JP2005313152A - Anaerobic ammonia oxidation method an method and apparatus for treating waste water - Google Patents

Anaerobic ammonia oxidation method an method and apparatus for treating waste water Download PDF

Info

Publication number
JP2005313152A
JP2005313152A JP2005064439A JP2005064439A JP2005313152A JP 2005313152 A JP2005313152 A JP 2005313152A JP 2005064439 A JP2005064439 A JP 2005064439A JP 2005064439 A JP2005064439 A JP 2005064439A JP 2005313152 A JP2005313152 A JP 2005313152A
Authority
JP
Japan
Prior art keywords
ammonia
nitrous acid
tank
anaerobic ammonia
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005064439A
Other languages
Japanese (ja)
Other versions
JP4811702B2 (en
Inventor
Tatsuo Sumino
立夫 角野
Kazuichi Isaka
和一 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005064439A priority Critical patent/JP4811702B2/en
Publication of JP2005313152A publication Critical patent/JP2005313152A/en
Application granted granted Critical
Publication of JP4811702B2 publication Critical patent/JP4811702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the rate of denitrification in the simultaneous denitrification treatment of ammonia and nitrous acid with an anaerobic ammonia oxidation bacteria. <P>SOLUTION: In the method for treating waste water for treating ammoniacal waste water using a nitrous acid producing vessel 12 for producing nitrous acid from ammonia and an anaerobic ammonia oxidation vessel 14 for simultaneously denitrifying ammonia and nitrous acid with the anaerobic ammonia oxidation bacteria, the ammoniacal waste water is treated in the nitrous acid producing vessel 12 to form mixed water in which ammonia and nitrous acid are mixed and the mixed water is allowed to step-flow into a plurality of the downstream positions from the upstream position in the ammonia oxidation vessel 14 through a step flow-in pipe 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、嫌気性アンモニア酸化法及び廃水処理方法並びに装置に係り、特に嫌気性アンモニア酸化法における脱窒速度の改良に関する。   The present invention relates to an anaerobic ammonia oxidation method and a wastewater treatment method and apparatus, and more particularly to an improvement in the denitrification rate in the anaerobic ammonia oxidation method.

下水や産業廃水に含有する窒素成分は、湖沼の富栄養化の原因になること、河川の溶存酸素の低下原因になること等の理由から、窒素成分を除去する必要がある。下水や産業廃水に含有する窒素成分は、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素、有機性窒素が主たる窒素成分である。   Nitrogen components contained in sewage and industrial wastewater need to be removed for reasons such as causing eutrophication of lakes and marshes and reducing dissolved oxygen in rivers. Nitrogen components contained in sewage and industrial wastewater are mainly nitrogen components such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen.

従来、この種の廃水は、窒素濃度が低濃度であれば、イオン交換法での除去や塩素、オゾンによる酸化も用いられているが、中高濃度の場合には生物処理が採用されており、一般的には以下の条件で運転されている。   Conventionally, this type of wastewater, if the nitrogen concentration is low, is also removed by ion exchange method and oxidation by chlorine, ozone, but in the case of medium to high concentration, biological treatment is adopted, Generally, it is operated under the following conditions.

生物処理では好気硝化と嫌気脱窒による硝化・脱窒処理が行われており、好気硝化では、アンモニア酸化細菌(Nitrosomonas,Nitrosococcus,Nitrosospira,Nitrosolobusなど)と亜硝酸酸化細菌(Nitrobactor,Nitrospina,Nitrococcus,Nitrospira など)によるアンモニア性窒素や亜硝酸性窒素の酸化が行われる一方、嫌気脱窒では、従属栄養細菌(Pseudomonas denitrificans など)による脱窒が行われる。   Biological treatment involves aerobic nitrification and anaerobic denitrification, and in aerobic nitrification, ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospina, Nitrococcus, Nitrospira, etc.) oxidize ammonia nitrogen and nitrite nitrogen, while anaerobic denitrification involves denitrification by heterotrophic bacteria (Pseudomonas denitrificans, etc.).

また、好気硝化を行う硝化槽は負荷0.2〜0.3kg−N/m3 /日の範囲で運転され、嫌気脱窒の脱窒槽は負荷0.2〜0.4kg−N/m3 /日の範囲で運転される。下水の総窒素濃度30〜40mg/Lを処理するには、硝化槽で6〜8時間の滞留時間、脱窒糟で5〜8時間が必要であり、大規模な処理槽が必要であった。また無機質だけを含有する産業廃水では、硝化槽や脱窒槽は先と同様の負荷で設計されるが、脱窒に有機物が必要で、窒素濃度の3〜4倍濃度のメタノールを添加していた。このためイニシャルコストばかりでなく、多大なランニングコストを要するという問題もある。 A nitrification tank for performing aerobic nitrification is operated within a load range of 0.2 to 0.3 kg-N / m 3 / day, and an anaerobic denitrification denitrification tank is loaded with a load of 0.2 to 0.4 kg-N / m. It is operated in the range of 3 / day. In order to treat the total nitrogen concentration of sewage of 30 to 40 mg / L, a residence time of 6 to 8 hours was required in the nitrification tank and 5 to 8 hours were required in the denitrification tank, and a large-scale treatment tank was required. . In industrial wastewater containing only inorganic substances, nitrification tanks and denitrification tanks are designed with the same load as before, but organic substances are required for denitrification, and methanol with a concentration of 3 to 4 times the nitrogen concentration was added. . For this reason, there is a problem that not only the initial cost but also a great running cost is required.

これに対し、最近、嫌気性アンモニア酸化法を利用した廃水処理方法が注目されている(例えば特許文献1)。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により同時脱窒する方法である。   On the other hand, recently, a wastewater treatment method using an anaerobic ammonia oxidation method has attracted attention (for example, Patent Document 1). This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrous acid is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following reaction formula.

1.0 NH4 +1.32NO 2 +0.066HCO 3 +0.13H+ →1.02N 2 +0.26NO 3 +0.066CH2 O 0.5 N 0.15+2.03H2 O
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の廃水処理方法として有効な方法であると考えられている。
特開2001−37467号公報
1.0 NH 4 + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
According to this method, since ammonia is used as a hydrogen donor, there is a merit that the amount of methanol used for denitrification can be greatly reduced and the amount of sludge generated can be reduced. It is considered to be an effective method.
JP 2001-37467 A

ところで、嫌気性アンモニア酸化法を実際の廃水処理方法や装置として実現化するためには、脱窒速度を大きくして廃水処理の効率化を図らなくてはいけいないという大きな課題がある。しかしながら、この方法は未だ反応特性が十分に解明されておらず、脱窒速度を大きくすることが難しいという欠点がある。   By the way, in order to realize the anaerobic ammonia oxidation method as an actual wastewater treatment method and apparatus, there is a big problem that the efficiency of wastewater treatment must be increased by increasing the denitrification rate. However, this method has the disadvantage that the reaction characteristics have not been sufficiently elucidated and it is difficult to increase the denitrification rate.

本発明は、このような事情に鑑みてなされたもので、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒処理する際の脱窒速度を大きくすることができるので、嫌気性アンモニア酸化法を廃水処理に採用することを可能にすると共に、廃水処理の効率化を図ることができる嫌気性アンモニア酸化法及び廃水処理方法並びに装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to increase the denitrification rate when simultaneous denitrification treatment of ammonia and nitrous acid with anaerobic ammonia oxidizing bacteria. It is an object of the present invention to provide an anaerobic ammonia oxidation method, a wastewater treatment method and an apparatus capable of adopting the method for wastewater treatment and improving the efficiency of wastewater treatment.

本発明者は、嫌気性アンモニア酸化細菌の菌体濃度を把握し、且つ嫌気性アンモニア酸化細菌群の脱窒速度に及ぼす基質濃度特性を発見し、基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことにより脱窒速度を大きくでき、これにより嫌気性アンモニア酸化法を利用した廃水処理を実装置として実現化できるようにしたものである。即ち、嫌気性アンモニア酸化細菌群はアンモニア濃度に対してはMicheris・Menten型の反応特性を示し、アンモニア性窒素濃度が高いほど脱窒速度が大きくなる。一方、嫌気性アンモニア酸化細菌群は亜硝酸性窒素濃度に対してはHaldane 型の反応特性を示し、亜硝酸性窒素濃度が80mg/L以上で強い阻害を受け脱窒速度が急激に小さくなることが分かった。そして、この基質濃度特性を生かすように嫌気性アンモニア酸化法を行うには、アンモニアと亜硝酸とを脱窒処理する処理の流れにおいて、アンモニアに関しては上流側が高濃度で下流側が低濃度な濃度勾配が形成されるようにし、亜硝酸に関しては上流側から下流側にかけて均一な濃度になるようにすることが重要であるとの知見を得た。   The present inventor has ascertained the cell concentration of anaerobic ammonia oxidizing bacteria, discovered the substrate concentration characteristics that affect the denitrification rate of the anaerobic ammonia oxidizing bacteria group, and made use of the substrate concentration characteristics to anaerobic ammonia oxidation method In this way, it is possible to increase the denitrification rate, thereby realizing the waste water treatment using the anaerobic ammonia oxidation method as an actual apparatus. That is, the anaerobic ammonia-oxidizing bacteria group exhibits a Michelis / Menten type reaction characteristic with respect to the ammonia concentration, and the denitrification rate increases as the ammoniacal nitrogen concentration increases. On the other hand, the anaerobic ammonia-oxidizing bacteria group shows a Haldane-type reaction characteristic for nitrite nitrogen concentration, and the denitrification rate decreases rapidly due to strong inhibition when the nitrite nitrogen concentration is 80 mg / L or more. I understood. In order to perform the anaerobic ammonia oxidation method so as to make use of this substrate concentration characteristic, in the flow of treatment for denitrifying ammonia and nitrous acid, the concentration gradient of ammonia is high concentration on the upstream side and low concentration on the downstream side. As for nitrous acid, it was found that it is important to have a uniform concentration from the upstream side to the downstream side.

本発明はかかる知見に基づいて嫌気性アンモニア酸化法及び廃水処理方法並びに装置を具体的に構成したものである。   The present invention specifically constitutes an anaerobic ammonia oxidation method, a wastewater treatment method and an apparatus based on such knowledge.

本発明の請求項1の嫌気性アンモニア酸化法は前記目的を達成するために、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化法であって、前記同時脱窒する処理の流れにおいて、前記アンモニアに関しては上流側が高濃度で下流側が低濃度な濃度勾配が形成されるようにし、前記亜硝酸に関しては前記上流側から前記下流側にかけて均一な濃度になるようにすることを特徴とする。   The anaerobic ammonia oxidation method according to claim 1 of the present invention is an anaerobic ammonia oxidation method in which ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium in order to achieve the above object, In the processing flow, the ammonia has a high concentration on the upstream side and a low concentration gradient on the downstream side, and the nitrous acid has a uniform concentration from the upstream side to the downstream side. It is characterized by that.

これにより、アンモニアと亜硝酸の基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことができるので、脱窒速度を大きくすることができる。   Thereby, since the anaerobic ammonia oxidation method can be performed so as to make use of the substrate concentration characteristics of ammonia and nitrous acid, the denitrification rate can be increased.

本発明の請求項2は請求項1において、前記上流側から下流側にかけて亜硝酸の亜硝酸性窒素濃度を80mg/L以下にすることを特徴とする。これは、亜硝酸性窒素濃度が80mg/Lを越えると、嫌気性アンモニア酸化細菌の活性が阻害され、同時脱窒性能が急激に低下するためである。   A second aspect of the present invention is characterized in that, in the first aspect, a nitrite nitrogen concentration of nitrous acid is 80 mg / L or less from the upstream side to the downstream side. This is because when the nitrite nitrogen concentration exceeds 80 mg / L, the activity of the anaerobic ammonia oxidizing bacteria is inhibited, and the simultaneous denitrification performance is rapidly lowered.

本発明の請求項3は請求項1又は2において、前記下流側においてアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする。このように、混在水のアンモニアと亜硝酸のモル比を上述した反応式のモル比と同じにすれば、処理水中にアンモニアや亜硝酸の一方が多く残存するという問題を防止できるからである。   A third aspect of the present invention is characterized in that, in the first or second aspect, the molar ratio of ammonia and nitrous acid is 1.0: 1.32 on the downstream side. Thus, if the molar ratio of the mixed water ammonia and nitrous acid is the same as the molar ratio of the above-described reaction formula, it is possible to prevent a problem that one of ammonia and nitrous acid remains in the treated water.

本発明の請求項4は前記目的を達成するために、アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、前記アンモニア性廃水を前記亜硝酸生成槽で処理してアンモニアと亜硝酸とが混在する混在水を形成し、該混在水を前記嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させることを特徴とする。   According to a fourth aspect of the present invention, in order to achieve the above object, a nitrous acid production tank for producing nitrous acid from ammonia, an anaerobic ammonia oxidation tank for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, In the wastewater treatment method of treating ammonia wastewater using the above, the ammoniacal wastewater is treated in the nitrous acid production tank to form mixed water in which ammonia and nitrous acid are mixed, and the mixed water is treated with the anaerobic ammonia. It is characterized by step-inflowing from an upstream position in the oxidation tank to a plurality of downstream positions.

本発明において、ステップ流入とは、流入させる水を分配して流入させることを言い、後記するピストンフロー流入とは、流入させる水をいわゆる押し出しフローで流入させることを言う。また、アンモニアから亜硝酸を生成する方法は、どのような方法でもよいが、例えば、アンモニア酸化細菌により好気性条件下でアンモニアを亜硝酸に酸化する方法を好適に使用することができる。また、アンモニア性廃水とは、廃水中の窒素成分としてアンモニアが主体である廃水を言い、亜硝酸性処理水とは窒素成分として亜硝酸が主体である処理水をいう。以下同様である。   In the present invention, “step inflow” refers to distributing and flowing in water, and “piston flow inflow” described later refers to flowing in water in a so-called extrusion flow. Any method may be used for producing nitrous acid from ammonia. For example, a method of oxidizing ammonia to nitrous acid under an aerobic condition by ammonia oxidizing bacteria can be preferably used. Ammonia waste water means waste water mainly composed of ammonia as a nitrogen component in waste water, and nitrite treated water means treated water mainly composed of nitrous acid as a nitrogen component. The same applies hereinafter.

請求項4によれば、アンモニア性廃水は、亜硝酸生成槽においてアンモニアの一部が亜硝酸に酸化されてアンモニアと亜硝酸とが混在する混在水が形成される。次に、アンモニアと亜硝酸とが混在する混在水を、嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる。これにより、混在水中の亜硝酸は嫌気性アンモニア酸化槽内の各部分に分配され、嫌気性アンモニア酸化槽内における亜硝酸性窒素濃度の均一化が図られる。従って、全ての混在水を嫌気性アンモニア酸化槽の上流位置に流入させた場合のように、嫌気性アンモニア酸化槽内の上流位置の亜硝酸性窒素濃度だけが局部的に高くなることがない。これにより、亜硝酸の基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことができるので、脱窒速度を大きくすることができる。   According to the fourth aspect of the present invention, a part of the ammonia waste water is oxidized into nitrous acid in the nitrous acid production tank to form mixed water in which ammonia and nitrous acid are mixed. Next, mixed water in which ammonia and nitrous acid are mixed is stepped into a plurality of positions downstream from the upstream position in the anaerobic ammonia oxidation tank. Thereby, the nitrous acid in mixed water is distributed to each part in an anaerobic ammonia oxidation tank, and the concentration of nitrite nitrogen in the anaerobic ammonia oxidation tank is made uniform. Therefore, unlike the case where all the mixed water flows into the upstream position of the anaerobic ammonia oxidation tank, only the nitrite nitrogen concentration at the upstream position in the anaerobic ammonia oxidation tank does not increase locally. Thereby, since the anaerobic ammonia oxidation method can be performed so as to make use of the substrate concentration characteristics of nitrous acid, the denitrification rate can be increased.

本発明の請求項5は前記目的を達成するために、アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、前記嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成すると共に、前記アンモニア性廃水を前記亜硝酸生成槽で処理してアンモニアと亜硝酸とが混在する混在水を形成し、該混在水を前記複数段の槽にステップ流入させることを特徴とする。   According to a fifth aspect of the present invention, in order to achieve the above object, a nitrous acid production tank for producing nitrous acid from ammonia, an anaerobic ammonia oxidation tank for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, In the wastewater treatment method for treating ammonia wastewater using the above, the anaerobic ammonia oxidation tank is composed of a plurality of tanks arranged in series, and the ammonia wastewater is treated with the nitrous acid production tank to form ammonia. The mixed water in which nitrous acid and nitrous acid are mixed is formed, and the mixed water is stepped into the plurality of tanks.

請求項5は、嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成し、この複数段の槽に、亜硝酸生成槽からのアンモニアと亜硝酸とが混在する処理水をステップ流入させたものである。これにより、処理水中の亜硝酸は各槽に分配されるので、嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる場合よりも、亜硝酸性窒素濃度の均一化をより明確に図ることができる。従って、複数段の最初の槽に全ての混在水を流入させた場合のように、最初の槽の亜硝酸濃度だけが局部的に高くなることがない。これにより、亜硝酸の基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことができるので、脱窒速度を大きくすることができる。   Claim 5 comprises an anaerobic ammonia oxidation tank composed of a plurality of tanks arranged in series, and the treated water in which ammonia and nitrous acid are mixed from the nitrous acid generation tank is stepped into the plurality of tanks. It has been made. As a result, the nitrous acid in the treated water is distributed to each tank, so that the nitrous acid nitrogen concentration can be made more uniform than when the step flow into multiple positions downstream from the upstream position in the anaerobic ammonia oxidation tank. It can be done clearly. Therefore, unlike the case where all the mixed water flows into the first tank of a plurality of stages, only the nitrous acid concentration in the first tank does not increase locally. Thereby, since the anaerobic ammonia oxidation method can be performed so as to make use of the substrate concentration characteristics of nitrous acid, the denitrification rate can be increased.

請求項6は請求項4又は請求項5において、前記混在水の亜硝酸濃度を80mg/L以下にすることを特徴とする。これは、亜硝酸濃度が80mg/Lを越えると、嫌気性アンモニア酸化細菌の活性が阻害され、同時脱窒性能が急激に低下するためである。   A sixth aspect of the present invention is characterized in that the nitrous acid concentration of the mixed water is 80 mg / L or less in the fourth or fifth aspect. This is because when the nitrous acid concentration exceeds 80 mg / L, the activity of the anaerobic ammonia oxidizing bacteria is inhibited, and the simultaneous denitrification performance is rapidly lowered.

請求項7は請求項4〜6の何れか1において、前記混在水のアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする。このように、混在水のアンモニアと亜硝酸のモル比を上述した反応式のモル比と同じにすれば、処理水中にアンモニアや亜硝酸の一方が多く残存するという問題を防止できるからである。   A seventh aspect of the present invention is characterized in that, in any one of the fourth to sixth aspects, a molar ratio of the mixed water ammonia to nitrous acid is 1.0: 1.32. Thus, if the molar ratio of the mixed water ammonia and nitrous acid is the same as the molar ratio of the above-described reaction formula, it is possible to prevent a problem that one of ammonia and nitrous acid remains in the treated water.

本発明の請求項8は前記目的を達成するために、アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、前記アンモニア性廃水の一部を前記亜硝酸生成槽で処理して亜硝酸性処理水を形成し、該亜硝酸性処理水を前記嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる一方、前記アンモニア性廃水の残りを前記嫌気性アンモニア酸化槽にピストンフロー流入させることを特徴とする。   According to claim 8 of the present invention, in order to achieve the above object, a nitrous acid production tank for producing nitrous acid from ammonia, an anaerobic ammonia oxidation tank for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, In a wastewater treatment method for treating ammonia wastewater using a nitrite, a part of the ammoniacal wastewater is treated in the nitrite production tank to form a nitrite treated water, and the nitrite treated water is treated as the anaerobic While the step flow-in from the upstream position in the ammonia oxidation tank to a plurality of downstream positions, the remaining ammonia waste water is caused to flow into the anaerobic ammonia oxidation tank in a piston flow.

請求項4〜7は、亜硝酸の基質濃度特性を生かすように構成したものであるが、請求項8は亜硝酸の基質濃度特性とアンモニアの基質濃度特性の両方を生かすように構成したものである。即ち、アンモニア性廃水の一部は、亜硝酸生成槽において処理されてアンモニアの全てが亜硝酸に酸化され、これにより亜硝酸性処理水が形成される。尚、アンモニアの全てが亜硝酸に酸化されるとは、100%完全に酸化することを意味するものではなく、酸化されずに微量に残存するアンモニアがある場合も含む。以下同様である。そして、この亜硝酸性処理水を嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる。このステップ流入により、亜硝酸性処理水中の亜硝酸はアンモニア酸化槽内の各部分に分配され、嫌気性アンモニア酸化槽内における亜硝酸性窒素濃度の均一化が図られるので、嫌気性アンモニア酸化槽において亜硝酸性窒素濃度が局部的に高くなることがない。一方、アンモニア廃水の残りは、嫌気性アンモニア酸化槽にピストンフロー流入させる。このピストンフロー流入により、嫌気性アンモニア酸化槽内には上流位置のアンモニア濃度が高く、下流位置のアンモニア濃度が低い濃度勾配が形成される。これにより、同時脱窒する処理の流れにおいて、アンモニアに関しては上流側が高濃度で下流側が低濃度な濃度勾配が形成され、亜硝酸に関しては上流側から下流側にかけて均一な濃度になるようにすることができ、アンモニアと亜硝酸の基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことができるので、脱窒速度を大きくすることができる。   Claims 4 to 7 are configured to take advantage of the substrate concentration characteristics of nitrous acid, while claim 8 is configured to take advantage of both the substrate concentration characteristics of nitrous acid and the substrate concentration characteristics of ammonia. is there. That is, a part of the ammonia waste water is treated in the nitrite production tank, and all of the ammonia is oxidized to nitrous acid, thereby forming nitrite treated water. Note that the fact that all ammonia is oxidized to nitrous acid does not mean that 100% is completely oxidized, but includes the case where ammonia remains in a trace amount without being oxidized. The same applies hereinafter. Then, this nitrite-treated water is stepped into a plurality of downstream positions from the upstream position in the anaerobic ammonia oxidation tank. This step inflow distributes the nitrous acid in the nitrite-treated water to each part in the ammonia oxidation tank, and the nitrous acid nitrogen concentration in the anaerobic ammonia oxidation tank is made uniform, so the anaerobic ammonia oxidation tank In nitrous acid nitrogen concentration does not increase locally. On the other hand, the remaining ammonia wastewater is caused to flow into the anaerobic ammonia oxidation tank through a piston flow. Due to this piston flow inflow, a concentration gradient is formed in the anaerobic ammonia oxidation tank in which the ammonia concentration at the upstream position is high and the ammonia concentration at the downstream position is low. As a result, in the process flow for simultaneous denitrification, a concentration gradient is formed with a high concentration on the upstream side and a low concentration on the downstream side for ammonia, and a uniform concentration for nitrous acid from the upstream side to the downstream side. Since the anaerobic ammonia oxidation method can be performed so as to make use of the substrate concentration characteristics of ammonia and nitrous acid, the denitrification rate can be increased.

本発明の請求項9は前記目的を達成するために、アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、前記嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成すると共に、前記アンモニア性廃水の一部を前記亜硝酸生成槽で処理して亜硝酸性処理水を形成し、該亜硝酸性処理水を前記複数段の槽にステップ流入させる一方、前記アンモニア性廃水の残りを前記複数段の槽にピストンフロー流入させることを特徴とする。   According to a ninth aspect of the present invention, in order to achieve the above object, a nitrous acid production tank for producing nitrous acid from ammonia, an anaerobic ammonia oxidation tank for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, In the wastewater treatment method for treating ammonia wastewater using a slag, the anaerobic ammonia oxidation tank is composed of a plurality of tanks arranged in series, and a part of the ammoniacal wastewater is treated in the nitrous acid production tank Forming nitrite-treated water and step-flowing the nitrite-treated water into the plurality of tanks, while allowing the remaining ammoniacal waste water to flow into the plurality of tanks in a piston flow. To do.

請求項9は、嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成し、この複数段の槽に亜硝酸性処理水をステップ流入させると共に、アンモニア性廃水を複数段の槽にピストンフローで流入させるようにしたものである。これにより、処理水中の亜硝酸は各槽に分配されるので、嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる場合よりも、亜硝酸性窒素濃度の均一化をより明確に図ることができる。また、ピストンフロー流入により、複数段の前段の槽のアンモニア濃度が高く、後段の槽のアンモニア濃度が低い濃度勾配が形成される。これにより、同時脱窒する処理の流れにおいて、アンモニアに関しては上流側の槽内が高濃度で下流側の槽内が低濃度な濃度勾配が形成され、亜硝酸に関しては上流側の槽から下流側の槽にかけて均一な濃度になるようにすることができ、アンモニアと亜硝酸の基質濃度特性を生かすように嫌気性アンモニア酸化法を行うことができるので、脱窒速度を大きくすることができる。   The ninth aspect comprises an anaerobic ammonia oxidation tank composed of a plurality of stages of tanks arranged in series, and nitrite-treated water is stepped into the plurality of stages of tanks, and ammonia waste water is introduced into the plurality of stages of tanks. It is made to flow in by piston flow. As a result, the nitrous acid in the treated water is distributed to each tank, so that the nitrous acid nitrogen concentration can be made more uniform than when the step flow into multiple positions downstream from the upstream position in the anaerobic ammonia oxidation tank. It can be done clearly. Further, due to the piston flow inflow, a concentration gradient is formed in which the ammonia concentration in the plurality of upstream tanks is high and the ammonia concentration in the downstream tank is low. As a result, in the treatment flow for simultaneous denitrification, a concentration gradient is formed with a high concentration in the upstream tank and a low concentration in the downstream tank with respect to ammonia, and with respect to nitrous acid, from the upstream tank to the downstream side. It is possible to achieve a uniform concentration over the tank, and the anaerobic ammonia oxidation method can be performed so as to take advantage of the substrate concentration characteristics of ammonia and nitrous acid, so that the denitrification rate can be increased.

請求項10は請求項8又は9において、前記亜硝酸性処理水の亜硝酸濃度を80mg/L以下にすることを特徴とする。これは、亜硝酸濃度が80mg/Lを越えると、嫌気性アンモニア酸化細菌の活性が阻害され、同時脱窒性能が急激に低下するためである。   A tenth aspect of the present invention is characterized in that the nitrous acid concentration in the nitrite-treated water is 80 mg / L or less in the eighth or ninth aspect. This is because when the nitrous acid concentration exceeds 80 mg / L, the activity of the anaerobic ammonia oxidizing bacteria is inhibited, and the simultaneous denitrification performance is rapidly lowered.

請求項11は請求項8〜10の何れか1において、前記嫌気性アンモニア酸化槽の下流位置におけるアンモニア濃度と亜硝酸濃度のモル比、又は前記複数段の最後の槽におけるアンモニア濃度と亜硝酸濃度のモル比が1.0:1.32になるようにすることを特徴とする。このように、処理の流れの嫌気性アンモニア酸化槽内における下流側又は最後の槽内において嫌気性アンモニア酸化法によるアンモニアと亜硝酸のモル比を上述した反応式のモル比と同じにすれば、処理水中にアンモニアや亜硝酸の一方が多く残存するという問題を防止できるからである。   An eleventh aspect according to any one of the eighth to tenth aspects, wherein the molar ratio of the ammonia concentration and the nitrous acid concentration at the downstream position of the anaerobic ammonia oxidation tank, or the ammonia concentration and the nitrous acid concentration in the last tank of the plurality of stages. The molar ratio is 1.0: 1.32. Thus, if the molar ratio of ammonia and nitrous acid by the anaerobic ammonia oxidation method in the downstream side or the last tank in the anaerobic ammonia oxidation tank of the treatment flow is the same as the molar ratio of the above reaction formula, This is because the problem that a large amount of either ammonia or nitrous acid remains in the treated water can be prevented.

本発明の請求項12は前記目的を達成するために、アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、前記亜硝酸生成槽と前記嫌気性アンモニア酸化槽の少なくとも一方を多段に構成して、前記アンモニア性廃水を多段処理することを特徴とする。   According to a twelfth aspect of the present invention, in order to achieve the above object, a nitrous acid production tank for producing nitrous acid from ammonia, an anaerobic ammonia oxidation tank for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, In the wastewater treatment method for treating ammonia wastewater using the above, at least one of the nitrous acid production tank and the anaerobic ammonia oxidation tank is constituted in multiple stages, and the ammonia wastewater is treated in multiple stages.

請求項12は、亜硝酸生成槽と嫌気性アンモニア酸化槽の少なくとも一方を多段に構成することで、同時脱窒の処理の流れにおいて、アンモニアに関しては多段の前段から後段にかけて高濃度から低濃度になるように濃度勾配を形成し、亜硝酸に関しては多段の各槽での亜硝酸性窒素濃度の均一化を図るようにしたものである。   According to claim 12, by configuring at least one of the nitrous acid production tank and the anaerobic ammonia oxidation tank in multiple stages, in the flow of simultaneous denitrification, ammonia is changed from a high concentration to a low concentration from the front stage to the rear stage. A concentration gradient is formed so that the concentration of nitrous acid nitrogen is made uniform in each of the multistage tanks.

請求項13は請求項12において、前記亜硝酸生成槽と前記嫌気性アンモニア酸化槽とが交互に配置されることを特徴とする。   A thirteenth aspect is the one according to the twelfth aspect, wherein the nitrous acid generation tanks and the anaerobic ammonia oxidation tanks are alternately arranged.

請求項13は、亜硝酸生成槽と嫌気性アンモニア酸化槽との多段構成する好ましい態様例を示したものである。   The thirteenth aspect shows a preferable embodiment in which the nitrous acid production tank and the anaerobic ammonia oxidation tank are configured in multiple stages.

請求項14は請求項12又は13において、前記多段処理における各嫌気性アンモニア酸化槽内の亜硝酸濃度を80mg/L以下にすることを特徴とする。これは、亜硝酸濃度が80mg/Lを越えると、嫌気性アンモニア酸化細菌の活性が阻害され、同時脱窒性能が急激に低下するためである。   A fourteenth aspect is characterized in that, in the twelfth or thirteenth aspect, the concentration of nitrous acid in each anaerobic ammonia oxidation tank in the multi-stage treatment is 80 mg / L or less. This is because when the nitrous acid concentration exceeds 80 mg / L, the activity of the anaerobic ammonia oxidizing bacteria is inhibited, and the simultaneous denitrification performance is rapidly lowered.

請求項15は請求項12〜14の何れか1において、前記多段処理における最後の嫌気性アンモニア酸化槽内におけるアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする。このように、処理の流れの嫌気性アンモニア酸化槽内における最後の嫌気性アンモニア酸化槽内において嫌気性アンモニア酸化法によるアンモニアと亜硝酸のモル比を上述した反応式のモル比と同じにすれば、処理水中にアンモニアや亜硝酸の一方が多く残存するという問題を防止できるからである。   A fifteenth aspect of the present invention is the method according to any one of the twelfth to fourteenth aspects, wherein the molar ratio of ammonia and nitrous acid in the last anaerobic ammonia oxidation tank in the multistage treatment is 1.0: 1.32. Features. Thus, if the molar ratio of ammonia and nitrous acid by the anaerobic ammonia oxidation method in the last anaerobic ammonia oxidation tank in the anaerobic ammonia oxidation tank of the treatment flow is the same as the molar ratio of the above reaction formula This is because the problem that a large amount of either ammonia or nitrous acid remains in the treated water can be prevented.

本発明の請求項16の廃水処理装置は請求項4〜15の何れか1の廃水処理方法を用いて行うことを特徴とする。本発明の廃水処理方法を適用するための装置構成とすることにより、脱窒速度を大きくすることができる。   A wastewater treatment apparatus according to a sixteenth aspect of the present invention is characterized by being performed using the wastewater treatment method according to any one of the fourth to fifteenth aspects. By adopting an apparatus configuration for applying the wastewater treatment method of the present invention, the denitrification rate can be increased.

以上説明したように本発明の嫌気性アンモニア酸化法及び廃水処理方法並びに装置によれば、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する際の脱窒速度を大きくすることができるので、嫌気性アンモニア酸化法を廃水処理に採用することを可能にすると共に、廃水処理の効率化を図ることができる。   As described above, according to the anaerobic ammonia oxidation method and wastewater treatment method and apparatus of the present invention, it is possible to increase the denitrification rate when ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria. Therefore, the anaerobic ammonia oxidation method can be adopted for wastewater treatment, and the efficiency of wastewater treatment can be improved.

以下添付図面に従って本発明に係る嫌気性アンモニア酸化法及び廃水処理方法並びに装置における好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of an anaerobic ammonia oxidation method and a wastewater treatment method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

本発明を説明する前に、先ず嫌気性アンモニア酸化細菌の脱窒速度に及ぼすアンモニア性窒素濃度と亜硝酸性窒素濃度に関する基質濃度特性について説明する。   Before explaining the present invention, first, substrate concentration characteristics relating to ammonia nitrogen concentration and nitrite nitrogen concentration affecting the denitrification rate of anaerobic ammonia oxidizing bacteria will be explained.

これまで嫌気性アンモニア酸化細菌の脱窒速度を解明できていない原因として、嫌気性アンモニア酸化細菌の計測方法がなく菌数を把握できないことが大きな要因である。そこで、本発明では以下に示す嫌気性アンモニア酸化細菌の計測手法を新たに開発し、嫌気性アンモニア酸化細菌数の計測を可能とした。そして、集積した嫌気性アンモニア酸化細菌群の脱窒速度に及ぼすアンモニア性窒素濃度及び亜硝酸性窒素濃度に関する基質濃度特性を明確にし、この基質濃度特性にあった方法及び装置で嫌気性アンモニア酸化法及び廃水処理を行うことにより、脱窒速度の高速化を可能とし、廃水処理の効率化を図ることができるようにした。   The main reason why the denitrification rate of anaerobic ammonia-oxidizing bacteria has not been elucidated so far is that there is no measurement method for anaerobic ammonia-oxidizing bacteria and the number of bacteria cannot be determined. Therefore, in the present invention, the following method for measuring anaerobic ammonia-oxidizing bacteria has been newly developed to enable measurement of the number of anaerobic ammonia-oxidizing bacteria. Then, the substrate concentration characteristics regarding ammonia nitrogen concentration and nitrite nitrogen concentration affecting the denitrification rate of the accumulated anaerobic ammonia oxidizing bacteria group were clarified, and the anaerobic ammonia oxidation method was performed with a method and apparatus suitable for the substrate concentration characteristics. In addition, by performing wastewater treatment, the denitrification rate can be increased and the efficiency of wastewater treatment can be improved.

(嫌気性アンモニア酸化菌数計測方法)
表1は、嫌気性アンモニア酸化細菌の計測のために開発した培地である。
(Anaerobic ammonia-oxidizing bacteria count method)
Table 1 shows the media developed for the measurement of anaerobic ammonia oxidizing bacteria.

Figure 2005313152
Figure 2005313152

(注)この培地は10%ブロモチモルブルー液を数滴添加して使用。 (Note) This medium is used with a few drops of 10% bromothymol blue solution.

表1の無機培地を試験管50mLずつ分注し、ダーラム管に入れオートクレーブにより121°Cで滅菌した。この培地に、最確値法(鈴木達彦編「土壌微生物実験法」養賢堂、P21−41(1978))に準じて菌数測定サンプルを希釈接種した。この培養において、接種は嫌気グローボックスで行い、嫌気条件下、37°Cで3ケ月培養した。培養後、ダーラム管にガスが溜まり且つ培地の色が緑から青に変化した試験管について、嫌気性アンモニア酸化細菌が陽性と判断した。この色の変化は窒素ガスが発生し且つアルカリ性に変化したことを意味する。陽性、陰性の判定の後、最確値法に準じて嫌気性アンモニア酸化細菌数を換算した。また、嫌気性アンモニア酸化細菌を包括固定化した包括担体での菌数測定は、包括担体をホモジナイズし、懸濁液を先と同様の培地を用い、最確値法で嫌気性アンモニア酸化細菌数を換算した。   The inorganic medium shown in Table 1 was dispensed in 50 mL test tubes, placed in a Durham tube, and sterilized at 121 ° C. by an autoclave. This medium was diluted and inoculated with a sample for measuring the number of bacteria according to the most probable method (Tatsuhiko Suzuki, “Soil Microbial Experiment Method”, Yokendo, P21-41 (1978)). In this culture, inoculation was performed in an anaerobic glow box, and cultured at 37 ° C for 3 months under anaerobic conditions. After the culture, anaerobic ammonia-oxidizing bacteria were judged to be positive in the test tube in which gas was accumulated in the Durham tube and the medium color changed from green to blue. This color change means that nitrogen gas was generated and changed to alkaline. After positive / negative determination, the number of anaerobic ammonia-oxidizing bacteria was converted according to the most probable value method. In addition, the number of bacteria in the inclusion carrier in which the anaerobic ammonia-oxidizing bacteria are entrapped and immobilized is obtained by homogenizing the inclusion carrier and using the same medium as in the previous suspension to determine the number of anaerobic ammonia-oxidizing bacteria using the most probable method. Converted.

一例として次式に、包括担体中の嫌気性アンモニア酸化細菌数の換算方法を示す。   As an example, the following formula shows how to convert the number of anaerobic ammonia-oxidizing bacteria in the entrapping carrier.

(数1)Xp=Xo×(Vp+Vw)/Vp
ここで、Xp:担体内部の嫌気性アンモニア酸化細菌数(個/mL)
Xo:培地に接種した原液の嫌気性アンモニア酸化細菌数(個/mL)
Vp:原液の作製に供試した担体量(mL)
Vw:原液の作製に加えた殺菌水液量(mL)である。
(Expression 1) Xp = Xo × (Vp + Vw) / Vp
Where Xp: number of anaerobic ammonia oxidizing bacteria inside the carrier (units / mL)
Xo: Anaerobic ammonia-oxidizing bacteria count in stock solution inoculated to medium (cells / mL)
Vp: Amount of carrier used for preparation of stock solution (mL)
Vw: The amount (mL) of sterilized water added to the preparation of the stock solution.

処理に用いたアンモニア性廃水は、アンモニア性窒素濃度が500〜1000mg/L、亜硝酸性窒素濃度が100〜800mg/Lを含む無機合成廃水を使用した。また、下水処理場の活性汚泥から馴養した嫌気性アンモニア酸化細菌集積汚泥(アンモニアと亜硝酸を含有する無機廃水を3kg−N/m3 /日で馴養した汚泥)を実験に供試した。この嫌気性アンモニア酸化細菌集積汚泥には、嫌気性アンモニア酸化細菌数が6×108 個/mL含有していた。 As the ammoniacal wastewater used for the treatment, an inorganic synthetic wastewater containing an ammoniacal nitrogen concentration of 500 to 1000 mg / L and a nitrite nitrogen concentration of 100 to 800 mg / L was used. In addition, anaerobic ammonia-oxidizing bacteria accumulation sludge acclimatized from activated sludge in a sewage treatment plant (sludge acclimatized with 3 kg-N / m 3 / day of inorganic wastewater containing ammonia and nitrous acid) was used in the experiment. This anaerobic ammonia oxidizing bacteria accumulation sludge contained anaerobic ammonia oxidizing bacteria count of 6 × 10 8 / mL.

集積した嫌気性アンモニア酸化菌数群の脱窒速度に及ぼすアンモニア性窒素濃度及び亜硝酸性窒素濃度に関する基質濃度特性は、負荷とアンモニア性窒素/亜硝酸性窒素の比を順次変えることにより、嫌気性アンモニア酸化槽内の亜硝酸性窒素濃度又はアンモニア性窒素濃度を変化させ、その時の脱窒速度を測定することにより調べた。   The substrate concentration characteristics of ammonia nitrogen concentration and nitrite nitrogen concentration on the denitrification rate of several groups of accumulated anaerobic ammonia-oxidizing bacteria can be determined by changing the load and the ratio of ammonia nitrogen / nitrite nitrogen sequentially. It investigated by changing the nitrite nitrogen concentration or ammonia nitrogen concentration in a basic ammonia oxidation tank, and measuring the denitrification rate at that time.

図1は、嫌気性アンモニア酸化細菌群の脱窒速度に及ぼすアンモニア性窒素濃度の影響を回分処理の初速度で測定した結果である。亜硝酸性窒素濃度は50mg/Lに固定し、アンモニア性窒素濃度をそれぞれ変えて回分試験を行った。その結果、図1に示すとおり、脱室速度に及ぼすアンモニア性窒素濃度の影響はMicheris・Menten型になった。回分試験では、アンモニア性窒素濃度300mg/Lまでしか行わなかったが、300mg/L以降は脱窒速度が略同じ値で推移するものと考察される。即ち、アンモニア性窒素濃度が高ければ高いほど嫌気性アンモニア酸化細菌が活性化して脱窒速度が大きくなることが分かる。従って、嫌気性アンモニア酸化法における脱窒速度を大きくするには、次に示す反応式におけるアンモニアと亜硝酸のモル比である1.0:1.32よりもアンモニアのモル比が高くなるように反応させ、且つ嫌気性アンモニア酸化槽からの処理水にはアンモニア性窒素が残存しないようすることが重要になる。   FIG. 1 shows the results of measuring the influence of ammonia nitrogen concentration on the denitrification rate of anaerobic ammonia-oxidizing bacteria group at the initial rate of batch treatment. The nitrite nitrogen concentration was fixed at 50 mg / L, and the batch test was performed while changing the ammoniacal nitrogen concentration. As a result, as shown in FIG. 1, the influence of the ammoniacal nitrogen concentration on the chamber removal rate became the Michelis-Menten type. In the batch test, the ammonia nitrogen concentration was only up to 300 mg / L, but it is considered that the denitrification rate is maintained at substantially the same value after 300 mg / L. That is, it can be seen that the higher the ammonia nitrogen concentration, the more anaerobic ammonia oxidizing bacteria are activated and the greater the denitrification rate. Therefore, in order to increase the denitrification rate in the anaerobic ammonia oxidation method, the molar ratio of ammonia should be higher than 1.0: 1.32 which is the molar ratio of ammonia and nitrous acid in the following reaction formula. It is important to react and prevent ammonia nitrogen from remaining in the treated water from the anaerobic ammonia oxidation tank.

1.0 NH4 +1.32NO 2 +0.066HCO 3 +0.13H+ →1.02N 2 +0.26NO 3 +0.066CH2 O 0.5 N 0.15+2.03H2 O
図2は、嫌気性アンモニア酸化細菌群の脱窒速度に及ぼす亜硝酸性窒素濃度の影響を回分処理の初速度で測定した結果である。アンモニア性窒素濃度は200mg/Lに固定し、亜硝酸性窒素濃度をそれぞれ変えて回分試験を行った。その結果、図2に示すとおり、脱室速度に及ぼす亜硝酸性窒素濃度の影響はHaldane型になった。即ち、亜硝酸性窒素濃度を略ゼロな状態から次第に高くしていくと、脱窒速度は急激に大きくなり、亜硝酸性窒素濃度が50mg/L付近で脱窒速度がピークになる。しかし、その後は脱窒速度が急激に小さくなり、亜硝酸性窒素濃度が80mg/Lを越えると亜硝酸性窒素濃度が略ゼロのときよりも小さくなる。このことは、嫌気性アンモニア酸化細菌は、アンモニアとの反応のために亜硝酸は必要であるが、亜硝酸性窒素濃度が80mg/Lを越えると逆に強い阻害を受け活性が下がることが分かる。従って、嫌気性アンモニア酸化法における脱窒速度を大きくするには、亜硝酸性窒素濃度が80mg/L以下に、好ましくは30mg/L〜60mg/Lの範囲に維持することが必要である。この為には、嫌気性アンモニア酸化槽内に亜硝酸性窒素濃度の高濃度な部分が局部的にも発生しないように嫌気性アンモニア酸化槽内に亜硝酸を分散して均一化することが重要になる。
1.0 NH 4 + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
FIG. 2 shows the results of measuring the effect of nitrite nitrogen concentration on the denitrification rate of anaerobic ammonia-oxidizing bacteria at the initial rate of batch treatment. Ammonia nitrogen concentration was fixed at 200 mg / L, and batch tests were carried out with different nitrite nitrogen concentrations. As a result, as shown in FIG. 2, the influence of the nitrite nitrogen concentration on the chamber removal rate became the Haldane type. That is, as the nitrite nitrogen concentration is gradually increased from a substantially zero state, the denitrification rate increases rapidly, and the denitrification rate peaks when the nitrite nitrogen concentration is around 50 mg / L. However, after that, the denitrification rate decreases rapidly, and when the nitrite nitrogen concentration exceeds 80 mg / L, it becomes smaller than when the nitrite nitrogen concentration is substantially zero. This indicates that anaerobic ammonia oxidizing bacteria require nitrite for reaction with ammonia, but when the concentration of nitrite nitrogen exceeds 80 mg / L, the activity is reduced due to strong inhibition. . Therefore, in order to increase the denitrification rate in the anaerobic ammonia oxidation method, it is necessary to maintain the nitrite nitrogen concentration at 80 mg / L or less, preferably within the range of 30 mg / L to 60 mg / L. For this purpose, it is important to disperse and homogenize nitrous acid in the anaerobic ammonia oxidation tank so that high concentration parts of nitrite nitrogen concentration do not occur locally in the anaerobic ammonia oxidation tank. become.

図1及び図2の結果から、嫌気性アンモニア酸化細菌に対する基質濃度特性を生かすように嫌気性アンモニア酸化法を行うには、同時脱窒の処理の流れにおいて、アンモニアに関しては上流側が高濃度で下流側が低濃度な濃度勾配が形成されるようにし、亜硝酸に関しては上流側から下流側にかけて均一な濃度で且つ80mg/L以下になるようにすることが重要である。これを方法及び装置として具体的に構成するには、アンモニアに関してはピストンフローで嫌気性アンモニア酸化槽に流入させることで達成でき、亜硝酸に関してはステップ流入で嫌気性アンモニア酸化槽に流入させることで達成できる。   From the results of FIG. 1 and FIG. 2, in order to perform the anaerobic ammonia oxidation method so as to make use of the substrate concentration characteristics for the anaerobic ammonia oxidizing bacteria, in the flow of simultaneous denitrification, the upstream side has a high concentration on the downstream side. It is important that a concentration gradient with a low concentration is formed on the side, and that nitrous acid has a uniform concentration from the upstream side to the downstream side and is 80 mg / L or less. In order to specifically configure this as a method and apparatus, ammonia can be achieved by flowing it into the anaerobic ammonia oxidation tank with a piston flow, and nitrous acid can be flowed into the anaerobic ammonia oxidation tank with a step flow. Can be achieved.

次に、図3〜図12に従って、本発明の嫌気性アンモニア酸化法に準拠した本発明の廃水処理装置の各種の態様を説明する。   Next, according to FIGS. 3-12, the various aspects of the waste water treatment apparatus of this invention based on the anaerobic ammonia oxidation method of this invention are demonstrated.

図3の廃水処理装置10は、亜硝酸生成槽12→嫌気性アンモニア酸化槽14→再曝気槽16→固液分離槽18の順に配置したものである。図3に示すように、原水導入管20から亜硝酸生成槽12に流入したアンモニア性廃水は、亜硝酸生成槽12内のアンモニア酸化細菌によりアンモニア性窒素濃度の約半分に相当するアンモニアが亜硝酸に酸化される。アンモニアから亜硝酸への変換率の調整は、例えば硝化率を制御することで行うことができ、以下同様である。これにより、上述した反応式におけるアンモニアと亜硝酸のモル比が1.0:1.32の混在水を形成する。   The wastewater treatment apparatus 10 in FIG. 3 is arranged in the order of a nitrous acid production tank 12 → an anaerobic ammonia oxidation tank 14 → a re-aeration tank 16 → a solid-liquid separation tank 18. As shown in FIG. 3, ammonia wastewater flowing into the nitrous acid production tank 12 from the raw water introduction pipe 20 has ammonia equivalent to about half of the ammoniacal nitrogen concentration by ammonia oxidizing bacteria in the nitrous acid production tank 12. It is oxidized to. Adjustment of the conversion rate from ammonia to nitrous acid can be performed, for example, by controlling the nitrification rate, and so on. Thereby, mixed water with a molar ratio of ammonia and nitrous acid in the above reaction formula of 1.0: 1.32 is formed.

亜硝酸生成槽12から嫌気性アンモニア酸化槽14に混在水を流入させるステップ流入本管22は3本の枝管22A,22B,22Cに分岐され、それぞれの枝管22A,22B,22Cは嫌気性アンモニア酸化槽14内の上流位置、中段位置、下流位置に延設される。これにより、混在水は、嫌気性アンモニア酸化槽14内の上流位置から下流位置の複数位置にステップ流入し、混在水中のアンモニアと亜硝酸が嫌気性アンモニア酸化細菌により同時脱窒される。このように、混在水を嫌気性アンモニア酸化槽14にステップ流入させることにより、混在水中の亜硝酸は嫌気性アンモニア酸化槽14内の各部分に略等量に分配され、嫌気性アンモニア酸化槽内における亜硝酸性窒素濃度の均一化が図られる。この亜硝酸の均一化により槽14内、特に上流位置における亜硝酸性窒素濃度が局部的に高くならないので、脱窒速度を大きくすることができると共に、安定した脱窒を行うことができる。尚、図3では、3本の枝管22A,22B,22Cにしたが、2本でもよく或いは3本以上でもよい。また、混在水の亜硝酸性窒素濃度を80mg/L以下にすることが好ましい。更には、嫌気性アンモニア酸化槽14内に例えば不織布のような充填材24を浸漬させて、嫌気性アンモニア酸化細菌が充填材に付着されることで嫌気性アンモニア酸化細菌濃度を高めることが好ましい。そして、嫌気性アンモニア酸化槽14からの処理水は、再曝気槽16を経て固液分離槽18で固液分離され、最終処理水として排出される。   The step inflow main pipe 22 for flowing mixed water from the nitrous acid production tank 12 into the anaerobic ammonia oxidation tank 14 is branched into three branch pipes 22A, 22B, 22C, and the respective branch pipes 22A, 22B, 22C are anaerobic. It extends to the upstream position, the middle position, and the downstream position in the ammonia oxidation tank 14. Thereby, the mixed water is stepped from the upstream position in the anaerobic ammonia oxidation tank 14 to a plurality of downstream positions, and ammonia and nitrous acid in the mixed water are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria. In this way, by allowing the mixed water to flow into the anaerobic ammonia oxidation tank 14 in a stepwise manner, the nitrous acid in the mixed water is distributed to each part in the anaerobic ammonia oxidation tank 14 in an approximately equal amount, and the inside of the anaerobic ammonia oxidation tank 14 The nitrite nitrogen concentration in can be made uniform. The homogenization of nitrous acid does not locally increase the concentration of nitrite nitrogen in the tank 14, particularly at the upstream position, so that the denitrification rate can be increased and stable denitrification can be performed. In FIG. 3, the three branch pipes 22A, 22B, and 22C are used, but the number may be two or three or more. Moreover, it is preferable that the nitrite nitrogen density | concentration of mixed water shall be 80 mg / L or less. Further, it is preferable to increase the concentration of the anaerobic ammonia oxidizing bacteria by immersing a filler 24 such as a nonwoven fabric in the anaerobic ammonia oxidizing tank 14 so that the anaerobic ammonia oxidizing bacteria adhere to the filler. Then, the treated water from the anaerobic ammonia oxidation tank 14 is separated from the solid-liquid separation tank 18 through the re-aeration tank 16 and discharged as final treated water.

図4の廃水処理装置10は、分配器26→亜硝酸生成槽12及び嫌気性アンモニア酸化槽14への分配→再曝気槽16→固液分離槽18の順に配置したものである。尚、図3と同じ部材には同符号を付して説明すると共に、同じ説明は省略する。   4 is arranged in the order of distributor 26 → distribution to nitrous acid production tank 12 and anaerobic ammonia oxidation tank 14 → re-aeration tank 16 → solid-liquid separation tank 18. The same members as those in FIG. 3 are denoted by the same reference numerals, and the same descriptions are omitted.

原水導入管20を流れるアンモニア性廃水は分配器26で分配され、アンモニア性廃水の一部は亜硝酸生成槽12に流入する。亜硝酸生成槽12に流入したアンモニア性廃水中のアンモニアは全て亜硝酸に酸化され、亜硝酸性処理水が形成される。そして、亜硝酸性処理水が嫌気性アンモニア酸化槽14内の上流位置から下流位置の複数位置にステップ流入する一方、分配器26で分配されたアンモニア性廃水の残りは、嫌気性アンモニア酸化槽14にピストンフローで流入される。このステップ流入により嫌気性アンモニア酸化槽14内での亜硝酸性窒素濃度の均一化が図られるので、槽14内、特に上流位置における亜硝酸性窒素濃度が局部的に高くならないと共に、ピストンフロー流入による押出流れにより、アンモニア性窒素濃度は嫌気性アンモニア酸化槽14内の上流位置で高く下流位置で低い濃度勾配が形成される。従って、嫌気性アンモニア酸化槽内の下流位置においてアンモニアと亜硝酸のモル比が1.0:1.32になるようにすれば、下流位置で従来と同様の大きさの脱窒速度となり、槽14内の中段位置で更に大きな脱窒速度となり、槽14内の上流位置で最も大きな脱窒速度が得ることができる。これにより、上流位置、中段位置、下流位置の平均脱窒速度は従来より顕著に大きくすることができると共に、嫌気性アンモニア酸化槽14からの処理水にアンモニアが残存することがない。従って、脱窒速度を大きくできると共に安定した脱窒を行うことができる。また、亜硝酸生成槽12ではアンモニアの全てを亜硝酸に酸化することができるので、図3に比べて亜硝酸生成槽12での制御が容易になり、嫌気性アンモニア酸化槽14に流入させるアンモニアと亜硝酸との比率を精度良く制御することができる。   Ammonia waste water flowing through the raw water introduction pipe 20 is distributed by a distributor 26, and a part of the ammonia waste water flows into the nitrous acid production tank 12. All ammonia in the ammoniacal wastewater that has flowed into the nitrous acid production tank 12 is oxidized to nitrous acid to form nitrite-treated water. The nitrite-treated water flows in steps from the upstream position in the anaerobic ammonia oxidation tank 14 to a plurality of downstream positions, while the remaining ammonia wastewater distributed by the distributor 26 is the anaerobic ammonia oxidation tank 14. Into the piston flow. By this step inflow, the concentration of nitrite nitrogen in the anaerobic ammonia oxidation tank 14 is made uniform, so that the concentration of nitrite nitrogen in the tank 14, particularly in the upstream position, does not increase locally, and the piston flow inflow Due to the extrusion flow, the ammonia nitrogen concentration is high in the upstream position in the anaerobic ammonia oxidation tank 14 and a low concentration gradient is formed in the downstream position. Therefore, if the molar ratio of ammonia to nitrous acid is 1.0: 1.32 at the downstream position in the anaerobic ammonia oxidation tank, the denitrification speed is the same as that in the prior art at the downstream position. The denitrification speed is further increased at the middle position in the tank 14, and the highest denitrification speed can be obtained at the upstream position in the tank 14. As a result, the average denitrification rate at the upstream position, the middle position, and the downstream position can be significantly increased as compared with the prior art, and ammonia does not remain in the treated water from the anaerobic ammonia oxidation tank 14. Therefore, the denitrification rate can be increased and stable denitrification can be performed. Further, since all of the ammonia can be oxidized to nitrous acid in the nitrous acid generation tank 12, the control in the nitrous acid generation tank 12 is easier than in FIG. 3, and the ammonia flowing into the anaerobic ammonia oxidation tank 14. The ratio between nitrous acid and nitrous acid can be accurately controlled.

そして、嫌気性アンモニア酸化槽14からの処理水は、再曝気槽16を経て固液分離槽で固液分離され、最終処理水として排出される。尚、図4の場合も、亜硝酸性処理水の亜硝酸性窒素濃度を80mg/L以下にすることが好ましい。   Then, the treated water from the anaerobic ammonia oxidation tank 14 is solid-liquid separated in the solid-liquid separation tank through the re-aeration tank 16 and discharged as final treated water. In the case of FIG. 4 as well, the nitrite nitrogen concentration of the nitrite-treated water is preferably 80 mg / L or less.

図5の廃水処理装置10は、塔型の嫌気性アンモニア酸化槽14を設けると共に、槽14内に嫌気性アンモニア酸化細菌を包括固定化した包括担体28、28…を充填した場合である。この塔型の嫌気性アンモニア酸化槽14は、小規模処理の場合に便利である。塔型の嫌気性アンモニア酸化槽14の場合、分配器26で分配されたアンモニア性廃水の一部は亜硝酸生成槽12で亜硝酸性処理水が形成され、亜硝酸性処理水を嫌気性アンモニア酸化槽の縦方向にステップ流入させる。一方、分配器26で分配されたアンモニア性廃水の残りは嫌気性アンモニア酸化槽14の底部からピストンフローで流入される。また、嫌気性アンモニア酸化槽14の底部近傍には窒素ガス吹き込み管30が配設されると共に、嫌気性アンモニア酸化槽14の頂部から減圧用配管32が延設され真空ポンプ34に接続される。嫌気性アンモニア酸化槽14内には、包括担体28を破壊しない程度の速度で嫌気性アンモニア酸化槽14内の液を攪拌する攪拌機36が設けられる。これにより、脱窒速度を大きくできると共に安定した脱窒を行うことができる。嫌気性アンモニア酸化槽14内でアンモニアと亜硝酸との同時脱窒で発生した窒素ガスは、減圧用配管32から速やかに嫌気性アンモニア酸化槽14外に排出される。この同時脱窒の運転前に窒素ガス吹き込み管30から窒素ガスを嫌気性アンモニア酸化槽14内に吹き込んで酸素を除去しておくことが好ましい。   5 is a case where a tower-type anaerobic ammonia oxidation tank 14 is provided, and the tank 14 is filled with inclusion carriers 28, 28,. This tower-type anaerobic ammonia oxidation tank 14 is convenient for small-scale processing. In the case of the tower-type anaerobic ammonia oxidation tank 14, a part of the ammonia waste water distributed by the distributor 26 forms nitrite-treated water in the nitrite production tank 12, and the nitrite-treated water is converted to anaerobic ammonia. Step inflow in the vertical direction of the oxidation tank. On the other hand, the remaining ammonia waste water distributed by the distributor 26 flows in from the bottom of the anaerobic ammonia oxidation tank 14 by a piston flow. In addition, a nitrogen gas blowing pipe 30 is disposed near the bottom of the anaerobic ammonia oxidation tank 14, and a decompression pipe 32 is extended from the top of the anaerobic ammonia oxidation tank 14 and connected to a vacuum pump 34. In the anaerobic ammonia oxidation tank 14, a stirrer 36 is provided for stirring the liquid in the anaerobic ammonia oxidation tank 14 at a speed that does not destroy the entrapping carrier 28. Thereby, denitrification speed can be increased and stable denitrification can be performed. Nitrogen gas generated by simultaneous denitrification of ammonia and nitrous acid in the anaerobic ammonia oxidation tank 14 is quickly discharged out of the anaerobic ammonia oxidation tank 14 from the decompression pipe 32. Before the simultaneous denitrification operation, it is preferable that nitrogen gas is blown into the anaerobic ammonia oxidation tank 14 from the nitrogen gas blowing pipe 30 to remove oxygen.

図6の廃水処理装置10は、図3の変形例であり、亜硝酸生成槽12→第1の嫌気性アンモニア酸化槽14A→第2の嫌気性アンモニア酸化槽14B→第3の嫌気性アンモニア酸化槽14C→再曝気槽16→固液分離槽18の順に配置したものである。即ち、嫌気性アンモニア酸化槽を直列に配置された複数段の槽14A,14B,14Cで構成し、亜硝酸生成槽12で生成されたアンモニアと亜硝酸の混在水を複数段の各槽14A,14B,14Cにステップ流入させたものである。このステップ流入により、混在水中の亜硝酸が各槽14A,14B,14Cに略等量に分配され、各槽14A,14B,14Cにおける亜硝酸性窒素濃度の均一化が図られるので、前段槽14Aのみの亜硝酸性窒素濃度が局部的に高くなることはない。これにより、脱窒速度を大きくできると共に安定した脱窒を行うことができる。ちなみに、混在水の全てを第1の嫌気性アンモニア酸化槽14Aに流入させると、第1の嫌気性アンモニア酸化槽14Aの亜硝酸性窒素濃度が局部的に高くなる。   The wastewater treatment apparatus 10 in FIG. 6 is a modification of FIG. 3, in which the nitrous acid production tank 12 → the first anaerobic ammonia oxidation tank 14 </ b> A → the second anaerobic ammonia oxidation tank 14 </ b> B → the third anaerobic ammonia oxidation. The tank 14C, the re-aeration tank 16, and the solid-liquid separation tank 18 are arranged in this order. That is, the anaerobic ammonia oxidation tank is constituted by a plurality of tanks 14A, 14B, 14C arranged in series, and the mixed water of ammonia and nitrous acid generated in the nitrous acid generation tank 12 is provided in each tank 14A, 14B and 14C are step-inflowed. By this step inflow, nitrous acid in the mixed water is distributed to each tank 14A, 14B, 14C in an approximately equal amount, and the nitrite nitrogen concentration in each tank 14A, 14B, 14C is made uniform. Only the concentration of nitrite nitrogen does not increase locally. Thereby, denitrification speed can be increased and stable denitrification can be performed. By the way, when all the mixed water is caused to flow into the first anaerobic ammonia oxidation tank 14A, the concentration of nitrite nitrogen in the first anaerobic ammonia oxidation tank 14A is locally increased.

表2は、嫌気性アンモニア酸化槽14の段数と各槽14A,14B,14Cの平均脱窒速度を調べた結果である。   Table 2 shows the results of examining the number of stages of the anaerobic ammonia oxidation tank 14 and the average denitrification rates of the tanks 14A, 14B, and 14C.

Figure 2005313152
Figure 2005313152

表2の結果から、嫌気性アンモニア酸化槽14が3段までは平均脱窒速度は大きくなるが、それ以上の段数を設けても殆ど変わらないので、嫌気性アンモニア酸化槽14の段数は3段が有効である。   From the results shown in Table 2, the average denitrification rate increases when the number of anaerobic ammonia oxidation tanks 14 is three, but the number of stages in the anaerobic ammonia oxidation tank 14 is almost the same even if more stages are provided. Is effective.

図7の廃水処理装置10は、図4の変形例であり、分配器26→亜硝酸生成槽12及び第1の嫌気性アンモニア酸化槽14Aへ分配→第2の嫌気性アンモニア酸化槽14B→第3の嫌気性アンモニア酸化槽14C→再曝気槽16→固液分離槽18の順に配置したものである。これにより、亜硝酸性処理水は各槽14A,14B,14Cに略等量に分配されるので、図4と同様の効果を奏することができると共に、嫌気性アンモニア酸化槽14を複数段の槽14A,14B,14Cに明確に区画することにより、亜硝酸性窒素濃度の均一化をより精度良く行うことができる。また、アンモニア性廃水の残りを各槽14A,14B,14Cにピストフローで流入させることにより、第1の嫌気性アンモニア酸化槽14A→第2の嫌気性アンモニア酸化槽14B→第3の嫌気性アンモニア酸化槽14Cの順にアンモニア性窒素濃度が小さくなる濃度勾配が形成される。従って、第3の嫌気性アンモニア酸化槽14Cにおけるアンモニアと亜硝酸のモル比が1.0:1.32になるようにすれば、第3の嫌気性アンモニア酸化槽14Cで従来と同様の大きさの脱窒速度となり、第2の嫌気性アンモニア酸化槽14Bでは更に大きな脱窒速度となり、第1の嫌気性アンモニア酸化槽14Aで最も大きな脱窒速度が得ることができる。これにより、各槽14A,14B,14Cの平均脱窒速度は従来より顕著に大きくすることができると共に、第3の嫌気性アンモニア酸化槽14Cからの処理水にアンモニアが残存することがない。これにより、脱窒速度を大きくできると共に安定した脱窒を行うことができる。また、亜硝酸生成槽12ではアンモニアの全てを亜硝酸に酸化することができるので、図6に比べて亜硝酸生成槽12での制御が容易になり、嫌気性アンモニア酸化槽14に流入させるアンモニアと亜硝酸との比率を精度良く制御することができる。   The wastewater treatment apparatus 10 of FIG. 7 is a modification of FIG. 4 and distributes to the distributor 26 → the nitrous acid production tank 12 and the first anaerobic ammonia oxidation tank 14A → the second anaerobic ammonia oxidation tank 14B → the second. 3 anaerobic ammonia oxidation tank 14C → re-aeration tank 16 → solid-liquid separation tank 18 in this order. As a result, the nitrite-treated water is distributed to each of the tanks 14A, 14B, and 14C in substantially equal amounts, so that the same effect as in FIG. 4 can be obtained, and the anaerobic ammonia oxidation tank 14 is provided in a plurality of stages. By clearly partitioning into 14A, 14B, and 14C, the nitrite nitrogen concentration can be made more uniform. In addition, the remaining ammonia waste water is caused to flow into each of the tanks 14A, 14B, and 14C by a piston flow so that the first anaerobic ammonia oxidation tank 14A → the second anaerobic ammonia oxidation tank 14B → the third anaerobic ammonia. A concentration gradient is formed in which the ammonia nitrogen concentration decreases in the order of the oxidation tank 14C. Therefore, if the molar ratio of ammonia and nitrous acid in the third anaerobic ammonia oxidation tank 14C is 1.0: 1.32, the third anaerobic ammonia oxidation tank 14C has the same size as the conventional one. In the second anaerobic ammonia oxidation tank 14B, the denitrification speed is further increased, and the largest denitrification speed can be obtained in the first anaerobic ammonia oxidation tank 14A. As a result, the average denitrification rate of each of the tanks 14A, 14B, and 14C can be significantly increased as compared with the prior art, and ammonia does not remain in the treated water from the third anaerobic ammonia oxidation tank 14C. Thereby, denitrification speed can be increased and stable denitrification can be performed. Further, since all of the ammonia can be oxidized into nitrous acid in the nitrous acid generation tank 12, the control in the nitrous acid generation tank 12 is easier than in FIG. 6, and the ammonia flowing into the anaerobic ammonia oxidation tank 14. The ratio between nitrous acid and nitrous acid can be accurately controlled.

そして、最後の嫌気性アンモニア酸化槽14Cからの処理水は、再曝気槽16を経て固液分離槽で固液分離され、最終処理水として排出される。尚、図7の場合も、各槽14A,14B,14Cにおける亜硝酸性処理水の亜硝酸性窒素濃度を80mg/L以下にすることが好ましい。   Then, the treated water from the last anaerobic ammonia oxidation tank 14C passes through the re-aeration tank 16, is solid-liquid separated in the solid-liquid separation tank, and is discharged as final treated water. In addition, also in the case of FIG. 7, it is preferable that the nitrite nitrogen concentration of the nitrite-treated water in each tank 14A, 14B, 14C is 80 mg / L or less.

表3は、ステップ流入とピストンフロー流入を併用したときの嫌気性アンモニア酸化糟14の段数と平均脱窒速度を検討した結果である。   Table 3 shows the results of studying the number of stages of the anaerobic ammonia oxidation slag 14 and the average denitrification rate when the step inflow and the piston flow inflow are used in combination.

Figure 2005313152
Figure 2005313152

表3の結果から、表2のステップ流入のみの場合に比べて、ステップ流入とピストンフロー流入を併用すると同じ段数でも脱窒速度は速くなる。また、3段以上の場合も脱窒速度は少しずつ速くなるが、段数を増やし過ぎることによるコストアップと脱窒速度の速くなる程度を考慮すると、嫌気性アンモニア酸化槽14の段数は3段が有効である。   From the results in Table 3, the denitrification rate is increased even with the same number of stages when the step inflow and the piston flow inflow are used together as compared with the case of only the step inflow in Table 2. In the case of three or more stages, the denitrification rate is gradually increased. However, considering the increase in cost due to excessive increase in the number of stages and the degree of increase in the denitrification speed, the number of stages in the anaerobic ammonia oxidation tank 14 is three. It is valid.

図8の廃水処理装置10は、第1の亜硝酸生成槽12A→嫌気性アンモニア酸化槽14→第2の亜硝酸生成槽12B→再曝気槽16→固液分離槽18の順に配置し、第2の嫌気性アンモニア酸化槽14Bから第2の亜硝酸生成槽12Bへの戻し経路38を設けたものである。   The wastewater treatment apparatus 10 in FIG. 8 is arranged in the order of the first nitrous acid production tank 12A → anaerobic ammonia oxidation tank 14 → second nitrous acid production tank 12B → re-aeration tank 16 → solid-liquid separation tank 18. A return path 38 from the second anaerobic ammonia oxidation tank 14B to the second nitrous acid production tank 12B is provided.

図8に示すように、原水導入管20から第1の亜硝酸生成槽12Aに流入したアンモニア性廃水は、アンモニア濃度の略1/3に相当する量のアンモニアが亜硝酸に酸化され、亜硝酸性窒素濃度よりもアンモニア性窒素濃度が顕著に高い混在水が形成される。次に、混在水は嫌気性アンモニア酸化槽14に流入し、混在水中のアンモニアと亜硝酸とが嫌気性アンモニア酸化細菌により同時脱窒される。次に、嫌気性アンモニア酸化槽14で脱窒されずに残留した略1/3の量のアンモニアは第2の亜硝酸生成槽12Bに流入して全て亜硝酸に酸化される。この亜硝酸液は嫌気性アンモニア酸化槽14内の下流位置に戻し経路38を介して循環され、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸が同時脱窒される。即ち、第1の亜硝酸生成槽12Aでアンモニア性廃水のアンモニア濃度の略1/3に相当するアンモニアを亜硝酸に酸化すると、嫌気性アンモニア酸化槽14の上流位置での同時脱窒により1/3の量のアンモニアが残留して下流位置に流れる一方、第2の亜硝酸生成槽12Bから1/3の量の亜硝酸が嫌気性アンモニア酸化槽14の下流位置に戻される。これにより、嫌気性アンモニア酸化槽14の下流位置では1/3の量のアンモニアと1/3の量の亜硝酸が同時脱窒される。このように、第1の亜硝酸生成槽12Aにおけるアンモニア性窒素濃度を亜硝酸性窒素濃度よりも顕著に高くすることで、アンモニアに関しては嫌気性アンモニア酸化槽14内の上流側が高濃度で下流側が低濃度な濃度勾配が形成される。また、第2の亜硝酸生成槽12Bからの亜硝酸液を嫌気性アンモニア酸化槽14の下流位置に戻すことで、嫌気性アンモニア酸化槽14内における亜硝酸性窒素濃度が均一化される。この下流位置でのアンモニアと亜硝酸のモル比が略1.0:1.32になるので、従来と同様の大きさの脱窒速度となり、上流位置ではそれよりも大きな脱窒速度となる。これにより、嫌気性アンモニア酸化槽14内の脱窒速度を大きくすることができると共に、安定した脱窒を行うことができる。この場合も、嫌気性アンモニア酸化槽14内での亜硝酸性窒素濃度を80mg/L以下にすることが好ましい。そして、第2の亜硝酸生成槽12Bからの処理水は、再曝気槽16を経て固液分離槽18で固液分離され、最終処理水として排出される。   As shown in FIG. 8, in the ammoniacal wastewater flowing into the first nitrous acid production tank 12A from the raw water introduction pipe 20, an amount of ammonia corresponding to approximately 1/3 of the ammonia concentration is oxidized to nitrous acid, Mixed water having a remarkably higher ammoniacal nitrogen concentration than the neutral nitrogen concentration is formed. Next, the mixed water flows into the anaerobic ammonia oxidation tank 14, and ammonia and nitrous acid in the mixed water are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria. Next, approximately 1/3 of the ammonia remaining without being denitrified in the anaerobic ammonia oxidation tank 14 flows into the second nitrous acid production tank 12B and is all oxidized to nitrous acid. The nitrous acid solution is returned to the downstream position in the anaerobic ammonia oxidation tank 14 and circulated through the path 38, and ammonia and nitrous acid are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria. That is, when ammonia corresponding to approximately 1/3 of the ammonia concentration of the ammoniacal wastewater is oxidized to nitrous acid in the first nitrous acid production tank 12A, the denitrification at the upstream position of the anaerobic ammonia oxidation tank 14 results in 1 / While 3 amounts of ammonia remain and flow downstream, the 1/3 amount of nitrous acid is returned to the downstream position of the anaerobic ammonia oxidation tank 14 from the second nitrous acid production tank 12B. Thereby, in the downstream position of the anaerobic ammonia oxidation tank 14, 1/3 amount of ammonia and 1/3 amount of nitrous acid are simultaneously denitrified. In this way, by making the ammonia nitrogen concentration in the first nitrous acid production tank 12A significantly higher than the nitrite nitrogen concentration, with regard to ammonia, the upstream side in the anaerobic ammonia oxidation tank 14 has a high concentration and the downstream side has a high concentration. A low concentration gradient is formed. Moreover, the nitrite nitrogen concentration in the anaerobic ammonia oxidation tank 14 is made uniform by returning the nitrous acid solution from the second nitrous acid production tank 12B to the downstream position of the anaerobic ammonia oxidation tank 14. Since the molar ratio of ammonia and nitrous acid at this downstream position is approximately 1.0: 1.32, the denitrification rate is the same as the conventional one, and the denitrification rate is higher at the upstream position. Thereby, the denitrification speed in the anaerobic ammonia oxidation tank 14 can be increased, and stable denitrification can be performed. Also in this case, it is preferable that the nitrite nitrogen concentration in the anaerobic ammonia oxidation tank 14 is 80 mg / L or less. Then, the treated water from the second nitrous acid production tank 12B passes through the re-aeration tank 16, is solid-liquid separated in the solid-liquid separation tank 18, and is discharged as final treated water.

図9の廃水処理装置10は、第1の亜硝酸生成槽12A→第1の嫌気性アンモニア酸化槽14A→第2の亜硝酸生成槽12B→第2の嫌気性アンモニア酸化槽14B→再曝気槽16→固液分離槽18の順に配置したものであり、2つの亜硝酸生成槽12A,12Bと2つの嫌気性アンモニア酸化槽14A,14Bとを交互に組み合わせたものである。この場合には、原水導入管20から第1の亜硝酸生成槽12Aに流入したアンモニア性廃水は、アンモニア濃度の略1/3の量に相当するアンモニアが亜硝酸に酸化され、亜硝酸性窒素濃度よりもアンモニア性窒素濃度が顕著に高い混在水が形成される。次に、混在水は第1の嫌気性アンモニア酸化槽14Aに流入し、混在水中のアンモニアと亜硝酸とが嫌気性アンモニア酸化細菌により同時脱窒される。次に、第1の嫌気性アンモニア酸化槽14Aで脱窒されずに残留した略1/3のアンモニアは更にその1/2(最初のアンモニア性廃水から見ると1/6)の量を第2の亜硝酸生成槽12Bで亜硝酸に酸化し、第2の嫌気性アンモニア酸化槽14Bに流入させる。第2の嫌気性アンモニア酸化槽14Bでは、1/6の量のアンモニアと1/6の量の亜硝酸が同時脱窒される。このように、第1の亜硝酸生成槽12Aにおけるアンモニア性窒素濃度を亜硝酸性窒素濃度よりも顕著に高くすることで、アンモニアに関しては第1の嫌気性アンモニア酸化槽14Aが高濃度で第2の嫌気性アンモニア酸化槽14Bが低濃度な濃度勾配が形成される。また、第1及び第2の嫌気性アンモニア酸化槽14A,14Bを設けて多段化することで、第1の嫌気性アンモニア酸化槽14Aでの亜硝酸性窒素濃度を下げることができ、嫌気性アンモニア酸化細菌の活性が低下することがない。従って、第2の嫌気性アンモニア酸化槽14Bにおけるアンモニアと亜硝酸のモル比が1.0:1.32になるようにすれば、第2の嫌気性アンモニア酸化槽14Bで従来と同様の大きさの脱窒速度となり、第1の嫌気性アンモニア酸化槽14Aでは更に大きな脱窒速度となる。これにより、各槽14A,14Bの平均脱窒速度は従来より顕著に大きくすることができると共に、第2の嫌気性アンモニア酸化槽14Bからの処理水にアンモニアが残存することがない。この場合、嫌気性アンモニア酸化槽14の段数は、アンモニア性廃水のアンモニアをどの程度亜硝酸に変換して第1の嫌気性アンモニア酸化槽14Aに流入させるかで設定され、第1の嫌気性アンモニア酸化槽14Aの亜硝酸性窒素濃度が80mg/L以下になるように設定する。そして、第2の嫌気性アンモニア酸化槽14Bからの処理水は、再曝気槽16を経て固液分離槽18で固液分離され、最終処理水として排出される。   9 includes a first nitrous acid generation tank 12A → first anaerobic ammonia oxidation tank 14A → second nitrous acid generation tank 12B → second anaerobic ammonia oxidation tank 14B → re-aeration tank. 16 → solid-liquid separation tank 18 are arranged in this order, and two nitrous acid production tanks 12A and 12B and two anaerobic ammonia oxidation tanks 14A and 14B are alternately combined. In this case, in the ammoniacal wastewater that has flowed from the raw water introduction pipe 20 into the first nitrous acid production tank 12A, ammonia corresponding to the amount of about 1/3 of the ammonia concentration is oxidized to nitrous acid, and nitrite nitrogen Mixed water is formed in which the ammoniacal nitrogen concentration is significantly higher than the concentration. Next, the mixed water flows into the first anaerobic ammonia oxidation tank 14A, and ammonia and nitrous acid in the mixed water are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria. Next, about 1/3 of the ammonia remaining without being denitrified in the first anaerobic ammonia oxidation tank 14A is further reduced to a second amount (1/6 in view of the first ammoniacal wastewater). The nitrous acid is oxidized to nitrous acid in the nitrous acid production tank 12B and flows into the second anaerobic ammonia oxidation tank 14B. In the second anaerobic ammonia oxidation tank 14B, 1/6 amount of ammonia and 1/6 amount of nitrous acid are simultaneously denitrified. In this way, by making the ammonia nitrogen concentration in the first nitrous acid production tank 12A significantly higher than the nitrite nitrogen concentration, the second anaerobic ammonia oxidation tank 14A has a high concentration with respect to ammonia. A low concentration concentration gradient is formed in the anaerobic ammonia oxidation tank 14B. In addition, by providing the first and second anaerobic ammonia oxidation tanks 14A and 14B to increase the number of stages, the concentration of nitrite nitrogen in the first anaerobic ammonia oxidation tank 14A can be reduced, and anaerobic ammonia The activity of oxidizing bacteria is not reduced. Therefore, if the molar ratio of ammonia and nitrous acid in the second anaerobic ammonia oxidation tank 14B is 1.0: 1.32, the second anaerobic ammonia oxidation tank 14B has the same size as the conventional one. In the first anaerobic ammonia oxidation tank 14A, an even higher denitrification rate is obtained. As a result, the average denitrification rate of each of the tanks 14A and 14B can be significantly increased as compared with the prior art, and ammonia does not remain in the treated water from the second anaerobic ammonia oxidation tank 14B. In this case, the number of stages of the anaerobic ammonia oxidation tank 14 is set according to how much ammonia in the ammoniacal wastewater is converted into nitrous acid and flows into the first anaerobic ammonia oxidation tank 14A. The nitrite nitrogen concentration in the oxidation tank 14A is set to 80 mg / L or less. Then, the treated water from the second anaerobic ammonia oxidation tank 14B is solid-liquid separated in the solid-liquid separation tank 18 through the re-aeration tank 16, and discharged as final treated water.

図10の廃水処理装置10は、図9の第2の嫌気性アンモニア酸化槽14Bからの処理水の一部を戻し経路38を介して第2の亜硝酸生成槽12Bに戻すようにしたものである。これにより、第2の嫌気性アンモニア酸化槽14Bからの処理水に残留するアンモニアや亜硝酸の後処理槽を設けたことと同じになるので、コンパクトな設備で最終的に放流する処理水のアンモニア濃度や亜硝酸濃度を低減できる。   The wastewater treatment apparatus 10 in FIG. 10 is configured such that a part of the treated water from the second anaerobic ammonia oxidation tank 14B in FIG. 9 is returned to the second nitrous acid production tank 12B through the return path 38. is there. This is the same as providing a post-treatment tank for ammonia or nitrous acid remaining in the treated water from the second anaerobic ammonia oxidation tank 14B, so the ammonia in the treated water finally discharged by a compact facility Concentration and nitrous acid concentration can be reduced.

図11の廃水処理装置10は図8の変形例であり、原水導入管20に分配器26を設けて、アンモニア性廃水の一部が第1の亜硝酸生成槽12Aに流入し、アンモニア性廃水の残りが嫌気性アンモニア酸化槽14に直接流入するように構成したものである。これにより、第1の亜硝酸生成槽12Aではアンモニアの全てを亜硝酸に酸化することができるので、図8に比べて第1の亜硝酸生成槽12Aでの制御が容易になり、嫌気性アンモニア酸化槽14に流入させるアンモニアと亜硝酸との比率を精度良く制御することができる。   The waste water treatment apparatus 10 of FIG. 11 is a modification of FIG. 8, and a distributor 26 is provided in the raw water introduction pipe 20 so that a part of the ammonia waste water flows into the first nitrous acid production tank 12A and the ammonia waste water is discharged. The remainder is configured to flow directly into the anaerobic ammonia oxidation tank 14. Thereby, since all of ammonia can be oxidized into nitrous acid in the first nitrous acid production tank 12A, the control in the first nitrous acid production tank 12A becomes easier than in FIG. The ratio of ammonia and nitrous acid flowing into the oxidation tank 14 can be accurately controlled.

図12は、分配器26→第1の亜硝酸生成槽12A及び第1の嫌気性アンモニア酸化槽14Aに分配→第2の嫌気性アンモニア酸化槽14B→第2の亜硝酸生成槽12B→再曝気槽16→固液分離槽18の順に配列したものである。分配器26で分配されたアンモニア性廃水の一部が第1の亜硝酸生成槽12Aに流入して、アンモニアの全てが亜硝酸に変換されて第1の嫌気性アンモニア酸化槽14Aに流入する一方、分配器26で分配されたアンモニア性廃水の残りが第1の嫌気性アンモニア酸化槽14Aに直接流入する。そして、第1及び第2から成る2段の嫌気性アンモニア酸化槽14A,14Bでアンモニアと亜硝酸が同時脱窒される。また、第2の嫌気性アンモニア酸化槽14Bで残存したアンモニアが第2の亜硝酸生成槽12Bで全て亜硝酸に酸化され、この硝化液が第2の嫌気性アンモニア酸化槽14Bに戻り経路38を介して循環される。これにより、第1の嫌気性アンモニア酸化槽14Aで残留したアンモニアが第2の嫌気性アンモニア酸化槽14Bに流入するので、アンモニアに関して第1の嫌気性アンモニア酸化槽14Aが高濃度で、第2の嫌気性アンモニア酸化槽14Bが低濃度な濃度勾配が形成される。また、第2の嫌気性アンモニア酸化槽14Bで残存したアンモニアが第2の亜硝酸生成槽12Bで全て亜硝酸に酸化され、この硝化液が第2の嫌気性アンモニア酸化槽14Bに戻り経路38を介して循環されるので、亜硝酸に関しては第1及び第2の嫌気性アンモニア酸化槽14A,14Bで均一化される。従って、第2の嫌気性アンモニア酸化槽14Bにおけるアンモニアと亜硝酸のモル比が1.0:1.32になるようにすれば、第2の嫌気性アンモニア酸化槽14Cで従来と同様の大きさの脱窒速度となり、第1の嫌気性アンモニア酸化槽14Aでは更に大きな脱窒速度となる。これにより、各槽14A,14Bの平均脱窒速度を従来より顕著に大きくすることができる。また、第1及び第2の亜硝酸生成槽12A,12Bではアンモニアの全てを亜硝酸に変換するので制御が容易になる。この場合、第1の嫌気性アンモニア酸化槽14Aでの亜硝酸性窒素濃度が80mg/mL 以下になるように分配器26でのアンモニア性廃水の分配比率を設定するとよい。これにより、廃水処理装置10の脱窒速度を大きくすることができると共に、安定した脱窒を行うことができる。   FIG. 12 shows the distribution in the distributor 26 → the first nitrous acid production tank 12A and the first anaerobic ammonia oxidation tank 14A → the second anaerobic ammonia oxidation tank 14B → the second nitrous acid production tank 12B → re-aeration. The tanks 16 are arranged in the order of the solid-liquid separation tank 18. While a part of the ammonia waste water distributed by the distributor 26 flows into the first nitrous acid generation tank 12A, all of the ammonia is converted into nitrous acid and flows into the first anaerobic ammonia oxidation tank 14A. The remainder of the ammoniacal wastewater distributed by the distributor 26 flows directly into the first anaerobic ammonia oxidation tank 14A. Then, ammonia and nitrous acid are simultaneously denitrified in the two-stage anaerobic ammonia oxidation tanks 14A and 14B composed of the first and the second. In addition, the ammonia remaining in the second anaerobic ammonia oxidation tank 14B is all oxidized to nitrous acid in the second nitrous acid production tank 12B, and this nitrification liquid returns to the second anaerobic ammonia oxidation tank 14B through the path 38. Circulated through. Thereby, since the ammonia remaining in the first anaerobic ammonia oxidation tank 14A flows into the second anaerobic ammonia oxidation tank 14B, the first anaerobic ammonia oxidation tank 14A is high in concentration with respect to ammonia, and the second A concentration gradient with a low concentration is formed in the anaerobic ammonia oxidation tank 14B. In addition, the ammonia remaining in the second anaerobic ammonia oxidation tank 14B is all oxidized to nitrous acid in the second nitrous acid production tank 12B, and this nitrification liquid returns to the second anaerobic ammonia oxidation tank 14B through the path 38. Therefore, nitrous acid is made uniform in the first and second anaerobic ammonia oxidation tanks 14A and 14B. Therefore, if the molar ratio of ammonia to nitrous acid in the second anaerobic ammonia oxidation tank 14B is 1.0: 1.32, the second anaerobic ammonia oxidation tank 14C has the same size as the conventional one. In the first anaerobic ammonia oxidation tank 14A, an even higher denitrification rate is obtained. Thereby, the average denitrification rate of each tank 14A, 14B can be remarkably increased as compared with the prior art. Further, in the first and second nitrous acid production tanks 12A and 12B, all the ammonia is converted into nitrous acid, so that the control becomes easy. In this case, the distribution ratio of ammonia waste water in the distributor 26 may be set so that the concentration of nitrite nitrogen in the first anaerobic ammonia oxidation tank 14A is 80 mg / mL or less. Thereby, the denitrification speed of the wastewater treatment apparatus 10 can be increased, and stable denitrification can be performed.

以上、図3〜図12において、本発明の廃水処理装置10における各種の態様を説明したが、全ての嫌気性アンモニア酸化槽14内に図5のように窒素ガス吹き込み管30を設けて、運転開始時に窒素ガスを吹き込み脱気し、酸素を除去することが好ましい。また、図5のように、全ての嫌気性アンモニア酸化槽14に減圧用配管32と真空ポンプ34を設け、嫌気性アンモニア酸化槽14内を減圧することも脱窒速度を高速化する上で効果的である。また、亜硝酸生成槽12にはアンモニア酸化細菌を固定化した担体を用いるとよい。担体の場合は完全混合の槽でもよい。   As described above, in FIGS. 3 to 12, various aspects of the wastewater treatment apparatus 10 according to the present invention have been described. However, the operation is performed by providing the nitrogen gas blowing pipe 30 as shown in FIG. It is preferable to remove oxygen by blowing nitrogen gas at the start. In addition, as shown in FIG. 5, reducing the pressure in the anaerobic ammonia oxidation tank 14 by providing the decompression pipe 32 and the vacuum pump 34 in all the anaerobic ammonia oxidation tanks 14 is also effective in increasing the denitrification rate. Is. In addition, a carrier on which ammonia-oxidizing bacteria are immobilized may be used for the nitrite production tank 12. In the case of a carrier, a completely mixed tank may be used.

また、嫌気性アンモニア酸化槽14の立ち上げについては、微生物の総菌数が107 個/mL以上で、且つアンモニア性廃水中の嫌気性アンモニア酸化細菌数が1/10〜1/1000の範囲で立ち上がりが非常に早い。嫌気性アンモニア酸化槽14で使用する嫌気性アンモニア酸化細菌は、浮遊菌又は嫌気性アンモニア酸化細菌を包括固定化した包括担体の何れでもよい。 Regarding the start-up of the anaerobic ammonia oxidation tank 14, the total number of microorganisms is 10 7 / mL or more, and the number of anaerobic ammonia-oxidizing bacteria in the ammoniacal wastewater is 1/10 to 1/1000. The rise is very fast. The anaerobic ammonia oxidizing bacterium used in the anaerobic ammonia oxidizing tank 14 may be either a suspended carrier or a entrapped carrier in which anaerobic ammonia oxidizing bacterium is entrapped and immobilized.

嫌気性アンモニア酸化細菌の固定化には付着固定と包括固定の2つの方法が用いることができる。付着固定では球状や筒状などの担体、ひも状材料、ゲル状担体、不織布状材料など凹凸が多い材料が付着しやすく除去率が向上する。包括固定では嫌気性アンモニア酸化細菌と固定化材料(モノマ、プレポリマ)を混合した混合液を重合し、ゲルの内部に嫌気性アンモニア酸化細菌を包括固定化する。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマールなどがよい。プレポリマ材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートがよく、その誘導体を用いることができる。形状は球状や筒状などの包括担体、ひも状包括担体、不織布状など凹凸が多い包括担体が接触効率がよく脱窒速度が向上する。   Two methods can be used to immobilize anaerobic ammonia-oxidizing bacteria: adherent immobilization and entrapping immobilization. In adhesion fixing, a material having many irregularities such as a spherical or cylindrical carrier, a string material, a gel carrier, and a nonwoven material is likely to adhere, and the removal rate is improved. In entrapping immobilization, a mixture of anaerobic ammonia-oxidizing bacteria and immobilizing materials (monomers and prepolymers) is polymerized to immobilize anaerobic ammonia-oxidizing bacteria inside the gel. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. The prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can be used. The inclusion carrier having many irregularities such as a spherical or cylindrical inclusion carrier, a string-like inclusion carrier, and a non-woven fabric shape has a good contact efficiency and an improved denitrification rate.

嫌気性アンモニア酸化細菌を付着固定又は包括固定の方法で固定化した担体の脱窒速度を調べるために、図4の装置構成で試験した。即ち、表4に示す各種の担体を担体充填率25%になるように嫌気性アンモニア酸化槽も充填し、アンモニア性廃水を処理した。固定化に使用した種汚泥は、アンモニアと亜硝酸で集積培養して得られた脱窒速度1.2kg−N/m3 /日の能力をもった汚泥であり、嫌気性アンモニア酸化細菌濃度が8×106 ce11/cm3 であり、総菌数8×108 cell/cm3 であった。 In order to investigate the denitrification rate of the carrier on which the anaerobic ammonia oxidizing bacteria were immobilized by the adhesion immobilization method or the entrapping immobilization method, the apparatus configuration of FIG. 4 was tested. That is, various carriers shown in Table 4 were also filled in an anaerobic ammonia oxidation tank so that the carrier filling rate was 25%, and the ammoniacal wastewater was treated. The seed sludge used for immobilization is a sludge with a denitrification rate of 1.2 kg-N / m 3 / day, obtained by accumulating and culturing with ammonia and nitrous acid, and has anaerobic ammonia-oxidizing bacteria concentration. It was 8 × 10 6 ce11 / cm 3 and the total number of bacteria was 8 × 10 8 cell / cm 3 .

その結果、表4に示すように、4週間後には、何れの付着担体又は包括担体の場合にも200(mg-N/L/h)以上の高い脱窒速度を得ることができた。   As a result, as shown in Table 4, after 4 weeks, a high denitrification rate of 200 (mg-N / L / h) or more could be obtained in any case of any attached carrier or entrapped carrier.

尚、固液分離槽18からの最終処理水は、沈殿池を経て流出してもよく、他の高度処理槽で処理してもよい。また沈殿池での沈殿濃縮汚泥を本発明における各槽に返送してもよい。   Note that the final treated water from the solid-liquid separation tank 18 may flow out through a sedimentation basin or may be treated in another advanced treatment tank. Moreover, you may return the sediment concentration sludge in a sedimentation tank to each tank in this invention.

Figure 2005313152
Figure 2005313152

(第1実施例)
以下、本発明の実施例を説明するが、こられの実施例に限定するものではない。
(First embodiment)
Examples of the present invention will be described below, but the present invention is not limited to these examples.

第1実施例では、図3、図4、図6、図7、図8、図11、図12の本発明の装置構成の廃水処理装置を用いた場合と、図13の従来例の装置構成の廃水処理装置を用いた場合の脱窒速度を比較した。実験は以下の通り行った。   In the first embodiment, when the wastewater treatment apparatus of the apparatus configuration of the present invention of FIGS. 3, 4, 6, 7, 8, 11, and 12 is used, and the apparatus configuration of the conventional example of FIG. The denitrification rates when using the wastewater treatment equipment were compared. The experiment was performed as follows.

アンモニアと亜硝酸で集積培養して得られた脱窒速度1.2kg−N/m3 /日の能力をもった集積培養汚泥を実験に供試した。この集積培養汚泥の嫌気性アンモニア酸化細菌濃度は8×108 cell/mL であった。そして、図3、図4、図6、図7、図8、図11、図12の廃水処理装置10における嫌気性アンモニア酸化槽14に、この集積培養汚泥を投入した。更に、嫌気性アンモニア酸化槽14に活性汚泥を加えることにより、MLSSとして4000mg/L、総菌数4×108 cell/cm3 、嫌気性アンモニア酸化細菌濃度8×105 cell/mL の条件を形成して運転を開始した。 An accumulation culture sludge having a denitrification rate of 1.2 kg-N / m 3 / day obtained by accumulation culture with ammonia and nitrous acid was used for the experiment. The concentration of the anaerobic ammonia-oxidizing bacteria in this integrated culture sludge was 8 × 10 8 cells / mL. And this integrated culture sludge was thrown into the anaerobic ammonia oxidation tank 14 in the waste water treatment apparatus 10 of FIG.3, FIG.4, FIG.6, FIG.7, FIG.8, FIG. Furthermore, by adding activated sludge to the anaerobic ammonia oxidation tank 14, MLSS is 4000 mg / L, the total number of bacteria is 4 × 10 8 cells / cm 3 , and the anaerobic ammonia-oxidizing bacteria concentration is 8 × 10 5 cells / mL. Formed and started operation.

実験に供試した廃水は、アンモニア性窒素濃度1000mg/Lの無機廃水を用い、負荷1kg−N/m3 /日で運転を開始した。始めの10日間は4倍希釈が必要であったが、その後、徐々に希釈率を下げ、嫌気性アンモニア酸化槽14の最大負荷5.3kg−N/m3 /日まで運転を行った。 The wastewater used for the experiment was inorganic wastewater with an ammoniacal nitrogen concentration of 1000 mg / L, and the operation was started at a load of 1 kg-N / m 3 / day. The first 10 days required a 4-fold dilution, but thereafter the dilution rate was gradually lowered and the operation was performed up to the maximum load of 5.3 kg-N / m 3 / day in the anaerobic ammonia oxidation tank 14.

それぞれの実験条件は次の通りである。尚、以下の実験において、亜硝酸酸化槽12では当初より高負荷運転を行い、嫌気性アンモニア酸化槽14への供給に十分な処理水を確保し、不要な量の亜硝酸酸化槽からの処理水はバイパスし系外に排出した。   Each experimental condition is as follows. In the following experiment, the nitrite oxidation tank 12 is operated at a high load from the beginning to secure sufficient treated water for supply to the anaerobic ammonia oxidation tank 14, and an unnecessary amount of treatment from the nitrite oxidation tank 12. Water was bypassed and discharged out of the system.

[実施例A]図3の装置構成での実験条件
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:2kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの約半分を亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 負荷1kg−N/m3 /日で順次増加させた
(2) 不織布充填材を40%充填率で充填
(3) 混在水のステップ流入は3箇所 上流位置、中段位置、下流位置における槽幅方向の
中央部で流入させた
[実施例B]図4の装置構成での実験条件
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:0.8kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの全部を亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 負荷1kg−N/m3 /日で順次増加させた
(2) 不織布充填材を40%充填率で充填
(3) 混在水のステップ流入は3箇所 上流位置、中段位置、下流位置における槽幅方向の中央部で流入させた
(分配器)
分配器でのアンモニア性廃水の分配率は5:5
[実施例C]図6の装置構成での実験条件
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:2kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの全部を亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 3槽合計で負荷1kg−N/m3 /日で運転し、順次増加させた
(2) 不織布充填材を40%充填率で充填
(3) 3槽は等容積
[実施例D]図7の装置構成での実験条件
(分配器)
分配器による亜硝酸生成槽と嫌気性アンモニア酸化槽へのアンモニア性廃水の分配率は5:5
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:2kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの全部を亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 3槽合計で負荷1kg−N/m3 /日で運転し、順次増加させた
(2) 不織布充填材を40%充填率で充填
(3) 3槽は等容積
[実施例E]図8の装置構成での実験条件
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:2kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの濃度の約1/3を亜硝酸に変換
(第1の嫌気性アンモニア酸化槽)
負荷1kg−N/m3 /日で運転し、順次増加させた
(第2の嫌気性アンモニア酸化槽)
アンモニア性窒素付加が0.6kg−N/m3 /日
(循環比率)
第2亜硝酸生成槽の硝化液を200%嫌気性アンモニア酸化槽の下流位置に循環
[実施例F]図11の装置構成での実験条件
(分配器)
分配器による亜硝酸生成槽と嫌気性アンモニア酸化槽へのアンモニア性廃水の分配率は5:5
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:0.8kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの全てを亜硝酸に変換
(第1の嫌気性アンモニア酸化槽)
(1) 負荷1kg−N/m3 /日で運転し、順次増加させた
(2)不織布充填材を40%充填率で充填
(第2の嫌気性アンモニア酸化槽)
アンモニア性窒素付加が0.6kg−N/m3 /日
(循環比率)
第2亜硝酸生成槽の硝化液を200%嫌気性アンモニア酸化槽の下流位置に循環
[実施例G]図12の装置構成での実験条件
(分配器)
分配器による亜硝酸生成槽と嫌気性アンモニア酸化槽へのアンモニア性廃水の分配率は5:5
(亜硝酸生成槽)
(1) アンモニア性窒素負荷:0.8kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの全てを亜硝酸に変換
(第1の嫌気性アンモニア酸化槽)
(1) 第2の嫌気性アンモニア酸化槽との合計負荷が1kg−N/m3 /日で運転し、順次増加させた
(2)不織布充填材を40%充填率で充填
(第2の嫌気性アンモニア酸化槽)
アンモニア性窒素付加が0.6kg−N/m3 /日
(循環比率)
第2亜硝酸生成槽の硝化液を200%で第2の嫌気性アンモニア酸化槽に循環
[従来例]
従来例の装置構成は、図13に示すように、原水導入管から亜硝酸生成槽に流入したアンモニア性廃水のアンモニアの半分の濃度が亜硝酸に変換された混在水が形成される。この混在水の全量が嫌気性アンモニア酸化槽の上流位置に流入しアンモニアと亜硝酸とが嫌気性アンモニア酸化細菌により同時脱窒される。嫌気性アンモニア酸化槽からの処理水は再曝気槽を経由して固液分離槽で固液分離され、最終処理水として排出される。かかる比較例の実験条件は以下の通りである。
[Example A] Experimental conditions in the apparatus configuration of FIG. 3 (Nitrite production tank)
(1) Ammonia nitrogen load: 2kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) About half of the ammonia is converted to nitrous acid under an aerobic condition (anaerobic ammonia oxidation tank)
(1) Sequentially increased at a load of 1 kg-N / m 3 / day
(2) Filling with non-woven filler at 40% filling rate
(3) Three steps of mixed water were introduced at the central part in the tank width direction at the upstream position, middle stage position, and downstream position [Example B] Experimental conditions in the apparatus configuration of FIG. 4 (nitrite production tank)
(1) Ammonia nitrogen load: 0.8kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Convert all ammonia to nitrous acid under an aerobic condition (anaerobic ammonia oxidation tank)
(1) Sequentially increased at a load of 1 kg-N / m 3 / day
(2) Filling with non-woven filler at 40% filling rate
(3) Mixed water stepped in at three locations. In the middle of the tank width direction at the upstream, middle and downstream positions (distributor)
The distribution ratio of ammonia wastewater in the distributor is 5: 5
[Example C] Experimental conditions in the apparatus configuration of FIG. 6 (nitrite production tank)
(1) Ammonia nitrogen load: 2kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Convert all ammonia to nitrous acid under an aerobic condition (anaerobic ammonia oxidation tank)
(1) A total of 3 tanks were operated at a load of 1 kg-N / m 3 / day and increased in sequence.
(2) Filling with non-woven filler at 40% filling rate
(3) 3 tanks have the same volume [Example D] Experimental conditions in the apparatus configuration of FIG. 7 (Distributor)
The distribution ratio of ammonia wastewater to the nitrous acid production tank and the anaerobic ammonia oxidation tank by the distributor is 5: 5
(Nitrous acid production tank)
(1) Ammonia nitrogen load: 2kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Convert all ammonia to nitrous acid under an aerobic condition (anaerobic ammonia oxidation tank)
(1) A total of 3 tanks were operated at a load of 1 kg-N / m 3 / day and increased in sequence.
(2) Filling with non-woven filler at 40% filling rate
(3) Three tanks have the same volume [Example E] Experimental conditions in the apparatus configuration of FIG. 8 (nitrite production tank)
(1) Ammonia nitrogen load: 2kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) About 1/3 of the ammonia concentration is converted to nitrous acid under aerobic conditions (first anaerobic ammonia oxidation tank)
It was operated at a load of 1 kg-N / m 3 / day and increased sequentially (second anaerobic ammonia oxidation tank)
Ammonia nitrogen addition is 0.6kg-N / m 3 / day (circulation ratio)
Circulating the nitrification liquid in the second nitrous acid production tank downstream of the 200% anaerobic ammonia oxidation tank [Example F] Experimental conditions in the apparatus configuration of FIG. 11 (Distributor)
The distribution ratio of ammonia wastewater to the nitrous acid production tank and the anaerobic ammonia oxidation tank by the distributor is 5: 5
(Nitrous acid production tank)
(1) Ammonia nitrogen load: 0.8kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Convert all ammonia to nitrous acid under aerobic conditions (first anaerobic ammonia oxidation tank)
(1) It was operated at a load of 1 kg-N / m 3 / day and increased gradually.
(2) Filling with non-woven fabric filler at 40% filling rate (second anaerobic ammonia oxidation tank)
Ammonia nitrogen addition is 0.6kg-N / m 3 / day (circulation ratio)
Circulating the nitrification liquid in the second nitrous acid production tank downstream of the 200% anaerobic ammonia oxidation tank [Example G] Experimental conditions (distributor) in the apparatus configuration of FIG.
The distribution ratio of ammonia wastewater to the nitrous acid production tank and the anaerobic ammonia oxidation tank by the distributor is 5: 5
(Nitrous acid production tank)
(1) Ammonia nitrogen load: 0.8kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Convert all ammonia to nitrous acid under aerobic conditions (first anaerobic ammonia oxidation tank)
(1) The total load with the second anaerobic ammonia oxidation tank was operated at 1 kg-N / m 3 / day and increased gradually.
(2) Filling with non-woven fabric filler at 40% filling rate (second anaerobic ammonia oxidation tank)
Ammonia nitrogen addition is 0.6kg-N / m 3 / day (circulation ratio)
Circulating the nitrification solution in the second nitrous acid production tank to the second anaerobic ammonia oxidation tank at 200% [Conventional example]
As shown in FIG. 13, the apparatus configuration of the conventional example forms mixed water in which half the ammonia concentration of ammonia wastewater flowing into the nitrous acid production tank from the raw water introduction pipe is converted to nitrous acid. The total amount of this mixed water flows into the upstream position of the anaerobic ammonia oxidation tank, and ammonia and nitrous acid are simultaneously denitrified by the anaerobic ammonia oxidation bacteria. The treated water from the anaerobic ammonia oxidation tank is solid-liquid separated in the solid-liquid separation tank via the re-aeration tank and discharged as final treated water. The experimental conditions of this comparative example are as follows.

(亜硝酸生成槽)
(1) アンモニア性窒素負荷:2kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%充填率で充填
(3) 好気性条件によりアンモニアの半分を亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 負荷が1kg−N/m3 /日で運転し、順次増加させた
(2)不織布充填材を40%充填率で充填
以上の条件で行った結果を表5に示す。
(Nitrous acid production tank)
(1) Ammonia nitrogen load: 2kg-N / m 3 / day
(2) Packed with 20% filling rate of acclimatized ammonia-oxidizing bacteria
(3) Half of ammonia is converted to nitrous acid under an aerobic condition (anaerobic ammonia oxidation tank)
(1) The load was operated at 1kg-N / m 3 / day and increased sequentially.
(2) Filling with non-woven fabric filler at 40% filling rate Table 5 shows the results obtained under the above conditions.

Figure 2005313152
Figure 2005313152

その結果、実施例A〜Gおける嫌気性アンモニア酸化槽14の脱窒速度は、最小2.8〜最大5.0(kg-N/m 3 / 日)であり、従来例による嫌気性アンモニア酸化槽14での脱窒速度より、1.1倍〜1.9倍大きな脱窒速度を得ることができた。これにより、本発明の廃水処理装置を用いることにより脱窒速度を従来よりも大きくできるので、アンモニア性廃水を処理する際の廃水処理効率を向上させることができる。 As a result, the denitrification rate of the anaerobic ammonia oxidation tank 14 in Examples A to G is a minimum of 2.8 to a maximum of 5.0 (kg-N / m 3 / day). A denitrification rate 1.1 to 1.9 times larger than the denitrification rate in the tank 14 was obtained. Thereby, since the denitrification speed can be increased by using the wastewater treatment apparatus of the present invention, it is possible to improve the wastewater treatment efficiency when treating the ammoniacal wastewater.

(第2実施例)
第2実施例では以下のように作製した包括固定化担体でアンモニア性廃水を処理したときの窒素除去率及び運転の立ち上げ期間を調べた。
(Second embodiment)
In Example 2, the nitrogen removal rate and the operation start-up period when ammoniacal wastewater was treated with the entrapping immobilization support prepared as follows were examined.

種汚泥はアンモニアと亜硝酸で集積培養し得られた脱室速度1.2kg−N/m3 /日の能力をもった汚泥で、初期濃度8×108 cell/cm3 を固定化の種菌として供試した。種菌を遠心分離で回収し、この菌と活性汚泥を分子量4000番のポリエチレングリコールジアクリレート(固定化材)に懸濁し、過硫酸カリウムを添加することにより重合して、次に示す組成の包括固定化担体を作製した。
・嫌気性アンモニア酸化細菌:4×105 cell/cm3
・総菌数 :3×108 cel/cm3
・ポリエチレングリコールジアクリレート:10%
・過硫酸カリウム :0.25%
このゲルを3mm角に成形し、図12の第1の嫌気性アンモニア酸化槽14Aと第2の嫌気性アンモニア酸化槽14Bに充填率38%になるよう充填した。運転条件は以下の通りである。
In seed sludge sludge with ammonia and capacity in enrichment cultures were obtained was de-chamber rate 1.2kg-N / m 3 / day nitrite, inoculum of immobilized initial concentration 8 × 10 8 cell / cm 3 As a test. The inoculum is collected by centrifugation, the fungus and activated sludge are suspended in polyethylene glycol diacrylate (immobilizing material) with a molecular weight of 4000, polymerized by adding potassium persulfate, and comprehensive fixation of the following composition A modified carrier was prepared.
Anaerobic ammonia oxidizing bacteria: 4 × 10 5 cells / cm 3
・ Total number of bacteria: 3 × 10 8 cel / cm 3
-Polyethylene glycol diacrylate: 10%
-Potassium persulfate: 0.25%
This gel was formed into a 3 mm square and filled in the first anaerobic ammonia oxidation tank 14A and the second anaerobic ammonia oxidation tank 14B of FIG. The operating conditions are as follows.

(分配器)
分配器によるアンモニア性廃水の分配率 5:5
(亜硝酸生成槽)
(1) アンモニア性窒素負荷 :0.8kg−N/m3 /日
(2) 馴養したアンモニア酸化細菌の包括担体を20%の充填率で充填
(3) 好気性条件で、アンモニア性廃水のアンモニアを全て亜硝酸に変換
(嫌気性アンモニア酸化槽)
(1) 第2の嫌気性アンモニア酸化槽との合計負荷で0.5kg−N/m3 /日で運転し、順次増加させた
(第2の亜硝酸生成槽)
(1) アンモニア性窒素負荷:0.6kg−N/m3/日
(循環比率)
第2の亜硝酸生成槽の硝化液を200%を第2の嫌気性アンモニア酸化槽に循環
そして、アンモニア性窒素濃度(T−N)600mg/L のアンモニア性廃水を用いて、負荷0.5kg−N/m3 /日で運転を開始した。徐々に負荷を増大させ、8週間後、負荷4kg−N/m3 /日でT−N除去率80%以上を得ることができ、その後、除去率80〜90%で安定した。このように、本発明の廃水処理装置を用いることで、高い窒素除去率を得ることができると共に、運転の立ち上がりを早くすることができる。
(Distributor)
Distribution ratio of ammoniacal wastewater by distributor 5: 5
(Nitrous acid production tank)
(1) Ammonia nitrogen load: 0.8kg-N / m 3 / day
(2) Filled with conditioned ammonia-oxidizing bacteria inclusion carrier at 20% filling rate
(3) Ammonia wastewater ammonia is converted to nitrous acid under anaerobic conditions (anaerobic ammonia oxidation tank)
(1) The total load with the second anaerobic ammonia oxidation tank was operated at 0.5 kg-N / m 3 / day and increased sequentially (second nitrous acid production tank)
(1) Ammonia nitrogen load: 0.6kg-N / m3 / day (circulation ratio)
Circulating 200% of the nitrification solution in the second nitrous acid production tank to the second anaerobic ammonia oxidation tank And using ammonia wastewater with an ammoniacal nitrogen concentration (TN) of 600 mg / L, a load of 0.5 kg Operation started at -N / m 3 / day. The load was gradually increased, and after 8 weeks, a TN removal rate of 80% or more was obtained at a load of 4 kg-N / m 3 / day, and thereafter, the removal rate was stabilized at 80 to 90%. Thus, by using the wastewater treatment apparatus of the present invention, it is possible to obtain a high nitrogen removal rate and to speed up the operation.

脱窒速度の及ぼすアンモニア性窒素濃度の影響を示すグラフGraph showing the effect of ammonia nitrogen concentration on denitrification rate 脱窒速度の及ぼす亜硝酸性窒素濃度の影響を示すグラフGraph showing the effect of nitrite nitrogen concentration on denitrification rate 本発明の廃水処理装置の一態様を示す全体構成図Overall configuration diagram showing one embodiment of the wastewater treatment apparatus of the present invention 本発明の廃水処理装置の別の態様を示す全体構成図The whole block diagram which shows another aspect of the waste-water-treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 本発明の廃水処理装置の更に別の態様を示す全体構成図Whole block diagram which shows another aspect of the waste water treatment apparatus of this invention 従来例の廃水処理装置の一態様を示す全体構成図Overall configuration diagram showing one aspect of a conventional wastewater treatment apparatus

符号の説明Explanation of symbols

10…廃水処理装置、12…亜硝酸生成槽、14…嫌気性アンモニア酸化槽、16…再曝気槽、18…固液分離槽、20…原水導入管、22…ステップ流入本管、22A,22B,22C…枝管、24…充填材、26…分配器、28…包括担体、30…窒素ガス吹き込み管、32…減圧用配管、34…真空ポンプ   DESCRIPTION OF SYMBOLS 10 ... Waste water treatment apparatus, 12 ... Nitrite production tank, 14 ... Anaerobic ammonia oxidation tank, 16 ... Re-aeration tank, 18 ... Solid-liquid separation tank, 20 ... Raw water introduction pipe, 22 ... Step inflow main pipe, 22A, 22B , 22C ... branch pipe, 24 ... filler, 26 ... distributor, 28 ... inclusion carrier, 30 ... nitrogen gas blowing pipe, 32 ... decompression pipe, 34 ... vacuum pump

Claims (16)

アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化法であって、
前記同時脱窒する処理の流れにおいて、前記アンモニアに関しては上流側が高濃度で下流側が低濃度な濃度勾配が形成されるようにし、前記亜硝酸に関しては前記上流側から前記下流側にかけて均一な濃度になるようにすることを特徴とする嫌気性アンモニア酸化法。
An anaerobic ammonia oxidation method in which ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria,
In the process flow for simultaneous denitrification, a concentration gradient with a high concentration on the upstream side and a low concentration on the downstream side is formed for the ammonia, and a uniform concentration is obtained for the nitrous acid from the upstream side to the downstream side. An anaerobic ammonia oxidation method characterized by:
前記上流側から下流側にかけて亜硝酸の亜硝酸性窒素濃度を80mg/L以下にすることを特徴とする請求項1の嫌気性アンモニア酸化法。   The anaerobic ammonia oxidation method according to claim 1, wherein the nitrite nitrogen concentration of nitrous acid is 80 mg / L or less from the upstream side to the downstream side. 前記下流側においてアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする請求項1又は2の嫌気性アンモニア酸化法。   The anaerobic ammonia oxidation method according to claim 1 or 2, wherein a molar ratio of ammonia and nitrous acid is 1.0: 1.32 on the downstream side. アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、
前記アンモニア性廃水を前記亜硝酸生成槽で処理してアンモニアと亜硝酸とが混在する混在水を形成し、該混在水を前記嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させることを特徴とする廃水処理方法。
In a wastewater treatment method for treating ammonia wastewater using a nitrous acid production tank that produces nitrous acid from ammonia and an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria,
The ammonia waste water is treated in the nitrous acid generation tank to form mixed water in which ammonia and nitrous acid are mixed, and the mixed water is stepped from an upstream position to a plurality of downstream positions in the anaerobic ammonia oxidation tank. A wastewater treatment method, characterized by being caused to flow.
アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、
前記嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成すると共に、前記アンモニア性廃水を前記亜硝酸生成槽で処理してアンモニアと亜硝酸とが混在する混在水を形成し、該混在水を前記複数段の槽にステップ流入させることを特徴とする廃水処理方法。
In a wastewater treatment method for treating ammonia wastewater using a nitrous acid production tank that produces nitrous acid from ammonia and an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria,
The anaerobic ammonia oxidation tank comprises a plurality of tanks arranged in series, and the ammonia waste water is treated in the nitrous acid generation tank to form mixed water in which ammonia and nitrous acid are mixed, A wastewater treatment method, wherein mixed water is stepped into the plurality of tanks.
前記混在水の亜硝酸性窒素濃度を80mg/L以下にすることを特徴とする請求項4又は5の廃水処理方法。   The wastewater treatment method according to claim 4 or 5, wherein the nitrite nitrogen concentration of the mixed water is 80 mg / L or less. 前記混在水のアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする請求項4〜6の何れか1の廃水処理方法。   The wastewater treatment method according to any one of claims 4 to 6, wherein the molar ratio of ammonia and nitrous acid in the mixed water is 1.0: 1.32. アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、
前記アンモニア性廃水の一部を前記亜硝酸生成槽で処理して亜硝酸性処理水を形成し、該亜硝酸性処理水を前記嫌気性アンモニア酸化槽内の上流位置から下流位置の複数位置にステップ流入させる一方、前記アンモニア性廃水の残りを前記嫌気性アンモニア酸化槽にピストンフロー流入させることを特徴とする廃水処理方法。
In a wastewater treatment method for treating ammonia wastewater using a nitrous acid production tank that produces nitrous acid from ammonia and an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria,
A part of the ammonia waste water is treated in the nitrous acid generation tank to form nitrite treated water, and the nitrite treated water is moved from an upstream position to a plurality of downstream positions in the anaerobic ammonia oxidation tank. A wastewater treatment method characterized by causing the remaining of the ammoniacal wastewater to flow into a piston flow into the anaerobic ammonia oxidation tank while stepping in.
アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、
前記嫌気性アンモニア酸化槽を直列に配置された複数段の槽で構成すると共に、前記アンモニア性廃水の一部を前記亜硝酸生成槽で処理して亜硝酸性処理水を形成し、該亜硝酸性処理水を前記複数段の槽にステップ流入させる一方、前記アンモニア性廃水の残りを前記複数段の槽にピストンフロー流入させることを特徴とする廃水処理方法。
In a wastewater treatment method for treating ammonia wastewater using a nitrous acid production tank that produces nitrous acid from ammonia and an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria,
The anaerobic ammonia oxidation tank is composed of a plurality of tanks arranged in series, and a part of the ammonia waste water is treated in the nitrous acid production tank to form nitrite treated water, the nitrous acid The wastewater treatment method is characterized in that a stepwise flow of effluent water into the plurality of tanks and a piston flow of the remaining ammoniacal wastewater into the plurality of tanks.
前記亜硝酸性処理水の亜硝酸性窒素濃度を80mg/L以下にすることを特徴とする請求項8又は9の廃水処理方法。   The wastewater treatment method according to claim 8 or 9, wherein the concentration of nitrite nitrogen in the nitrite treatment water is 80 mg / L or less. 前記嫌気性アンモニア酸化槽の前記下流位置におけるアンモニア濃度と亜硝酸濃度のモル比、又は前記複数段の最後の槽におけるアンモニア濃度と亜硝酸濃度のモル比が1.0:1.32になるようにすることを特徴とする請求項8〜10の何れか1の廃水処理方法。   The molar ratio of ammonia concentration and nitrous acid concentration at the downstream position of the anaerobic ammonia oxidation tank, or the molar ratio of ammonia concentration and nitrous acid concentration in the last tank of the plurality of stages is 1.0: 1.32. The wastewater treatment method according to any one of claims 8 to 10, wherein: アンモニアから亜硝酸を生成する亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを用いてアンモニア性廃水を処理する廃水処理方法において、
前記亜硝酸生成槽と前記嫌気性アンモニア酸化槽の少なくとも一方を多段に構成して、前記アンモニア性廃水を多段処理することを特徴とする廃水処理方法。
In a wastewater treatment method of treating ammonia wastewater using a nitrous acid production tank that produces nitrous acid from ammonia and an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria,
A wastewater treatment method characterized in that at least one of the nitrous acid generation tank and the anaerobic ammonia oxidation tank is configured in multiple stages to treat the ammoniacal wastewater in multiple stages.
前記亜硝酸生成槽と前記嫌気性アンモニア酸化槽とが交互に配置されることを特徴とする請求項12の廃水処理方法。   The wastewater treatment method according to claim 12, wherein the nitrous acid production tank and the anaerobic ammonia oxidation tank are alternately arranged. 前記多段処理における各嫌気性アンモニア酸化槽内の亜硝酸性窒素濃度を80mg/L以下にすることを特徴とする請求項12又は13の廃水処理方法。   The wastewater treatment method according to claim 12 or 13, wherein the concentration of nitrite nitrogen in each anaerobic ammonia oxidation tank in the multistage treatment is 80 mg / L or less. 前記多段処理における最後の嫌気性アンモニア酸化槽内におけるアンモニアと亜硝酸のモル比が1.0:1.32になるようにすることを特徴とする請求項12〜14の何れか1の廃水処理方法。   The wastewater treatment according to any one of claims 12 to 14, wherein a molar ratio of ammonia and nitrous acid in the final anaerobic ammonia oxidation tank in the multistage treatment is 1.0: 1.32. Method. 請求項4〜15の何れか1の廃水処理方法を実施するように装置構成されていることを特徴とする廃水処理装置。   A wastewater treatment apparatus characterized in that the apparatus is configured to carry out the wastewater treatment method according to any one of claims 4 to 15.
JP2005064439A 2004-03-30 2005-03-08 Anaerobic ammonia oxidation method and wastewater treatment method Expired - Fee Related JP4811702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064439A JP4811702B2 (en) 2004-03-30 2005-03-08 Anaerobic ammonia oxidation method and wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004100748 2004-03-30
JP2004100748 2004-03-30
JP2005064439A JP4811702B2 (en) 2004-03-30 2005-03-08 Anaerobic ammonia oxidation method and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2005313152A true JP2005313152A (en) 2005-11-10
JP4811702B2 JP4811702B2 (en) 2011-11-09

Family

ID=35441137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064439A Expired - Fee Related JP4811702B2 (en) 2004-03-30 2005-03-08 Anaerobic ammonia oxidation method and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4811702B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
JP2018187577A (en) * 2017-05-09 2018-11-29 水ing株式会社 Method for setting up nitrogen-containing wastewater treatment system
US10207942B2 (en) 2013-12-24 2019-02-19 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pretreatment device
CN112010424A (en) * 2019-05-31 2020-12-01 中国石油天然气集团有限公司 Partial nitrosation reaction regulation and control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2003033793A (en) * 2001-07-23 2003-02-04 Kurita Water Ind Ltd Biological denitration equipment and biological denitration method
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2003033793A (en) * 2001-07-23 2003-02-04 Kurita Water Ind Ltd Biological denitration equipment and biological denitration method
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2008149266A (en) * 2006-12-18 2008-07-03 Maezawa Ind Inc Wastewater treatment apparatus
US10207942B2 (en) 2013-12-24 2019-02-19 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pretreatment device
JP2018187577A (en) * 2017-05-09 2018-11-29 水ing株式会社 Method for setting up nitrogen-containing wastewater treatment system
CN112010424A (en) * 2019-05-31 2020-12-01 中国石油天然气集团有限公司 Partial nitrosation reaction regulation and control method and device
CN112010424B (en) * 2019-05-31 2023-02-28 中国石油天然气集团有限公司 Partial nitrosation reaction regulation and control method and device

Also Published As

Publication number Publication date
JP4811702B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater
Cassidy et al. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge
Wei et al. Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system–a pilot-scale study
JP5961169B2 (en) Optimized nutrient removal from wastewater
EP1607374A1 (en) Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
JP5098183B2 (en) Waste water treatment method and apparatus
Belli et al. Evaluating the effect of air flow rate on hybrid and conventional membrane bioreactors: Implications on performance, microbial activity and membrane fouling
EP4304993A1 (en) Method and apparatus for nutrient removal using anoxic biofilms
JP4811702B2 (en) Anaerobic ammonia oxidation method and wastewater treatment method
Lim et al. Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP4678577B2 (en) Wastewater treatment system
CN111018101B (en) Membrane biofilm culture domestication process and membrane biofilm reaction device for treating high-salinity wastewater
CN110550739B (en) Aerobic and anaerobic VBBR (viable but anaerobic) series coupling device and sewage treatment method
JP3907004B2 (en) Wastewater treatment method and apparatus
Rodríguez-Hernández et al. Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment
CN101580331B (en) Tubificidae-microorganism symbiotic system muddy water degradation continuous flow reactor and application thereof
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
Yerushalmi et al. Performance evaluation of the BioCAST technology: a new multi-zone wastewater treatment system
RU2751356C1 (en) Method for removing nitrogen-containing compounds from wastewater
Cong et al. Vertical baffled reactor promoting aerobic sludge concentration for effective remediating unstable–load domestic wastewater: Performance, microbial properties and mechanism
Zhukova et al. Biotechnology of the food industry wastewater treatment from nitrogen compounds
RU2732028C2 (en) Method of treating waste water from organic matter, nitrogen and phosphorus
JP3858271B2 (en) Wastewater treatment method and apparatus
Abdelaziz et al. Effect of Increasing Organic Loading Rate on the Performance of Conventional and Modified Sequencing Batch Reactors.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees