2〜1kPa/dayで
あったことから、膜汚染が効果的に抑制されていること
が確認できた。そして、必要な膜洗浄頻度は3ヶ月〜1
年に1回であると評価された。
At this time, the rising speed of the filtration differential pressure is 2 kPa.
Since it was less than / day and was about 0.2 to 1 kPa / day, it was confirmed that the film contamination was effectively suppressed. And the required membrane cleaning frequency is 3 months to 1
It was evaluated as once a year.

【0128】一方、このとき、脱窒槽1内の水面近くに
はスカム様の汚染が溜まり始めた。スカムの発生は、脱
窒槽1内の汚泥分布を不均一にし、被処理液と汚泥の接
触効率を低下させて反応効率を低下させたり、脱窒ガス
と共に汚泥が外部へ流出する危険がある。このため、膜
分離装置3から返送される濃縮液流を脱窒槽1の水面付
近に水平に吹き出すように改良し、水面付近の撹拌力を
高めたところ、スカム様汚泥の量が減少した。
On the other hand, at this time, scum-like contamination began to accumulate near the water surface in the denitrification tank 1. The generation of scum may make the sludge distribution in the denitrification tank 1 non-uniform, reduce the contact efficiency between the liquid to be treated and the sludge, and reduce the reaction efficiency, or the sludge may flow out together with the denitrifying gas. Therefore, when the concentrated liquid flow returned from the membrane separation device 3 was improved so as to be horizontally blown out near the water surface of the denitrification tank 1 and the stirring power near the water surface was increased, the amount of scum-like sludge decreased.

【0129】また、発生した脱窒ガスを抱き込んで浮上
するフロックの他に、膜分離装置3からの濃縮液中に微
細な気泡の発生が多くみられた。この現象を解析したと
ころ、膜分離装置3に供給する脱窒槽1内の脱窒処理液
の取り出し口が、脱窒槽1の壁面の中間の高さにあった
ために、容積負荷の増大と共に増加した脱窒ガスが膜分
離装置3への供給液に巻き込まれ、このガスが膜分離装
置3への給泥ポンプP により微細化されると同時に加
圧され、液中に脱窒ガスが再溶解し、この液が脱窒槽1
に返送されて圧力が常圧に戻ったときに、加圧環境下で
溶解した脱窒ガスが微細気泡となることによるものと推
定された。この気泡は、フロックに浮力を与えて水面付
近に浮上させるため、スカムの増加につながる。
Further, the generated denitrifying gas is held and floated.
In addition to the flocs,
Many small bubbles were observed. When this phenomenon is analyzed
The denitrification treatment liquid in the denitrification tank 1 supplied to the membrane separation device 3
Was taken out at the middle height of the wall surface of the denitrification tank 1.
Therefore, the denitrifying gas increased as the volume load increases
This gas is caught in the liquid supplied to the separation device 3 and this gas
Mud supply pump P to storage unit 3 1It will be miniaturized by
Pressurized, the denitrifying gas is redissolved in the liquid, and this liquid is denitrifying tank 1
When the pressure is returned to the normal pressure,
Probably because the dissolved denitrifying gas became fine bubbles.
Was determined. These bubbles give buoyancy to the floc and attach it to the water surface.
As it moves closer, it leads to an increase in scum.

【0130】このため、膜分離装置3に供給する脱窒処
理液の取り出し口を脱窒槽1の下部に変更し、図4に示
す如く、バッフル板1Bを設けたところ、脱窒ガスの巻
き込みは軽減され、同時にスカム様汚泥の発生も軽減し
た。
Therefore, when the outlet for the denitrification treatment liquid supplied to the membrane separation device 3 is changed to the lower part of the denitrification tank 1 and the baffle plate 1B is provided as shown in FIG. 4, entrapment of denitrification gas is prevented. At the same time, the generation of scum-like sludge was also reduced.

【0131】この結果から、膜分離装置へ供給する脱窒
処理液は、脱窒ガスの発生の少ない部分から採取すると
良く、特に採取口付近には下方から発生した脱窒ガスの
巻き込みを防止するバッフル板などを設けると良いこと
が分かった。また、膜分離装置に供給する脱窒処理液の
供給元となる脱窒槽は容積負荷を低く取り、脱窒ガスの
発生を極力抑制することがより好ましい。
From this result, it is preferable that the denitrification treatment liquid supplied to the membrane separation device is collected from a portion where the denitrification gas is less generated, and especially the vicinity of the collection port is prevented from entraining the denitrification gas generated from below. It turned out that it is better to install a baffle plate. Further, it is more preferable that the denitrification tank, which is a supply source of the denitrification treatment liquid supplied to the membrane separation device, has a low volumetric load to suppress the generation of denitrification gas as much as possible.

【0132】この脱窒槽の望ましい容積負荷は、反応槽
形状や汚泥濃度、ポンプ形式や管内流速等によるために
一概には言えないが、例えば亜硝酸性窒素と硝酸性窒素
が還元される速度として0〜1.5kg−N/m/d
ay、より好ましくは0.1〜0.8kg−N/m
dayとするのが良い。
The desired volumetric load of this denitrification tank cannot be generally stated because it depends on the shape of the reaction tank, the sludge concentration, the pump type, the flow velocity in the pipe, etc., but for example, the rate at which nitrite nitrogen and nitrate nitrogen are reduced. 0-1.5 kg-N / m 3 / d
ay, more preferably 0.1 to 0.8 kg-N / m 3 /
It is good to use day.

【0133】実施例3 実施例2において、VSS濃度が10,000mg/L
に達した後、脱窒槽1内の汚泥濃度が10,000mg
/Lを保つように脱窒槽1から汚泥の引き抜きを行った
こと以外は同様にして運転を行ったところ、平均140
mL/dayの汚泥の引き抜きが必要であった。このと
き、SRTは36日と計算される。この状態で原水濃度
を変動させたところ、約1日間の負荷上昇であれば最大
5割の負荷を許容できることが分かったが、徐々にアン
モニア性窒素濃度が上昇する傾向を見せた。1日間の内
にアンモニア性窒素濃度が3mg/Lを超えない実用的
な負荷変動は4割程度であった。
Example 3 In Example 2, the VSS concentration was 10,000 mg / L.
Sludge concentration in the denitrification tank 1 reaches 10,000 mg.
When the operation was performed in the same manner except that the sludge was drawn from the denitrification tank 1 so as to keep / L, an average of 140
mL / day sludge withdrawal was required. At this time, the SRT is calculated to be 36 days. When the raw water concentration was varied in this state, it was found that a maximum load of 50% could be tolerated if the load increased for about 1 day, but there was a tendency that the ammonia nitrogen concentration gradually increased. The practical load fluctuation in which the ammonia nitrogen concentration did not exceed 3 mg / L within one day was about 40%.

【0134】また、引き抜いた汚泥を別の密閉式の反応
槽に満たし、緩やかに撹拌し、pHを6.5〜9.0の
範囲に適宜調節し、水温を15〜20℃としながら保管
したところ、1ヶ月間でVSSとして40gの菌体を得
ることができた。更に汚泥を供給しつつ、20時間静置
することにより、60%程度が上澄みとして現れたた
め、これを静かに排出したところ、VSSとして約2
0,000mg/Lの汚泥が得られた。この汚泥のAN
AMMOX活性を調べたところ、アンモニア性窒素の除
去速度として0.2kg−N/kg−VSS/day以
上の値であり、他の装置に供給しても十分実用となる速
度を保持することが確認された。
The sludge drawn out was filled in another closed reaction tank, gently stirred, and the pH was appropriately adjusted to the range of 6.5 to 9.0, and the water temperature was kept at 15 to 20 ° C. However, 40 g of bacterial cells as VSS could be obtained in one month. When the sludge was further supplied and left standing for 20 hours, about 60% appeared as a supernatant. When this was gently discharged, VSS was about 2
50,000 mg / L sludge was obtained. AN of this sludge
When the AMMOX activity was examined, it was confirmed that the removal rate of ammonia nitrogen was 0.2 kg-N / kg-VSS / day or more, and that it was maintained at a practically sufficient rate even when supplied to other devices. Was done.

【0135】ここで蓄積・濃縮した汚泥は、同一組成の
原水67L/dayを処理する反応槽を即座に立ち上げ
ることが可能であった。
The sludge accumulated and concentrated here was able to immediately set up a reaction tank for treating 67 L / day of raw water having the same composition.

【0136】[0136]

【発明の効果】以上詳述した通り、本発明の脱窒装置及
び脱窒方法によれば、ANAMMOX菌を含む汚泥の分
離に膜分離手段を採用することにより、ANAMMOX
菌をほぼ最大速度で増殖させることができ、また増殖し
たANAMMOX菌の95%以上を系内に留めることが
できるため、立ち上がりが速く、負荷変動に強く、安定
した脱窒処理を行うことが可能となる。また、増殖した
ANAMMOX菌は高濃度で運搬することができ、他の
ANAMMOX反応槽の立ち上げに利用することができ
る。
As described above in detail, according to the denitrification apparatus and the denitrification method of the present invention, by adopting the membrane separation means for separating the sludge containing the ANAMMOX bacteria, the ANAMMOX
Bacteria can be grown at almost the maximum rate, and 95% or more of the propagated ANAMMOX bacteria can be retained in the system, enabling rapid start-up, resistance to load fluctuations, and stable denitrification treatment. Becomes In addition, the propagated ANAMMOX bacteria can be transported at a high concentration and can be used to start up another ANAMMOX reaction tank.

【0137】特に、本発明の脱窒方法では、ANAMM
OX菌の膜面への付着による膜汚染を効果的に防止する
ことができ、薬品洗浄頻度を減らすことにより薬品洗浄
にかかる手間及びコストと洗浄薬品の廃棄処理を軽減
し、また、膜の寿命を延長して膜の交換コストを低減す
ることができる。
Particularly, in the denitrification method of the present invention, ANAMM
It is possible to effectively prevent membrane contamination due to the attachment of OX bacteria to the membrane surface, and reduce the frequency and frequency of chemical cleaning to reduce the time and cost for chemical cleaning and the waste disposal of cleaning chemicals, and also the life of the membrane. Can be extended to reduce the replacement cost of the membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱窒装置の実施の形態を示す系統図で
ある。
FIG. 1 is a system diagram showing an embodiment of a denitrification device of the present invention.

【図2】本発明の脱窒装置の別の実施の形態を示す系統
図である。
FIG. 2 is a system diagram showing another embodiment of the denitrification device of the present invention.

【図3】本発明の脱窒装置の他の実施の形態を示す系統
図である。
FIG. 3 is a system diagram showing another embodiment of the denitrification device of the present invention.

【図4】実施例1〜3で用いた脱窒装置を示す系統図で
ある。
FIG. 4 is a system diagram showing a denitrification device used in Examples 1 to 3.

【図5】実施例1〜3で用いた膜分離装置の平膜セルの
構成を示す図であって、図5(a)は平面図、図5
(b)は図5(a)のB−B線に沿う断面の拡大図であ
る。
5 is a diagram showing the configuration of a flat membrane cell of the membrane separator used in Examples 1 to 3, FIG. 5 (a) being a plan view and FIG.
FIG. 5B is an enlarged view of a cross section taken along the line BB of FIG.

【図6】固液分離手段として沈殿槽を用いた脱窒装置を
示す系統図である。
FIG. 6 is a system diagram showing a denitrification device using a settling tank as a solid-liquid separation means.

【符号の説明】[Explanation of symbols]

1 脱窒槽 2 沈殿槽 3 膜分離装置 4 汚泥貯留槽 5 第2の膜分離装置 6 膜浸漬脱窒槽 7 浸漬膜 8 散気管 50 平膜セル 53 平膜 1 denitrification tank 2 settling tank 3 Membrane separation device 4 Sludge storage tank 5 Second membrane separator 6 Membrane immersion denitrification tank 7 Immersion film 8 Air diffuser 50 flat membrane cell 53 flat membrane

フロントページの続き Fターム(参考) 4D006 HA93 KA12 KA43 KA72 KB23 KC03 KC14 KC16 KD01 KD11 KD12 KD15 KD16 MA01 MA02 MA03 MC03 MC22 MC23 MC29 MC30 MC54 MC62 PA01 PB08 PC64 4D040 AA24 AA55 AA61 BB91 Continued front page    F-term (reference) 4D006 HA93 KA12 KA43 KA72 KB23                       KC03 KC14 KC16 KD01 KD11                       KD12 KD15 KD16 MA01 MA02                       MA03 MC03 MC22 MC23 MC29                       MC30 MC54 MC62 PA01 PB08                       PC64                 4D040 AA24 AA55 AA61 BB91

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含有する原水の流入
口と処理液の流出口とを有し、アンモニア性窒素を電子
供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生
物の作用により亜硝酸性窒素の存在下に生物脱窒する脱
窒槽と、 該脱窒槽の流出液又は該脱窒槽内の液を膜分離して前記
脱窒微生物と処理水とに分離する膜分離手段とを備える
ことを特徴とする脱窒装置。
1. An action of a denitrifying microorganism having an inlet for raw water containing ammoniacal nitrogen and an outlet for a treatment liquid, using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A denitrification tank for biological denitrification in the presence of nitrite nitrogen, and a membrane separation means for separating the effluent of the denitrification tank or the liquid in the denitrification tank into the denitrifying microorganisms and the treated water. A denitrification device comprising:
【請求項2】 アンモニア性窒素を含有する原水を、ア
ンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子
受容体とする脱窒微生物の作用により亜硝酸性窒素の存
在下に生物脱窒する脱窒工程と、 該脱窒工程の処理液を膜分離して前記脱窒微生物を含む
汚泥と処理水とに分離する膜分離工程とを有する脱窒方
法において前記膜分離工程で分離する脱窒工程の処理液
中のアンモニア性窒素濃度と亜硝酸性窒素濃度の両方又
はいずれか一方を0〜5mg/Lとすることを特徴とす
る脱窒方法。
2. Biodenitrification of raw water containing ammoniacal nitrogen in the presence of nitrite nitrogen by the action of a denitrifying microorganism using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. In the denitrification method, the denitrification method comprises: a denitrification step of performing denitrification and a membrane separation step of separating the treatment liquid of the denitrification step into sludge containing the denitrifying microorganisms and treated water. A denitrification method, characterized in that the concentration of ammoniacal nitrogen and / or the concentration of nitrite nitrogen in the treatment liquid in the nitrification step is set to 0 to 5 mg / L.
JP2001218432A 2001-07-18 2001-07-18 Dentrification apparatus and dentrification method Pending JP2003024985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218432A JP2003024985A (en) 2001-07-18 2001-07-18 Dentrification apparatus and dentrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218432A JP2003024985A (en) 2001-07-18 2001-07-18 Dentrification apparatus and dentrification method

Publications (1)

Publication Number Publication Date
JP2003024985A true JP2003024985A (en) 2003-01-28

Family

ID=19052611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218432A Pending JP2003024985A (en) 2001-07-18 2001-07-18 Dentrification apparatus and dentrification method

Country Status (1)

Country Link
JP (1) JP2003024985A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2006035154A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Method and apparatus for treating nitric acid waste liquid
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2007075817A (en) * 2006-11-01 2007-03-29 Hitachi Plant Technologies Ltd Method for operating anaerobic ammonia oxidation tank
JP2007245002A (en) * 2006-03-16 2007-09-27 Ngk Insulators Ltd Driving method of membrane separation type biological treatment tank
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
US7384553B2 (en) 2004-06-18 2008-06-10 Hitachi Plant Technologies, Ltd. Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
US7556961B2 (en) 2004-05-14 2009-07-07 Hitachi Plant Technologies, Ltd. Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
JP2010142781A (en) * 2008-12-22 2010-07-01 Ishigaki Co Ltd Biological denitrification apparatus
WO2011142185A1 (en) * 2010-05-14 2011-11-17 株式会社明電舎 Wastewater treatment method, and wastewater treatment device
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
KR101426361B1 (en) 2012-12-27 2014-08-08 (주)일신종합환경 Treatment system of wastewater containing ammonium nitrogen and nitrite nitrogen
WO2014208599A1 (en) * 2013-06-28 2014-12-31 三菱レイヨン株式会社 Method for cleaning filtration membrane
JP2016049512A (en) * 2014-09-01 2016-04-11 水ing株式会社 Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
CN105923765A (en) * 2016-07-04 2016-09-07 合肥工业大学 Rapid start method for anaerobic ammonia oxidation reactor
CN105923795A (en) * 2016-07-04 2016-09-07 合肥工业大学 Method for rapidly culturing anaerobic ammonium oxidation bacteria
JP2017077509A (en) * 2015-10-19 2017-04-27 株式会社ウェルシィ Water treatment method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
US7897375B2 (en) 2004-05-14 2011-03-01 Hitachi Plant Technologies, Ltd. Method and apparatus for collecting and acclimatizing anaerobic ammonium oxidizing bacteria, and denitrifying water
US8173419B2 (en) 2004-05-14 2012-05-08 Hitachi Plant Technologies, Ltd. Equipment for wastewater treatment comprising anaerobic ammonium oxidation vessel and acclimatization vessel
US7556961B2 (en) 2004-05-14 2009-07-07 Hitachi Plant Technologies, Ltd. Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
KR101255852B1 (en) * 2004-06-18 2013-04-17 가부시키가이샤 히타치플랜트테크놀로지 Method for operation of anaerobic ammonia oxidization tank and anaerobic ammonia oxidation apparatus
US7384553B2 (en) 2004-06-18 2008-06-10 Hitachi Plant Technologies, Ltd. Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
JP2006035154A (en) * 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd Method and apparatus for treating nitric acid waste liquid
JP4556532B2 (en) * 2004-07-29 2010-10-06 パナソニック株式会社 Method and apparatus for treating nitric acid waste liquid
JP2006122865A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Water treatment and carrier acclimatization method and its device
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2007245002A (en) * 2006-03-16 2007-09-27 Ngk Insulators Ltd Driving method of membrane separation type biological treatment tank
JP2008049251A (en) * 2006-08-24 2008-03-06 Institute Of National Colleges Of Technology Japan Apparatus for removing nitrogen
JP4632178B2 (en) * 2006-11-01 2011-02-16 株式会社日立プラントテクノロジー Operating method of anaerobic ammonia oxidation tank
JP2007075817A (en) * 2006-11-01 2007-03-29 Hitachi Plant Technologies Ltd Method for operating anaerobic ammonia oxidation tank
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
JP4702444B2 (en) * 2008-12-22 2011-06-15 株式会社石垣 Biological denitrification equipment
JP2010142781A (en) * 2008-12-22 2010-07-01 Ishigaki Co Ltd Biological denitrification apparatus
WO2011142185A1 (en) * 2010-05-14 2011-11-17 株式会社明電舎 Wastewater treatment method, and wastewater treatment device
JP2011240207A (en) * 2010-05-14 2011-12-01 Meidensha Corp Wastewater treatment method and apparatus
KR101426361B1 (en) 2012-12-27 2014-08-08 (주)일신종합환경 Treatment system of wastewater containing ammonium nitrogen and nitrite nitrogen
WO2014208599A1 (en) * 2013-06-28 2014-12-31 三菱レイヨン株式会社 Method for cleaning filtration membrane
CN105517694A (en) * 2013-06-28 2016-04-20 三菱丽阳株式会社 Method for cleaning filtration membrane
JPWO2014208599A1 (en) * 2013-06-28 2017-02-23 三菱レイヨン株式会社 Filtration membrane cleaning method
CN105517694B (en) * 2013-06-28 2018-05-29 三菱化学株式会社 The washing methods of filter membrane
JP2016049512A (en) * 2014-09-01 2016-04-11 水ing株式会社 Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP2017077509A (en) * 2015-10-19 2017-04-27 株式会社ウェルシィ Water treatment method and apparatus
CN105923765A (en) * 2016-07-04 2016-09-07 合肥工业大学 Rapid start method for anaerobic ammonia oxidation reactor
CN105923795A (en) * 2016-07-04 2016-09-07 合肥工业大学 Method for rapidly culturing anaerobic ammonium oxidation bacteria
CN105923765B (en) * 2016-07-04 2019-07-19 合肥工业大学 A kind of quick start method of anaerobic ammonia oxidation reactor

Similar Documents

Publication Publication Date Title
JP2003024985A (en) Dentrification apparatus and dentrification method
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
CN103112991B (en) Coking wastewater treatment system and coking wastewater treatment method
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
JP2007175582A (en) Treatment apparatus and method of organic matter-containing waste water
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
CN111762970A (en) Method for treating leachate of garbage transfer station
US11053150B2 (en) Wastewater treatment system and method
JP3323040B2 (en) Ultrapure water production equipment
CN108101313A (en) A kind of reverse osmosis concentrated water treatment facilities
KR101463987B1 (en) Method of treating organic waste water
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
JPH11309480A (en) Operating method of immersion type membrane separation device
CN114940561A (en) Oil sludge treatment waste liquid treatment system
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
KR20100089637A (en) Cleaning system for waste-water purifier
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP6136699B2 (en) Biological treatment method for organic wastewater
JPH10290993A (en) Purified water treating apparatus
JP4568528B2 (en) Water treatment equipment
CN210150897U (en) Reclaimed water recycling device
CN203173936U (en) Coking waste water oxidation and biochemical treatment equipment
CN203173917U (en) Coking waste water coal tar treatment equipment
JP5105608B2 (en) Waste water treatment system and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206