JP2010142781A - Biological denitrification apparatus - Google Patents

Biological denitrification apparatus Download PDF

Info

Publication number
JP2010142781A
JP2010142781A JP2008325693A JP2008325693A JP2010142781A JP 2010142781 A JP2010142781 A JP 2010142781A JP 2008325693 A JP2008325693 A JP 2008325693A JP 2008325693 A JP2008325693 A JP 2008325693A JP 2010142781 A JP2010142781 A JP 2010142781A
Authority
JP
Japan
Prior art keywords
tank
biological denitrification
granule
discharge
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008325693A
Other languages
Japanese (ja)
Other versions
JP4702444B2 (en
Inventor
Yasutaka Suetsugu
康隆 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2008325693A priority Critical patent/JP4702444B2/en
Publication of JP2010142781A publication Critical patent/JP2010142781A/en
Application granted granted Critical
Publication of JP4702444B2 publication Critical patent/JP4702444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological denitrification apparatus for easily carrying out prevention of an outflow outside a tank and maintenance management of a concentration in the tank in causing reaction with autotrophy denitrifying bacteria to carry out denitrification treatment. <P>SOLUTION: The granule 2 of the autotrophic denitrifying bacteria is filled into a biological denitrification tank 1 connected with a supply pipe 3 of raw water, and a discharge filter 5 communicating with a discharge pipe 4 is immersed inside a granule 2 layer and the raw water is supplied by downflow. Since the outflow of the granule 2 outside the tank is extremely small, a high concentration in the tank can be maintained and managed. An efficient denitrification treatment can be carried out without causing an activity disorder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アンモニア性窒素と亜硝酸性窒素とを、独立栄養性脱窒菌(アナモックス菌)により窒素ガスに還元する微生物担体並びに脱窒装置に関するものである。   The present invention relates to a microbial carrier and a denitrification apparatus that reduce ammonia nitrogen and nitrite nitrogen to nitrogen gas by autotrophic denitrifying bacteria (Anamox bacteria).

近年、排水処理の分野において、原水中のアンモニア性窒素と亜硝酸性窒素とを、独立栄養性脱窒菌(アナモックス菌)により窒素ガスに還元する処理が行われている。この菌を利用した窒素除去反応はアナモックス反応と呼ばれており、従来の硝化、脱窒法よりも効率の良い窒素除去を行うことができることが知られている。   In recent years, in the field of wastewater treatment, ammonia nitrogen and nitrite nitrogen in raw water have been reduced to nitrogen gas by autotrophic denitrifying bacteria (anammox bacteria). This nitrogen removal reaction using bacteria is called an anammox reaction, and it is known that nitrogen removal can be performed more efficiently than conventional nitrification and denitrification methods.

図4は従来のアナモックス菌を用いた窒素除去システムのフローである。アンモニア性窒素を含有する原水は、部分亜硝酸化槽に導入される。原水中のアンモニア性窒素は部分亜硝酸化槽でアンモニア酸化細菌による好気的硝化反応によって、その一部が亜硝酸性窒素に酸化される。次いで生物脱窒槽に導入され、嫌気性条件下でアナモックス反応により窒素ガスに分解される。   FIG. 4 is a flow of a conventional nitrogen removal system using anammox bacteria. Raw water containing ammonia nitrogen is introduced into the partial nitritation tank. A part of ammonia nitrogen in raw water is oxidized to nitrite nitrogen by aerobic nitrification reaction by ammonia oxidizing bacteria in a partial nitrification tank. It is then introduced into a biological denitrification tank and decomposed into nitrogen gas by an anammox reaction under anaerobic conditions.

アナモックス菌は独立栄養性であるため、有機物の供給が不要であることの経済的な利点と、菌転換率が小さく、余剰汚泥の発生も微少に抑えることができ、従来の硝化脱窒でみられるN2Oの発生がない等の環境的な利点がある。 Since anammox bacteria are autotrophic, they have the economic advantage of not requiring the supply of organic matter, the bacteria conversion rate is small, and the generation of excess sludge can be minimized. there are environmental advantages such as no N 2 O generation being.

しかし、アナモックス菌は酸素や残留有機物により阻害を受けやすく、増殖速度も低いので、槽内を高濃度化とするのに長時間が必要であり、高濃度化を維持するのが困難であった。   However, anammox bacteria are susceptible to inhibition by oxygen and residual organic matter, and the growth rate is low, so it takes a long time to increase the concentration in the tank, and it was difficult to maintain the high concentration. .

特許文献1には、アナモックス菌を網状物や不織布等に担持させた長尺状担体を反応槽内に垂設し、アナモックス反応により廃水中のアンモニアを窒素ガスに還元して除去する方法が開示されている。   Patent Document 1 discloses a method in which an elongated carrier in which anammox bacteria are supported on a net or nonwoven fabric is suspended in a reaction tank, and ammonia in wastewater is reduced to nitrogen gas and removed by an anammox reaction. Has been.

特許文献2には、独立栄養性脱窒微生物のグラニュールを脱窒槽内に保持し、脱窒槽内に排液を上向流にて通液させ、グラニュールにより排液中の窒素を除去する脱窒方法及び装置が開示されている。
国際公開番号WO2005/095289号 特開2002−346593号公報
In Patent Document 2, granules of autotrophic denitrifying microorganisms are held in a denitrification tank, drainage is passed through the denitrification tank in an upward flow, and nitrogen in the drainage is removed by the granules. A denitrification method and apparatus is disclosed.
International Publication Number WO2005 / 095289 JP 2002-346593 A

アナモックス菌を担持させた長尺状担体を利用する方法では、不織布形状の自由度が低いため、反応槽の大きさおよび形状に律速され、均等な設置が困難である。また、槽内にアナモックス菌を付着させた長尺状担体を投入する際に、不織布が多量の水分を保持しているため、投入時にかなりの労力を要し、担持させたアナモックス菌の剥離も発生する。さらに、アナモックス菌付着量の把握が困難であること、および投入した担体に占める菌体量が少ないことなどから、立ち上げ時の各種条件設定が困難である。アナモックス反応の際に生成される窒素ガスにより、不織布等の担体から剥離したアナモックス菌は浮上、流出するという問題がある。   In the method using an elongated carrier carrying anammox bacteria, the degree of freedom of the nonwoven fabric shape is low, so the rate is limited by the size and shape of the reaction tank, and uniform installation is difficult. Also, when a long carrier with anammox bacteria attached to the tank is put in, the nonwoven fabric holds a large amount of moisture, so it takes a lot of labor at the time of loading, and peeling of the anammox bacteria carried is also carried out. appear. Furthermore, it is difficult to set various conditions at the time of start-up because the amount of anammox bacteria attached is difficult to grasp and the amount of cells in the loaded carrier is small. There is a problem that anammox bacteria separated from a carrier such as a nonwoven fabric float and flow out due to nitrogen gas generated during the anammox reaction.

脱窒槽内を独立栄養性脱窒微生物のグラニュールで充填し、上向流にて脱窒処理する方法では、脱窒槽内を高濃度に保持することが可能であるが、固定床とするには、処理量を減少させるか、あるいは脱窒槽容量を大きくして大量のグラニュールを充填させる必要がある。しかし、固定床に上向流で通水すると、固定床を形成しているグラニュールが生成する窒素ガスの浮上通路を下方からの供給された原水が通り、グラニュールとの効率良い接触が行われない。また、脱窒槽内を上向流で通水させる処理方法は、グラニュールの浮上を助長する一因であり、上向流は浮上グラニュールの再沈降の妨げにもなっている。   In the method of filling the inside of the denitrification tank with granules of autotrophic denitrification microorganisms and denitrifying by upward flow, it is possible to keep the denitrification tank at a high concentration. It is necessary to reduce the processing amount or increase the capacity of the denitrification tank to fill a large amount of granules. However, when water flows upward through the fixed bed, the raw water supplied from below passes through the floating passage of the nitrogen gas generated by the granules forming the fixed bed, making efficient contact with the granules. I will not. In addition, the treatment method in which water flows through the denitrification tank in an upward flow is one factor that promotes the floating of the granules, and the upward flow also prevents re-sedimentation of the floating granules.

また、流動床は原水とグラニュールとの接触効率が良いが、生物反応の際に生成される窒素ガスを内部に包含したグラニュールが浮上するため、処理液を脱窒槽上部から排出する際に、グラニュールが同時に流出するという問題がある。   In addition, the fluidized bed has good contact efficiency between raw water and granule, but because the granule that contains nitrogen gas generated during biological reaction floats up, when discharging the treatment liquid from the upper part of the denitrification tank There is a problem that granule flows out at the same time.

本発明は上記のような従来技術に伴う問題を解決しようとするものであって、脱窒処理を行うにあたり、グラニュールの槽外への流出防止と容易な維持管理が可能な生物脱窒装置を提供することにある。   The present invention is intended to solve the problems associated with the prior art as described above, and in performing the denitrification treatment, a biological denitrification apparatus capable of preventing the granule from flowing out of the tank and easily maintaining it. Is to provide.

本発明の要旨は、生物脱窒槽の内部で独立栄養性脱窒菌と反応させて原水中のアンモニア性窒素を窒素ガスとして連続的に除去する生物脱窒装置において、原水の供給管を連結した生物脱窒槽に、独立栄養性脱窒菌のグラニュールを充填し、グラニュール層の内部に排出管と連通した排出フィルターを浸漬すると共に、原水を下向流で供給するもので、グラニュールが生物脱窒槽外へ流出し、能力低下となることがない。また、原水が徐々に微生物濃度が高い区域に向かうので、活性障害が起こらずに高効率な脱窒処理を行うことができる。さらに、グラニュールの補充や再投入が容易である。   The gist of the present invention is a biological denitrification apparatus in which ammonia nitrogen in raw water is continuously removed as nitrogen gas by reacting with autotrophic denitrifying bacteria inside the biological denitrification tank. The denitrification tank is filled with granules of autotrophic denitrifying bacteria, and a drain filter communicating with the discharge pipe is immersed inside the granule layer and raw water is supplied in a downward flow. It will not flow out of the nitrobacter and cause a decrease in capacity. In addition, since the raw water gradually moves to an area where the concentration of microorganisms is high, highly efficient denitrification treatment can be performed without causing an activity failure. Furthermore, it is easy to replenish and refill granules.

上記供給管の供給口を、生物脱窒槽内の水面より上方に配設したので、接触効率低下の原因となる浮上グラニュールに衝撃或いは振動を与え、浮上グラニュールが包含している窒素ガスを剥離させて再沈降を促進させる。   Since the supply port of the supply pipe is disposed above the water surface in the biological denitrification tank, impact or vibration is given to the floating granule that causes a decrease in contact efficiency, and nitrogen gas contained in the floating granule is contained. Remove to promote re-sedimentation.

上記排出フィルターから処理水を吸引して処理水槽に送水する排出ポンプを排出管に設けると共に、排出フィルターを逆洗するための洗浄管及び加圧手段を排出管に連通させるもので、排出フィルターの目詰まりによる処理能力低下や水面上昇を防止することができる。   A discharge pump for sucking treated water from the discharge filter and feeding it to the treated water tank is provided in the discharge pipe, and a washing pipe and a pressurizing means for backwashing the discharge filter are communicated with the discharge pipe. It is possible to prevent a decrease in processing capacity and an increase in water level due to clogging.

上記生物脱窒槽の底部を逆円錐状に形成し、排出フィルターを円錐先端面近傍の深さに浸漬させるので、原水が沈積グラニュールと効率よく接触し、脱窒処理された処理水が効率よく排出フィルターによって集水できる。   The bottom of the biological denitrification tank is formed in an inverted cone shape, and the discharge filter is immersed at a depth near the tip of the cone, so that the raw water efficiently contacts the sedimentation granules, and the denitrified treated water is efficiently Water can be collected by the discharge filter.

本発明は上記のように構成してあり、グラニュールが生物脱窒槽外へ流出することがないので、生物脱窒槽の高濃度化を維持でき、処理量を増加させることができると共に、生物脱窒槽内の滞留時間を短縮することができる。   The present invention is configured as described above, and since granules do not flow out of the biological denitrification tank, it is possible to maintain a high concentration of the biological denitrification tank, increase the throughput, The residence time in the nitrogen tank can be shortened.

初期の立ち上げ時には、グラニュールを処理量に応じて所定量投入するだけで、生物脱窒槽の微生物濃度を保持することができる。また、メンテナンスに伴うグラニュールの損失や、運転停止後の再立ち上げ時でも、グラニュールの取出し、補充、再投入が容易であり、槽内での馴養期間を必要としない。微生物を担体に担持させる等の特別な作業を行うことがないので、菌の取扱が容易で作業効率がよい。グラニュールの投入量も容易に把握することができ、生物脱窒槽内の濃度管理が容易となる。   At the initial start-up, the microbial concentration in the biological denitrification tank can be maintained by simply adding a predetermined amount of granules according to the processing amount. In addition, it is easy to take out, replenish, and re-inject granule even when it is lost due to maintenance or when it is restarted after operation is stopped, and no acclimatization period is required in the tank. Since there is no special work such as supporting the microorganisms on the carrier, the handling of the bacteria is easy and the work efficiency is good. The amount of granule input can be easily grasped, and the concentration control in the biological denitrification tank becomes easy.

生物脱窒槽の下方にいくほど微生物濃度が高くなるような濃度分布を示す処理槽に、原水を下向流で通水させているので、活性障害が起こらずに高効率な脱窒処理を行うことができる。   Since the raw water is passed in a downward flow through the treatment tank that shows a concentration distribution such that the concentration of microorganisms increases as it goes below the biological denitrification tank, highly efficient denitrification treatment is performed without causing any disturbance of activity. be able to.

図1は生物脱窒槽の縦断面図であって、密閉された生物脱窒槽1の下部にアナモックス菌のグラニュール2を充填している。グラニュール2とは直径数mm程度の微生物の自己造粒体である。グラニュール2を充填することで、生物脱窒槽1内の微生物濃度を高めることができ、生物脱窒槽1の容量を小さくすることができる。充填率は30〜50%容量程度であり、原水の状態や窒素負荷等の諸条件により適宜決定する。   FIG. 1 is a longitudinal sectional view of a biological denitrification tank, in which a lower part of a sealed biological denitrification tank 1 is filled with granules 2 of anammox bacteria. Granule 2 is a self-granulated body of microorganisms having a diameter of about several millimeters. By filling the granules 2, the concentration of microorganisms in the biological denitrification tank 1 can be increased, and the capacity of the biological denitrification tank 1 can be reduced. The filling rate is about 30 to 50% capacity, and is appropriately determined according to various conditions such as the state of raw water and nitrogen load.

生物脱窒槽1の上方には供給管3が連結され、供給管3から原水が生物脱窒槽1に供給される。上方から流入した原水は、生物脱窒槽1内を下向流で通水し、下部に充填している沈積グラニュール2aと接触する。そして、原水中のアンモニア性窒素と亜硝酸性窒素は、アナモックス反応によって窒素ガスに還元される。   A supply pipe 3 is connected above the biological denitrification tank 1, and raw water is supplied from the supply pipe 3 to the biological denitrification tank 1. The raw water flowing in from above passes through the biological denitrification tank 1 in a downward flow and comes into contact with the sedimentation granule 2a filled in the lower part. Then, ammonia nitrogen and nitrite nitrogen in the raw water are reduced to nitrogen gas by the anammox reaction.

生物脱窒槽1の下部に充填された沈積グラニュール2a層の内部には、排出管4に連通する排出フィルター5を浸漬してあり、脱窒処理された処理水を槽外に排出する。排出管4には排出ポンプ6を接続し、生物脱窒槽1から排出フィルター5により固液分離した処理水を吸引して、処理水槽7に送水する。   A discharge filter 5 communicating with the discharge pipe 4 is immersed in the deposited granule 2a layer filled in the lower part of the biological denitrification tank 1, and the treated water that has been denitrified is discharged outside the tank. A discharge pump 6 is connected to the discharge pipe 4, and the treated water separated from the biological denitrification tank 1 by the discharge filter 5 is sucked and sent to the treated water tank 7.

生物脱窒槽1底部は逆円錐状に形成してあり、そこに沈積グラニュール2aが充填され、沈積グラニュール2a内部に排出フィルター5を浸漬させている。排出フィルター5は生物脱窒槽1の中心線上に位置し、且つ逆円錐状に形成している円錐面近傍の深さに浸漬させてあり、原水が沈積グラニュール2aと効率よく接触し、アナモックス反応により脱窒処理された処理水が、効率よく排出フィルター5によって集水できる構成となっている。排出フィルター5の浸漬位置は処理条件により適宜選択しても良いものである。また、本発明の生物脱窒槽1底部は逆円錐状に形成してあるが、処理条件に合わせて円筒状、半球状等、任意の形状を選択できる。   The bottom part of the biological denitrification tank 1 is formed in an inverted conical shape, and the sedimentation granule 2a is filled therein, and the discharge filter 5 is immersed in the sedimentation granule 2a. The discharge filter 5 is located on the center line of the biological denitrification tank 1 and is immersed in a depth near the conical surface formed in an inverted conical shape. The raw water efficiently contacts the sediment granule 2a, and the anammox reaction. Thus, the treated water that has been denitrified by can be efficiently collected by the discharge filter 5. The immersion position of the discharge filter 5 may be appropriately selected depending on the processing conditions. Moreover, although the bottom part of the biological denitrification tank 1 of this invention is formed in the inverted cone shape, arbitrary shapes, such as cylindrical shape and a hemisphere, can be selected according to process conditions.

アナモックス反応によって生成された窒素ガスは、生物脱窒槽1上部に接続しているガス排出管8から槽外へ排出される。   Nitrogen gas generated by the anammox reaction is discharged out of the tank through a gas discharge pipe 8 connected to the upper part of the biological denitrification tank 1.

逆円錐状に形成された生物脱窒槽1底部には、排泥管9を連結し、余剰汚泥の排出や、沈積グラニュール2aの引き抜きが可能となっている。   A sludge discharge pipe 9 is connected to the bottom of the biological denitrification tank 1 formed in an inverted conical shape so that excess sludge can be discharged and the deposited granules 2a can be pulled out.

図2は排出フィルターの縦断面図であって、排出フィルター5はグラニュール2を形成している微生物が除去可能な多数の微細孔、例えば1〜10μmの細孔を有する中空糸、セラミック、不織布等の従来公知のフィルターや合成樹脂を用いることができる。   FIG. 2 is a longitudinal sectional view of the discharge filter, and the discharge filter 5 is a hollow fiber, ceramic, non-woven fabric having a large number of micropores, for example, 1-10 μm pores, from which microorganisms forming the granules 2 can be removed. Conventionally known filters and synthetic resins such as these can be used.

排出フィルター5で微生物と処理水を分離しているので、長時間運転していると、排出フィルター5の微細孔や表面には微生物が着棲・積層し、生物膜10が形成される。この生物膜10にも原水は接触するので、効率の良い脱窒処理を行うことができる。   Since the microorganisms and the treated water are separated by the discharge filter 5, when operating for a long time, the microorganisms adhere to and stack on the micropores and the surface of the discharge filter 5 to form the biofilm 10. Since the raw water also contacts this biofilm 10, efficient denitrification treatment can be performed.

さらに長時間運転していると、排出フィルター5の表面に着棲した生物膜10や原水中の懸濁物質によって微細孔が目詰まりし、処理水の排出が困難となり、処理量が減少し、生物脱窒槽1内の水位が上昇する。図3に示すように、生物脱窒槽1に配設している水位計11が、生物脱窒槽1内の水位上昇を検知し、制御装置12に検知信号を送信する。   If the operation is continued for a long time, micropores are clogged by the biofilm 10 attached to the surface of the discharge filter 5 and suspended matter in the raw water, making it difficult to discharge the treated water, reducing the treatment amount, The water level in the biological denitrification tank 1 rises. As shown in FIG. 3, the water level meter 11 disposed in the biological denitrification tank 1 detects a rise in the water level in the biological denitrification tank 1 and transmits a detection signal to the control device 12.

水位上昇の検知信号を受信した制御装置12により、排出管4及び洗浄管13、17に配設しているバルブ14、15、18の開閉制御と、排出ポンプ6、洗浄ポンプ16及び洗浄ブロワ19の運転制御が行われる。   The control device 12 that has received the water level rise detection signal controls the opening / closing of the valves 14, 15, 18 disposed in the discharge pipe 4 and the cleaning pipes 13, 17, the discharge pump 6, the cleaning pump 16, and the cleaning blower 19. The operation control is performed.

処理水槽7内の処理水を使用して排出フィルター5の逆洗を行う場合は、排出ポンプ6を停止し、排出管4に配設しているバルブ14を閉じ、処理水槽7から排出管4に連通している洗浄管13に接続しているバルブ15を開け、洗浄ポンプ16を起動する。   When backwashing the discharge filter 5 using the treated water in the treated water tank 7, the discharge pump 6 is stopped, the valve 14 disposed in the discharge pipe 4 is closed, and the discharge pipe 4 is discharged from the treated water tank 7. The valve 15 connected to the cleaning pipe 13 communicated with is opened, and the cleaning pump 16 is started.

窒素ガスを使用して排出フィルター5の逆洗を行う場合は、排出ポンプ6を停止し、排出管4に配設しているバルブ14を閉じ、ガス貯留槽(図示せず)から排出管4に連通している洗浄管17に接続しているバルブ18を開け、洗浄ブロワ19を起動する。   When backwashing the exhaust filter 5 using nitrogen gas, the exhaust pump 6 is stopped, the valve 14 provided in the exhaust pipe 4 is closed, and the exhaust pipe 4 is discharged from a gas storage tank (not shown). The valve 18 connected to the cleaning pipe 17 communicated with is opened, and the cleaning blower 19 is activated.

アナモックス菌には粘性が低いため、逆洗により排出フィルター5から生物膜10は容易に剥離し、排出フィルター5から剥離された生物膜10は散点し、既存のグラニュール2に付着するか或いは新たなグラニュール2を形成し、脱窒処理に寄与する。また、粘性により沈積グラニュール2a同士が結合して窒素ガスの排出障害となることがない。   Since the viscosity of anammox bacteria is low, the biofilm 10 is easily peeled off from the discharge filter 5 by backwashing, and the biofilm 10 peeled off from the discharge filter 5 is scattered and attached to the existing granules 2 or Forms new granules 2 and contributes to denitrification treatment. In addition, the deposited granules 2a are not bonded to each other due to the viscosity and do not cause an obstacle to discharge of nitrogen gas.

本実施例は水位計11の検知により排出フィルター5の洗浄を行っているが、一定時間稼動毎に自動的に洗浄してもよい。   In the present embodiment, the discharge filter 5 is washed by detection of the water level gauge 11, but may be automatically washed every operation for a certain period of time.

生物脱窒槽1の下部に充填している沈積グラニュール2aの一部は、脱窒処理の際に生成する窒素ガスを包含して浮上する。一般的な上向流で処理を行う脱窒装置においては、浮上グラニュール2bは接触効率の低下の要因となる。しかし、下向流方式では、原水が生物脱窒槽1下方の排出フィルター5に向かうにつれ、徐々に高濃度区域と接触するようになるので、接触効率の低下は顕著ではない。   A part of the deposited granule 2a filled in the lower part of the biological denitrification tank 1 floats including nitrogen gas generated during the denitrification process. In a denitrification apparatus that performs processing in a general upward flow, the floating granule 2b causes a reduction in contact efficiency. However, in the downward flow method, since the raw water gradually comes into contact with the high concentration area as it goes to the discharge filter 5 below the biological denitrification tank 1, the contact efficiency is not significantly reduced.

また、原水を浮上グラニュール2bのさらに上方から供給し、液面の浮上グラニュール2bを振動させるので、浮上グラニュール2bが包含する窒素ガスを剥離させ、再沈降を促進させる。供給管3の供給口を複数に分岐したり、散水方式にしてもよい。   Moreover, since raw | natural water is supplied from the upper direction of the floating granule 2b and the floating granule 2b of a liquid level is vibrated, the nitrogen gas which the floating granule 2b contains is peeled and re-sediment is accelerated | stimulated. The supply port of the supply pipe 3 may be branched into a plurality of parts or a watering method.

一般的に、微生物濃度を高濃度に維持すると効率的に脱窒処理できる。しかし、条件にもよるが100〜200ppm以上の濃度では活性障害が起こり易く、顕著な反応の低下が見られることがある。本発明のように、生物脱窒槽1の下方にいくほど濃度が高くなるような濃度分布を示す処理槽では、原水を下向流で通水させて、徐々に原水が高濃度区域の微生物と接触するようにすると、活性障害が起こらずに高効率な脱窒処理を行うことができる。   In general, denitrification treatment can be efficiently performed by maintaining a high microorganism concentration. However, depending on the conditions, an activity disorder is likely to occur at a concentration of 100 to 200 ppm or more, and a marked reduction in reaction may be observed. As in the present invention, in a treatment tank having a concentration distribution that increases in concentration toward the lower side of the biological denitrification tank 1, the raw water is passed in a downward flow, and the raw water is gradually mixed with microorganisms in the high concentration area. When contact is made, highly efficient denitrification treatment can be performed without causing an activity failure.

原水を下向流で通水させ、グラニュール2の浮上・流出という懸念がないので、負荷を上げた処理を行うことができる。負荷を上げると沈積グラニュール2aが下部で流動し、アナモックス菌の活性が上がり、窒素ガスの抜けも良くなる。   Since the raw water is passed in a downward flow and there is no concern of the granule 2 floating or outflowing, it is possible to perform processing with increased load. When the load is increased, the deposited granule 2a flows in the lower part, the activity of the anammox bacteria is increased, and the escape of nitrogen gas is improved.

何らかの原因で生物脱窒槽1内の微生物濃度が低くなった場合は、別途形成させたグラニュール2を投入するだけで直ちに通常運転が可能となる。微生物を担持させた担体を取り扱わないので、投入、取出しのメンテナンスが容易である。また、微生物を着棲させる担体を使用していないので、生物脱窒槽1内で担体に担持させる着棲期間が不要である。   If the microorganism concentration in the biological denitrification tank 1 becomes low for some reason, it is possible to immediately perform normal operation simply by adding the granule 2 formed separately. Since a carrier carrying microorganisms is not handled, maintenance of input and extraction is easy. In addition, since no carrier on which microorganisms are allowed to settle is used, an anchoring period for supporting the carrier in the biological denitrification tank 1 is unnecessary.

上方から供給された原水は、水面の浮上グラニュール2bと接触した後、生物脱窒槽中間に位置する調整部20で流速、水温、pH、DOが監視・調整され、生物脱窒槽1下部の沈積グラニュール2aと接触し、アナモックス反応によって脱窒される。生物脱窒槽1内で原水を調整できるので、別途前段に調整槽等が不要である。   After the raw water supplied from above comes into contact with the floating granule 2b on the water surface, the flow rate, water temperature, pH, and DO are monitored and adjusted by the adjusting unit 20 located in the middle of the biological denitrification tank, and the sedimentation in the lower part of the biological denitrification tank 1 is deposited. It contacts with the granule 2a and is denitrified by the anammox reaction. Since raw water can be adjusted in the biological denitrification tank 1, a separate adjustment tank or the like is not required in the previous stage.

本発明に係る生物脱窒装置は、アナモックス菌グラニュールを充填しているので、容易に生物反応室の高濃度化を維持管理できる。初期および運転停止後の立ち上げ時や、メンテナンスに伴う濃度低下時でも、グラニュールの補充、高濃度化が容易であり、槽内での培養期間を必要としない。また、原水を下向流で通水し、沈積グラニュール内に排出フィルターを浸漬して処理水を排出するので、アナモックス菌の槽外への流出を防止できる。微生物との活性障害が起こり難いので、効率的な脱窒処理が可能となる。   Since the biological denitrification apparatus according to the present invention is filled with anammox granules, it is possible to easily maintain and increase the concentration of the biological reaction chamber. Even at the start-up after the start and after the operation is stopped, or even when the concentration decreases due to maintenance, it is easy to replenish granules and increase the concentration, and no culture period is required in the tank. Moreover, since raw water is passed in a downward flow and the treated water is discharged by immersing the discharge filter in the sedimentary granule, the anammox bacteria can be prevented from flowing out of the tank. Since an activity disorder with microorganisms hardly occurs, an efficient denitrification treatment is possible.

この発明に係る生物脱窒槽の縦断面図である。It is a longitudinal cross-sectional view of the biological denitrification tank which concerns on this invention. 同じく、排出フィルターの縦断面図である。Similarly, it is a longitudinal sectional view of the discharge filter. 同じく、排出フィルターの洗浄フローチャートである。Similarly, it is a flowchart for cleaning the discharge filter. 従来のアナモックス菌を用いた窒素除去システムのフローチャートである。It is a flowchart of the nitrogen removal system using the conventional anammox bacteria.

符号の説明Explanation of symbols

1 生物脱窒槽
2 グラニュール
3 供給管
4 排出管
5 排出フィルター
6 排出ポンプ
13、17 洗浄管
16 洗浄ポンプ
19 洗浄ブロワ
DESCRIPTION OF SYMBOLS 1 Biological denitrification tank 2 Granule 3 Supply pipe 4 Discharge pipe 5 Discharge filter 6 Discharge pump 13, 17 Wash pipe 16 Wash pump 19 Wash blower

Claims (4)

生物脱窒槽(1)の内部で独立栄養性脱窒菌と反応させて原水中のアンモニア性窒素を窒素ガスとして連続的に除去する生物脱窒装置において、原水の供給管(3)を連結した生物脱窒槽(1)に、独立栄養性脱窒菌のグラニュール(2)を充填し、グラニュール(2)層の内部に排出管(4)と連通した排出フィルター(5)を浸漬すると共に、原水を下向流で供給することを特徴とする生物脱窒装置。   In a biological denitrification device that reacts with autotrophic denitrifying bacteria inside the biological denitrification tank (1) and continuously removes ammonia nitrogen in the raw water as nitrogen gas, the organism connected to the raw water supply pipe (3) The denitrification tank (1) is filled with granule (2) of autotrophic denitrifying bacteria, and the discharge filter (5) communicating with the discharge pipe (4) is immersed inside the granule (2) layer, and the raw water Is a biological denitrification device characterized by supplying the gas in a downward flow. 上記供給管(3)の供給口を、生物脱窒槽(1)内の水面より上方に配設したことを特徴とする請求項1に記載の生物脱窒装置。   The biological denitrification apparatus according to claim 1, wherein the supply port of the supply pipe (3) is disposed above the water surface in the biological denitrification tank (1). 上記排出フィルター(5)から処理水を吸引して処理水槽(7)に送水する排出ポンプ(6)を排出管(4)に設けると共に、排出フィルター(5)を逆洗するための洗浄管(13、17)及び加圧手段(16、19)を排出管(4)に連通させることを特徴とする請求項1または2に記載の生物脱窒装置。   A discharge pump (6) for sucking treated water from the discharge filter (5) and feeding the treated water to the treated water tank (7) is provided in the discharge pipe (4), and a washing pipe for backwashing the discharge filter (5) ( The biological denitrification apparatus according to claim 1 or 2, wherein the pressurizing means (16, 19) and the pressurizing means (16, 19) are communicated with the discharge pipe (4). 上記生物脱窒槽(1)の底部を逆円錐状に形成し、排出フィルター(5)を円錐先端面近傍の深さに浸漬させたことを特徴とする請求項1乃至3の何れか1項に記載の生物脱窒装置。   The bottom part of the said biological denitrification tank (1) was formed in reverse cone shape, and the discharge filter (5) was immersed in the depth of the cone tip surface vicinity, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The biological denitrification apparatus described.
JP2008325693A 2008-12-22 2008-12-22 Biological denitrification equipment Active JP4702444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325693A JP4702444B2 (en) 2008-12-22 2008-12-22 Biological denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325693A JP4702444B2 (en) 2008-12-22 2008-12-22 Biological denitrification equipment

Publications (2)

Publication Number Publication Date
JP2010142781A true JP2010142781A (en) 2010-07-01
JP4702444B2 JP4702444B2 (en) 2011-06-15

Family

ID=42563764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325693A Active JP4702444B2 (en) 2008-12-22 2008-12-22 Biological denitrification equipment

Country Status (1)

Country Link
JP (1) JP4702444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115689A (en) * 2009-12-01 2011-06-16 Ishigaki Co Ltd Nitrogen removal apparatus and method
CN103864208A (en) * 2014-04-09 2014-06-18 中持(北京)水务运营有限公司 Waist washwater gutter for denitrification deep bed filter
JP2018126694A (en) * 2017-02-09 2018-08-16 学校法人 東洋大学 Processing apparatus and processing method of nitrogen containing sewage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263594A (en) * 1997-03-25 1998-10-06 Meiwa Kogyo Kk Removing method and device of nitrate ion in waste water
JP2000342911A (en) * 1999-06-08 2000-12-12 Hitoshi Daido Dynamic filter body
JP2001205055A (en) * 2000-01-31 2001-07-31 Daicel Chem Ind Ltd Method for operating membrane separation apparatus and apparatus therefor
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2006082053A (en) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing drainage
JP2009125702A (en) * 2007-11-27 2009-06-11 Asahi Breweries Ltd Wastewater treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263594A (en) * 1997-03-25 1998-10-06 Meiwa Kogyo Kk Removing method and device of nitrate ion in waste water
JP2000342911A (en) * 1999-06-08 2000-12-12 Hitoshi Daido Dynamic filter body
JP2001205055A (en) * 2000-01-31 2001-07-31 Daicel Chem Ind Ltd Method for operating membrane separation apparatus and apparatus therefor
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2006082053A (en) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing drainage
JP2009125702A (en) * 2007-11-27 2009-06-11 Asahi Breweries Ltd Wastewater treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115689A (en) * 2009-12-01 2011-06-16 Ishigaki Co Ltd Nitrogen removal apparatus and method
CN103864208A (en) * 2014-04-09 2014-06-18 中持(北京)水务运营有限公司 Waist washwater gutter for denitrification deep bed filter
JP2018126694A (en) * 2017-02-09 2018-08-16 学校法人 東洋大学 Processing apparatus and processing method of nitrogen containing sewage

Also Published As

Publication number Publication date
JP4702444B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
KR100441208B1 (en) Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
KR100927629B1 (en) Wastewater treatment method and device
KR100876323B1 (en) Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus
CN104773901A (en) Biological treatment method of circulating culture water body
JP5141967B2 (en) Biological denitrification equipment
JP4702444B2 (en) Biological denitrification equipment
JP5001923B2 (en) Water treatment apparatus and water treatment method
KR20000034519A (en) Treatment method of wastewater using filtration and aerobic microorganism
KR101541070B1 (en) method and device for controlling using turbulence stimulation and filter member
KR101770792B1 (en) Sewage and wastewater purification system
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
JP2009202146A (en) Water treatment equipment and method of water treatment
JP2009297625A (en) Microorganism carrier and biological denitrification device
JP6652898B2 (en) Water treatment device and water treatment method
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP2005074357A (en) Membrane washing method in membrane separation activated sludge method
JP2002346591A (en) Sewage treatment apparatus and operation method therefor
JP5825807B2 (en) Waste water treatment apparatus and waste water treatment method
JP2008238042A (en) Method for reducing amount of organic sludge
JP2008212865A (en) Nitration tank
JP2017051922A (en) Wastewater treatment method and apparatus
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP7121823B2 (en) Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device
JP4865997B2 (en) Operation method of sewage treatment apparatus and sewage treatment apparatus
FI121506B (en) Biological purification procedure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4702444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250