JP2010142781A - Biological denitrification apparatus - Google Patents
Biological denitrification apparatus Download PDFInfo
- Publication number
- JP2010142781A JP2010142781A JP2008325693A JP2008325693A JP2010142781A JP 2010142781 A JP2010142781 A JP 2010142781A JP 2008325693 A JP2008325693 A JP 2008325693A JP 2008325693 A JP2008325693 A JP 2008325693A JP 2010142781 A JP2010142781 A JP 2010142781A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- biological denitrification
- granule
- discharge
- raw water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000008187 granular material Substances 0.000 claims abstract description 54
- 241000894006 Bacteria Species 0.000 claims abstract description 27
- 230000001651 autotrophic effect Effects 0.000 claims abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 17
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 7
- 238000011001 backwashing Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 7
- 238000012423 maintenance Methods 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract 1
- 244000005700 microbiome Species 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 7
- 239000004745 nonwoven fabric Substances 0.000 description 5
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 241000605159 Nitrobacter Species 0.000 description 1
- 241001453382 Nitrosomonadales Species 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000000802 nitrating effect Effects 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Filtration Of Liquid (AREA)
Abstract
Description
本発明は、アンモニア性窒素と亜硝酸性窒素とを、独立栄養性脱窒菌(アナモックス菌)により窒素ガスに還元する微生物担体並びに脱窒装置に関するものである。 The present invention relates to a microbial carrier and a denitrification apparatus that reduce ammonia nitrogen and nitrite nitrogen to nitrogen gas by autotrophic denitrifying bacteria (Anamox bacteria).
近年、排水処理の分野において、原水中のアンモニア性窒素と亜硝酸性窒素とを、独立栄養性脱窒菌(アナモックス菌)により窒素ガスに還元する処理が行われている。この菌を利用した窒素除去反応はアナモックス反応と呼ばれており、従来の硝化、脱窒法よりも効率の良い窒素除去を行うことができることが知られている。 In recent years, in the field of wastewater treatment, ammonia nitrogen and nitrite nitrogen in raw water have been reduced to nitrogen gas by autotrophic denitrifying bacteria (anammox bacteria). This nitrogen removal reaction using bacteria is called an anammox reaction, and it is known that nitrogen removal can be performed more efficiently than conventional nitrification and denitrification methods.
図4は従来のアナモックス菌を用いた窒素除去システムのフローである。アンモニア性窒素を含有する原水は、部分亜硝酸化槽に導入される。原水中のアンモニア性窒素は部分亜硝酸化槽でアンモニア酸化細菌による好気的硝化反応によって、その一部が亜硝酸性窒素に酸化される。次いで生物脱窒槽に導入され、嫌気性条件下でアナモックス反応により窒素ガスに分解される。 FIG. 4 is a flow of a conventional nitrogen removal system using anammox bacteria. Raw water containing ammonia nitrogen is introduced into the partial nitritation tank. A part of ammonia nitrogen in raw water is oxidized to nitrite nitrogen by aerobic nitrification reaction by ammonia oxidizing bacteria in a partial nitrification tank. It is then introduced into a biological denitrification tank and decomposed into nitrogen gas by an anammox reaction under anaerobic conditions.
アナモックス菌は独立栄養性であるため、有機物の供給が不要であることの経済的な利点と、菌転換率が小さく、余剰汚泥の発生も微少に抑えることができ、従来の硝化脱窒でみられるN2Oの発生がない等の環境的な利点がある。 Since anammox bacteria are autotrophic, they have the economic advantage of not requiring the supply of organic matter, the bacteria conversion rate is small, and the generation of excess sludge can be minimized. there are environmental advantages such as no N 2 O generation being.
しかし、アナモックス菌は酸素や残留有機物により阻害を受けやすく、増殖速度も低いので、槽内を高濃度化とするのに長時間が必要であり、高濃度化を維持するのが困難であった。 However, anammox bacteria are susceptible to inhibition by oxygen and residual organic matter, and the growth rate is low, so it takes a long time to increase the concentration in the tank, and it was difficult to maintain the high concentration. .
特許文献1には、アナモックス菌を網状物や不織布等に担持させた長尺状担体を反応槽内に垂設し、アナモックス反応により廃水中のアンモニアを窒素ガスに還元して除去する方法が開示されている。 Patent Document 1 discloses a method in which an elongated carrier in which anammox bacteria are supported on a net or nonwoven fabric is suspended in a reaction tank, and ammonia in wastewater is reduced to nitrogen gas and removed by an anammox reaction. Has been.
特許文献2には、独立栄養性脱窒微生物のグラニュールを脱窒槽内に保持し、脱窒槽内に排液を上向流にて通液させ、グラニュールにより排液中の窒素を除去する脱窒方法及び装置が開示されている。
アナモックス菌を担持させた長尺状担体を利用する方法では、不織布形状の自由度が低いため、反応槽の大きさおよび形状に律速され、均等な設置が困難である。また、槽内にアナモックス菌を付着させた長尺状担体を投入する際に、不織布が多量の水分を保持しているため、投入時にかなりの労力を要し、担持させたアナモックス菌の剥離も発生する。さらに、アナモックス菌付着量の把握が困難であること、および投入した担体に占める菌体量が少ないことなどから、立ち上げ時の各種条件設定が困難である。アナモックス反応の際に生成される窒素ガスにより、不織布等の担体から剥離したアナモックス菌は浮上、流出するという問題がある。 In the method using an elongated carrier carrying anammox bacteria, the degree of freedom of the nonwoven fabric shape is low, so the rate is limited by the size and shape of the reaction tank, and uniform installation is difficult. Also, when a long carrier with anammox bacteria attached to the tank is put in, the nonwoven fabric holds a large amount of moisture, so it takes a lot of labor at the time of loading, and peeling of the anammox bacteria carried is also carried out. appear. Furthermore, it is difficult to set various conditions at the time of start-up because the amount of anammox bacteria attached is difficult to grasp and the amount of cells in the loaded carrier is small. There is a problem that anammox bacteria separated from a carrier such as a nonwoven fabric float and flow out due to nitrogen gas generated during the anammox reaction.
脱窒槽内を独立栄養性脱窒微生物のグラニュールで充填し、上向流にて脱窒処理する方法では、脱窒槽内を高濃度に保持することが可能であるが、固定床とするには、処理量を減少させるか、あるいは脱窒槽容量を大きくして大量のグラニュールを充填させる必要がある。しかし、固定床に上向流で通水すると、固定床を形成しているグラニュールが生成する窒素ガスの浮上通路を下方からの供給された原水が通り、グラニュールとの効率良い接触が行われない。また、脱窒槽内を上向流で通水させる処理方法は、グラニュールの浮上を助長する一因であり、上向流は浮上グラニュールの再沈降の妨げにもなっている。 In the method of filling the inside of the denitrification tank with granules of autotrophic denitrification microorganisms and denitrifying by upward flow, it is possible to keep the denitrification tank at a high concentration. It is necessary to reduce the processing amount or increase the capacity of the denitrification tank to fill a large amount of granules. However, when water flows upward through the fixed bed, the raw water supplied from below passes through the floating passage of the nitrogen gas generated by the granules forming the fixed bed, making efficient contact with the granules. I will not. In addition, the treatment method in which water flows through the denitrification tank in an upward flow is one factor that promotes the floating of the granules, and the upward flow also prevents re-sedimentation of the floating granules.
また、流動床は原水とグラニュールとの接触効率が良いが、生物反応の際に生成される窒素ガスを内部に包含したグラニュールが浮上するため、処理液を脱窒槽上部から排出する際に、グラニュールが同時に流出するという問題がある。 In addition, the fluidized bed has good contact efficiency between raw water and granule, but because the granule that contains nitrogen gas generated during biological reaction floats up, when discharging the treatment liquid from the upper part of the denitrification tank There is a problem that granule flows out at the same time.
本発明は上記のような従来技術に伴う問題を解決しようとするものであって、脱窒処理を行うにあたり、グラニュールの槽外への流出防止と容易な維持管理が可能な生物脱窒装置を提供することにある。 The present invention is intended to solve the problems associated with the prior art as described above, and in performing the denitrification treatment, a biological denitrification apparatus capable of preventing the granule from flowing out of the tank and easily maintaining it. Is to provide.
本発明の要旨は、生物脱窒槽の内部で独立栄養性脱窒菌と反応させて原水中のアンモニア性窒素を窒素ガスとして連続的に除去する生物脱窒装置において、原水の供給管を連結した生物脱窒槽に、独立栄養性脱窒菌のグラニュールを充填し、グラニュール層の内部に排出管と連通した排出フィルターを浸漬すると共に、原水を下向流で供給するもので、グラニュールが生物脱窒槽外へ流出し、能力低下となることがない。また、原水が徐々に微生物濃度が高い区域に向かうので、活性障害が起こらずに高効率な脱窒処理を行うことができる。さらに、グラニュールの補充や再投入が容易である。 The gist of the present invention is a biological denitrification apparatus in which ammonia nitrogen in raw water is continuously removed as nitrogen gas by reacting with autotrophic denitrifying bacteria inside the biological denitrification tank. The denitrification tank is filled with granules of autotrophic denitrifying bacteria, and a drain filter communicating with the discharge pipe is immersed inside the granule layer and raw water is supplied in a downward flow. It will not flow out of the nitrobacter and cause a decrease in capacity. In addition, since the raw water gradually moves to an area where the concentration of microorganisms is high, highly efficient denitrification treatment can be performed without causing an activity failure. Furthermore, it is easy to replenish and refill granules.
上記供給管の供給口を、生物脱窒槽内の水面より上方に配設したので、接触効率低下の原因となる浮上グラニュールに衝撃或いは振動を与え、浮上グラニュールが包含している窒素ガスを剥離させて再沈降を促進させる。 Since the supply port of the supply pipe is disposed above the water surface in the biological denitrification tank, impact or vibration is given to the floating granule that causes a decrease in contact efficiency, and nitrogen gas contained in the floating granule is contained. Remove to promote re-sedimentation.
上記排出フィルターから処理水を吸引して処理水槽に送水する排出ポンプを排出管に設けると共に、排出フィルターを逆洗するための洗浄管及び加圧手段を排出管に連通させるもので、排出フィルターの目詰まりによる処理能力低下や水面上昇を防止することができる。 A discharge pump for sucking treated water from the discharge filter and feeding it to the treated water tank is provided in the discharge pipe, and a washing pipe and a pressurizing means for backwashing the discharge filter are communicated with the discharge pipe. It is possible to prevent a decrease in processing capacity and an increase in water level due to clogging.
上記生物脱窒槽の底部を逆円錐状に形成し、排出フィルターを円錐先端面近傍の深さに浸漬させるので、原水が沈積グラニュールと効率よく接触し、脱窒処理された処理水が効率よく排出フィルターによって集水できる。 The bottom of the biological denitrification tank is formed in an inverted cone shape, and the discharge filter is immersed at a depth near the tip of the cone, so that the raw water efficiently contacts the sedimentation granules, and the denitrified treated water is efficiently Water can be collected by the discharge filter.
本発明は上記のように構成してあり、グラニュールが生物脱窒槽外へ流出することがないので、生物脱窒槽の高濃度化を維持でき、処理量を増加させることができると共に、生物脱窒槽内の滞留時間を短縮することができる。 The present invention is configured as described above, and since granules do not flow out of the biological denitrification tank, it is possible to maintain a high concentration of the biological denitrification tank, increase the throughput, The residence time in the nitrogen tank can be shortened.
初期の立ち上げ時には、グラニュールを処理量に応じて所定量投入するだけで、生物脱窒槽の微生物濃度を保持することができる。また、メンテナンスに伴うグラニュールの損失や、運転停止後の再立ち上げ時でも、グラニュールの取出し、補充、再投入が容易であり、槽内での馴養期間を必要としない。微生物を担体に担持させる等の特別な作業を行うことがないので、菌の取扱が容易で作業効率がよい。グラニュールの投入量も容易に把握することができ、生物脱窒槽内の濃度管理が容易となる。 At the initial start-up, the microbial concentration in the biological denitrification tank can be maintained by simply adding a predetermined amount of granules according to the processing amount. In addition, it is easy to take out, replenish, and re-inject granule even when it is lost due to maintenance or when it is restarted after operation is stopped, and no acclimatization period is required in the tank. Since there is no special work such as supporting the microorganisms on the carrier, the handling of the bacteria is easy and the work efficiency is good. The amount of granule input can be easily grasped, and the concentration control in the biological denitrification tank becomes easy.
生物脱窒槽の下方にいくほど微生物濃度が高くなるような濃度分布を示す処理槽に、原水を下向流で通水させているので、活性障害が起こらずに高効率な脱窒処理を行うことができる。 Since the raw water is passed in a downward flow through the treatment tank that shows a concentration distribution such that the concentration of microorganisms increases as it goes below the biological denitrification tank, highly efficient denitrification treatment is performed without causing any disturbance of activity. be able to.
図1は生物脱窒槽の縦断面図であって、密閉された生物脱窒槽1の下部にアナモックス菌のグラニュール2を充填している。グラニュール2とは直径数mm程度の微生物の自己造粒体である。グラニュール2を充填することで、生物脱窒槽1内の微生物濃度を高めることができ、生物脱窒槽1の容量を小さくすることができる。充填率は30〜50%容量程度であり、原水の状態や窒素負荷等の諸条件により適宜決定する。 FIG. 1 is a longitudinal sectional view of a biological denitrification tank, in which a lower part of a sealed biological denitrification tank 1 is filled with granules 2 of anammox bacteria. Granule 2 is a self-granulated body of microorganisms having a diameter of about several millimeters. By filling the granules 2, the concentration of microorganisms in the biological denitrification tank 1 can be increased, and the capacity of the biological denitrification tank 1 can be reduced. The filling rate is about 30 to 50% capacity, and is appropriately determined according to various conditions such as the state of raw water and nitrogen load.
生物脱窒槽1の上方には供給管3が連結され、供給管3から原水が生物脱窒槽1に供給される。上方から流入した原水は、生物脱窒槽1内を下向流で通水し、下部に充填している沈積グラニュール2aと接触する。そして、原水中のアンモニア性窒素と亜硝酸性窒素は、アナモックス反応によって窒素ガスに還元される。 A supply pipe 3 is connected above the biological denitrification tank 1, and raw water is supplied from the supply pipe 3 to the biological denitrification tank 1. The raw water flowing in from above passes through the biological denitrification tank 1 in a downward flow and comes into contact with the sedimentation granule 2a filled in the lower part. Then, ammonia nitrogen and nitrite nitrogen in the raw water are reduced to nitrogen gas by the anammox reaction.
生物脱窒槽1の下部に充填された沈積グラニュール2a層の内部には、排出管4に連通する排出フィルター5を浸漬してあり、脱窒処理された処理水を槽外に排出する。排出管4には排出ポンプ6を接続し、生物脱窒槽1から排出フィルター5により固液分離した処理水を吸引して、処理水槽7に送水する。 A discharge filter 5 communicating with the discharge pipe 4 is immersed in the deposited granule 2a layer filled in the lower part of the biological denitrification tank 1, and the treated water that has been denitrified is discharged outside the tank. A discharge pump 6 is connected to the discharge pipe 4, and the treated water separated from the biological denitrification tank 1 by the discharge filter 5 is sucked and sent to the treated water tank 7.
生物脱窒槽1底部は逆円錐状に形成してあり、そこに沈積グラニュール2aが充填され、沈積グラニュール2a内部に排出フィルター5を浸漬させている。排出フィルター5は生物脱窒槽1の中心線上に位置し、且つ逆円錐状に形成している円錐面近傍の深さに浸漬させてあり、原水が沈積グラニュール2aと効率よく接触し、アナモックス反応により脱窒処理された処理水が、効率よく排出フィルター5によって集水できる構成となっている。排出フィルター5の浸漬位置は処理条件により適宜選択しても良いものである。また、本発明の生物脱窒槽1底部は逆円錐状に形成してあるが、処理条件に合わせて円筒状、半球状等、任意の形状を選択できる。 The bottom part of the biological denitrification tank 1 is formed in an inverted conical shape, and the sedimentation granule 2a is filled therein, and the discharge filter 5 is immersed in the sedimentation granule 2a. The discharge filter 5 is located on the center line of the biological denitrification tank 1 and is immersed in a depth near the conical surface formed in an inverted conical shape. The raw water efficiently contacts the sediment granule 2a, and the anammox reaction. Thus, the treated water that has been denitrified by can be efficiently collected by the discharge filter 5. The immersion position of the discharge filter 5 may be appropriately selected depending on the processing conditions. Moreover, although the bottom part of the biological denitrification tank 1 of this invention is formed in the inverted cone shape, arbitrary shapes, such as cylindrical shape and a hemisphere, can be selected according to process conditions.
アナモックス反応によって生成された窒素ガスは、生物脱窒槽1上部に接続しているガス排出管8から槽外へ排出される。 Nitrogen gas generated by the anammox reaction is discharged out of the tank through a gas discharge pipe 8 connected to the upper part of the biological denitrification tank 1.
逆円錐状に形成された生物脱窒槽1底部には、排泥管9を連結し、余剰汚泥の排出や、沈積グラニュール2aの引き抜きが可能となっている。 A sludge discharge pipe 9 is connected to the bottom of the biological denitrification tank 1 formed in an inverted conical shape so that excess sludge can be discharged and the deposited granules 2a can be pulled out.
図2は排出フィルターの縦断面図であって、排出フィルター5はグラニュール2を形成している微生物が除去可能な多数の微細孔、例えば1〜10μmの細孔を有する中空糸、セラミック、不織布等の従来公知のフィルターや合成樹脂を用いることができる。 FIG. 2 is a longitudinal sectional view of the discharge filter, and the discharge filter 5 is a hollow fiber, ceramic, non-woven fabric having a large number of micropores, for example, 1-10 μm pores, from which microorganisms forming the granules 2 can be removed. Conventionally known filters and synthetic resins such as these can be used.
排出フィルター5で微生物と処理水を分離しているので、長時間運転していると、排出フィルター5の微細孔や表面には微生物が着棲・積層し、生物膜10が形成される。この生物膜10にも原水は接触するので、効率の良い脱窒処理を行うことができる。 Since the microorganisms and the treated water are separated by the discharge filter 5, when operating for a long time, the microorganisms adhere to and stack on the micropores and the surface of the discharge filter 5 to form the biofilm 10. Since the raw water also contacts this biofilm 10, efficient denitrification treatment can be performed.
さらに長時間運転していると、排出フィルター5の表面に着棲した生物膜10や原水中の懸濁物質によって微細孔が目詰まりし、処理水の排出が困難となり、処理量が減少し、生物脱窒槽1内の水位が上昇する。図3に示すように、生物脱窒槽1に配設している水位計11が、生物脱窒槽1内の水位上昇を検知し、制御装置12に検知信号を送信する。 If the operation is continued for a long time, micropores are clogged by the biofilm 10 attached to the surface of the discharge filter 5 and suspended matter in the raw water, making it difficult to discharge the treated water, reducing the treatment amount, The water level in the biological denitrification tank 1 rises. As shown in FIG. 3, the water level meter 11 disposed in the biological denitrification tank 1 detects a rise in the water level in the biological denitrification tank 1 and transmits a detection signal to the control device 12.
水位上昇の検知信号を受信した制御装置12により、排出管4及び洗浄管13、17に配設しているバルブ14、15、18の開閉制御と、排出ポンプ6、洗浄ポンプ16及び洗浄ブロワ19の運転制御が行われる。 The control device 12 that has received the water level rise detection signal controls the opening / closing of the valves 14, 15, 18 disposed in the discharge pipe 4 and the cleaning pipes 13, 17, the discharge pump 6, the cleaning pump 16, and the cleaning blower 19. The operation control is performed.
処理水槽7内の処理水を使用して排出フィルター5の逆洗を行う場合は、排出ポンプ6を停止し、排出管4に配設しているバルブ14を閉じ、処理水槽7から排出管4に連通している洗浄管13に接続しているバルブ15を開け、洗浄ポンプ16を起動する。 When backwashing the discharge filter 5 using the treated water in the treated water tank 7, the discharge pump 6 is stopped, the valve 14 disposed in the discharge pipe 4 is closed, and the discharge pipe 4 is discharged from the treated water tank 7. The valve 15 connected to the cleaning pipe 13 communicated with is opened, and the cleaning pump 16 is started.
窒素ガスを使用して排出フィルター5の逆洗を行う場合は、排出ポンプ6を停止し、排出管4に配設しているバルブ14を閉じ、ガス貯留槽(図示せず)から排出管4に連通している洗浄管17に接続しているバルブ18を開け、洗浄ブロワ19を起動する。 When backwashing the exhaust filter 5 using nitrogen gas, the exhaust pump 6 is stopped, the valve 14 provided in the exhaust pipe 4 is closed, and the exhaust pipe 4 is discharged from a gas storage tank (not shown). The valve 18 connected to the cleaning pipe 17 communicated with is opened, and the cleaning blower 19 is activated.
アナモックス菌には粘性が低いため、逆洗により排出フィルター5から生物膜10は容易に剥離し、排出フィルター5から剥離された生物膜10は散点し、既存のグラニュール2に付着するか或いは新たなグラニュール2を形成し、脱窒処理に寄与する。また、粘性により沈積グラニュール2a同士が結合して窒素ガスの排出障害となることがない。 Since the viscosity of anammox bacteria is low, the biofilm 10 is easily peeled off from the discharge filter 5 by backwashing, and the biofilm 10 peeled off from the discharge filter 5 is scattered and attached to the existing granules 2 or Forms new granules 2 and contributes to denitrification treatment. In addition, the deposited granules 2a are not bonded to each other due to the viscosity and do not cause an obstacle to discharge of nitrogen gas.
本実施例は水位計11の検知により排出フィルター5の洗浄を行っているが、一定時間稼動毎に自動的に洗浄してもよい。 In the present embodiment, the discharge filter 5 is washed by detection of the water level gauge 11, but may be automatically washed every operation for a certain period of time.
生物脱窒槽1の下部に充填している沈積グラニュール2aの一部は、脱窒処理の際に生成する窒素ガスを包含して浮上する。一般的な上向流で処理を行う脱窒装置においては、浮上グラニュール2bは接触効率の低下の要因となる。しかし、下向流方式では、原水が生物脱窒槽1下方の排出フィルター5に向かうにつれ、徐々に高濃度区域と接触するようになるので、接触効率の低下は顕著ではない。 A part of the deposited granule 2a filled in the lower part of the biological denitrification tank 1 floats including nitrogen gas generated during the denitrification process. In a denitrification apparatus that performs processing in a general upward flow, the floating granule 2b causes a reduction in contact efficiency. However, in the downward flow method, since the raw water gradually comes into contact with the high concentration area as it goes to the discharge filter 5 below the biological denitrification tank 1, the contact efficiency is not significantly reduced.
また、原水を浮上グラニュール2bのさらに上方から供給し、液面の浮上グラニュール2bを振動させるので、浮上グラニュール2bが包含する窒素ガスを剥離させ、再沈降を促進させる。供給管3の供給口を複数に分岐したり、散水方式にしてもよい。 Moreover, since raw | natural water is supplied from the upper direction of the floating granule 2b and the floating granule 2b of a liquid level is vibrated, the nitrogen gas which the floating granule 2b contains is peeled and re-sediment is accelerated | stimulated. The supply port of the supply pipe 3 may be branched into a plurality of parts or a watering method.
一般的に、微生物濃度を高濃度に維持すると効率的に脱窒処理できる。しかし、条件にもよるが100〜200ppm以上の濃度では活性障害が起こり易く、顕著な反応の低下が見られることがある。本発明のように、生物脱窒槽1の下方にいくほど濃度が高くなるような濃度分布を示す処理槽では、原水を下向流で通水させて、徐々に原水が高濃度区域の微生物と接触するようにすると、活性障害が起こらずに高効率な脱窒処理を行うことができる。 In general, denitrification treatment can be efficiently performed by maintaining a high microorganism concentration. However, depending on the conditions, an activity disorder is likely to occur at a concentration of 100 to 200 ppm or more, and a marked reduction in reaction may be observed. As in the present invention, in a treatment tank having a concentration distribution that increases in concentration toward the lower side of the biological denitrification tank 1, the raw water is passed in a downward flow, and the raw water is gradually mixed with microorganisms in the high concentration area. When contact is made, highly efficient denitrification treatment can be performed without causing an activity failure.
原水を下向流で通水させ、グラニュール2の浮上・流出という懸念がないので、負荷を上げた処理を行うことができる。負荷を上げると沈積グラニュール2aが下部で流動し、アナモックス菌の活性が上がり、窒素ガスの抜けも良くなる。 Since the raw water is passed in a downward flow and there is no concern of the granule 2 floating or outflowing, it is possible to perform processing with increased load. When the load is increased, the deposited granule 2a flows in the lower part, the activity of the anammox bacteria is increased, and the escape of nitrogen gas is improved.
何らかの原因で生物脱窒槽1内の微生物濃度が低くなった場合は、別途形成させたグラニュール2を投入するだけで直ちに通常運転が可能となる。微生物を担持させた担体を取り扱わないので、投入、取出しのメンテナンスが容易である。また、微生物を着棲させる担体を使用していないので、生物脱窒槽1内で担体に担持させる着棲期間が不要である。 If the microorganism concentration in the biological denitrification tank 1 becomes low for some reason, it is possible to immediately perform normal operation simply by adding the granule 2 formed separately. Since a carrier carrying microorganisms is not handled, maintenance of input and extraction is easy. In addition, since no carrier on which microorganisms are allowed to settle is used, an anchoring period for supporting the carrier in the biological denitrification tank 1 is unnecessary.
上方から供給された原水は、水面の浮上グラニュール2bと接触した後、生物脱窒槽中間に位置する調整部20で流速、水温、pH、DOが監視・調整され、生物脱窒槽1下部の沈積グラニュール2aと接触し、アナモックス反応によって脱窒される。生物脱窒槽1内で原水を調整できるので、別途前段に調整槽等が不要である。 After the raw water supplied from above comes into contact with the floating granule 2b on the water surface, the flow rate, water temperature, pH, and DO are monitored and adjusted by the adjusting unit 20 located in the middle of the biological denitrification tank, and the sedimentation in the lower part of the biological denitrification tank 1 is deposited. It contacts with the granule 2a and is denitrified by the anammox reaction. Since raw water can be adjusted in the biological denitrification tank 1, a separate adjustment tank or the like is not required in the previous stage.
本発明に係る生物脱窒装置は、アナモックス菌グラニュールを充填しているので、容易に生物反応室の高濃度化を維持管理できる。初期および運転停止後の立ち上げ時や、メンテナンスに伴う濃度低下時でも、グラニュールの補充、高濃度化が容易であり、槽内での培養期間を必要としない。また、原水を下向流で通水し、沈積グラニュール内に排出フィルターを浸漬して処理水を排出するので、アナモックス菌の槽外への流出を防止できる。微生物との活性障害が起こり難いので、効率的な脱窒処理が可能となる。 Since the biological denitrification apparatus according to the present invention is filled with anammox granules, it is possible to easily maintain and increase the concentration of the biological reaction chamber. Even at the start-up after the start and after the operation is stopped, or even when the concentration decreases due to maintenance, it is easy to replenish granules and increase the concentration, and no culture period is required in the tank. Moreover, since raw water is passed in a downward flow and the treated water is discharged by immersing the discharge filter in the sedimentary granule, the anammox bacteria can be prevented from flowing out of the tank. Since an activity disorder with microorganisms hardly occurs, an efficient denitrification treatment is possible.
1 生物脱窒槽
2 グラニュール
3 供給管
4 排出管
5 排出フィルター
6 排出ポンプ
13、17 洗浄管
16 洗浄ポンプ
19 洗浄ブロワ
DESCRIPTION OF SYMBOLS 1 Biological denitrification tank 2 Granule 3 Supply pipe 4 Discharge pipe 5 Discharge filter 6 Discharge pump 13, 17 Wash pipe 16 Wash pump 19 Wash blower
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008325693A JP4702444B2 (en) | 2008-12-22 | 2008-12-22 | Biological denitrification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008325693A JP4702444B2 (en) | 2008-12-22 | 2008-12-22 | Biological denitrification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010142781A true JP2010142781A (en) | 2010-07-01 |
JP4702444B2 JP4702444B2 (en) | 2011-06-15 |
Family
ID=42563764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008325693A Active JP4702444B2 (en) | 2008-12-22 | 2008-12-22 | Biological denitrification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4702444B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011115689A (en) * | 2009-12-01 | 2011-06-16 | Ishigaki Co Ltd | Nitrogen removal apparatus and method |
CN103864208A (en) * | 2014-04-09 | 2014-06-18 | 中持(北京)水务运营有限公司 | Waist washwater gutter for denitrification deep bed filter |
JP2018126694A (en) * | 2017-02-09 | 2018-08-16 | 学校法人 東洋大学 | Processing apparatus and processing method of nitrogen containing sewage |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10263594A (en) * | 1997-03-25 | 1998-10-06 | Meiwa Kogyo Kk | Removing method and device of nitrate ion in waste water |
JP2000342911A (en) * | 1999-06-08 | 2000-12-12 | Hitoshi Daido | Dynamic filter body |
JP2001205055A (en) * | 2000-01-31 | 2001-07-31 | Daicel Chem Ind Ltd | Method for operating membrane separation apparatus and apparatus therefor |
JP2003024985A (en) * | 2001-07-18 | 2003-01-28 | Kurita Water Ind Ltd | Dentrification apparatus and dentrification method |
JP2006082053A (en) * | 2004-09-17 | 2006-03-30 | Kurita Water Ind Ltd | Method and apparatus for treating nitrogen-containing drainage |
JP2009125702A (en) * | 2007-11-27 | 2009-06-11 | Asahi Breweries Ltd | Wastewater treatment apparatus |
-
2008
- 2008-12-22 JP JP2008325693A patent/JP4702444B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10263594A (en) * | 1997-03-25 | 1998-10-06 | Meiwa Kogyo Kk | Removing method and device of nitrate ion in waste water |
JP2000342911A (en) * | 1999-06-08 | 2000-12-12 | Hitoshi Daido | Dynamic filter body |
JP2001205055A (en) * | 2000-01-31 | 2001-07-31 | Daicel Chem Ind Ltd | Method for operating membrane separation apparatus and apparatus therefor |
JP2003024985A (en) * | 2001-07-18 | 2003-01-28 | Kurita Water Ind Ltd | Dentrification apparatus and dentrification method |
JP2006082053A (en) * | 2004-09-17 | 2006-03-30 | Kurita Water Ind Ltd | Method and apparatus for treating nitrogen-containing drainage |
JP2009125702A (en) * | 2007-11-27 | 2009-06-11 | Asahi Breweries Ltd | Wastewater treatment apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011115689A (en) * | 2009-12-01 | 2011-06-16 | Ishigaki Co Ltd | Nitrogen removal apparatus and method |
CN103864208A (en) * | 2014-04-09 | 2014-06-18 | 中持(北京)水务运营有限公司 | Waist washwater gutter for denitrification deep bed filter |
JP2018126694A (en) * | 2017-02-09 | 2018-08-16 | 学校法人 東洋大学 | Processing apparatus and processing method of nitrogen containing sewage |
Also Published As
Publication number | Publication date |
---|---|
JP4702444B2 (en) | 2011-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100441208B1 (en) | Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same | |
KR100927629B1 (en) | Wastewater treatment method and device | |
KR100876323B1 (en) | Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus | |
CN104773901A (en) | Biological treatment method of circulating culture water body | |
JP5141967B2 (en) | Biological denitrification equipment | |
JP4702444B2 (en) | Biological denitrification equipment | |
JP5001923B2 (en) | Water treatment apparatus and water treatment method | |
KR20000034519A (en) | Treatment method of wastewater using filtration and aerobic microorganism | |
KR101541070B1 (en) | method and device for controlling using turbulence stimulation and filter member | |
KR101770792B1 (en) | Sewage and wastewater purification system | |
JP6941439B2 (en) | Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment | |
JP2009202146A (en) | Water treatment equipment and method of water treatment | |
JP2009297625A (en) | Microorganism carrier and biological denitrification device | |
JP6652898B2 (en) | Water treatment device and water treatment method | |
JP3607088B2 (en) | Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater | |
JP2005074357A (en) | Membrane washing method in membrane separation activated sludge method | |
JP2002346591A (en) | Sewage treatment apparatus and operation method therefor | |
JP5825807B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP2008238042A (en) | Method for reducing amount of organic sludge | |
JP2008212865A (en) | Nitration tank | |
JP2017051922A (en) | Wastewater treatment method and apparatus | |
JP4335193B2 (en) | Method and apparatus for treating organic wastewater | |
JP7121823B2 (en) | Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device | |
JP4865997B2 (en) | Operation method of sewage treatment apparatus and sewage treatment apparatus | |
FI121506B (en) | Biological purification procedure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4702444 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |