JP4632178B2 - Operating method of anaerobic ammonia oxidation tank - Google Patents

Operating method of anaerobic ammonia oxidation tank Download PDF

Info

Publication number
JP4632178B2
JP4632178B2 JP2006298010A JP2006298010A JP4632178B2 JP 4632178 B2 JP4632178 B2 JP 4632178B2 JP 2006298010 A JP2006298010 A JP 2006298010A JP 2006298010 A JP2006298010 A JP 2006298010A JP 4632178 B2 JP4632178 B2 JP 4632178B2
Authority
JP
Japan
Prior art keywords
anaerobic ammonia
tank
ammonia oxidation
microorganism
immobilization material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006298010A
Other languages
Japanese (ja)
Other versions
JP2007075817A (en
Inventor
和一 井坂
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006298010A priority Critical patent/JP4632178B2/en
Publication of JP2007075817A publication Critical patent/JP2007075817A/en
Application granted granted Critical
Publication of JP4632178B2 publication Critical patent/JP4632178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、嫌気性アンモニア酸化槽の運転方法に係り、特に被処理水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽の運転方法に関する。   The present invention relates to an operation method of an anaerobic ammonia oxidation tank, and more particularly to an operation method of an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid in water to be treated by anaerobic ammonia oxidizing bacteria.

下水や産業廃水に含有する窒素成分は、湖沼の富栄養化の原因になること、河川の溶存酸素の低下原因になること等の理由から、窒素成分を除去する必要がある。下水や産業廃水に含有する窒素成分は、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素、有機性窒素が主たる窒素成分である。   Nitrogen components contained in sewage and industrial wastewater need to be removed for reasons such as causing eutrophication of lakes and marshes and reducing dissolved oxygen in rivers. Nitrogen components contained in sewage and industrial wastewater are mainly nitrogen components such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen.

従来、この種の廃水は、窒素濃度が低濃度であれば、イオン交換法での除去や塩素、オゾンによる酸化も用いられているが、中高濃度の場合には生物処理が採用されており、一般的には以下の条件で運転されている。   Conventionally, this type of wastewater, if the nitrogen concentration is low, is also removed by ion exchange method and oxidation by chlorine, ozone, but in the case of medium to high concentration, biological treatment is adopted, Generally, it is operated under the following conditions.

生物処理では好気硝化と嫌気脱窒による硝化・脱窒処理が行われており、好気硝化では、アンモニア酸化細菌(Nitrosomonas,Nitrosococcus,Nitrosospira,Nitrosolobusなど)と亜硝酸酸化細菌(Nitrobactor,Nitrospina,Nitrococcus,Nitrospira など)によるアンモニア性窒素や亜硝酸性窒素の酸化が行われる一方、嫌気脱窒では、従属栄養細菌(Pseudomonas denitrificans など)による脱窒が行われる。   Biological treatment involves aerobic nitrification and anaerobic denitrification, and in aerobic nitrification, ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospina, Nitrococcus, Nitrospira, etc.) oxidize ammonia nitrogen and nitrite nitrogen, while anaerobic denitrification involves denitrification by heterotrophic bacteria (Pseudomonas denitrificans, etc.).

また、好気硝化を行う硝化槽は負荷0.2〜0.3kg−N/m3 /日の範囲で運転され、嫌気脱窒の脱窒槽は負荷0.2〜0.4kg−N/m3 /日の範囲で運転される。下水の総窒素濃度30〜40mg/Lを処理するには、硝化槽で6〜8時間の滞留時間、脱窒槽で5〜8時間が必要であり、大規模な処理槽が必要であった。また無機質だけを含有する産業廃水では、硝化槽や脱窒槽は先と同様の負荷で設計されるが、脱窒に有機物が必要で、窒素濃度の3〜4倍濃度のメタノールを添加していた。このためイニシャルコストばかりでなく、多大なランニングコストを要するという問題もある。 A nitrification tank for performing aerobic nitrification is operated within a load range of 0.2 to 0.3 kg-N / m 3 / day, and an anaerobic denitrification denitrification tank is loaded with a load of 0.2 to 0.4 kg-N / m. It is operated in the range of 3 / day. In order to treat the total nitrogen concentration of sewage of 30 to 40 mg / L, a residence time of 6 to 8 hours was required in the nitrification tank and 5 to 8 hours were required in the denitrification tank, and a large-scale treatment tank was required. In industrial wastewater containing only inorganic substances, nitrification tanks and denitrification tanks are designed with the same load as before, but organic substances are required for denitrification, and methanol with a concentration of 3 to 4 times the nitrogen concentration was added. . For this reason, there is a problem that not only the initial cost but also a great running cost is required.

これに対し、最近、嫌気性アンモニア酸化法による窒素除去方法が注目されている(例えば特許文献1)。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により同時脱窒する方法である。   On the other hand, recently, a nitrogen removal method by an anaerobic ammonia oxidation method has attracted attention (for example, Patent Document 1). This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrous acid is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following reaction formula.

(化1)
1.0 NH4 +1.32NO 2 +0.066HCO 3 +0.13H+ →1.02N 2 +0.26NO 3 +0.066CH2 O 0.5 N 0.15+2.03H2 O
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の窒素除去方法として有効な方法であると考えられている。
(Chemical formula 1)
1.0 NH 4 + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
According to this method, since ammonia is used as a hydrogen donor, there are merits such as drastically reducing the amount of methanol used for denitrification and reducing the amount of sludge generated. It is considered to be an effective method.

しかし、嫌気性アンモニア酸化反応を行う嫌気性アンモニア酸化細菌は、Planctomycete を代表とする菌群であり、増殖速度が0.001h-1と極めて遅いことが報告されている(Strous,M.et al.:Nature,400,446(1999)。また、特許文献2では、比増殖速度は0.02〜0.05日-1程度の非常に小さな値であり、2倍の菌体量を得るためには14〜35日もの培養日数を要するとの報告がある。
特開2001−37467号公報 特開2003−24990号公報
However, anaerobic ammonia oxidizing bacteria that perform anaerobic ammonia oxidation reaction are a group of bacteria represented by Planctomycete, and it has been reported that the growth rate is as extremely low as 0.001 h −1 (Strous, M. et al .: Nature, 400, 446 (1999) Further, in Patent Document 2, the specific growth rate is a very small value of about 0.02 to 0.05 day- 1 and in order to obtain twice the amount of cells. There is a report that it takes 14-35 days for culture.
JP 2001-37467 A JP 2003-24990 A

この為、嫌気性アンモニア酸化細菌を利用した嫌気性アンモニア酸化槽の立ち上げを活性汚泥から行おうとすると、今だかつて経験したことのない長期間の馴養時間を要し、極めて効率が悪いという欠点がある。   For this reason, when trying to start up an anaerobic ammonia oxidation tank using anaerobic ammonia oxidizing bacteria from activated sludge, it takes a long time of acclimatization that has never been experienced before, and it is extremely inefficient There is.

小規模なラボレベルの実験装置であれば、予め嫌気性アンモニア酸化細菌を培養した汚泥を嫌気性アンモニア酸化槽内に投入することで立ち上げ期間を短縮することは可能であるが、大規模な実装置で同様なことを行おうとすると、嫌気性アンモニア酸化細菌を培養する培養プラントが必要になる。しかし、実用化にあたっては、培養プラントが巨大になり、運転に多額な設備費と運転管理費が必要となるばかりでなく、培養するために多量の窒素排水を調整する必要があるという欠点がある。   If it is a small laboratory-level experimental device, it is possible to shorten the start-up period by introducing sludge in which anaerobic ammonia-oxidizing bacteria have been cultured in advance into the anaerobic ammonia-oxidizing tank. If it is going to do the same thing with an actual apparatus, the culture plant which culture | cultivates anaerobic ammonia oxidation bacteria will be needed. However, in the practical application, the culture plant becomes huge, and not only a large equipment cost and operation management cost are required for operation, but also there is a disadvantage that it is necessary to adjust a large amount of nitrogen drainage for culturing. .

このように嫌気性アンモニア酸化法を利用した嫌気性アンモニア酸化槽を現実に稼働するには、未だ解決すべき課題があり、国内では稼動例が無いのが実情である。   Thus, in order to actually operate the anaerobic ammonia oxidation tank using the anaerobic ammonia oxidation method, there are still problems to be solved, and there is no actual operation example in Japan.

本発明は、このような事情に鑑みてなされたもので、増殖速度の遅い嫌気性アンモニア酸化細菌の馴養期間を短縮でき、培養プラントを設ける必要がなくなると共に、嫌気性アンモニア酸化細菌が引き抜かれた一方の嫌気性アンモニア酸化槽の性能も低下させることがない嫌気性アンモニア酸化槽の運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, the acclimatization period of anaerobic ammonia oxidizing bacteria having a slow growth rate can be shortened, it is not necessary to provide a culture plant, and anaerobic ammonia oxidizing bacteria have been extracted. It aims at providing the operating method of the anaerobic ammonia oxidation tank which does not also reduce the performance of one anaerobic ammonia oxidation tank.

本発明の請求項1は前記目的を達成するために、被処理水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化において、前記嫌気性アンモニア酸化細菌の馴養が済んだ一方の実装置である嫌気性アンモニア酸化槽から前記嫌気性アンモニア酸化細菌の一部を引き抜き、この引き抜いた嫌気性アンモニア酸化細菌をこれから馴養を行う他方の実装置である嫌気性アンモニア酸化槽に投入して立ち上げ運転を行う嫌気性アンモニア酸化槽の運転方法であって、 前記嫌気性アンモニア酸化槽内を自由に流動できる固定化材料であって、前記固定化材料に前記嫌気性アンモニア酸化細菌を付着固定させるか又は前記固定化材料としてゲル化材料で形成された固定化材料と前記嫌気性アンモニア酸化細菌とを含む混合物を重合してゲル化材料内に前記嫌気性アンモニア酸化細菌を包括固定させた流動型の微生物固定化材を用いて、前記一方の実装置の嫌気性アンモニア酸化槽に、前記微生物固定化材を馴養しておく工程と、前記微生物固定化材が馴養された一方の実装置の嫌気性アンモニア酸化槽から一度に引き抜く微生物固定化材の引き抜き量が馴養した微生物固定化材全量の25%以下になるように引き抜いて前記他方の実装置の嫌気性アンモニア酸化槽に投入する工程と、前記一方の実装置の嫌気性アンモニア酸化槽から微生物固定化材を引き抜いたら、前記一方の実装置の嫌気性アンモニア酸化細菌槽に、未馴養な新しい微生物固定化材を補充しておく工程と、を備え、前記一方の実装置の嫌気性アンモニア酸化槽からの微生物固定化材の引き抜きは、馴養済みの微生物固定化材の全量が1カ月以上かけて前記新しい微生物固定化材に入れ替わるように複数回に分けて引き抜くことを特徴とする。
また、本発明の請求項3は前記目的を達成するために、被処理水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化において、前記嫌気性アンモニア酸化細菌の馴養が済んだ一方の実装置である嫌気性アンモニア酸化槽から前記嫌気性アンモニア酸化細菌の一部を引き抜き、この引き抜いた嫌気性アンモニア酸化細菌をこれから馴養を行う他方の実装置である嫌気性アンモニア酸化槽に投入して立ち上げ運転を行う嫌気性アンモニア酸化槽の運転方法であって、前記嫌気性アンモニア酸化槽内を自由に流動できる固定化材料に前記嫌気性アンモニア酸化細菌を付着固定又は包括固定させた流動型の微生物固定化材を用いて、前記一方の実装置の嫌気性アンモニア酸化槽に、前記微生物固定化材を馴養しておく工程と、前記微生物固定化材が馴養された一方の実装置の嫌気性アンモニア酸化槽から一度に引き抜く微生物固定化材の引き抜き量が馴養した微生物固定化材全量の25%以下になるように引き抜いて前記他方の実装置の嫌気性アンモニア酸化槽に投入する工程と、前記一方の実装置の嫌気性アンモニア酸化槽から微生物固定化材を引き抜いたら、前記一方の実装置の嫌気性アンモニア酸化細菌槽に、未馴養な新しい微生物固定化材を補充しておく工程と、を備え、前記一方の実装置の嫌気性アンモニア酸化槽から引き抜いた馴養済みの微生物固定化材を液状化し、液状化した微生物固定化材に活性汚泥を混合し、この混合微生物とゲル化材料とを混合した混合物を重合することで包括固定化担体を形成し、この包括固定化担体を他方の実装置の嫌気性アンモニア酸化槽に投入することを特徴とする。
According to claim 1 of the present invention, in order to achieve the above object, in anaerobic ammonia oxidation in which ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria, acclimatization of the anaerobic ammonia oxidizing bacteria is performed. One part of the anaerobic ammonia-oxidizing bacteria is extracted from the anaerobic ammonia-oxidizing tank that is one actual device, and the other anaerobic ammonia-oxidizing bacterium that is used to acclimate the extracted anaerobic ammonia-oxidizing bacteria from now on a method of operating an anaerobic ammonium oxidation vessel to carry out the up operation up to put in, a fixing material which can freely flow through the anaerobic ammonium oxidizing tank, the anaerobic ammonium oxidation to the immobilizing material the immobilized material formed by gelling material or as the immobilizing material is deposited fixed bacteria and the anaerobic ammonium oxidizing bacteria The mixture polymerized using the anaerobic ammonium oxidizing bacteria is a comprehensive fixed fluidized immobilized materials in within gelling material comprising, in anaerobic ammonium oxidation vessel of the one real device, the immobilizing microorganisms 25% of the total amount of microbial immobilization material acclimatized, and the amount of microbial immobilization material withdrawn at one time from the anaerobic ammonia oxidation tank of one real device where the microbial immobilization material was acclimatized Withdrawing as follows and putting it into the anaerobic ammonia oxidation tank of the other actual device, and when the microorganism immobilization material is extracted from the anaerobic ammonia oxidation tank of the one actual device, A step of replenishing an anaerobic ammonia oxidizing bacteria tank with an unfamiliar new microorganism fixing material, and the microorganism fixing material from the anaerobic ammonia oxidizing tank of the one actual device Withdrawal is characterized in that the total amount of the acclimatized microbe-immobilized materials are withdrawn in a plurality of times so replaced in the new microbe-immobilized materials over a period of one month.
According to a third aspect of the present invention, in order to achieve the above object, in anaerobic ammonia oxidation in which ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria, One part of the anaerobic ammonia oxidizing bacterium is withdrawn from the anaerobic ammonia oxidizing tank which is one of the actual devices that have been acclimatized, and the other anaerobic ammonia that is to be used to acclimatize the extracted anaerobic ammonia oxidizing bacteria from now on An operation method of an anaerobic ammonia oxidation tank that is put into an oxidation tank and started up, wherein the anaerobic ammonia oxidation bacteria are attached, fixed, or covered to an immobilizing material that can freely flow in the anaerobic ammonia oxidation tank. Using the immobilized fluid type microorganism immobilization material, the microorganism immobilization material is placed in the anaerobic ammonia oxidation tank of the one actual apparatus. The amount of microbial immobilization material extracted at one time from the anaerobic ammonia oxidation tank of one actual device to which the microbial immobilization material has been conditioned is reduced to 25% or less of the total amount of conditioned microbial immobilization material. Withdrawing so that the microbial immobilization material is extracted from the anaerobic ammonia oxidation tank of the one real device, and the anaerobic property of the one real device Replenishing the ammonia oxidizing bacteria tank with an unfamiliar new microorganism immobilizing material, and liquefying the acclimatized microorganism immobilizing material extracted from the anaerobic ammonia oxidizing tank of the one actual device, The entrapped immobilization support is formed by mixing activated sludge with the liquefied microorganism immobilization material and polymerizing the mixture of the mixed microorganism and the gelling material. Characterized in that it introduced into the anaerobic ammonium oxidation vessel of the other real devices.

本発明は、実装置として運転する嫌気性アンモニア酸化槽で嫌気性アンモニア酸化細菌の培養も兼ね、培養した嫌気性アンモニア酸化細菌を引き抜いて他の嫌気性アンモニア酸化槽での立ち上げの種菌として供するという着想の基に、他方の嫌気性アンモニア酸化槽の馴養期間を短縮し、且つ引き抜かれた一方の嫌気性アンモニア酸化槽の性能低下を防止すべく構成すると共に、培養の効率化及び引き抜き精度や引き抜きの容易性等を図るべく前記一方の嫌気性アンモニア酸化槽で馴養の終了した嫌気性アンモニア酸化細菌は固定化材料に付着固定又は包括固定された微生物固定化材であるように構成したものである。     The present invention also serves to culture anaerobic ammonia-oxidizing bacteria in an anaerobic ammonia-oxidizing tank operated as an actual apparatus, and pulls out the cultured anaerobic ammonia-oxidizing bacteria and serves as a starter in another anaerobic ammonia-oxidizing tank On the basis of the idea, it is configured to shorten the acclimatization period of the other anaerobic ammonia oxidation tank and prevent the performance of one of the extracted anaerobic ammonia oxidation tanks, The anaerobic ammonia-oxidizing bacteria that have been acclimatized in the one anaerobic ammonia-oxidizing tank are designed to be microorganism-immobilized materials that are fixedly attached to the immobilizing material or fixed inclusively in order to facilitate the extraction. is there.

本発明の請求項1によれば、一方の嫌気性アンモニア酸化槽で馴養済みの嫌気性アンモニア酸化細菌を他方の嫌気性アンモニア酸化細菌の馴養に利用するようにしたので、増殖速度の遅い嫌気性アンモニア酸化細菌の馴養期間を短縮でき、培養プラントを設ける必要がなくなる。また、嫌気性アンモニア酸化細菌を固定化材料に固定化した微生物固定化材として扱うことにより、一方の嫌気性アンモニア酸化槽からの嫌気性アンモニア酸化細菌の引き抜きや他方の嫌気性アンモニア酸化槽への嫌気性アンモニア酸化細菌の投入が容易になると共に、引き抜き量や投入量を精度良くコントロールすることができる。   According to the first aspect of the present invention, the anaerobic ammonia oxidizing bacteria that have been acclimatized in one anaerobic ammonia oxidizing tank are used for acclimatization of the other anaerobic ammonia oxidizing bacteria. The acclimatization period of ammonia-oxidizing bacteria can be shortened, and there is no need to provide a culture plant. In addition, by treating anaerobic ammonia-oxidizing bacteria as a microorganism immobilization material immobilized on an immobilizing material, the anaerobic ammonia-oxidizing bacteria can be extracted from one anaerobic ammonia-oxidizing tank or transferred to the other anaerobic ammonia-oxidizing tank. The anaerobic ammonia-oxidizing bacteria can be easily input, and the amount of extraction and the amount of input can be accurately controlled.

本発明において、馴養期間とは、アンモニア性窒素濃度及び亜硝酸性窒素濃度が同時に半量に減少するまでに要した期間、即ち嫌気性アンモニア酸化細菌が優占繁殖して嫌気性アンモニア酸化活性が発揮されるまでの期間をいう。また、立ち上げ運転は、新設の嫌気性アンモニア酸化槽を立ち上げる場合以外に、嫌気性アンモニア酸化細菌が失活した場合に再度立ち上げる場合も含む。また、一方の嫌気性アンモニア酸化槽と他方の嫌気性アンモニア酸化槽とが同じ廃水処理施設に設けられていても、他の廃水処理施設にそれぞれ設けられていてもよい。   In the present invention, the acclimatization period is a period required until the ammonia nitrogen concentration and the nitrite nitrogen concentration are simultaneously reduced to half, that is, the anaerobic ammonia oxidizing bacteria predominately propagate and exert anaerobic ammonia oxidizing activity. The period until it is done. In addition, the startup operation includes a case where the anaerobic ammonia oxidizing bacterium is started up in addition to the case where the newly installed anaerobic ammonia oxidizing tank is started up. In addition, one anaerobic ammonia oxidation tank and the other anaerobic ammonia oxidation tank may be provided in the same wastewater treatment facility, or may be provided in other wastewater treatment facilities, respectively.

本発明において、前記一方の嫌気性アンモニア酸化槽から一度に引き抜く前記微生物固定化材の引き抜き量は、前記馴養された微生物固定化材全量の25%以下である。   In the present invention, the amount of the microorganism-immobilized material extracted from the one anaerobic ammonia oxidation tank at a time is 25% or less of the total amount of the conditioned microorganism-immobilized material.

これは、馴養済みの一方の嫌気性アンモニア酸化槽から一度に引き抜く微生物固定化材の量が全量に対して25%以下であれば、引き抜かれた一方の嫌気性アンモニア酸化槽の脱窒性能に殆ど悪影響がないからである。一度に引き抜く微生物固定化材の量が全量に対して10%以下であれば更に良い。   This is because if the amount of the microorganism-immobilizing material extracted at one time from one of the acclimatized anaerobic ammonia oxidation tanks is 25% or less, the denitrification performance of one of the extracted anaerobic ammonia oxidation tanks will be improved. This is because there is almost no adverse effect. It is even better if the amount of the microorganism-immobilizing material extracted at a time is 10% or less with respect to the total amount.

この場合、前記一方の嫌気性アンモニア酸化槽には、微生物固定化材を引き抜くことを前提として過剰の微生物固定化材を馴養しておくことが好ましい。   In this case, it is preferable to acclimatize an excessive microorganism fixing material in the one anaerobic ammonia oxidation tank on the assumption that the microorganism fixing material is pulled out.

このように、一方の嫌気性アンモニア酸化槽に、微生物固定化材を引き抜くことを前提として過剰の微生物固定化材を馴養しておき、過剰分の微生物固定化材を引き抜くようにすれば、嫌気性アンモニア酸化槽には常に必要量の微生物固定化材を保持することができ、脱窒性能に全く影響を与えることがない。即ち、過剰分は嫌気性アンモニア酸化槽をいわば培養槽として使用したことになる。   In this way, if one anaerobic ammonia oxidation tank is acclimatized with excess microbial immobilization material on the assumption that the microbial immobilization material is withdrawn, and an excessive amount of microbial immobilization material is extracted, anaerobic The required amount of microorganism-immobilizing material can always be held in the basic ammonia oxidation tank, and the denitrification performance is not affected at all. That is, the excess amount used an anaerobic ammonia oxidation tank as a culture tank.

また、本発明において、前記一方の嫌気性アンモニア酸化槽から馴養済みの微生物固定化材を引き抜くと共に、未馴養な新しい微生物固定化材を補充しておく。ここで、未馴養担体とは、嫌気性アンモニア酸化活性が低いものを言い、担体当たりの脱窒速度で1(kg-N/m 3 - 担体 /日) 以下の嫌気性アンモニア酸化活性のものであり、必ずしも新品を意味するものではない。尚、「担体当たり」の脱窒速度とことわらない限り、脱窒速度及び容積負荷は「反応槽容積当たり」での評価であり、単位は(kg-N/m 3 /日) と記載し、以下同様である。 In the present invention, the conditioned immobilization material is extracted from the one anaerobic ammonia oxidation tank, and the unaccustomed new microbial immobilization material is replenished. Here, the unfamiliar carrier means one having low anaerobic ammonia oxidation activity, and one having anaerobic ammonia oxidation activity of 1 (kg-N / m 3 -carrier / day) or less at a denitrification rate per carrier. Yes, it does not necessarily mean new. Unless denitration rate is “per carrier”, denitrification rate and volumetric load are evaluated by “per reactor volume”, and the unit is (kg-N / m 3 / day). The same applies hereinafter.

これは、引き抜き量が馴養された微生物固定化材全量の25%以下であれば、引き抜かれた一方の嫌気性アンモニア酸化槽の脱窒性能に殆ど影響がないが、次に引き抜く際に25%を超えるので1回しか引き抜くことができなくなる。しかし、本発明のように、微生物固定化材を引き抜くと同時に未馴養な微生物固定化材を補充しておくことにより、嫌気性アンモニア酸化槽内の微生物固定化材の量が減ることがない。従って、これを繰り返せば、1つの嫌気性アンモニア酸化槽から他の嫌気性アンモニア酸化槽に、馴養済みの微生物固定化材を次々に引き抜いて馴養の種菌とすることができる。   If the extraction amount is 25% or less of the total amount of the microbial immobilization material, the denitrification performance of one of the extracted anaerobic ammonia oxidation tanks is hardly affected, but it is 25% in the next extraction. Since it exceeds, it can be pulled out only once. However, the amount of the microorganism fixing material in the anaerobic ammonia oxidation tank is not reduced by pulling out the microorganism fixing material and replenishing the unfamiliar microorganism fixing material as in the present invention. Therefore, if this is repeated, the acclimatized microorganism immobilization material can be successively drawn out from one anaerobic ammonia oxidation tank to another anaerobic ammonia oxidation tank to become an acclimatized inoculum.

また、本発明の請求項1では、前記一方の嫌気性アンモニア酸化槽からの微生物固定化材の引き抜きは、馴養済みの微生物固定化材の全量が1カ月以上かけて前記新しい微生物固定化材に入れ替わるように複数回に分けて引き抜くようにした。
Further, in the first aspect of the present invention, withdrawal of the microbe-immobilized materials from the one anaerobic ammonium oxidation tank, the total amount of the acclimatized microbe-immobilized materials are over 1 month new microbe-immobilized materials I pulled it out in multiple times so that it could be replaced .

一方の嫌気性アンモニア酸化槽から微生物固定化材を短期間で何回も頻繁に引き抜くと、引き抜かれた嫌気性アンモニア酸化槽には十分に馴養されていない微生物固定化材の比率が多くなり、脱窒性能を悪化させてしまう。従って、馴養済みの微生物固定化材の全量を1カ月以上、好ましくは2カ月以上かけて補充した新しい微生物固定化材に入れ替わるように複数回に分けて引き抜くように引き抜き頻度を調整すれば、補充した新しい微生物固定化材の馴養も進んでいるので、脱窒性能に与える影響が小さくなる。引き抜き方法として、好ましくは均等に引き抜くことが好ましい。即ち、複数回の引き抜き量を毎回同じとすることが好ましく、引き抜きごとに量が異なると、脱窒性能が変動し易くなるためである。   If a microorganism immobilization material is frequently extracted from an anaerobic ammonia oxidation tank many times in a short period of time, the proportion of the microorganism immobilization material that has not been fully adapted to the extracted anaerobic ammonia oxidation tank will increase. Denitrification performance is deteriorated. Therefore, if the extraction frequency is adjusted so that the microbial immobilization material has been withdrawn in several batches so that it is replaced with a new microbial immobilization material that has been replenished over one month, preferably over two months, it will be replenished. Since the new microbial immobilization material has been adapted, the influence on denitrification performance is reduced. As a pulling method, it is preferable to pull evenly. That is, it is preferable to make the amount of drawing multiple times the same every time, and if the amount is different for each drawing, the denitrification performance tends to fluctuate.

また、本発明においては、前記一方の嫌気性アンモニア酸化槽から引き抜いた馴養済みの微生物固定化材を液状化し、液状化した微生物固定化材に活性汚泥を混合し、この混合微生物とゲル化材料とを混合した混合物を重合することで包括固定化担体を形成し、この包括固定化担体を他方の嫌気性アンモニア酸化槽に投入することが好ましい。   In the present invention, the conditioned microbial immobilization material extracted from the one anaerobic ammonia oxidation tank is liquefied, and activated sludge is mixed with the liquefied microbial immobilization material, and the mixed microorganism and the gelled material are mixed. It is preferable to form a entrapping immobilization support by polymerizing a mixture of the above and the like, and to put the entrapping immobilization support into the other anaerobic ammonia oxidation tank.

このように、液状化した包括固定化担体に活性汚泥を混ぜて増量することにより包括固定化担体の数を増やすことができると共に、製造された包括固定化担体内には、他の細菌よりも嫌気性アンモニア酸化細菌の優占比率が高くなっており、馴養され易い状態になっているからである。   In this way, the number of entrapping immobilization carriers can be increased by mixing activated sludge with the liquefied entrapping immobilization carrier and increasing the amount. This is because the predominance ratio of the anaerobic ammonia-oxidizing bacteria is high, and it is easy to be adapted.

以上説明したように本発明の嫌気性アンモニア酸化槽の運転方法によれば、一方の嫌気性アンモニア酸化槽で馴養済みの嫌気性アンモニア酸化細菌を他方の嫌気性アンモニア酸化細菌の馴養に利用するようにしたので、増殖速度の遅い嫌気性アンモニア酸化細菌の馴養期間を短縮でき、培養プラントを設ける必要がなくなると共に、嫌気性アンモニア酸化細菌が引き抜かれた一方の嫌気性アンモニア酸化槽の性能も低下させることがない。   As described above, according to the operation method of the anaerobic ammonia oxidation tank of the present invention, the anaerobic ammonia oxidation bacteria already adapted in one anaerobic ammonia oxidation tank is used for acclimatization of the other anaerobic ammonia oxidation bacteria. Therefore, it is possible to shorten the acclimatization period of anaerobic ammonia-oxidizing bacteria with a slow growth rate, eliminating the need for a culture plant, and reducing the performance of one anaerobic ammonia-oxidizing tank from which anaerobic ammonia-oxidizing bacteria have been extracted There is nothing.

以下添付図面に従って本発明に係る嫌気性アンモニア酸化槽の運転方法における好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of the method for operating an anaerobic ammonia oxidation tank according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の嫌気性アンモニア酸化槽の運転方法を実施する嫌気性アンモニア酸化装置の概念図である。   FIG. 1 is a conceptual diagram of an anaerobic ammonia oxidation apparatus that implements the method of operating an anaerobic ammonia oxidation tank of the present invention.

図1に示す2つの縦型の嫌気性アンモニア酸化槽のうち、一方の嫌気性アンモニア酸化槽は、嫌気性アンモニア酸化細菌が優占繁殖した馴養済みの微生物固定化材14Aを有する嫌気性アンモニア酸化槽(以下、「馴養済み槽10」という)であり、他方の嫌気性アンモニア酸化槽は、嫌気性アンモニア酸化細菌が未だ優占繁殖していない微生物固定化材14Bを有する未馴養の嫌気性アンモニア酸化槽(以下、「未馴養槽12」という)で、これから立ち上げを行うものである。尚、本実施の形態の微生物固定化材14A、14Bは、不織布の周囲に微生物を付着固定する固定床型の微生物固定化材14A、14Bの例で説明するが、これに限定するものではない。例えば、ゲルや樹脂ビーズ等の槽内を流動可能な粒状の固定化材料の周囲に微生物を付着固定する付着・流動型の微生物固定化材や、含水ゲルの内部に微生物を包括固定し、槽内を自由に流動することのできる包括・流動型の微生物固定化材を使用することができる。   Of the two vertical anaerobic ammonia oxidation tanks shown in FIG. 1, one anaerobic ammonia oxidation tank is anaerobic ammonia oxidation having an acclimatized microorganism immobilization material 14A predominately propagated by anaerobic ammonia oxidizing bacteria. The other anaerobic ammonia oxidation tank is an unaccustomed anaerobic ammonia having a microorganism immobilization material 14B in which anaerobic ammonia oxidizing bacteria have not yet prevailed. In the oxidation tank (hereinafter referred to as “unfamiliar tank 12”), the start-up is performed from now on. In addition, although microorganisms fixing material 14A, 14B of this Embodiment demonstrates in the example of the fixed bed type microorganism fixing material 14A, 14B which adheres microorganisms around a nonwoven fabric, it is not limited to this. . For example, an adhesion / flow type microorganism immobilization material that adheres and immobilizes microorganisms around a granular immobilization material that can flow in a tank such as a gel or resin beads, or a microorganism containing and immobilizing microorganisms inside a hydrous gel It is possible to use a microbial immobilization material of inclusion / flow type that can freely flow inside.

固定化材料の材質としては、ポリビニルアルコールやアルギン酸、ポリエチレングリコール系のゲルや、セルロース、ポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック系のものなどが上げられるが、特に限定しない。形状については、球形や円筒形、多孔質、立方体、スポンジ状、ハニカム状などの成形をおこなったものを使用することが好ましい。また,微生物の自己造粒を利用したグラニュールも本発明に使用できる。   Examples of the material for the immobilization material include polyvinyl alcohol, alginic acid, polyethylene glycol gel, and plastic materials such as cellulose, polyester, polypropylene, and vinyl chloride, but are not particularly limited. As for the shape, it is preferable to use a product that has been formed into a spherical shape, a cylindrical shape, a porous shape, a cubic shape, a sponge shape, a honeycomb shape, or the like. Granules utilizing microbial self-granulation can also be used in the present invention.

馴養済み槽10及び未馴養槽12の槽内には、棒状の不織布を固定化材料とした微生物固定化材14A、14Bが被処理水中に垂直に浸漬されており、原水配管16A,16Bを介して原水ポンプ18A、18Bにより槽10、12底部から供給された被処理水は槽10、12内を上向流として流れ、槽10、12上部から処理水管20A,20Bを介して排出される。ここで、図1に黒色で示した微生物固定化材14Aは、嫌気性アンモニア酸化細菌が優占繁殖した馴養済みの微生物固定化材であることを意味し、白色で示した微生物固定化材14Bは未だ嫌気性アンモニア酸化細菌が優占繁殖していない未馴養の微生物固定化材又は新たに補充した微生物固定化材であることを意味する。   In the tanks of the acclimatized tank 10 and the unfamiliar tank 12, microbial immobilization materials 14A and 14B using a rod-shaped nonwoven fabric as an immobilization material are vertically immersed in the water to be treated, and are passed through the raw water pipes 16A and 16B. Water to be treated supplied from the bottoms of the tanks 10 and 12 by the raw water pumps 18A and 18B flows as an upward flow in the tanks 10 and 12, and is discharged from the upper parts of the tanks 10 and 12 through the treated water pipes 20A and 20B. Here, the microorganism immobilization material 14A shown in black in FIG. 1 means that the microorganism immobilization material 14B shown in white means an acclimatized microorganism immobilization material in which anaerobic ammonia-oxidizing bacteria predominately propagated. Means an unfamiliar microbial immobilization material or a newly supplemented microbial immobilization material in which anaerobic ammonia-oxidizing bacteria have not yet prevailed.

馴養済み槽10及び未馴養槽12の槽内底部には、分散盤22A,22Bが設けられ、原水配管16A,16Bから流入した被処理水は、槽10、12内全体に均等な上向流を形成すると同時に局所的に亜硝酸性窒素濃度(NO2 −N)が高くなり、嫌気性アンモニア酸化細菌が失活するのを防止するものである。 Dispersions 22A and 22B are provided at the bottoms of the conditioned tank 10 and the unfamiliar tank 12, and the water to be treated flowing from the raw water pipes 16A and 16B flows upward in the tanks 10 and 12 evenly. At the same time, the concentration of nitrite nitrogen (NO 2 -N) is locally increased to prevent the anaerobic ammonia oxidizing bacteria from being deactivated.

図2及び図3に示すように、これら馴養済み槽10及び未馴養槽12は、同じ廃水処理場に設けられていても、別々の廃水処理場に設けられていてもよい。   As shown in FIGS. 2 and 3, the conditioned tank 10 and the unconditioned tank 12 may be provided in the same wastewater treatment plant or in separate wastewater treatment plants.

図2は、同一の廃水処理場内において、既に嫌気性アンモニア酸化細菌の馴養済み(運転中)のA系列の馴養済み槽10から、これから立ち上げ運転を行うB系列の未馴養槽12に、馴養済みの微生物固定化材14Aを移動することを示している。このように、同一の廃水処理場内において多数の処理系列A,B,C,Dを運転する際に、先に立ち上げた処理系列の嫌気性アンモニア酸化細菌を、他の処理系列の種汚泥とすることができる。   FIG. 2 shows that, in the same wastewater treatment plant, the acclimatization of the anaerobic ammonia-oxidizing bacteria from the A-series acclimatized tank 10 to the B-series unacclimatized tank 12 to be started up from now on is performed. It shows that the already-immobilized microorganism immobilization material 14A is moved. In this way, when operating a large number of treatment series A, B, C, D in the same wastewater treatment plant, the anaerobic ammonia oxidizing bacteria of the treatment series that has been launched earlier are combined with seed sludge of other treatment series. can do.

図3は、既に嫌気性アンモニア酸化細菌の馴養済み(運転中)の廃水処理場Aから、これから立ち上げ運転を行う他の廃水処理場Fに、馴養済みの微生物固定化材14Aを移動することを示している。このように、異なる廃水処理場A,Fの間において、運転を開始しようとする一方の廃水処理場Fに対して、先に立ち上げた廃水処理場Aの汚泥を移送することができる。   FIG. 3 shows that the conditioned microorganism immobilization material 14A is moved from the already treated (operating) wastewater treatment plant A of anaerobic ammonia-oxidizing bacteria to another wastewater treatment plant F to be started up. Is shown. Thus, between the waste water treatment plants A and F, the sludge of the waste water treatment plant A that has been started up can be transferred to one waste water treatment plant F that is about to start operation.

かかる馴養済み槽10と未馴養槽12とを使用して本発明の嫌気性アンモニア酸化槽の運転方法を実施するには、図1に示したように、馴養済み槽10から馴養済みの微生物固定化材14Aの一部を引き抜き、未馴養槽12に投入する。そして、馴養済み槽10には、未馴養な微生物固定化材14Bを補充し、運転を継続する。一方、未馴養槽12には、馴養済み槽10からの微生物固定化材14Aに加えて立ち上げ運転を行う。この場合、馴養済みの微生物固定化材14Aは、そのまま使用するとは限らず、固定化されている嫌気性アンモニア酸化細菌を引き剥がして馴養汚泥として未馴養槽12に添加してもよい。   In order to carry out the operation method of the anaerobic ammonia oxidation tank of the present invention using the acclimatized tank 10 and the non-accommodated tank 12, as shown in FIG. A part of the chemical material 14 </ b> A is pulled out and put into the unfamiliar tank 12. Then, the acclimatized tank 10 is supplemented with an unaccustomed microorganism immobilization material 14B, and the operation is continued. On the other hand, in addition to the microorganism immobilization material 14A from the acclimatized tank 10, a start-up operation is performed on the unaccustomed tank 12. In this case, the acclimatized microorganism immobilization material 14A is not necessarily used as it is, and may be added to the unacclimated tank 12 as an acclimatized sludge by peeling off the immobilized anaerobic ammonia-oxidizing bacteria.

かかる本発明の運転方法において、馴養済み槽10で馴養した微生物固定化材14Aが包括固定化担体で、馴養済み槽10内の包括固定化担体の全量の一部を未馴養槽12に投入する場合には、図4に示す包括固定化担体の製造方法によって、未馴養槽12に投入する包括固定化担体の数を増量するとよい。   In such an operation method of the present invention, the microorganism immobilization material 14A acclimatized in the conditioned tank 10 is the entrapping immobilization carrier, and a part of the total amount of the entrapping immobilization carrier in the acclimated tank 10 is charged into the unacclimated tank 12. In this case, the number of entrapping immobilization carriers to be introduced into the unfamiliar tank 12 may be increased by the method for producing entrapping immobilization carriers shown in FIG.

図4に示すように、馴養済み槽10から引き抜いた包括固定化担体は、ホモジナイザー等により包括固定化担体を液状化する(液状化工程)。このときに、嫌気性アンモニア酸化細菌の中間代謝物であり酸素の混入を防ぐ還元剤であるヒドラジン及び/又は嫌気性アンモニア酸化細菌の中間代謝物であるヒドロキシルアミンを添加すると好ましい。次に、液状化した包括固定化担体に水又は活性汚泥を混合する(混合工程)。次に、混合工程で混合した混合物と包括固定化材料であるゲル化材料とを混合すると共に、ゲル化材料には、水や反応調整剤としての希硫酸が加えられる。そして、過酸化カリウム等の重合開始剤を添加して重合反応を起こすことにより、ゲル化材料をゲル化し、混合物をゲル化材料に包括固定する(包括固定化工程)。このように、液状化した包括固定化担体に活性汚泥を混ぜて増量することにより包括固定化担体の数を増やすことができると共に、製造された包括固定化担体内には、他の細菌よりも嫌気性アンモニア酸化細菌の優占比率が高くなっており、馴養され易い状態になっている。   As shown in FIG. 4, the entrapping immobilization carrier extracted from the conditioned tank 10 is liquefied by a homogenizer or the like (liquefaction step). At this time, it is preferable to add hydrazine, which is an intermediate metabolite of anaerobic ammonia-oxidizing bacteria, and a reducing agent that prevents contamination of oxygen, and / or hydroxylamine, which is an intermediate metabolite of anaerobic ammonia-oxidizing bacteria. Next, water or activated sludge is mixed with the liquefied entrapping immobilization support (mixing step). Next, the mixture mixed in the mixing step and the gelling material as the entrapping immobilization material are mixed, and water or dilute sulfuric acid as a reaction modifier is added to the gelling material. Then, by adding a polymerization initiator such as potassium peroxide to cause a polymerization reaction, the gelling material is gelled and the mixture is comprehensively fixed to the gelling material (inclusive fixing step). In this way, the number of entrapping immobilization carriers can be increased by mixing activated sludge with the liquefied entrapping immobilization carrier and increasing the amount. The predominance ratio of anaerobic ammonia-oxidizing bacteria is high, and it is in a state of being easily adapted.

また、馴養済み槽10に補充する未馴養の微生物固定化材14A、及び未馴養槽12に投入する未馴養の微生物固定化材14Bが付着固定タイプの場合には、投入する前に固定化材料に予め汚泥等の微生物を付着させてから投入してもよい。また、このとき汚泥内に付着している有機物は、嫌気性アンモニア酸化細菌の馴養を阻害することから、槽内のBOD濃度を50mg/L以下まで低下させた後、馴養済みの嫌気性アンモニア酸化細菌を投入することが好ましい。また、微生物の付着していない固定化材料を投入して、運転中に微生物を付着させてもよい。   In addition, when the unfamiliar microorganism immobilization material 14A to be replenished to the acclimatized tank 10 and the unfamiliar microorganism immobilization material 14B to be charged to the unfamiliar tank 12 are of the adhesion fixing type, the immobilization material before being charged. Alternatively, the microorganisms such as sludge may be preliminarily adhered to the container. At this time, the organic matter adhering to the sludge inhibits the acclimatization of the anaerobic ammonia oxidizing bacteria. Therefore, after reducing the BOD concentration in the tank to 50 mg / L or less, the acclimatized anaerobic ammonia oxidation is performed. It is preferable to introduce bacteria. Alternatively, an immobilizing material to which microorganisms are not attached may be introduced to attach microorganisms during operation.

表1は、かかる本発明の運転方法を行うことによって、増殖速度の遅い嫌気性アンモニア酸化細菌の馴養期間を短縮できることを説明した試験結果である。   Table 1 shows test results explaining that the acclimatization period of anaerobic ammonia-oxidizing bacteria having a slow growth rate can be shortened by performing the operation method of the present invention.

試験は、無機合成廃水を用いて、嫌気性アンモニア酸化法を利用して実験装置として構成した未馴養槽12の立上げを行った。尚、表1で添加とは、馴養済みの微生物固定化材14Aの投入に加えて、馴養済み槽10内で浮遊する馴養汚泥自体も未馴養槽12内に添加した場合で、無添加とは添加しない場合をいう。   In the test, an unfamiliar tank 12 configured as an experimental device was made up using an anaerobic ammonia oxidation method using inorganic synthetic wastewater. The addition in Table 1 is the case where the conditioned sludge itself floating in the conditioned tank 10 is added to the unconditioned tank 12 in addition to the addition of the conditioned microorganism immobilization material 14A. When not added.

Figure 0004632178
Figure 0004632178

試験1は、嫌気性アンモニア酸化細菌が馴養されていない活性汚泥を付着した不織布を未馴養槽12に投入して立ち上げを行った場合である。   Test 1 is a case where a nonwoven fabric to which activated sludge to which anaerobic ammonia-oxidizing bacteria are not acclimatized is attached is put into the unfamiliar tank 12 and is started up.

立ち上げの運転条件として、新品の不織布を下水汚泥(汚泥濃度:MLSS30000mg/Lの汚泥)に浸漬し、不織布に下水汚泥を付着させたものを未馴養槽12に投入した。また、下水汚泥を付着させた不織布以外、下水汚泥自体も未馴養槽12に添加した。原水組成については、A.A.van de Graaf et.al Microbiology(1996),142,p2187-2196 を参考として、表2に示す組成のものを使用し、亜硝酸性窒素(NO2 −N)濃度及びアンモニア性窒素(NH4 −N)濃度を変化させて運転を行った。 As a start-up operation condition, a new nonwoven fabric was immersed in sewage sludge (sludge having a sludge concentration: MLSS 30000 mg / L), and the nonwoven fabric adhered with sewage sludge was put into the unfamiliar tank 12. Moreover, the sewage sludge itself was also added to the unfamiliar tank 12 except the nonwoven fabric to which the sewage sludge was adhered. For the raw water composition, referring to AAvan de Graaf et.al Microbiology (1996), 142, p2187-2196, the composition shown in Table 2 was used, and the concentration of nitrite nitrogen (NO 2 -N) and ammoniacity were used. The operation was performed by changing the nitrogen (NH 4 -N) concentration.

Figure 0004632178
Figure 0004632178

(備考)T.EllementS1:EDTA:5g/L,FeSO4 :5g/L
T.EllementS2:EDTA:15g/L,ZnSO 4 ・7H2 O:0.43g/L,CoCl2 ・6H2 O:0.24g/L,MnCl2 ・4H2 O:0.99g/L,CuSO4 ・5H2 O:0.25g/L,NaMoO 4 ・2H2 O:0.22g/L,NiCl2 ・6H2 O:0.19g/L,NaSeO 4 ・10H 2 O:0.21g/L,H 3 BO4 :0.014g/L
その結果、未馴養槽12では、運転開始から約124日目にアンモニアと亜硝酸の同時脱窒を開始し、嫌気性アンモニア酸化活性を確認した。その後、220日目に脱窒速度0.45(kg-N/m 3 / 日) を確認した。試験1の場合、馴養期間は220日であるが、未だ嫌気性アンモニア酸化法を利用した脱窒速度は十分ではない。
(Remarks) Ellement S1: EDTA: 5g / L, FeSO 4 : 5g / L
T.A. Ellement S2: EDTA: 15g / L, ZnSO 4 · 7H 2 O: 0.43g / L, CoCl 2 · 6H 2 O: 0.24g / L, MnCl 2 · 4H 2 O: 0.99g / L, CuSO 4 · 5H 2 O : 0.25g / L, NaMoO 4・ 2H 2 O: 0.22g / L, NiCl 2・ 6H 2 O: 0.19g / L, NaSeO 4・ 10H 2 O: 0.21g / L, H 3 BO 4 : 0.014g / L
As a result, in the unfamiliar tank 12, simultaneous denitrification of ammonia and nitrous acid was started about 124 days after the start of operation, and anaerobic ammonia oxidation activity was confirmed. Thereafter, a denitrification rate of 0.45 (kg-N / m 3 / day) was confirmed on the 220th day. In the case of Test 1, the acclimatization period is 220 days, but the denitrification rate using the anaerobic ammonia oxidation method is still not sufficient.

試験2は、硝化汚泥を不織布に付着したものを未馴養槽12に投入して立ち上げた場合である。硝化汚泥とは硝化・脱窒装置の硝化槽からサンプリングした汚泥である。運転条件としては、先ず新品の不織布を硝化汚泥(汚泥濃度:MLSS30000mg/Lの汚泥)に浸漬し、不織布に硝化汚泥を付着させた。また、硝化汚泥が付着した不織布以外に、硝化汚泥自体も未馴養槽12に添加した。添加量は試験1と同様で以下の試験も添加した場合の添加量と同じである。その他は試験1と同様である。   Test 2 is a case where nitrified sludge adhered to a non-woven fabric is put into an unfamiliar tank 12 and started up. Nitrification sludge is sludge sampled from the nitrification tank of the nitrification / denitrification equipment. As operating conditions, first, a new nonwoven fabric was dipped in nitrified sludge (sludge having a sludge concentration: MLSS 30000 mg / L), and the nitrified sludge was adhered to the nonwoven fabric. In addition to the non-woven fabric to which nitrified sludge adhered, nitrified sludge itself was also added to the unfamiliar tank 12. The addition amount is the same as that in Test 1 and is the same as the addition amount when the following test is also added. Others are the same as those in Test 1.

その結果、運転日数180日後であってもアンモニアと亜硝酸の同時脱窒を開始することはなく、嫌気性アンモニア酸化活性を確認することができなかった。即ち、馴養によって嫌気性アンモニア酸化細菌が優占繁殖せず、未馴養槽12を立ち上げることができなかった。   As a result, even after 180 days of operation, simultaneous denitrification of ammonia and nitrous acid was not started, and anaerobic ammonia oxidation activity could not be confirmed. That is, the anaerobic ammonia-oxidizing bacteria did not proliferate preferentially by acclimatization, and the unacclimated tank 12 could not be started up.

試験1と試験2から、嫌気性アンモニア酸化細菌が優占繁殖していない未馴養な微生物固定化材では、未馴養槽12を立ち上げることができないか、立ち上がったとしても極めて長期間を要してしまうことが分かる。   From Test 1 and Test 2, an unfamiliar microbial immobilization material in which anaerobic ammonia-oxidizing bacteria do not predominately propagate cannot take up the unfamiliar tank 12, or it takes a very long time to start up. You can see that

試験3〜7は本発明の運転方法であり、予め運転しておいた馴養済み槽10から馴養した微生物固定化材14Aを引き抜き、未馴養槽12に投入して未馴養槽12の立ち上げを行ったものである。即ち、予め運転しておいた馴養済み槽10は、不織布を固定床として槽内に見かけ充填率として80%投入した。そして、表2に示したように、亜硝酸性窒素濃度(NO2 −N)を200mg/L、アンモニア性窒素濃度(NH4 −N)を250mg/Lに調整した無機合成廃水を使用し、脱窒速度3〜5(kg-N/m 3 / 日) で運転を行った。このように、試験3〜7における馴養済み槽10の微生物固定化材14Aは、上記の不織布を固定床とした種床のものを使用し、これを未馴養槽14に添加する。馴養汚泥量は、ほぼ一定となるように試験した。尚、試験では馴養済み槽10の微生物固定化材14Aの形態は不織布を固定床としたが、これに限定されるものではない。また、未馴養槽14に添加する微生物固定化材の形態も不織布に限るものではなく、試験では不織布の場合以外に、包括固定化担体、PVAゲルビーズ、グラニュールの色々な形態で行った。 Tests 3 to 7 are operation methods of the present invention. The acclimatized microbial immobilization material 14A is extracted from the acclimatized tank 10 that has been operated in advance, and is put into the unacclimated tank 12 to start up the unacclimatized tank 12. It is what I did. In other words, the acclimatized tank 10 that had been operated in advance was charged with 80% as an apparent filling rate into the tank using a non-woven fabric as a fixed bed. Then, as shown in Table 2, nitrite nitrogen concentration (NO 2 -N) using inorganic synthetic wastewater adjusted 200 mg / L, ammonia nitrogen concentration (NH 4 -N) in 250 mg / L, Operation was performed at a denitrification rate of 3 to 5 (kg-N / m 3 / day). In this way, as the microorganism immobilization material 14 </ b> A of the conditioned tank 10 in tests 3 to 7, a seed bed having the above-mentioned nonwoven fabric as a fixed bed is used, and this is added to the unfamiliar tank 14. The amount of acclimated sludge was tested to be almost constant. In the test, the form of the microorganism immobilization material 14A in the conditioned tank 10 is a non-woven fabric fixed bed, but is not limited to this. Moreover, the form of the microorganism immobilization material added to the unfamiliar tank 14 is not limited to the non-woven fabric. In the test, in addition to the non-woven fabric, various forms of inclusion immobilization support, PVA gel beads, and granules were performed.

試験3は、馴養済み槽10から馴養済みの微生物固定化材14A全体のうちの5%を引き抜いて未馴養槽12に投入すると共に、残りの95%は未馴養な活性汚泥を付着させた新品の微生物固定化材14Bを投入した。また、馴養済み槽10内の馴養汚泥自体は添加しなかった。その結果、運転開始後52日後には未馴養槽12の脱窒速度が3.0(kg-N/m 3 / 日) になり、しかも馴養済み槽10と同じレベルの嫌気性アンモニア酸化活性を得ることができた。即ち、試験3の馴養期間は52日であり、嫌気性アンモニア酸化法を利用した十分な脱窒速度を得ることができた。 In Test 3, 5% of the conditioned microorganism immobilization material 14A is extracted from the conditioned tank 10 and put into the unconditioned tank 12, and the remaining 95% is a new article to which unconditioned activated sludge is attached. Of the microorganism immobilization material 14B. Further, the conditioned sludge itself in the conditioned tank 10 was not added. As a result, the denitrification rate of the unconditioned tank 12 becomes 3.0 (kg-N / m 3 / day) 52 days after the start of operation, and the anaerobic ammonia oxidation activity at the same level as that of the adapted tank 10 is obtained. I was able to get it. That is, the acclimatization period of Test 3 was 52 days, and a sufficient denitrification rate using the anaerobic ammonia oxidation method could be obtained.

試験4は、馴養済み槽10から5%引き抜いた馴養済みの微生物固定化材14Aのうちの4%分を未馴養槽12に投入し、残り1%分は汚泥を引き剥がして未馴養槽12に投入した。その結果、運転開始後40日後には未馴養槽12の脱窒速度が3.3(kg-N/m 3 / 日) になり、馴養汚泥自体を添加したので試験3よりも良い結果となった。試験4の馴養期間は40日であり、嫌気性アンモニア酸化法を利用した十分な脱窒速度を得ることができた。 In Test 4, 4% of the conditioned microorganism-immobilizing material 14A extracted 5% from the conditioned tank 10 is put into the unconditioned tank 12, and the remaining 1% is stripped of sludge to remove the unconditioned tank 12. It was thrown into. As a result, after 40 days from the start of operation, the denitrification rate of the unconditioned tank 12 became 3.3 (kg-N / m 3 / day), and the conditioned sludge itself was added, resulting in a better result than in Test 3. It was. The acclimatization period of Test 4 was 40 days, and a sufficient denitrification rate using the anaerobic ammonia oxidation method could be obtained.

試験5は、馴養済み槽10から5%引き抜いた馴養済みの微生物固定化材14Aから汚泥を引き剥がし、活性汚泥を混合した混合物をポリエチレングリコール系のゲルで固定化し、ペレット状に成形することで包括固定化担体を得た。ゲル濃度は15重量%であり、担体内の混合物濃度は1.5重量%であった。   In Test 5, sludge was peeled off from the conditioned microorganism-immobilizing material 14A extracted 5% from the conditioned tank 10, the mixture mixed with the activated sludge was fixed with a polyethylene glycol-based gel, and formed into a pellet. A comprehensive immobilization support was obtained. The gel concentration was 15% by weight and the mixture concentration in the carrier was 1.5% by weight.

この包括固定化担体を未馴養槽12に担体充填率30%になるように投入して試験を行
った結果、運転開始後約1ヶ月(31日)で未馴養槽12の脱窒速度が3.3(kg-N/m 3 / 日) になり、試験4よりも短期間で馴養が可能となった。
As a result of carrying out the test by introducing this entrapped immobilization carrier into the unfamiliar tank 12 so that the carrier filling rate is 30%, the denitrification rate of the unfamiliar tank 12 is 3 in about one month (31 days) after the start of operation. It became 3 (kg-N / m 3 / day), and it became possible to acclimatize in a shorter time than test 4.

試験6は、馴養済み槽10から5%引抜いた馴養済みの微生物固定化材14Aから汚泥を引き剥がし、この汚泥にPVA(ポリビニルアルコール)製のゲルビーズを24時間浸漬した後、汚泥とPVAゲルビーズを未馴養槽12に投入した。尚、PVAゲルビーズの未馴養槽12への充填率は見かけ容積として50%になるようにした。その結果、運転開始後60日後に、他の上記試験3、4、5よりも小さいものの、未馴養槽12の脱窒速度が1.8(kg-N/m 3 / 日) まで立ち上げることができた。脱窒速度が試験3、4、5よりも小さかった理由は、PVAゲルビーズに付着されている馴養汚泥が一部剥離して槽から流出したためと考えられる。 In Test 6, the sludge was peeled off from the conditioned immobilization material 14A extracted 5% from the conditioned tank 10, and the gel beads made of PVA (polyvinyl alcohol) were immersed in the sludge for 24 hours, and then the sludge and the PVA gel beads were added. It put into the unfamiliar tank 12. The filling rate of the PVA gel beads into the unfamiliar tank 12 was set to 50% as an apparent volume. As a result, after 60 days from the start of operation, the denitrification rate of the unfamiliar tank 12 is increased to 1.8 (kg-N / m 3 / day), although it is smaller than the other tests 3, 4, and 5 above. I was able to. The reason why the denitrification rate was lower than those in Tests 3, 4, and 5 is considered to be that part of the acclimatized sludge adhering to the PVA gel beads peeled off and flowed out of the tank.

試験7は、馴養済み槽10から5%引抜いた馴養済みの微生物固定化材14Aから汚泥を引き剥がし、この汚泥にグラニュールを24時間浸漬した後、汚泥とグラニュールを未馴養槽12に充填した。グラニュールの未馴養槽12への充填率は見かけ容積として40%になるように充填し、UASB装置を用いて運転した。その結果、運転開始後50日後に、未馴養槽12の脱窒速度が3.5(kg-N/m 3 / 日) になり、馴養済み槽10と同じレベルの嫌気性アンモニア酸化活性を得ることができた。即ち、試験7の馴養期間は50日であり、嫌気性アンモニア酸化法を利用した十分な脱窒速度を得ることができた。 In Test 7, the sludge is peeled off from the conditioned immobilization material 14A extracted 5% from the conditioned tank 10, and the granules are immersed in the sludge for 24 hours, and then the unconditioned tank 12 is filled with the sludge and granules. did. The unfilled tank 12 was filled with granules so that the apparent volume was 40%, and was operated using a UASB apparatus. As a result, 50 days after the start of operation, the denitrification rate of the unconditioned tank 12 becomes 3.5 (kg-N / m 3 / day), and anaerobic ammonia oxidation activity at the same level as that of the conditioned tank 10 is obtained. I was able to. That is, the acclimatization period in Test 7 was 50 days, and a sufficient denitrification rate using the anaerobic ammonia oxidation method could be obtained.

また、表1の試験3〜7から分かるように、本発明の運転方法を実施した場合の馴養期間は1〜2ヶ月である。このことから馴養済み槽10に補充した未馴養の微生物固定化材14Bは1ヶ月以上の馴養期間が必要であり、好ましくは2ヶ月以上の馴養が必要である。従って、馴養済み槽10からの引き抜き頻度は、馴養済み槽10内の馴養済みの微生物固定化材14Aの全量が1ヶ月以上、より好ましくは2ヶ月以上をかけて補充した微生物固定化材14Bに切り替わる速さで少量ずつ引く抜くことが好ましい。この引き抜き頻度よりも速く引き抜くと、馴養済み槽10内に未馴養の微生物固定化材が多く占めるようになり、馴養済み槽10の脱窒性能を悪化させることになる。   Moreover, as can be seen from Tests 3 to 7 in Table 1, the acclimatization period when the operation method of the present invention is performed is 1 to 2 months. From this, the unfamiliar microorganism immobilization material 14B replenished to the acclimatized tank 10 needs a acclimatization period of 1 month or more, and preferably acclimatizes for 2 months or more. Therefore, the extraction frequency from the conditioned tank 10 is such that the total amount of the conditioned microbial immobilization material 14A in the conditioned tank 10 is replenished to the microbial immobilization material 14B supplemented over one month or more, more preferably two months or more. It is preferable to pull out little by little at the switching speed. If the extraction is performed faster than the extraction frequency, a large amount of unfamiliar microorganism-fixing material occupies the acclimatized tank 10 and the denitrification performance of the acclimatized tank 10 is deteriorated.

また、本発明の運転方法においては、馴養済み槽10から一度に引き抜く微生物固定化材14Aの引き抜き量は、馴養済み槽10の微生物固定化材14A全量の25%以下であることが好ましい。   In the operation method of the present invention, the amount of the microorganism-immobilizing material 14 </ b> A extracted from the conditioned tank 10 at a time is preferably 25% or less of the total amount of the microorganism-immobilizing material 14 </ b> A of the conditioned tank 10.

図5は、馴養済み槽10から一度に引き抜く微生物固定化材14Aの引き抜き量と、馴養済み槽10における脱窒性能との関係を調べた試験結果であり、脱窒性能は脱窒速度を測定することで評価した。   FIG. 5 is a test result of investigating the relationship between the amount of the microorganism immobilization material 14A withdrawn from the conditioned tank 10 at a time and the denitrification performance in the conditioned tank 10, and the denitrification performance measures the denitrification rate. It was evaluated by doing.

試験は、亜硝酸性窒素濃度(NO2 −N)220mg/L、アンモニア性窒素濃度(NH4 −N)200mg/Lに調整した表2の無機合成廃水を用い、HRTを3時間として運転条件の馴養済み槽10(実験装置)を6槽用意した。微生物固定化材14Aの固定化材料としては不織布を用いた。6槽とも、微生物固定化材14Aを引き抜く前の脱窒速度は2.5(kg-N/m 3 / 日) であった。 The test was conducted using the inorganic synthetic wastewater in Table 2 adjusted to nitrite nitrogen concentration (NO 2 -N) 220 mg / L and ammoniacal nitrogen concentration (NH 4 -N) 200 mg / L, and operating conditions with HRT being 3 hours. 6 conditioned tanks 10 (experimental equipment) were prepared. Nonwoven fabric was used as an immobilization material for the microorganism immobilization material 14A. In all six tanks, the denitrification rate before extracting the microorganism-immobilizing material 14A was 2.5 (kg-N / m 3 / day).

そして、6槽の馴養済み槽10からの微生物固定化材14Aの引き抜き量を、微生物固定化材14A全体に対して3%、5%、10%、15%、25%、30%になるように引き抜いた。   And the extraction amount of the microorganism immobilization material 14A from the six acclimatized tanks 10 is 3%, 5%, 10%, 15%, 25%, 30% with respect to the whole microorganism immobilization material 14A. Pulled out.

その結果を図5に示す。図5の横軸は微生物固定化材14Aを引き抜いてからの経過日数であり、縦軸は馴養済み槽10の脱窒速度である。図5から分かるように、引き抜き量が10%以下であれば、引き抜いてからの日数が経過に伴う脱窒速度の低下は殆どない。
引き抜き量が15%及び25%では、引き抜いた直後から10日程度まで脱窒速度が少し低下し、10日以降再び元の脱窒速度に戻る。しかし、引き抜き量が30%になると、引き抜いてからの日数が経過に伴って脱窒速度が急激に低下し、経過日数5日目で脱窒速度が約1(kg-N/m 3 / 日) まで急激に低下し、その後30日経過しても脱窒速度の回復気配はなかった。
The result is shown in FIG. The horizontal axis in FIG. 5 is the number of days that have elapsed since the microorganism-immobilized material 14 </ b> A is pulled out, and the vertical axis is the denitrification rate of the conditioned tank 10. As can be seen from FIG. 5, when the withdrawal amount is 10% or less, there is almost no decrease in the denitrification rate with the passage of the number of days after withdrawal.
When the withdrawal amounts are 15% and 25%, the denitrification rate slightly decreases from immediately after withdrawal until about 10 days, and returns to the original denitrification rate after 10 days. However, when the withdrawal amount reaches 30%, the denitrification rate decreases abruptly as the number of days since withdrawal has elapsed, and the denitrification rate is about 1 (kg-N / m 3 / day) on the fifth day. ), And after 30 days, there was no sign of recovery of the denitrification rate.

図5の結果から、馴養済み槽10から一度に引き抜く馴養済みの微生物固定化材14Aの引き抜き量は、微生物固定化材14A全量の25%以下であることが好ましく、より好ましくは10%以下であり、特に好ましくは5%以下である。   From the results of FIG. 5, the amount of the conditioned microorganism immobilization material 14A that is extracted from the acclimatized tank 10 at a time is preferably 25% or less of the total amount of the microorganism immobilization material 14A, more preferably 10% or less. Yes, particularly preferably 5% or less.

従って、馴養済み槽10を嫌気性アンモニア酸化細菌の培養のための培養槽として兼用する場合には、馴養済み槽10から引き抜く微生物固定化材14Aの引き抜き量を25%以下とし、且つ1〜2ヶ月以上かけて補充した微生物固定化材14Bに切り替わるように引き抜くことが重要である。   Therefore, when the acclimatized tank 10 is also used as a culture tank for culturing anaerobic ammonia-oxidizing bacteria, the amount of the microorganism-immobilizing material 14A extracted from the acclimatized tank 10 is 25% or less, and 1-2. It is important to pull out so as to switch to the microorganism-immobilized material 14B that has been replenished over a month or more.

また、本発明の運転方法においては、馴養済み槽10には、微生物固定化材14Aを引き抜くことを前提として過剰の微生物固定化材14Aを馴養しておくことが好ましい。脱窒速度3.0(kg-N/m 3 / 日) で運転している馴養済み槽10を使用して、引き抜く前に予め引き抜き量に相当する5%の微生物固定化材14Aを過剰に投入しておき、その5%の微生物固定化材14Aを1度に引き抜くと同時に、新しい微生物固定化材14Bを補充する引き抜き・補充操作を1ヶ月に1回行って連続運転を行った。その結果、馴養済み槽10から微生物固定化材14Aを5%引き抜いても馴養済み槽10の脱窒速度の低下はなく、また馴養済み槽10からの処理水の水質の悪化もなかった。これにより、馴養済み槽10を培養槽として兼用し、1ヶ月に1度、馴養済みの微生物固定化材14Aを得ることができ、他の未馴養槽12の種菌として利用することができた。 In the operation method of the present invention, it is preferable to acclimatize the excess microorganism immobilization material 14A in the acclimatized tank 10 on the assumption that the microorganism immobilization material 14A is extracted. Using the acclimatized tank 10 operating at a denitrification rate of 3.0 (kg-N / m 3 / day), an excessive amount of 5% microbial immobilization material 14A corresponding to the extraction amount is excessive before extraction. The 5% microbial immobilization material 14A was withdrawn at a time, and at the same time, a continuous operation was performed by performing an extraction / replenishment operation to replenish a new microbial immobilization material 14B once a month. As a result, even when 5% of the microorganism-immobilizing material 14A was pulled out from the conditioned tank 10, the denitrification rate of the conditioned tank 10 did not decrease, and the quality of the treated water from the conditioned tank 10 did not deteriorate. Thereby, the acclimatized tank 10 was also used as a culture tank, and the acclimatized microorganism immobilization material 14A could be obtained once a month and used as an inoculum for other unaccustomed tanks 12.

以上は、脱窒性能を悪化せずに馴養済み槽10から引き抜く微生物固定化材14Aの引き抜き量と引き抜き頻度等に関して説明したものであるが、馴養済み槽10から同量の微生物固定化材14Aを引き抜いても、引き抜く馴養済み槽10内の部位が異なると馴養済み槽10の脱窒性能に悪影響がでるので、引き抜く部位を適切に設定する必要がある。   The above is a description of the extraction amount and extraction frequency of the microorganism immobilization material 14A extracted from the acclimatized tank 10 without deteriorating the denitrification performance, but the same amount of the microorganism immobilization material 14A from the acclimatized tank 10 is described. Since the denitrification performance of the conditioned tank 10 is adversely affected if the portion in the conditioned tank 10 to be extracted is different, it is necessary to set the extraction site appropriately.

図6は、適切な引き抜き部位を設定するために、馴養済み槽10の脱窒速度分布を調べたものである。   FIG. 6 shows the denitrification rate distribution of the conditioned tank 10 in order to set an appropriate extraction site.

試験は、図1に示した被処理水が上向流で流れる縦型の馴養済み槽10を使用すると共に、不織布を固定化材料とした馴養済みの微生物固定化材14Aを使用し、無機合成廃水による廃水処理試験を行った。馴養済み槽10内には、直径100mm×長さ300mmの複数本の丸棒状の不織布を垂直方向に浸漬配置した微生物固定化材14Aが設けられる。被処理水の組成は表2に示した無機合成廃水を使用し、亜硝酸性窒素(NO2 −N)濃度及びアンモニア性窒素(NH4 −N)濃度を変化させて運転を行った。水温は36°C、HRT6時間、窒素負荷が約1.8〜2.2(kg-N/m 3 / 日) の負荷で1カ月間の連続運転を行った。このときの脱窒速度は1.3〜1.62(kg-N/m 3 / 日) であった。 In the test, the vertical conditioned tank 10 in which the water to be treated flows in the upward flow shown in FIG. 1 is used, and the microbial immobilization material 14A using a non-woven fabric as the immobilization material is used to perform inorganic synthesis. A wastewater treatment test using wastewater was conducted. In the acclimatized tank 10, there is provided a microorganism fixing material 14A in which a plurality of round bar-shaped nonwoven fabrics having a diameter of 100 mm and a length of 300 mm are immersed and arranged in the vertical direction. The composition of the water to be treated was the inorganic synthetic waste water shown in Table 2, and the operation was performed by changing the nitrite nitrogen (NO 2 -N) concentration and the ammonia nitrogen (NH 4 -N) concentration. The water temperature was 36 ° C, the HRT was 6 hours, and the nitrogen load was about 1.8 to 2.2 (kg-N / m 3 / day). The denitrification rate at this time was 1.3 to 1.62 (kg-N / m 3 / day).

そして、1カ月後に、微生物固定化材14Aのうちの1本を馴養済み槽10から取り出して長さ方向に5cmずつ6つの短冊に切断し、短冊ごとの脱窒速度を調べた。結果は図6に示す。   Then, one month later, one of the microorganism immobilization materials 14A was taken out from the conditioned tank 10, cut into 6 strips by 5 cm along the length direction, and the denitrification rate for each strip was examined. The results are shown in FIG.

図6の棒グラフは、微生物固定化材14Aの不織布を切断した6つの短冊のそれぞれの脱窒速度を示したものであり、No.1は不織布の一番下の短冊で、不織布の下から50mmの位置で切断した短冊である。同様に、No.2は下から2番目の短冊、No.3は下から3番目の短冊、No.4は下から4番目の短冊、No.5は下から5番目の短冊、No.6は下から6番目の短冊である。   The bar graph in FIG. 6 shows the denitrification rate of each of the six strips obtained by cutting the nonwoven fabric of the microorganism-immobilizing material 14A. Reference numeral 1 denotes a strip at the bottom of the nonwoven fabric, which is a strip cut at a position of 50 mm from the bottom of the nonwoven fabric. Similarly, no. 2 is the second strip from the bottom. 3 is the third strip from the bottom. 4 is the fourth strip from the bottom. 5 is the fifth strip from the bottom. 6 is the sixth strip from the bottom.

図6の結果から分かるように、微生物固定化材14Aの下半分の部位に相当するNo.1〜No.3の短冊が高い脱窒速度を示し、微生物固定化材14Aの上半分の部位に相当するNo.4〜No.6の短冊が低い脱窒速度を示した。このことは、縦型の馴養済み槽10の例で見たときに、馴養済み槽10内の脱窒速度は均一ではなく、被処理水の流入側(槽下部)から流出側(槽上部)に至る被処理水の流れ方向から見て、流入側の脱窒速度が大きく、流出側の脱窒速度が小さいことが分かる。換言すると、流入側における嫌気性アンモニア酸化細菌の活性が高く、流出側における嫌気性アンモニア酸化細菌の活性が小さい。このことは、馴養済み槽10内を流れる被処理水の流れ方向に対して直交する方向の部位から微生物固定化材14Aを引き抜くと、馴養済み槽10の脱窒性能に悪影響を及ぼす危険がある。即ち、被処理水の流れ方向に対して直交する方向の引き抜き部位が流入側である場合には、活性の高い嫌気性アンモニア酸化細菌が多量に引き抜かれることになり馴養済み槽10の脱窒速度は顕著に悪化してしまう。   As can be seen from the results in FIG. 6, No. 2 corresponding to the lower half of the microorganism-immobilized material 14A. 1-No. No. 3 strip shows a high denitrification rate, No. 3 corresponding to the upper half of the microorganism immobilization material 14A. 4-No. Six strips showed a low denitrification rate. This is because the denitrification rate in the conditioned tank 10 is not uniform when viewed in the example of the vertical conditioned tank 10, and the inflow side (bottom part) to the outflow side (top part) of the treated water. It can be seen that the denitrification rate on the inflow side is large and the denitrification rate on the outflow side is small when viewed from the direction of the water to be treated. In other words, the activity of the anaerobic ammonia oxidizing bacteria on the inflow side is high, and the activity of the anaerobic ammonia oxidizing bacteria on the outflow side is small. This means that there is a risk of adversely affecting the denitrification performance of the conditioned tank 10 when the microbial immobilization material 14A is pulled out from a portion in a direction perpendicular to the flow direction of the water to be treated flowing in the conditioned tank 10. . That is, when the extraction site in the direction orthogonal to the flow direction of the water to be treated is the inflow side, a large amount of highly active anaerobic ammonia-oxidizing bacteria is extracted, and the denitrification rate of the conditioned tank 10 is increased. Will be significantly worse.

従って、本発明の運転方法では、脱窒性能に悪影響がでないように、馴養済み槽10から微生物固定化材14Aを引き抜くときは、馴養済み槽10内を流れる被処理水の流れ方向に対して平行な方向の部位から均等に微生物固定化材14Aを引き抜くことが重要になる。尚、不織布を固定化材料とした微生物固定化材14Aの代わりに、PVAゲルビーズを円柱状容器に充填した固定床式の微生物固定化材14Aとして、馴養済み槽10内に垂直方向に複数本浸漬配置して同様に引き抜き試験を行ったが、この場合にも馴養済み槽10内を流れる被処理水の流れ方向に対して平行な方向の部位から均等に微生物固定化材14Aを引き抜くことにより、馴養済み槽10の脱窒速度に殆ど悪影響を与えることはなかった。このように、微生物固定化材14Aの引き抜く部位を適切に設定することは、不織布や円柱状容器に充填したPVAゲルビーズのように固定床式の微生物固定化材に限らない。   Therefore, in the operation method of the present invention, when extracting the microorganism immobilization material 14A from the conditioned tank 10 so as not to adversely affect the denitrification performance, the flow direction of the water to be treated flowing in the conditioned tank 10 is It is important to extract the microorganism-immobilizing material 14A evenly from the parts in the parallel direction. In place of the microorganism fixing material 14A using a nonwoven fabric as the fixing material, a plurality of fixed bed type microorganism fixing materials 14A filled with cylindrical containers with PVA gel beads are immersed in the conditioned tank 10 in the vertical direction. In the same manner, the pull-out test was performed, and in this case, the microorganism-immobilized material 14A was evenly pulled out from the portion in the direction parallel to the flow direction of the water to be treated flowing in the conditioned tank 10, The denitrification rate of the conditioned tank 10 was hardly adversely affected. Thus, appropriately setting the site where the microorganism immobilization material 14A is pulled out is not limited to the fixed bed type microorganism immobilization material such as PVA gel beads filled in a nonwoven fabric or a cylindrical container.

そこで、微生物固定化材14Aの引き抜き部位と脱窒性能との関係を確認するために、図7の概念図に示すように、被処理水の流れ方向に対して平行な方向の部位と、流れ方向に対して直交する方向の部位の両方から馴養済みの微生物固定化材14Aを引き抜けるようにした。即ち、馴養済み槽10内に10本の微生物固定化材14Aを10本垂直に配置すると共に、各微生物固定化材14Aを10個の短冊に切断し、それぞれを図示しない支持部材で支持したものを2槽用意した。実際の馴養済み槽10では、図7の表裏方向にも微生物固定化材14Aが配置されるが、ここでは説明が理解し易いように、図示した一平面に配置された微生物固定化材14Aで説明する。これにより、図7の破線で囲んだ10個の短冊13の集合体、即ち短冊13に切断する前の微生物固定化材14Aを引き抜けば被処理水の流れ方向に対して平行な方向の部位から微生物固定化材14Aを引き抜くことになる。また、2点鎖線で囲んだ10個の短冊13の集合体15を引き抜けば、被処理水の流れ方向に対して直交する方向の部位から微生物固定化材14Aを引き抜くことになる。何れの引き抜きの場合も引き抜き量が同じになる。この2つの馴養済み槽10について、表2に示した無機合成廃水を使用し、窒素負荷が約1.8〜2.2(kg-N/m 3 / 日) の負荷で連続運転を行った。このときの脱窒速度は1.3〜1.62(kg-N/m 3 / 日) であった。そして、馴養済み槽10から排出される処理水中の亜硝酸性窒素濃度が5mg/Lになったことから脱窒性能が安定したことを確認した後、一方の馴養済み槽10からは不織布を1本引き抜き、他方の馴養済み槽10からは流れ方向に直交する10個の短冊の集合体15を引き抜いた。10個の短冊集合体15は、不織布の下から50〜75mmに位置する、流入位置側の短冊集合体15を引き抜いた。 Therefore, in order to confirm the relationship between the extraction site of the microorganism fixing material 14A and the denitrification performance, as shown in the conceptual diagram of FIG. The conditioned microorganism immobilization material 14A was pulled out from both the parts in the direction orthogonal to the direction. That is, 10 microorganism immobilization materials 14A are vertically arranged in the acclimatized tank 10, and each microorganism immobilization material 14A is cut into 10 strips, and each is supported by a support member (not shown). Two tanks were prepared. In the actual acclimatized tank 10, the microorganism immobilization material 14A is also arranged in the front and back direction of FIG. 7, but here, for easy understanding of the explanation, the microorganism immobilization material 14A arranged on one plane shown in the drawing is used. explain. Accordingly, an assembly of ten strips 13 surrounded by a broken line in FIG. 7, that is, a part in a direction parallel to the flow direction of the water to be treated if the microorganism immobilization material 14A before being cut into the strips 13 is pulled out. The microorganism immobilization material 14A is pulled out from the above. Further, when the aggregate 15 of the ten strips 13 surrounded by the two-dot chain line is pulled out, the microorganism immobilization material 14A is pulled out from a portion in a direction orthogonal to the flow direction of the water to be treated. In any case, the extraction amount is the same. About these two acclimatized tanks 10, the inorganic synthetic waste water shown in Table 2 was used, and the continuous operation was performed with a nitrogen load of about 1.8 to 2.2 (kg-N / m 3 / day). . The denitrification rate at this time was 1.3 to 1.62 (kg-N / m 3 / day). And after confirming that the denitrification performance was stabilized because the concentration of nitrite nitrogen in the treated water discharged from the conditioned tank 10 became 5 mg / L, the nonwoven fabric 1 was added from one conditioned tank 10. Ten strips 15 which were orthogonal to the flow direction were pulled out from the main drawing and the other conditioned tank 10. Ten strip assemblies 15 were drawn from the strip assembly 15 on the inflow position located 50 to 75 mm below the nonwoven fabric.

その結果、被処理水の流れ方向に対して平行な方向の部位から1本の不織布を引き抜いたときには、一時的に処理水の亜硝酸性窒素濃度が30mg/Lまで上昇したが、約10日で処理水の亜硝酸性窒素濃度は元の5mg/Lまで低下した。これに対し、被処理水の流れ方向に直交する部位から10個の短冊集合体15を引き抜いたときには、馴養済み槽10の脱窒速度が低下し、処理水の亜硝酸性窒素濃度が100mg/Lを超え、30日たっても脱窒性能が回復することはなかった。馴養済み槽10の嫌気性アンモニア酸化細菌を調べたところ失活してしまっていた。   As a result, when one non-woven fabric was pulled out from a portion parallel to the flow direction of the water to be treated, the nitrite nitrogen concentration of the treated water temporarily increased to 30 mg / L, but about 10 days. The nitrite nitrogen concentration in the treated water decreased to the original 5 mg / L. On the other hand, when ten strip assemblies 15 are pulled out from the portion orthogonal to the flow direction of the water to be treated, the denitrification rate of the conditioned tank 10 is reduced, and the nitrite nitrogen concentration of the treated water is 100 mg / The denitrification performance did not recover even after 30 days, exceeding L When the anaerobic ammonia oxidizing bacteria in the acclimatized tank 10 were examined, they were inactivated.

このように、馴養済み槽10内を流れる被処理水の流れ方向に対して平行な方向の部位から均等に微生物固定化材14Aを引き抜くことにより、馴養済み槽10の脱窒性能に殆ど悪影響を与えることなく微生物固定化材14Aを引き抜くことができる。   In this way, by pulling out the microorganism fixing material 14A evenly from the portion in the direction parallel to the flow direction of the water to be treated flowing in the conditioned tank 10, the denitrification performance of the conditioned tank 10 is almost adversely affected. The microorganism immobilization material 14A can be pulled out without giving.

図8は、縦型の馴養済み槽10内を流れる被処理水の流れ方向に対して平行な方向の部位から均等に微生物固定化材14Aを引き抜くことが簡単にできるように、固定化材料である不織布をユニット化したものである。図8(A)は側面概念図、図8(B)は上面概念図である。   FIG. 8 shows an immobilization material so that the microorganism immobilization material 14A can be easily pulled out from a portion in a direction parallel to the flow direction of the water to be treated flowing in the vertical conditioned tank 10. A certain nonwoven fabric is unitized. 8A is a conceptual side view, and FIG. 8B is a conceptual top view.

図8に示すように、縦型の馴養済み槽10内の被処理水中には、棒状の不織布を固定化材料とした多数の微生物固定化材14Aが上下2段に分けて垂直配置されると共に、微生物固定化材14A同士は一定の隙間(間隔)をあけて配列される。また、上下2段の微生物固定化材14Aの配置関係は、下段の隙間の上に上段の微生物固定化材14Aが配置され、上段の隙間の下に下段の微生物固定化材14Aが配置される。また、同じ列の微生物固定化材14Aにおける不織布の上端と下端とはそれぞれ連結棒17で連結される。これにより、図8(B)に示すように、上下一対の連結棒17、17に間隔をおいて複数の微生物固定化材14Aが支持された四角板状のユニット21が形成される。馴養済み槽の上段と下段のそれぞれには、複数枚のユニット21が四方を開放した骨組みのケーシング23によって支持される。このケーシング23には、一定間隔で、ユニット21を挿入するガイド溝25が垂直方向に形成され、このガイド溝25にユニット21を挿入することで、複数のユニット21を被処理水の流れ方向に対して平行に配列させることができる。   As shown in FIG. 8, in the water to be treated in the vertical acclimatized tank 10, a large number of microbial immobilization materials 14A using a rod-shaped nonwoven fabric as an immobilization material are vertically arranged in two upper and lower stages. The microorganism immobilization materials 14A are arranged with a certain gap (interval) therebetween. The upper and lower two-stage microorganism immobilization material 14A is arranged such that the upper microorganism immobilization material 14A is disposed above the lower gap, and the lower microorganism immobilization material 14A is disposed below the upper gap. . Moreover, the upper end and lower end of the nonwoven fabric in the microorganism immobilization material 14 </ b> A in the same row are connected by a connecting rod 17. As a result, as shown in FIG. 8B, a square plate-like unit 21 is formed in which a plurality of microorganism immobilization materials 14A are supported at intervals between a pair of upper and lower connecting rods 17 and 17. On each of the upper and lower stages of the conditioned tank, a plurality of units 21 are supported by a frame casing 23 that is open on all sides. In the casing 23, guide grooves 25 for inserting the units 21 are formed in a vertical direction at regular intervals. By inserting the units 21 into the guide grooves 25, the plurality of units 21 are arranged in the flow direction of the water to be treated. They can be arranged parallel to each other.

このように、微生物固定化材14Aを固定床式にすると共に被処理水の流れ方向に平行な複数のユニット21として馴養済み槽10に浸漬させておけば、ユニット21を引き抜くことにより、被処理水の流れ方向に対して平行な方向の部位から微生物固定化材14Aを均等に且つ簡単に引き抜くことができる。また、馴養済み槽10の上段及び下段の微生物固定化材14Aの配置が互い違いになるようにすると共に、被処理水の入口に分散用の邪魔板22Aを配置したので、被処理水の流れを馴養済み槽10内全体に分散することができる。これにより、馴養済み槽10内に局所的に亜硝酸性窒素濃度が高くなるエリアが生じないようにしている。アンモニアと亜硝酸とを同時脱窒する嫌気性アンモニア酸化法において、亜硝酸は必要であるが、亜硝酸性窒素濃度が80mg/L以上になると嫌気性アンモニア酸化細菌の活性を阻害するため、馴養済み槽10内に局所的に亜硝酸性窒素濃度が高くなるエリアが生じることは好ましくないからである。   In this way, if the microorganism immobilization material 14A is made into a fixed bed type and immersed in the conditioned tank 10 as a plurality of units 21 parallel to the flow direction of the water to be treated, the unit 21 is pulled out to be treated. The microorganism-immobilizing material 14A can be pulled out evenly and easily from a portion in a direction parallel to the water flow direction. In addition, the arrangement of the upper and lower microbial immobilization materials 14A in the acclimatized tank 10 is staggered, and the baffle plate 22A for dispersion is arranged at the inlet of the water to be treated. It can be dispersed throughout the conditioned tank 10. This prevents an area where the nitrite nitrogen concentration locally increases in the conditioned tank 10. In the anaerobic ammonia oxidation method that simultaneously denitrifies ammonia and nitrous acid, nitrous acid is necessary. However, if the concentration of nitrite nitrogen exceeds 80 mg / L, the activity of anaerobic ammonia oxidizing bacteria is inhibited. This is because it is not preferable that an area in which the concentration of nitrite nitrogen is locally increased is generated in the finished tank 10.

図8は縦型の馴養済み槽10の例で示したが、図9は横型の馴養済み槽10の場合であり、図8の同じ部材や装置は同符合を付し、説明は省略する。   FIG. 8 shows an example of the vertical conditioned tank 10, but FIG. 9 shows the case of the horizontal conditioned tank 10, and the same members and devices in FIG.

横型の馴養済み槽10の場合には、被処理水(原水)は、図9(A)に示すように、馴養済み槽10の流入部(図9の左側)から流出部(図9の右側)に向けて水平方向に流れる。従って、図9(B)に示すように、馴養済み槽10内に間隔を開けて配列された馴養済みの多数の微生物固定化材14Aのうち、被処理水の流れ方向に平行な一列の微生物固定化材(黒色で示した不織布)のみを図6の場合と同様に連結棒17で連結してユニット21とし、このユニット21を引き抜くようにする。このように、引き抜き用のユニット21を1つ形成することで、微生物固定化材14Aの全てをユニット21にする必要がないので、ユニット化が容易になると共に、ユニット21の作製経費も安価になる。また、図9(C)のように1列に設けたユニット21を流入側と流出側で2つのユニット21A,21Bに分割し、馴養済み槽10の脱窒性能に応じて引き抜くユニット21A,21Bを変えるようにしてもよい。しかし、横型の馴養済み槽10の場合にも、図8の縦型の馴養済み槽10と同様に、微生物固定化材14Aの全てをユニット化するようにしてもよい。   In the case of the horizontal conditioned tank 10, the water to be treated (raw water) flows from the inflow part (left side in FIG. 9) to the outflow part (right side in FIG. 9) as shown in FIG. 9 (A). ) In the horizontal direction. Therefore, as shown in FIG. 9B, among a large number of conditioned microorganism fixing materials 14A arranged at intervals in the conditioned tank 10, a row of microorganisms parallel to the flow direction of the water to be treated. Only the fixing material (non-woven fabric shown in black) is connected by the connecting rod 17 in the same manner as in FIG. 6 to form a unit 21, and this unit 21 is pulled out. In this way, by forming one extraction unit 21, it is not necessary to make all the microorganism-immobilizing material 14 </ b> A into the unit 21, so that the unitization becomes easy and the production cost of the unit 21 is low. Become. Further, as shown in FIG. 9C, the units 21 provided in a row are divided into two units 21A and 21B on the inflow side and the outflow side, and the units 21A and 21B are extracted according to the denitrification performance of the conditioned tank 10. May be changed. However, in the case of the horizontal conditioned tank 10 as well, as with the vertical conditioned tank 10 of FIG. 8, all of the microorganism immobilization material 14A may be unitized.

本発明の嫌気性アンモニア酸化槽の運転方法の実施する嫌気性アンモニア酸化装置の概念図Conceptual diagram of an anaerobic ammonia oxidation apparatus that is implemented by the method for operating an anaerobic ammonia oxidation tank of the present invention. 本発明の嫌気性アンモニア酸化槽の運転方法を同一の廃水処理場で行う場合を示した模式図The schematic diagram which showed the case where the operation method of the anaerobic ammonia oxidation tank of this invention is performed in the same wastewater treatment plant 本発明の嫌気性アンモニア酸化槽の運転方法を異なる廃水処理場で行う場合を示した模式図The schematic diagram which showed the case where the operation method of the anaerobic ammonia oxidation tank of this invention is performed in a different wastewater treatment plant 馴養済み槽で馴養済みの微生物固定化材が包括固定化担体の場合に、未馴養槽に投入する包括固定化担体を製造する方法の説明図Explanatory drawing of the method of manufacturing the entrapping immobilization carrier to be put into the unfamiliar tank when the microbial immobilization material accustomed in the acclimatized tank is the entrapping immobilization carrier 馴養済み槽から一度に引き抜く微生物固定化材の量と脱窒速度との関係を示した関係図Relationship diagram showing the relationship between the amount of microbial immobilization material withdrawn from a conditioned tank at once and the denitrification rate 馴養済み槽における脱窒速度の分布を説明する説明図Explanatory drawing explaining distribution of denitrification speed in acclimatized tank 馴養済み槽の脱窒性能を悪化させないための微生物固定化材の引き抜き部位を説明する説明図Explanatory drawing explaining the extraction site | part of the microorganisms immobilization material for not deteriorating the denitrification performance of the acclimatized tank 本発明を実施する嫌気性アンモニア酸化装置において、微生物固定化材を被処理水の流れ方向に平行になるようにユニット化したユニットを備えた縦型の馴養済み槽の構成図In the anaerobic ammonia oxidation apparatus for carrying out the present invention, a vertical acclimatized tank comprising a unit in which a microorganism immobilization material is unitized so as to be parallel to the flow direction of water to be treated. 本発明を実施する嫌気性アンモニア酸化装置において、微生物固定化材を被処理水の流れ方向に平行になるようにユニット化したユニットを備えた横型の馴養済み槽の構成図The anaerobic ammonia oxidation apparatus which implements this invention WHEREIN: The block diagram of the horizontal type | formula already-fitted tank provided with the unit which unitized the microorganisms fixing material so that it might become parallel to the flow direction of to-be-processed water.

符号の説明Explanation of symbols

10…馴養済み槽、12…未馴養槽、13…短冊、14A…馴養済みの微生物固定化材、14B…未馴養又は補充した微生物固定化材、15…短冊集合体、16A,16B…原水配管、17…連結棒、18A,18B…原水ポンプ、20A,20B…処理水管、21…ユニット、23…ケーシング、25…ガイド溝   DESCRIPTION OF SYMBOLS 10 ... Acclimatized tank, 12 ... Unaccommodated tank, 13 ... Strip, 14A ... Acclimatized microorganism immobilization material, 14B ... Unaccommodated or supplemented microorganism immobilization material, 15 ... Strip assembly, 16A, 16B ... Raw water piping , 17 ... Connecting rod, 18A, 18B ... Raw water pump, 20A, 20B ... treated water pipe, 21 ... unit, 23 ... casing, 25 ... guide groove

Claims (5)

被処理水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化において、前記嫌気性アンモニア酸化細菌の馴養が済んだ一方の実装置である嫌気性アンモニア酸化槽から前記嫌気性アンモニア酸化細菌の一部を引き抜き、この引き抜いた嫌気性アンモニア酸化細菌をこれから馴養を行う他方の実装置である嫌気性アンモニア酸化槽に投入して立ち上げ運転を行う嫌気性アンモニア酸化槽の運転方法であって、
前記嫌気性アンモニア酸化槽内を自由に流動できる固定化材料であって、前記固定化材料に前記嫌気性アンモニア酸化細菌を付着固定させるか又は前記固定化材料としてゲル化材料で形成された固定化材料と前記嫌気性アンモニア酸化細菌とを含む混合物を重合してゲル化材料内に前記嫌気性アンモニア酸化細菌を包括固定させた流動型の微生物固定化材を用いて、
前記一方の実装置の嫌気性アンモニア酸化槽に、前記微生物固定化材を馴養しておく工程と、
前記微生物固定化材が馴養された一方の実装置の嫌気性アンモニア酸化槽から一度に引き抜く微生物固定化材の引き抜き量が馴養した微生物固定化材全量の25%以下になるように引き抜いて前記他方の実装置の嫌気性アンモニア酸化槽に投入する工程と、
前記一方の実装置の嫌気性アンモニア酸化槽から微生物固定化材を引き抜いたら、前記一方の実装置の嫌気性アンモニア酸化細菌槽に、未馴養な新しい微生物固定化材を補充しておく工程と、を備え、
前記一方の実装置の嫌気性アンモニア酸化槽からの微生物固定化材の引き抜きは、馴養済みの微生物固定化材の全量が1カ月以上かけて前記新しい微生物固定化材に入れ替わるように複数回に分けて引き抜くことを特徴とする嫌気性アンモニア酸化槽の運転方法。
In anaerobic ammonia oxidation in which ammonia and nitrous acid in treatment water are simultaneously denitrified by anaerobic ammonia-oxidizing bacteria, from the anaerobic ammonia-oxidizing tank, which is one actual device that has been adapted to the anaerobic ammonia-oxidizing bacteria, An anaerobic ammonia oxidation tank that pulls out a part of the anaerobic ammonia oxidation bacteria and puts the extracted anaerobic ammonia oxidation bacteria into the anaerobic ammonia oxidation tank, which is the other actual equipment to be acclimatized. Driving method,
An immobilization material capable of freely flowing in the anaerobic ammonia oxidation tank, wherein the anaerobic ammonia oxidation bacteria are adhered and immobilized on the immobilization material, or an immobilization material formed of a gelling material as the immobilization material. Using a fluid type microorganism immobilization material in which a mixture containing a material and the anaerobic ammonia oxidizing bacteria is polymerized and the anaerobic ammonia oxidizing bacteria are comprehensively immobilized in a gelled material ,
Acclimatizing the microorganism immobilization material in the anaerobic ammonia oxidation tank of the one real device;
The microbial immobilization material is pulled out from the anaerobic ammonia oxidation tank of one actual apparatus to which the microbial immobilization material has been conditioned, and the microbial immobilization material is withdrawn so that the amount of the microbial immobilization material is 25% or less of the total amount of the conditioned microbial immobilization material. The step of putting it in the anaerobic ammonia oxidation tank of the actual device of
When the microorganism-immobilized material is pulled out from the anaerobic ammonia oxidation tank of the one actual device, a step of replenishing an unfamiliar new microorganism-immobilized material to the anaerobic ammonia-oxidizing bacteria tank of the one actual device; With
The extraction of the microorganism-immobilizing material from the anaerobic ammonia oxidation tank of the one actual device is divided into a plurality of times so that the total amount of the conditioned microorganism-immobilizing material is replaced with the new microorganism-immobilizing material over one month or more. The method of operating an anaerobic ammonia oxidation tank characterized by being pulled out.
前記嫌気性アンモニア酸化槽には、微生物固定化材を引き抜くことを前提として、過剰量の微生物固定化材を馴養しておくことを特徴とする請求項1の嫌気性アンモニア酸化槽の運転方法。   2. The method of operating an anaerobic ammonia oxidation tank according to claim 1, wherein an excess amount of the microorganism immobilization material is acclimatized to the anaerobic ammonia oxidation tank on the premise that the microorganism immobilization material is pulled out. 被処理水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化において、前記嫌気性アンモニア酸化細菌の馴養が済んだ一方の実装置である嫌気性アンモニア酸化槽から前記嫌気性アンモニア酸化細菌の一部を引き抜き、この引き抜いた嫌気性アンモニア酸化細菌をこれから馴養を行う他方の実装置である嫌気性アンモニア酸化槽に投入して立ち上げ運転を行う嫌気性アンモニア酸化槽の運転方法であって、
前記嫌気性アンモニア酸化槽内を自由に流動できる固定化材料に前記嫌気性アンモニア酸化細菌を付着固定又は包括固定させた流動型の微生物固定化材を用いて
前記一方の実装置の嫌気性アンモニア酸化槽に、前記微生物固定化材を馴養しておく工程と、
前記微生物固定化材が馴養された一方の実装置の嫌気性アンモニア酸化槽から一度に引き抜く微生物固定化材の引き抜き量が馴養した微生物固定化材全量の25%以下になるように引き抜いて前記他方の実装置の嫌気性アンモニア酸化槽に投入する工程と、
前記一方の実装置の嫌気性アンモニア酸化槽から微生物固定化材を引き抜いたら、前記一方の実装置の嫌気性アンモニア酸化細菌槽に、未馴養な新しい微生物固定化材を補充しておく工程と、を備え、
前記一方の実装置の嫌気性アンモニア酸化槽から引き抜いた馴養済みの微生物固定化材を液状化し、液状化した微生物固定化材に活性汚泥を混合し、この混合微生物とゲル化材料とを混合した混合物を重合することで包括固定化担体を形成し、この包括固定化担体を他方の実装置の嫌気性アンモニア酸化槽に投入することを特徴とする嫌気性アンモニア酸化槽の運転方法。
In anaerobic ammonia oxidation in which ammonia and nitrous acid in treatment water are simultaneously denitrified by anaerobic ammonia-oxidizing bacteria, from the anaerobic ammonia-oxidizing tank, which is one actual device that has been adapted to the anaerobic ammonia-oxidizing bacteria, An anaerobic ammonia oxidation tank that pulls out a part of the anaerobic ammonia oxidation bacteria and puts the extracted anaerobic ammonia oxidation bacteria into the anaerobic ammonia oxidation tank, which is the other actual equipment to be acclimatized. Driving method,
Using a fluid-type microorganism immobilization material in which the anaerobic ammonia-oxidizing bacteria are attached and fixed or included and fixed to an immobilization material that can freely flow in the anaerobic ammonia oxidation tank,
Acclimatizing the microorganism immobilization material in the anaerobic ammonia oxidation tank of the one real device;
The microbial immobilization material is pulled out from the anaerobic ammonia oxidation tank of one actual apparatus to which the microbial immobilization material has been conditioned, and the microbial immobilization material is withdrawn so that the amount of the microbial immobilization material is 25% or less of the total amount of the conditioned microbial immobilization material. The step of putting it in the anaerobic ammonia oxidation tank of the actual device of
When the microorganism-immobilized material is pulled out from the anaerobic ammonia oxidation tank of the one actual device, a step of replenishing an unfamiliar new microorganism-immobilized material to the anaerobic ammonia-oxidizing bacteria tank of the one actual device; With
The acclimatized microorganism immobilization material extracted from the anaerobic ammonia oxidation tank of the one actual apparatus was liquefied, activated sludge was mixed with the liquefied microorganism immobilization material, and the mixed microorganism and the gelled material were mixed. A method for operating an anaerobic ammonia oxidation tank, comprising forming a entrapping immobilization support by polymerizing a mixture, and introducing the entrapping immobilization support into an anaerobic ammonia oxidation tank of the other actual apparatus.
前記嫌気性アンモニア酸化槽には、微生物固定化材を引き抜くことを前提として、過剰量の微生物固定化材を馴養しておくことを特徴とする請求項3の嫌気性アンモニア酸化槽の運転方法。   4. The method of operating an anaerobic ammonia oxidation tank according to claim 3, wherein an excess amount of the microorganism immobilization material is acclimatized to the anaerobic ammonia oxidation tank on the premise that the microorganism immobilization material is pulled out. 前記一方の実装置の嫌気性アンモニア酸化槽からの微生物固定化材の引き抜きは、馴養済みの微生物固定化材の全量が1カ月以上かけて前記新しい微生物固定化材に入れ替わるように複数回に分けて引き抜くことを特徴とする請求項3又は4の嫌気性アンモニア酸化槽の運転方法。   The extraction of the microorganism-immobilizing material from the anaerobic ammonia oxidation tank of the one actual device is divided into a plurality of times so that the total amount of the acclimatized microorganism-immobilizing material is replaced with the new microorganism-immobilizing material over one month. The method of operating an anaerobic ammonia oxidation tank according to claim 3 or 4, wherein the anaerobic ammonia oxidation tank is pulled out.
JP2006298010A 2006-11-01 2006-11-01 Operating method of anaerobic ammonia oxidation tank Expired - Fee Related JP4632178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298010A JP4632178B2 (en) 2006-11-01 2006-11-01 Operating method of anaerobic ammonia oxidation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298010A JP4632178B2 (en) 2006-11-01 2006-11-01 Operating method of anaerobic ammonia oxidation tank

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004181540A Division JP3894329B2 (en) 2004-06-18 2004-06-18 Method of operating anaerobic ammonia oxidation tank and anaerobic ammonia oxidation apparatus

Publications (2)

Publication Number Publication Date
JP2007075817A JP2007075817A (en) 2007-03-29
JP4632178B2 true JP4632178B2 (en) 2011-02-16

Family

ID=37936632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298010A Expired - Fee Related JP4632178B2 (en) 2006-11-01 2006-11-01 Operating method of anaerobic ammonia oxidation tank

Country Status (1)

Country Link
JP (1) JP4632178B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849481B2 (en) * 2008-03-18 2012-01-11 中国電力株式会社 Microorganism immobilization support, DHS reactor, and biological nitrification denitrification apparatus
US8864993B2 (en) * 2012-04-04 2014-10-21 Veolia Water Solutions & Technologies Support Process for removing ammonium from a wastewater stream
JP6687842B2 (en) * 2016-03-31 2020-04-28 株式会社システック Iron bacterium carrier, method for producing the same, and method for adjusting pH of basic solution used therein
JP6821498B2 (en) * 2017-05-09 2021-01-27 水ing株式会社 How to set up a nitrogen-containing wastewater treatment system
CN110988308B (en) * 2019-12-30 2022-08-12 中国科学院城市环境研究所 Method for simultaneously determining different types of nitrification potentials in soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2003033799A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Processing method of organic matter containing nitrogen component
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2003033799A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Processing method of organic matter containing nitrogen component
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment

Also Published As

Publication number Publication date
JP2007075817A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP3894329B2 (en) Method of operating anaerobic ammonia oxidation tank and anaerobic ammonia oxidation apparatus
Syron et al. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements
US7897375B2 (en) Method and apparatus for collecting and acclimatizing anaerobic ammonium oxidizing bacteria, and denitrifying water
JP5098183B2 (en) Waste water treatment method and apparatus
JP4626884B2 (en) Culture method and apparatus for anaerobic ammonia oxidizing bacteria
JP4632178B2 (en) Operating method of anaerobic ammonia oxidation tank
Downing et al. Nitrogen Removal from Wastewater Using a Hybrid Membrane‐Biofilm Process: Pilot‐Scale Studies
TW201024231A (en) System and method for treating waste water containing ammonia
DE602006000517T2 (en) Method and apparatus for growing anaerobic ammonium oxidizing bacteria
JP7133339B2 (en) Nitrogen treatment method
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
Lei et al. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system
JP2006130397A (en) Waste water treatment system
JP4632025B2 (en) Method for producing entrapped immobilization microorganism carrier, entrapping immobilization microorganism carrier, and wastewater treatment apparatus
CN105110561B (en) A kind of method that high ammonia-nitrogen wastewater is handled under low dissolved oxygen condition
JP4655954B2 (en) Culture method and apparatus for anaerobic ammonia oxidizing bacteria
JP2005313152A (en) Anaerobic ammonia oxidation method an method and apparatus for treating waste water
Tao et al. Pilot-scale enrichment of anammox biofilm using secondary effluent as source water
Qiao et al. Comparative study of nitrification performances of immobilized cell fluidized bed reactor and contact oxidation biofilm reactor in treating high strength ammonia wastewater
Wang et al. Startup of Formatting Biological Membrane in Denitrifying Filter at Low Temperature
JP2005324131A (en) Method and apparatus for treating waste water
Tunc Performance of Nitrogen and Phosphorus Removal of Moving Bed Biofilm Reactor Operated as Sequencing Batch
Sparks et al. Digital Twins for Predicting Nitrifier Population and Kinetics
Wang et al. Comparison of A2/O and Membrane Bioreactor Processes for Municipal Wastewater Treatment: Nutrient Removal Performance and Sludge Characteristics
Zhu et al. Modelling nitrogen removal performance of membrane aerated biofilm reactor by AQUASIM software

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees