JP4556532B2 - Method and apparatus for treating nitric acid waste liquid - Google Patents

Method and apparatus for treating nitric acid waste liquid Download PDF

Info

Publication number
JP4556532B2
JP4556532B2 JP2004221354A JP2004221354A JP4556532B2 JP 4556532 B2 JP4556532 B2 JP 4556532B2 JP 2004221354 A JP2004221354 A JP 2004221354A JP 2004221354 A JP2004221354 A JP 2004221354A JP 4556532 B2 JP4556532 B2 JP 4556532B2
Authority
JP
Japan
Prior art keywords
nitric acid
waste liquid
acid waste
anaerobic tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004221354A
Other languages
Japanese (ja)
Other versions
JP2006035154A (en
Inventor
悦二 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004221354A priority Critical patent/JP4556532B2/en
Publication of JP2006035154A publication Critical patent/JP2006035154A/en
Application granted granted Critical
Publication of JP4556532B2 publication Critical patent/JP4556532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、半導体製造工場等から排出される硝酸廃液を分解処理する方法およびその装置に関するものである。   The present invention relates to a method and apparatus for decomposing nitric acid waste liquid discharged from a semiconductor manufacturing factory or the like.

微生物処理による生分解法として、従来の廃水処理で脱窒素反応を行うには、嫌気性、好気性環境を形成した槽を個別に設け、さらに嫌気槽内に、栄養塩であるメタノールに代表される脱窒素反応を行う脱窒菌の水素供与体を連続的に添加する方法が広く用いられていた。   As a biodegradation method by microbial treatment, in order to carry out denitrogenation reaction by conventional wastewater treatment, a tank in which an anaerobic and aerobic environment is formed is provided separately, and the anaerobic tank is represented by methanol, which is a nutrient salt. A method of continuously adding a hydrogen donor of a denitrifying bacterium for performing a denitrification reaction has been widely used.

この方法においては、嫌気性、好気性環境を形成した槽を個別に設けることから、残留メタノールによる生物化学的酸素要求量(以下、BODと称す。)の上昇防止のために好気性環境をつくる曝気設備が必要となり、装置の大型化、複雑化、運転コスト高をまねき、さらに、処理効率が悪くしかも維持管理が非常に難しくなるという課題があった。   In this method, since an anaerobic and aerobic environment tank is separately provided, an aerobic environment is created to prevent an increase in biochemical oxygen demand (hereinafter referred to as BOD) due to residual methanol. Aeration equipment is required, resulting in an increase in size and complexity of the apparatus and high operating costs. Further, there is a problem that processing efficiency is low and maintenance is very difficult.

この課題の解決手段として、特許第3298562号公報に示されたものがある。   As a means for solving this problem, there is one disclosed in Japanese Patent No. 3298562.

すなわち、炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした脱窒素促進剤に対して、セルロース、ポリビニルアルコール、またはポリエチレングリコールを主成分とする坦持体を坦持させ、これを粒子状、板状または棒状に成形して、嫌気性環境下である嫌気槽内に装着する、というものである。(例えば、特許文献1参照)
特許第3298562号公報
That is, a carrier mainly composed of cellulose, polyvinyl alcohol, or polyethylene glycol is supported on a denitrification accelerator mainly composed of a linear saturated monocarboxylic acid having 6 or more carbon atoms. Is formed into particles, plates, or rods and mounted in an anaerobic tank in an anaerobic environment. (For example, see Patent Document 1)
Japanese Patent No. 3298562

しかしながら、前記した炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした脱窒素促進剤を用いた方法では、直鎖状飽和モノカルボン酸を坦持体に坦持させ、これを粒子状、板状または棒状に成形するが、実態としては前記坦持体にステアリン酸、リン、水素等の機質成分が含有されている。   However, in the method using the denitrification accelerator mainly composed of a linear saturated monocarboxylic acid having 6 or more carbon atoms, the linear saturated monocarboxylic acid is supported on a carrier, It is formed into a particle shape, a plate shape or a rod shape, but as a matter of fact, an organic component such as stearic acid, phosphorus or hydrogen is contained in the carrier.

その結果、前記機質成分が嫌気槽内で被処理廃液である硝酸廃液中に溶解することによってBODの上昇をまねき、そのままでは処理水として放流することができないという課題を有していた。   As a result, the organic component is dissolved in the nitric acid waste liquid that is the waste liquid to be treated in the anaerobic tank, which leads to an increase in BOD and cannot be discharged as treated water as it is.

さらにBODの上昇防止のために好気性環境をつくる曝気設備が必要となり、装置の大型化、複雑化、運転コスト高をまねき、維持管理も難しくなるという課題を有していた。   In addition, aeration equipment that creates an aerobic environment is required to prevent an increase in BOD, resulting in increased size and complexity of the apparatus, high operating costs, and difficult maintenance.

本発明は、前記従来の課題を解決するもので、好気性環境をつくる曝気設備を備えた好気槽を必要とすることなく、単一の嫌気槽内で硝酸廃液の脱窒素反応と、嫌気性微生物の活性化によるBODの上昇防止を同時に行うとともに、装置の小型化、運転コストを抑制した硝酸廃液の処理方法および処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and does not require an aerobic tank equipped with aeration equipment for creating an aerobic environment, and the denitrification reaction of nitric acid waste liquid and anaerobic reaction in a single anaerobic tank. An object of the present invention is to provide a nitric acid waste liquid treatment method and treatment apparatus that simultaneously prevent the increase in BOD due to the activation of sex microorganisms, reduce the size of the apparatus, and suppress the operation cost.

上記従来の課題を解決するために本発明は、硝酸廃液を流量調整槽から嫌気槽に一定量供給し、前記嫌気槽内に貯留した硝酸廃液に循環流を形成させ、前記硝酸廃液の循環流中に炭素数が6以上のカルボン酸を主成分とした固体栄養塩を供給して脱窒素反応を促進するとともに、前記硝酸廃液の循環流中に嫌気性微生物を担持させた濾過部材を位置させて、前記固体栄養塩に含有する機質成分を分解し、前記濾過部材から処理水を吸引する硝酸廃液の処理方法、処理装置としたものである。   In order to solve the above-described conventional problems, the present invention supplies a certain amount of nitric acid waste liquid from the flow rate adjustment tank to the anaerobic tank, forms a circulation flow in the nitric acid waste liquid stored in the anaerobic tank, and circulates the nitric acid waste liquid. A solid nutrient salt mainly composed of a carboxylic acid having 6 or more carbon atoms is supplied to promote the denitrification reaction, and a filtration member carrying anaerobic microorganisms is positioned in the circulating flow of the nitric acid waste liquid. Thus, a nitric acid waste liquid treatment method and treatment apparatus for decomposing an organic component contained in the solid nutrient salt and sucking treated water from the filter member are provided.

以上のように本発明の硝酸廃液の処理方法および処理装置によれば、好気性環境をつくる曝気設備を備えた好気槽を必要とすることなく、単一の嫌気槽内で硝酸廃液の脱窒素反応と、嫌気性微生物の活性化によるBODの上昇防止を同時に行うとともに、装置の小型化、および運転コストを抑制することができる。   As described above, according to the nitric acid waste liquid treatment method and treatment apparatus of the present invention, the nitric acid waste liquid can be removed in a single anaerobic tank without the need for an aerobic tank equipped with an aeration facility that creates an aerobic environment. The nitrogen reaction and the prevention of BOD increase due to the activation of anaerobic microorganisms can be simultaneously performed, and the apparatus can be downsized and the operating cost can be suppressed.

第1の発明は、硝酸廃液を流量調整槽から嫌気槽に一定量供給し、前記嫌気槽内に貯留した硝酸廃液に循環流を形成させ、前記硝酸廃液の循環流中に炭素数が6以上のカルボン酸を主成分とした固体栄養塩を供給して脱窒素反応を促進するとともに、前記硝酸廃液の循環流中に嫌気性微生物を担持させた濾過部材を位置させて、前記固体栄養塩に含有する機質成分を分解し、前記濾過部材から処理水を吸引する硝酸廃液の処理方法としたものである。   In the first invention, a certain amount of nitric acid waste liquid is supplied from the flow rate adjustment tank to the anaerobic tank, a circulation flow is formed in the nitric acid waste liquid stored in the anaerobic tank, and the number of carbon atoms in the circulation flow of the nitric acid waste liquid is 6 or more. A solid nutrient salt mainly composed of carboxylic acid is promoted to promote a denitrification reaction, and a filtration member carrying anaerobic microorganisms is positioned in the circulation flow of the nitric acid waste liquid, This is a method for treating a nitric acid waste liquid by decomposing an organic component contained therein and sucking treated water from the filter member.

これによって、好気性環境をつくる曝気設備を備えた好気槽を必要とすることなく、単一の嫌気槽内で硝酸廃液の脱窒素反応と、嫌気性微生物の活性化によるBODの上昇防止を同時に行うとともに、装置の小型化、運転コストを抑制することができる。   This eliminates the need for an aerobic tank equipped with an aerobic environment that creates an aerobic environment, and prevents a rise in BOD due to denitrification of nitric acid waste liquid and activation of anaerobic microorganisms in a single anaerobic tank. At the same time, it is possible to reduce the size and operating cost of the apparatus.

第2の発明は、第1の発明の硝酸廃液の処理方法において、嫌気槽内の中央部に硝酸廃液の下降流域部を形成させ、前記下降流域部の外側に上昇流域部を形成させるとともに、前記硝酸廃液の上昇流域部に濾過部材を位置させたことを特徴とする硝酸廃液の処理方法としたものである。   According to a second invention, in the method for treating nitric acid waste liquid of the first invention, a downward flow area portion of the nitric acid waste liquid is formed in a central portion in the anaerobic tank, and an upward flow area portion is formed outside the downward flow area portion. A method for treating a nitric acid waste liquid is characterized in that a filtration member is positioned in an upstream region of the nitric acid waste liquid.

これによって、濾過部材表面に沿って流れる硝酸廃液により、濾過部材表面へ固形成分などが堆積し難く、また、ケーク層なども形成され難い。   Accordingly, the nitric acid waste liquid flowing along the surface of the filter member hardly deposits a solid component or the like on the surface of the filter member, and a cake layer or the like is not easily formed.

また、ケーク層などが形成されたとしても、ケーク層などは圧縮され難く、上流部への処理水の流速も速いため、水が流れる道筋ができる。このため、目詰まりが発生し難く、濾過性能の低下を抑制できる。   Further, even if a cake layer or the like is formed, the cake layer or the like is not easily compressed, and the flow rate of treated water to the upstream portion is high, so that a path for water to flow is formed. For this reason, clogging hardly occurs, and a decrease in filtration performance can be suppressed.

第3の発明は、第2の発明の硝酸廃液の処理方法において、流量調整槽内の硝酸廃液を嫌気槽内の下降流域部に供給することを特徴とする硝酸廃液の処理方法としたものである。   The third invention is a nitric acid waste liquid treatment method according to the second invention, characterized in that the nitric acid waste liquid in the flow rate adjusting tank is supplied to the downward flow area in the anaerobic tank. is there.

これによって、新たに供給された硝酸廃液は下降流域部で、すでに循環している硝酸廃液と均一に混合して上昇流域部に流れるので、処理状況の異なる硝酸廃液の存在をなくすことができる。   As a result, the newly supplied nitric acid waste liquid is uniformly mixed with the already circulating nitric acid waste liquid in the downflow area and flows into the upflow area, so that it is possible to eliminate the presence of nitric acid waste liquids having different treatment conditions.

第4の発明は、第2または3の発明の硝酸廃液の処理方法において、固体栄養塩を嫌気槽内の下降流域部に供給することを特徴とする硝酸廃液の処理方法としたものである。   According to a fourth aspect of the present invention, there is provided a method for treating nitric acid waste liquid according to the method for treating nitric acid waste liquid of the second or third aspect of the invention, characterized in that solid nutrient salts are supplied to a downward flow area in an anaerobic tank.

これによって、添加された複数の固体栄養塩を硝酸廃液の循環流によって硝酸廃液中の一部に滞留することなく均一に拡散させるので、カルボン酸を硝酸廃液中に均質に溶解させることができる。   As a result, the added solid nutrient salts are uniformly diffused by the circulation flow of the nitric acid waste liquid without being partly retained in the nitric acid waste liquid, so that the carboxylic acid can be uniformly dissolved in the nitric acid waste liquid.

第5の発明は、第1〜4のいずれかの発明の硝酸廃液の処理方法において、嫌気槽内の硝酸廃液の酸化還元電位の検出値により、流量調整槽内から嫌気槽内への硝酸廃液の供給量または濾過部材を通過した処理水の吸引量を調節するようにしたことを特徴とする硝酸廃液の処理方法としたものである。   According to a fifth invention, in the method for treating nitric acid waste liquid according to any one of the first to fourth inventions, the nitric acid waste liquid from the flow rate adjusting tank to the anaerobic tank is detected based on the detected value of the oxidation-reduction potential of the nitric acid waste liquid in the anaerobic tank. The nitric acid waste liquid treatment method is characterized in that the supply amount of water or the suction amount of treated water that has passed through the filter member is adjusted.

これによって、pH値を中性に維持して処理水を放流することができるとともに、濾過部材に担持させた嫌気性微生物を活性化させ、機質成分(有機物)の分解を促進することができる。   As a result, it is possible to discharge the treated water while maintaining the pH value to be neutral, and to activate the anaerobic microorganisms supported on the filter member and promote the decomposition of the organic component (organic matter). .

第6の発明は、第1〜4のいずれかの発明の硝酸廃液の処理方法において、嫌気槽内の硝酸廃液の溶存酸素濃度の検出値により、流量調整槽から嫌気槽への硝酸廃液の供給量を調節するようにしたことを特徴とする硝酸廃液の処理方法したものである。   According to a sixth invention, in the method for treating nitric acid waste liquid according to any one of the first to fourth inventions, supply of the nitric acid waste liquid from the flow rate adjusting tank to the anaerobic tank based on a detected value of dissolved oxygen concentration in the nitric acid waste liquid in the anaerobic tank This is a method for treating nitric acid waste liquid, characterized in that the amount is adjusted.

これによって、嫌気槽内の硝酸廃液を嫌気条件に維持し、硝酸廃液の脱窒素反応および濾過部材に担持させた嫌気性微生物を活性化させ、機質成分(有機物)の分解を促進することができる。   As a result, the nitric acid waste liquid in the anaerobic tank is maintained under anaerobic conditions, the denitrification reaction of the nitric acid waste liquid and the anaerobic microorganisms supported on the filter member are activated, and the decomposition of the organic component (organic matter) is promoted. it can.

第7の発明は、硝酸廃液を貯留する流量調整槽と、前記流量調整槽内の硝酸廃液を嫌気槽に供給する供給手段と、前記嫌気槽内に貯留した硝酸廃液に循環流を形成させる撹拌手段と、前記硝酸廃液の循環流中に供給し脱窒素反応を促進させる炭素数が6以上のカルボン酸を主成分とした固体栄養塩と、前記硝酸廃液の循環流中に位置させ、固体栄養塩に含有した機質成分を分解する嫌気性微生物を担持させた濾過部材と、前記濾過部材を通過した処理水を吸引する吸引手段を備えたことを特徴とする硝酸廃液の処理装置である。   The seventh invention is a flow rate adjusting tank for storing nitric acid waste liquid, a supply means for supplying the nitric acid waste liquid in the flow rate adjusting tank to the anaerobic tank, and stirring for forming a circulation flow in the nitric acid waste liquid stored in the anaerobic tank. Means, a solid nutrient mainly composed of a carboxylic acid having 6 or more carbon atoms, which is fed into the circulating stream of the nitric acid waste liquid and promotes the denitrification reaction, and is located in the circulating stream of the nitric acid waste liquid, An apparatus for treating nitric acid waste liquid, comprising: a filtration member carrying anaerobic microorganisms that decompose an organic component contained in a salt; and suction means for sucking treated water that has passed through the filtration member.

これによって、好気性環境をつくる曝気設備を備えた好気槽を必要とすることなく、単一の嫌気槽内で硝酸廃液の脱窒素反応と、嫌気性微生物の活性化によるBODの上昇防止を同時に行うとともに、装置の小型化、運転コストを抑制することができる。   This eliminates the need for an aerobic tank equipped with an aerobic environment that creates an aerobic environment, and prevents a rise in BOD due to denitrification of nitric acid waste liquid and activation of anaerobic microorganisms in a single anaerobic tank. At the same time, it is possible to reduce the size and operating cost of the apparatus.

第8の発明は、第7の発明の硝酸廃液の処理装置において、嫌気槽内の中央部に硝酸廃液の下降流域部を形成し、前記下降流域部の外側に上昇流域部を形成させる撹拌手段を備え、前記硝酸廃液の上昇流域部に濾過部材を位置させたことを特徴とする硝酸廃液の処理装置としたものである。   8th invention is the processing apparatus of the nitric acid waste liquid of 7th invention, The stirring means which forms the downflow area part of nitric acid waste liquid in the center part in an anaerobic tank, and forms an upflow area part outside the said downflow area part The nitric acid waste liquid treatment apparatus is characterized in that a filtration member is positioned in the upward flow area of the nitric acid waste liquid.

これによって、濾過部材表面に沿って流れる硝酸廃液により、濾過部材表面へ固形成分などが堆積し難く、また、ケーク層などが形成され難い。また、ケーク層などが形成されたとしても、ケーク層などは圧縮され難く、上流部への処理水の流速も速いため、水が流れる道筋ができる。このため、目詰まりが発生し難く、濾過性能の低下を抑制できる。   Accordingly, the nitric acid waste liquid flowing along the surface of the filter member hardly deposits a solid component or the like on the surface of the filter member, and a cake layer or the like is not easily formed. Further, even if a cake layer or the like is formed, the cake layer or the like is not easily compressed, and the flow rate of treated water to the upstream portion is high, so that a path for water to flow is formed. For this reason, clogging hardly occurs, and a decrease in filtration performance can be suppressed.

第9の発明は、第8の発明の硝酸廃液の処理装置において、流量調整槽内の硝酸廃液を嫌気槽内の下降流域部に供給する供給管を位置させたことを特徴とする硝酸廃液の処理装置としたものである。   According to a ninth aspect of the invention, there is provided a nitric acid waste liquid treatment apparatus according to the eighth aspect, wherein a supply pipe for supplying the nitric acid waste liquid in the flow rate adjusting tank to the downflow region in the anaerobic tank is positioned. This is a processing device.

これによって、新たに供給された硝酸廃液は下降流域部で、すでに循環している硝酸廃液と均一に混合して上昇流域部に流れるので、処理状況の異なる硝酸廃液の存在をなくすことができる。   As a result, the newly supplied nitric acid waste liquid is uniformly mixed with the already circulating nitric acid waste liquid in the downflow area and flows into the upflow area, so that it is possible to eliminate the presence of nitric acid waste liquids having different treatment conditions.

第10の発明は、第7〜9の発明の硝酸廃液の処理装置において、濾過部材を振動させる加振手段を備えた硝酸廃液の処理装置としたものである。   According to a tenth aspect of the invention, there is provided a nitric acid waste liquid treatment apparatus according to the seventh to ninth aspects of the invention, which is provided with a vibrating means for vibrating the filter member.

これによって、濾過部材の表面への固形成分などが堆積するケーク層の形成を更に抑制し、目詰まりが発生し難く、濾過性能の低下を抑制することができる。   As a result, the formation of a cake layer in which solid components and the like are deposited on the surface of the filtration member is further suppressed, clogging is hardly generated, and a decrease in filtration performance can be suppressed.

第11の発明は、第7〜10の発明の硝酸廃液の処理装置において、嫌気槽内の硝酸廃液の酸化還元電位の検出手段または溶存酸素濃度の検出手段を備えたことを特徴とする硝酸廃液の処理装置としたものである。   An eleventh aspect of the invention is a nitric acid waste liquid treatment apparatus according to the seventh to tenth aspects of the invention, comprising a means for detecting the oxidation-reduction potential of a nitric acid waste liquid in an anaerobic tank or a means for detecting dissolved oxygen concentration. This is a processing apparatus.

これによって、濾過部材に担持させた嫌気性微生物を活性化させ、機質成分(有機物)の分解を促進することができる。   Thereby, the anaerobic microorganisms carried on the filter member can be activated, and the decomposition of the organic component (organic matter) can be promoted.

本発明の一実施の形態の硝酸廃液の処理装置を図1、図2を参照しながら説明する。   An apparatus for treating nitric acid waste liquid according to an embodiment of the present invention will be described with reference to FIGS.

図1は硝酸廃液の処理装置の構成図、図2は図1中のA−A線における嫌気槽の断面図である。   FIG. 1 is a block diagram of a nitric acid waste liquid treatment apparatus, and FIG. 2 is a cross-sectional view of an anaerobic tank taken along line AA in FIG.

図1、図2において、流量調整槽1に供給管2、弁3を介して硝酸廃液4を一定量貯留する。流量調整槽1に貯留する硝酸廃液4を流動化させて腐敗を防止するため流量調整槽1の下部に散気管5を位置させ、散気管5に空気ポンプ6、供給管7を介して空気を供給する。また、流量調整槽1の底部に連通して排出管8、弁9を設け、メンテナンス時等に流量調整槽1に貯留する硝酸廃液を排出する。   1 and 2, a fixed amount of nitric acid waste liquid 4 is stored in a flow rate adjusting tank 1 through a supply pipe 2 and a valve 3. In order to fluidize the nitric acid waste liquid 4 stored in the flow rate adjusting tank 1 and prevent decay, an aeration pipe 5 is positioned at the lower part of the flow rate adjusting tank 1, and air is supplied to the aeration pipe 5 via an air pump 6 and a supply pipe 7. Supply. Further, a discharge pipe 8 and a valve 9 are provided in communication with the bottom of the flow rate adjusting tank 1 to discharge the nitric acid waste liquid stored in the flow rate adjusting tank 1 during maintenance or the like.

流量調整槽1に貯留する硝酸廃液4はポンプ10(供給手段)で吸引し、導入管11を介して嫌気槽12に供給する。嫌気槽12に硝酸廃液13を一定量貯留する。嫌気槽12の略中央部に仕切筒14を位置させ、この仕切筒14の内部に硝酸廃液13の下降流域部15を形成させるための撹拌手段16を設けている。   The nitric acid waste liquid 4 stored in the flow rate adjusting tank 1 is sucked by a pump 10 (supply means) and supplied to the anaerobic tank 12 through the introduction pipe 11. A certain amount of nitric acid waste liquid 13 is stored in the anaerobic tank 12. A partition tube 14 is positioned substantially at the center of the anaerobic tank 12, and stirring means 16 is provided inside the partition tube 14 to form a downward flow region 15 of the nitric acid waste liquid 13.

撹拌手段16はモータ17の駆動による回転羽根18により構成しているが、ポンプを用いても良く、図の構成に限定されるものではない。   The stirring means 16 is constituted by a rotary blade 18 driven by a motor 17, but a pump may be used and is not limited to the configuration shown in the figure.

流量調整槽1からの硝酸廃液4はポンプ10で吸引し、導入管11を介して前記下降流域部15に供給する構成となっている。また、硝酸廃液13に付与する固体栄養塩19を栄養塩供給部20から前記下降流域部15に供給する構成となっている。   The nitric acid waste liquid 4 from the flow rate adjusting tank 1 is sucked by a pump 10 and supplied to the descending flow area 15 through an introduction pipe 11. In addition, the solid nutrient salt 19 to be added to the nitric acid waste liquid 13 is supplied from the nutrient salt supply unit 20 to the downflow region 15.

また、仕切筒14の下端部と嫌気槽12の底部との一定距離の隙間から、仕切筒14内の硝酸廃液13が下降流域部15から仕切筒14の外側に流れ、仕切筒14の外側に硝酸廃液13の上昇流域部21を形成させる。   Further, the nitric acid waste liquid 13 in the partition tube 14 flows from the downflow region 15 to the outside of the partition tube 14 from the lower end portion of the partition tube 14 and the bottom portion of the anaerobic tank 12, and outside the partition tube 14. An upward flow area 21 of the nitric acid waste liquid 13 is formed.

さらに上昇流域部18から仕切筒14の上端を経て再び下降流域部15に硝酸廃液13を流動させる循環流を形成させるものである。   Furthermore, a circulating flow is formed in which the nitric acid waste liquid 13 flows from the upflow region 18 to the downflow region 15 again through the upper end of the partition tube 14.

また、前記硝酸廃液13の上昇流域部21に嫌気性微生物を有する複数の濾過部材22を位置させているので、濾過部材22には下部材23、上部材24を有し濾過モジュール25を構成している。   In addition, since a plurality of filtration members 22 having anaerobic microorganisms are positioned in the upward flow area 21 of the nitric acid waste liquid 13, the filtration member 22 includes a lower member 23 and an upper member 24 to constitute a filtration module 25. ing.

複数の濾過モジュール25の上端から濾過部材22を通過した処理水を吸引管26、ポンプ27(吸引手段)を介して吸引し放流するものである。また濾過モジュール25の下端部には、濾過モジュール25自体を微振動させる加振手段28を設けている。   The treated water that has passed through the filtration member 22 from the upper ends of the plurality of filtration modules 25 is sucked and discharged through the suction pipe 26 and the pump 27 (suction means). A vibration means 28 is provided at the lower end of the filtration module 25 to slightly vibrate the filtration module 25 itself.

さらに硝酸廃液13の上昇流域部21に、硝酸廃液13の酸化還元電位検出手段29、溶存酸素量検出手段30を設けている。   Further, an oxidation-reduction potential detecting means 29 and a dissolved oxygen amount detecting means 30 for the nitric acid waste liquid 13 are provided in the rising flow area 21 of the nitric acid waste liquid 13.

そして嫌気槽12の底部に連通して排出管31、弁32を設け、メンテナンス時等に嫌気槽12に貯留する硝酸廃液を排出する。   A discharge pipe 31 and a valve 32 are provided in communication with the bottom of the anaerobic tank 12 to discharge the nitric acid waste liquid stored in the anaerobic tank 12 during maintenance.

なお、濾過部材22としては、中空糸膜、精密ろ過膜(MF膜)、超微細なメッシュ(網)を使用するダイナミック膜、ひも状繊維集合体等を用いることができる。   As the filtration member 22, a hollow fiber membrane, a microfiltration membrane (MF membrane), a dynamic membrane using an ultra fine mesh (net), a string-like fiber aggregate, or the like can be used.

次に本発明の実施の一形態についての基本的な動作、作用を説明する。   Next, the basic operation and action of the embodiment of the present invention will be described.

図中の矢印は硝酸廃液13の流れを示す。   The arrows in the figure indicate the flow of the nitric acid waste liquid 13.

流量調整槽1に貯留する硝酸廃液4をポンプ10で吸引し、導入管11を介して嫌気槽12に一定量貯留し、撹拌手段16を駆動して仕切筒14の内部に硝酸廃液13の下降流域部15を形成させる。   The nitric acid waste liquid 4 stored in the flow rate adjusting tank 1 is sucked by the pump 10 and stored in a certain amount in the anaerobic tank 12 through the introduction pipe 11, and the stirring means 16 is driven to lower the nitric acid waste liquid 13 in the partition cylinder 14. A basin 15 is formed.

また、仕切筒14の下端部と嫌気槽12の底部との一定距離の隙間から、仕切筒14内の硝酸廃液13が下降流域部15から仕切筒14の外側に流れ、仕切筒14の外側に硝酸廃液13の上昇流域部21を形成させる。さらに上昇流域部21から仕切筒14の上端を経て再び下降流域部15に硝酸廃液13を流動させる循環流を形成させているものである。   Further, the nitric acid waste liquid 13 in the partition tube 14 flows from the downflow region 15 to the outside of the partition tube 14 from the lower end portion of the partition tube 14 and the bottom portion of the anaerobic tank 12, and outside the partition tube 14. An upward flow area 21 of the nitric acid waste liquid 13 is formed. Furthermore, a circulating flow is formed in which the nitric acid waste liquid 13 flows from the upflow region 21 to the downflow region 15 again through the upper end of the partition tube 14.

次に、硝酸廃液13に付与する固体栄養塩19を栄養塩供給部20から前記下降流域部15に供給する。このとき添加された複数の固体栄養塩19を、硝酸廃液13の循環流によって下降流域部15、上昇流域部21にわたって硝酸廃液13中に均一に拡散させることができる。   Next, the solid nutrient salt 19 to be applied to the nitric acid waste liquid 13 is supplied from the nutrient salt supply unit 20 to the descending basin unit 15. The plurality of solid nutrient salts 19 added at this time can be uniformly diffused in the nitric acid waste liquid 13 over the downflow area 15 and the upflow area 21 by the circulation flow of the nitric acid waste liquid 13.

次に本発明の実施の形態における固体栄養塩19の材料組成、構成例を説明する。   Next, the material composition and configuration example of the solid nutrient salt 19 in the embodiment of the present invention will be described.

まず固体栄養塩19は、炭素数が6以上のカルボン酸を主成分としたものである。
カルボン酸としては、炭素数が6以上であることが必須であり、炭素数が6未満では水に対する溶解度が大きすぎ、短期間でその形状をとどめなくなるため、一時的な過剰な栄養塩の付与と、さらに長期的な安定した栄養塩の付与ができないことから好ましくない。
First, the solid nutrient salt 19 is mainly composed of a carboxylic acid having 6 or more carbon atoms.
As the carboxylic acid, it is essential that the carbon number is 6 or more. If the carbon number is less than 6, the solubility in water is too high and the shape cannot be retained in a short period of time. In addition, it is not preferable because a long-term, stable nutrition cannot be applied.

また炭素数の上限は特に設ける必要はないが、工業的に大量に入手可能な材料としては炭素数18程度と考えられるが、炭素数が18以下のものに限られるものではないことはいうまでもない。また、本実施の形態に用いるカルボン酸は直鎖状構造を有し、さらには飽和モノカルボン酸であることが好ましい。理由としては、飽和モノカルボン酸は、不飽和モノカルボン酸と比較して融点が高く安定している為、水への溶解が安定するためである。   Moreover, although it is not necessary to provide the upper limit of carbon number in particular, it is considered that the material that can be obtained industrially in large quantities is about 18 carbon atoms, but it is not limited to those having 18 or less carbon atoms. Nor. In addition, the carboxylic acid used in this embodiment has a linear structure, and is preferably a saturated monocarboxylic acid. The reason is that the saturated monocarboxylic acid has a high melting point and is stable as compared with the unsaturated monocarboxylic acid, so that the dissolution in water is stable.

以上の要件を満たすカルボン酸としてはカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸を例示することができ、さらにはこれらカルボン酸の塩やオキシ酸、さらにはエステル、これらの混合物も含まれる。   Examples of the carboxylic acid satisfying the above requirements include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid. Furthermore, salts of these carboxylic acids, oxyacids, esters, and these Mixtures are also included.

前記したカルボン酸は、粒状体に形成するか、または、主成分であるカルボン酸をセルロース、ポリビニルアルコール、ポリエチレングリコールなどの生体親和性の高い材料を用いた坦体に坦持させ、坦持体として用いることができる。カルボン酸を成形するためには、物質の融点以上に加熱した状態で金型などに挿入後、冷却固化させる方法などの通常の方法で容易になし得る。   The carboxylic acid described above is formed into a granular body, or the carboxylic acid as the main component is supported on a carrier using a material having high biocompatibility such as cellulose, polyvinyl alcohol, polyethylene glycol, and the like. Can be used as In order to mold the carboxylic acid, it can be easily performed by a usual method such as a method in which the carboxylic acid is cooled to solidify after being inserted into a mold or the like while being heated above the melting point of the substance.

これらは例えば粒径が1mmから3mmの粒状体、板状や棒状体としての成形品またはカルボン酸を通気性のあるウレタン体、連続発泡体、紐上または織布、不織布上に固定化(コーティング)する等の手段によって実用に供する成形品とすることができる。   For example, these are fixed on a granular material having a particle size of 1 to 3 mm, a molded product such as a plate or rod, or a carboxylic acid on a breathable urethane, continuous foam, string or woven fabric, or non-woven fabric (coating ) And the like can be used as a molded article for practical use.

さらに前記した粒状体、坦持体等の成形品を内部へ水が進入可能な袋に挿入してもよい。これらは必要なサイズを任意に選択した固体栄養塩19を栄養塩供給部20から硝酸廃液13に前記下降流域部15に供給するものである。   Furthermore, you may insert molded articles, such as an above described granular material and a support body, into the bag which water can approach inside. These supply the solid nutrient salt 19 having an arbitrarily selected required size from the nutrient salt supply unit 20 to the nitric acid waste liquid 13 to the downflow region 15.

前記したように添加された複数の固体栄養塩19を硝酸廃液13の循環流によって硝酸廃液13中の一部に滞留することなく均一に拡散させるので、カルボン酸を硝酸廃液13中に均質に溶解させることができる。   Since the plurality of solid nutrient salts 19 added as described above are uniformly diffused by the circulation flow of the nitric acid waste liquid 13 without staying in a part of the nitric acid waste liquid 13, the carboxylic acid is uniformly dissolved in the nitric acid waste liquid 13. Can be made.

さらに、これらカルボン酸は水に対する溶解度が小さく、しかも直鎖状構造を有した飽和モノカルボン酸であるため、脱窒菌が十分に水素供与体として利用できる。また、これらカルボン酸を適切な形に成形したり、適切な坦体に坦持させて嫌気槽12内部に添加、供給することにより脱窒素反応が速やかに進行し、しかも水への溶解度が小さいために、従来技術のようにメタノールなどの水素供与体を連続添加する必要がなく、硝酸廃液13に対して長期間脱窒素反応を維持することができる。   Furthermore, since these carboxylic acids have a low solubility in water and are saturated monocarboxylic acids having a linear structure, denitrifying bacteria can be sufficiently used as hydrogen donors. Moreover, denitrification reaction proceeds rapidly by forming these carboxylic acids into an appropriate shape, or carrying them in an appropriate carrier and adding and supplying them inside the anaerobic tank 12, and the solubility in water is small. Therefore, it is not necessary to continuously add a hydrogen donor such as methanol as in the prior art, and the denitrification reaction can be maintained for a long time with respect to the nitric acid waste liquid 13.

前記したように、カルボン酸は硝酸廃液13に対して長期間脱窒素反応を維持することができるが、前記した炭素数が6以上の直鎖状飽和モノカルボン酸を主成分とした脱窒素促進剤である固体栄養塩19を用いた方法においては、直鎖状飽和モノカルボン酸を坦持体に坦持させ、これを粒子状、板状または棒状に成形する際に、実態として前記坦持体にステアリン酸、リン等の機質成分(有機物)が含有される。   As described above, the carboxylic acid can maintain the denitrification reaction for a long time with respect to the nitric acid waste liquid 13, but promotes denitrification mainly composed of the above-mentioned linear saturated monocarboxylic acid having 6 or more carbon atoms. In the method using the solid nutrient salt 19 as an agent, when the linear saturated monocarboxylic acid is supported on a carrier and formed into a particle, plate or rod, the actual carrier The body contains organic components (organic matter) such as stearic acid and phosphorus.

このため前記機質成分が嫌気槽12内で被処理廃液である硝酸廃液中に溶解してしまうことによってBOD(生物化学的酸素要求量)の上昇をまねき、そのままでは処理水として放流することができない。   For this reason, the said organic component dissolves in the nitric acid waste liquid which is the waste liquid to be treated in the anaerobic tank 12, which leads to an increase in BOD (biochemical oxygen demand), and can be discharged as treated water as it is. Can not.

さらにBODの上昇防止のために好気性環境をつくる曝気設備が必要となり、装置の大型化、複雑化、運転コスト高をまねき、しかも、維持管理も難しくなるという課題がある。   Furthermore, there is a need for aeration equipment that creates an aerobic environment in order to prevent an increase in BOD, which leads to an increase in size and complexity of the apparatus, high operating costs, and difficulty in maintenance.

前記した課題の解決を図るため、本発明の実施形態においては、硝酸廃液13の上昇流域部21に嫌気性微生物を担持させた複数の濾過部材22を位置させており、中空状の濾過部材22には下部材23、上部材24を設けて濾過モジュール25を構成している。   In order to solve the above-described problem, in the embodiment of the present invention, a plurality of filtration members 22 supporting anaerobic microorganisms are positioned in the upward flow area 21 of the nitric acid waste liquid 13, and the hollow filtration member 22 is disposed. A filtration module 25 is configured by providing a lower member 23 and an upper member 24.

複数の濾過モジュール25の上端から濾過部材22を通過した処理水を吸引管26、ポンプ27を介して吸引し放流するものである。   The treated water that has passed through the filtration member 22 from the upper ends of the plurality of filtration modules 25 is sucked and discharged through the suction pipe 26 and the pump 27.

これによって、前記坦持体に含有されているステアリン酸、リン等の機質成分(有機物)を、嫌気性微生物を担持させた複数の濾過部材22に接触、通過する際に分解することができる。   As a result, the organic components (organic matter) such as stearic acid and phosphorus contained in the carrier can be decomposed when contacting and passing through the plurality of filtration members 22 carrying anaerobic microorganisms. .

その結果、BODの上昇防止のために好気性環境をつくる曝気設備が不要となり、装置全体の小型化、簡略化、運転コストの抑制と、さらに維持管理もより簡単になる効果を有することができる。   As a result, aeration equipment that creates an aerobic environment for preventing the increase in BOD is not required, and the entire apparatus can be reduced in size, simplified, operation cost can be suppressed, and maintenance can be simplified. .

また、本発明の実施の形態においては、硝酸廃液13の上昇流域部21に嫌気性微生物を担持させた複数の濾過部材22を位置させている。   Further, in the embodiment of the present invention, a plurality of filtration members 22 carrying anaerobic microorganisms are positioned in the upward flow area 21 of the nitric acid waste liquid 13.

この配置によって、濾過部材22の表面側で、濾過対象液である硝酸廃液13をこれらの濾過部材22の表面に沿う方向、つまり濾過部材22を透過する流れと交わる方向に流すクロスフロー構成となるため、濾過部材22表面に沿って流れる硝酸廃液13により、濾過部材22表面へ固形成分などが堆積し難く、また、ケーク層などが形成され難くなる。   With this arrangement, a cross flow configuration is adopted in which the nitric acid waste liquid 13 as the liquid to be filtered flows on the surface side of the filtration member 22 in a direction along the surface of the filtration member 22, that is, in a direction intersecting with the flow that passes through the filtration member 22. Therefore, the nitric acid waste liquid 13 flowing along the surface of the filter member 22 makes it difficult for solid components or the like to be deposited on the surface of the filter member 22, and it becomes difficult to form a cake layer or the like.

また、ケーク層などが形成されたとしても、ケーク層などは圧縮され難く、上流部への処理水の流速も速いため、水が流れる道筋ができる。このため、目詰まりが発生し難く、濾過性能の低下を抑制できる。   Further, even if a cake layer or the like is formed, the cake layer or the like is not easily compressed, and the flow rate of treated water to the upstream portion is high, so that a path for water to flow is formed. For this reason, clogging hardly occurs, and a decrease in filtration performance can be suppressed.

また濾過モジュール25の下端部には、濾過モジュール25自体を微振動させる加振手段28を設けている。これによって、濾過部材22の表面への固形成分などの堆積によるケーク層等の形成などをさらに抑制し、目詰まりが発生し難く、濾過性能の低下を抑制することができる。   A vibration means 28 is provided at the lower end of the filtration module 25 to slightly vibrate the filtration module 25 itself. As a result, the formation of a cake layer or the like due to the deposition of solid components or the like on the surface of the filter member 22 is further suppressed, clogging is unlikely to occur, and a decrease in filtration performance can be suppressed.

また、嫌気槽12内での硝酸廃液13の脱窒素反応および機質成分(有機物)の嫌気性微生物による分解の処理状況に応じて、処理水を吸引管26、ポンプ27を介して吸引して放流し、新たに流量調整槽1内の硝酸廃液を嫌気槽12内の下降流域部15に位置する導入管11から供給する。   In addition, depending on the denitrification reaction of the nitric acid waste liquid 13 in the anaerobic tank 12 and the decomposition state of the organic component (organic matter) by anaerobic microorganisms, the treated water is sucked through the suction pipe 26 and the pump 27. The nitric acid waste liquid in the flow rate adjustment tank 1 is newly supplied from the introduction pipe 11 located in the downflow area 15 in the anaerobic tank 12.

これによって、新たに供給された硝酸廃液は下降流域部15で、すでに循環している硝酸廃液と均一に混合して上昇流域部21に流れるため、処理状況の異なる硝酸廃液の存在をなくすことができる。   As a result, the newly supplied nitric acid waste liquid is uniformly mixed with the already circulating nitric acid waste liquid in the downflow area 15 and flows to the upflow area 21, thereby eliminating the presence of nitric acid waste liquids having different processing conditions. it can.

また、嫌気槽12内に硝酸廃液の酸化還元電位検出手段29を備え、得られた検出値により、ポンプ10による流量調整槽1内から嫌気槽12内への硝酸廃液の供給量、またはポンプ27による濾過部材22を通過した処理水の吸引量を調節する。   The nitric acid waste liquid oxidation-reduction potential detecting means 29 is provided in the anaerobic tank 12, and the supply amount of nitric acid waste liquid from the flow rate adjusting tank 1 to the anaerobic tank 12 by the pump 10 or the pump 27 is determined by the obtained detection value. The amount of treated water that has passed through the filtration member 22 is adjusted.

これによって、pH値を中性に維持して処理水を放流することができるとともに、濾過部材22に担持させた嫌気性微生物を活性化させ、機質成分(有機物)の分解を促進することができる。これは酸化還元電位検出手段29の検出値が規定値よりも高いときは、ポンプ10による流量調整槽1内から嫌気槽12内への硝酸廃液の供給量を減少、停止させる。   As a result, the treated water can be discharged while maintaining the pH value neutral, and the anaerobic microorganisms carried on the filter member 22 are activated, and the decomposition of the organic component (organic matter) is promoted. it can. When the detected value of the oxidation-reduction potential detecting means 29 is higher than the specified value, the supply amount of nitric acid waste liquid from the flow rate adjusting tank 1 to the anaerobic tank 12 by the pump 10 is reduced and stopped.

またはポンプ27による濾過部材22を通過した処理水の吸引量を減少、停止させるように調節するものである。   Alternatively, the suction amount of the treated water that has passed through the filtering member 22 by the pump 27 is adjusted to be reduced and stopped.

さらに、嫌気槽12内の硝酸廃液の溶存酸素濃度を検出する溶存酸素濃度検出手段30を備え、得られた検出値により溶存酸素濃度が規定値よりも高くなれば、流量調整槽1内から嫌気槽12内への硝酸廃液の供給量を減少または停止するように調節する。これによって、嫌気槽12内の硝酸廃液を嫌気条件に維持し、硝酸廃液13の脱窒素反応および濾過部材22に担持させた嫌気性微生物を活性化させ、機質成分(有機物)の分解を促進することができる。   Furthermore, a dissolved oxygen concentration detection means 30 for detecting the dissolved oxygen concentration of the nitric acid waste liquid in the anaerobic tank 12 is provided. If the dissolved oxygen concentration becomes higher than a specified value by the obtained detection value, anaerobic is generated from the flow rate adjusting tank 1. The supply amount of nitric acid waste liquid into the tank 12 is adjusted to be reduced or stopped. As a result, the nitric acid waste liquid in the anaerobic tank 12 is maintained under anaerobic conditions, the denitrification reaction of the nitric acid waste liquid 13 and the anaerobic microorganisms supported on the filter member 22 are activated, and the decomposition of the organic component (organic matter) is promoted. can do.

以上のように、本発明によれば、好気性環境をつくる曝気設備を備えた好気性槽を必要とすることなく、単一の嫌気性槽内で硝酸廃液の脱窒素反応と、嫌気性微生物の活性化によるBODの上昇防止を同時に行うとともに、装置の小型化、運転コストを抑制することができる硝酸廃液の処理方法および処理装置を提供することができるものである。   As described above, according to the present invention, the denitrification reaction of nitric acid waste liquid and anaerobic microorganisms can be performed in a single anaerobic tank without the need for an aerobic tank equipped with aeration equipment for creating an aerobic environment. It is possible to provide a nitric acid waste liquid treatment method and a treatment apparatus capable of simultaneously preventing the increase in BOD by activating the catalyst and reducing the size and operating cost of the apparatus.

脱窒素反応とBOD抑制を必要とする廃液処理の用途に適用できる。   It can be applied to waste liquid treatment that requires denitrification and BOD suppression.

本発明の一実施形態の硝酸廃液処理装置の全体構成図1 is an overall configuration diagram of a nitric acid waste liquid treatment apparatus according to an embodiment of the present invention. 図1中のA−A線における嫌気槽の断面図Sectional drawing of the anaerobic tank in the AA line in FIG.

符号の説明Explanation of symbols

1 流量調整槽
2 供給管
3 弁
4 硝酸廃液
5 散気管
6 空気ポンプ
7 供給管
8 排出管
9 弁
10 ポンプ(供給手段)
11 導入管
12 嫌気槽
13 硝酸廃液
14 仕切筒
15 下降流域部
16 撹拌手段
17 モータ
18 回転羽根
19 固体栄養塩
20 栄養塩供給部
21 上昇流域部
22 濾過部材
23 下部材
24 上部材
25 濾過モジュール
26 吸引管
27 ポンプ(吸引手段)
28 加振手段
29 酸化還元電位検出手段
30 溶存酸素濃度検出手段
31 排出管
32 弁
DESCRIPTION OF SYMBOLS 1 Flow control tank 2 Supply pipe 3 Valve 4 Nitric acid waste liquid 5 Aeration pipe 6 Air pump 7 Supply pipe 8 Discharge pipe 9 Valve 10 Pump (supply means)
DESCRIPTION OF SYMBOLS 11 Introduction pipe 12 Anaerobic tank 13 Nitric acid waste liquid 14 Partition cylinder 15 Downflow area part 16 Agitation means 17 Motor 18 Rotary blade 19 Solid nutrient salt 20 Nutrition salt supply part 21 Upflow area part 22 Filter member 23 Lower member 24 Upper member 25 Filtration module 26 Suction tube 27 Pump (suction means)
28 Exciting means 29 Redox potential detecting means 30 Dissolved oxygen concentration detecting means 31 Exhaust pipe 32 Valve

Claims (11)

硝酸廃液を流量調整槽から嫌気槽へ供給して、この嫌気槽内で前記硝酸廃液の循環流を形成し、前記硝酸廃液の循環流中に炭素数が6以上のカルボン酸を主成分とした固体栄養塩を供給して脱窒素反応を促進させ、前記硝酸廃液の循環流中に嫌気性微生物を担持させた濾過部材を配設して前記固体栄養塩に含有する機質成分を分解するとともに前記濾過部材から処理水を吸引する硝酸廃液の処理方法。 The nitric acid waste liquid is supplied from the flow rate adjustment tank to the anaerobic tank, and a circulation flow of the nitric acid waste liquid is formed in the anaerobic tank, and the carboxylic acid having 6 or more carbon atoms is the main component in the circulation flow of the nitric acid waste liquid. Supplying solid nutrient salt to promote the denitrification reaction, disposing the filter component carrying anaerobic microorganisms in the circulating flow of the nitric acid waste liquid and decomposing the constituents contained in the solid nutrient salt A method for treating a nitric acid waste liquid by sucking treated water from the filter member. 嫌気槽の略中央部に硝酸廃液が上流から下流へと流れる下降流域部を形成するとともに、この下降流域部の外側に硝酸廃液が下流から上流へと流れる上昇流域部を形成し、前記硝酸廃液の上昇流域部に濾過部材を配設したことを特徴とする請求項1に記載の硝酸廃液の処理方法。 A nitric acid waste liquid flows from the upstream to the downstream at a substantially central portion of the anaerobic tank, and a nitric acid waste liquid flows from the downstream to the upstream outside the downward flow area. The method for treating a nitric acid waste liquid according to claim 1, wherein a filtration member is disposed in the upflow region. 流量調整槽内の硝酸廃液を嫌気槽内に設けた下降流域部に供給することを特徴とする請求項2に記載の硝酸廃液の処理方法。 The method for treating a nitric acid waste liquid according to claim 2, wherein the nitric acid waste liquid in the flow rate adjusting tank is supplied to a downward flow area provided in the anaerobic tank. 固体栄養塩を嫌気槽内に設けた下降流域部に供給することを特徴とする請求項2または3に記載の硝酸廃液の処理方法。 The method for treating a nitric acid waste liquid according to claim 2 or 3, wherein the solid nutrient salt is supplied to a downward flow region provided in the anaerobic tank. 嫌気槽内の硝酸廃液の酸化還元電位の検出値に応じて、流量調整槽から前記嫌気槽への前記硝酸廃液の供給量または濾過部材を通過した処理水の吸引量を調節することを特徴とする請求項1から4のいずれか一項に記載の硝酸廃液の処理方法。 According to the detected value of the oxidation-reduction potential of the nitric acid waste liquid in the anaerobic tank, the supply amount of the nitric acid waste liquid from the flow rate adjustment tank to the anaerobic tank or the suction amount of the treated water that has passed through the filtering member is adjusted. The method for treating a nitric acid waste liquid according to any one of claims 1 to 4. 嫌気槽内の硝酸廃液の溶存酸素濃度の検出値に応じて、流量調整槽から嫌気槽への前記硝酸廃液の供給量を調節することを特徴とする請求項1から4のいずれか一項に記載の硝酸廃液の処理方法。 5. The supply amount of the nitric acid waste liquid from the flow rate adjustment tank to the anaerobic tank is adjusted according to the detected value of the dissolved oxygen concentration of the nitric acid waste liquid in the anaerobic tank. 6. The nitric acid waste liquid treatment method described. 流量調整槽内に貯留した硝酸廃液を嫌気槽に供給する供給手段と、前記嫌気槽内に貯留した硝酸廃液に循環流を形成させる撹拌手段と、前記硝酸廃液の循環流中に供給することで脱窒素反応を促進させる炭素数が6以上のカルボン酸を主成分とした固体栄養塩と、前記硝酸廃液の循環流中に配設して固体栄養塩に含有した機質成分を分解する嫌気性微生物を担持させた濾過部材と、前記濾過部材を通過した処理水を吸引する吸引手段とを備えたことを特徴とする硝酸廃液の処理装置。 Supply means for supplying the nitric acid waste liquid stored in the flow rate adjustment tank to the anaerobic tank, stirring means for forming a circulation flow in the nitric acid waste liquid stored in the anaerobic tank, and supply into the circulation flow of the nitric acid waste liquid Anaerobic substance that decomposes the organic nutrients contained in the solid nutrient salt and the solid nutrient salt mainly composed of carboxylic acid having 6 or more carbon atoms that promotes the denitrification reaction, and the nitric acid waste liquid. An apparatus for treating nitric acid waste liquid, comprising: a filtration member carrying microorganisms; and a suction means for sucking treated water that has passed through the filtration member. 嫌気槽の略中央部に硝酸廃液が上流から下流へ流れる下降流域部を形成するとともに、前記下降流域部の外側に前記硝酸廃液が下流から上流へ流れる上昇流域部を形成する撹拌手段を備え、前記硝酸廃液の上昇流域部に濾過部材を配設したことを特徴とする請求項7に記載の硝酸廃液の処理装置。 A stirring means for forming a descending flow region portion where the nitric acid waste liquid flows from the upstream to the downstream in the substantially central portion of the anaerobic tank, and forming an upward flow region portion where the nitric acid waste solution flows from the downstream to the upstream outside the descending flow region portion, The apparatus for treating nitric acid waste liquid according to claim 7, wherein a filtration member is disposed in the upward flow area of the nitric acid waste liquid. 流量調整槽内の硝酸廃液を嫌気槽に形成した下降流域部に供給する供給管を設けたことを特徴とする請求項8に記載の硝酸廃液の処理装置。 9. The apparatus for treating nitric acid waste liquid according to claim 8, further comprising a supply pipe for supplying the nitric acid waste liquid in the flow rate adjusting tank to a downflow region formed in the anaerobic tank. 濾過部材を振動させる加振手段を備えた請求項7から9のいずれか一項に記載の硝酸廃液の処理装置。 The treatment apparatus for nitric acid waste liquid according to any one of claims 7 to 9, further comprising an oscillating means for vibrating the filter member. 嫌気槽内の硝酸廃液の酸化還元電位を検出する酸化還元電位検出手段、または前記硝酸廃液の溶存酸素濃度を検出する溶存酸素濃度検出手段を備えたことを特徴とする請求項7から10のいずれか一項に記載の硝酸廃液の処理装置。 The redox potential detecting means for detecting the redox potential of the nitric acid waste liquid in the anaerobic tank or the dissolved oxygen concentration detecting means for detecting the dissolved oxygen concentration of the nitric acid waste liquid is provided. An apparatus for treating nitric acid waste liquid according to claim 1.
JP2004221354A 2004-07-29 2004-07-29 Method and apparatus for treating nitric acid waste liquid Expired - Fee Related JP4556532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221354A JP4556532B2 (en) 2004-07-29 2004-07-29 Method and apparatus for treating nitric acid waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221354A JP4556532B2 (en) 2004-07-29 2004-07-29 Method and apparatus for treating nitric acid waste liquid

Publications (2)

Publication Number Publication Date
JP2006035154A JP2006035154A (en) 2006-02-09
JP4556532B2 true JP4556532B2 (en) 2010-10-06

Family

ID=35900712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221354A Expired - Fee Related JP4556532B2 (en) 2004-07-29 2004-07-29 Method and apparatus for treating nitric acid waste liquid

Country Status (1)

Country Link
JP (1) JP4556532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833741B2 (en) 2015-08-24 2017-12-05 Doosan Heavy Industries & Constructions Co., Ltd. Submerged membrane filtration system using reciprocating membrane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119398A (en) * 1987-10-30 1989-05-11 Akua Runesansu Gijutsu Kenkyu Kumiai Water treatment equipment
JPH01218696A (en) * 1988-02-27 1989-08-31 Kubota Ltd Water treatment method
JPH08299984A (en) * 1995-05-02 1996-11-19 Kurita Water Ind Ltd Biological treating device
JPH11114562A (en) * 1997-10-14 1999-04-27 Mitsubishi Rayon Co Ltd Sewage treating device
JPH11151497A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Waste water treating device
JPH11156392A (en) * 1997-12-01 1999-06-15 Mitsubishi Heavy Ind Ltd Treating method for ethanolamine-containing waste water
JP2001029975A (en) * 1999-05-19 2001-02-06 Kubota Corp Carrier stirring and separating apparatus
JP3298562B2 (en) * 1999-05-31 2002-07-02 松下電器産業株式会社 Denitrification accelerator and water treatment method using this denitrification accelerator
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119398A (en) * 1987-10-30 1989-05-11 Akua Runesansu Gijutsu Kenkyu Kumiai Water treatment equipment
JPH01218696A (en) * 1988-02-27 1989-08-31 Kubota Ltd Water treatment method
JPH08299984A (en) * 1995-05-02 1996-11-19 Kurita Water Ind Ltd Biological treating device
JPH11114562A (en) * 1997-10-14 1999-04-27 Mitsubishi Rayon Co Ltd Sewage treating device
JPH11151497A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Waste water treating device
JPH11156392A (en) * 1997-12-01 1999-06-15 Mitsubishi Heavy Ind Ltd Treating method for ethanolamine-containing waste water
JP2001029975A (en) * 1999-05-19 2001-02-06 Kubota Corp Carrier stirring and separating apparatus
JP3298562B2 (en) * 1999-05-31 2002-07-02 松下電器産業株式会社 Denitrification accelerator and water treatment method using this denitrification accelerator
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method

Also Published As

Publication number Publication date
JP2006035154A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
US11339068B2 (en) Eductor-based membrane bioreactor
JPH0724489A (en) Biological treatment device and water treatment using this device
KR20180043689A (en) Eco-friendly Sewage System By Contact Oxidation Method Using Plastic Material As Bio-film Filtration
KR101080818B1 (en) Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank
JP6072254B2 (en) Water treatment equipment
JP5238897B1 (en) Waste water treatment method and waste water treatment equipment
JP2012024664A (en) Microorganism carrier and biological deodorization apparatus
JP2009247255A (en) Method for cleaning breeding water and apparatus for cleaning breeding water
JP6534245B2 (en) Breeding water circulation system for closed circulation type breeding
JP2010069359A (en) Water treatment device and water treatment method
JP4556532B2 (en) Method and apparatus for treating nitric acid waste liquid
JP4131734B2 (en) Washing wastewater treatment equipment
JP4619971B2 (en) Waste water treatment method and waste water treatment equipment
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
JP2002210486A (en) Method and apparatus for treating waste water after washing
KR20130079834A (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP2002113484A (en) Water cleaning treatment method and apparatus therefor
JP4614062B2 (en) Method and apparatus for treating ammonia in air
JP4181501B2 (en) Biofilm filtration apparatus and method
JP2010142708A (en) Apparatus and method for purifying urine sewage
JPH11104697A (en) Method and apparatus for treating laundry drainage
KR102477698B1 (en) Advanced wastewater treatment system with high efficiency
CN218089110U (en) MBR membrane method sewage treatment system
JP4689007B2 (en) Wastewater purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R151 Written notification of patent or utility model registration

Ref document number: 4556532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees