JP4131734B2 - Washing wastewater treatment equipment - Google Patents
Washing wastewater treatment equipment Download PDFInfo
- Publication number
- JP4131734B2 JP4131734B2 JP2005235417A JP2005235417A JP4131734B2 JP 4131734 B2 JP4131734 B2 JP 4131734B2 JP 2005235417 A JP2005235417 A JP 2005235417A JP 2005235417 A JP2005235417 A JP 2005235417A JP 4131734 B2 JP4131734 B2 JP 4131734B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- sludge
- wastewater
- ozone
- biological treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、洗濯排水や洗浄排水の処理装置、特に、原子力施設から排出される洗濯排水や洗浄排水の処理装置に関ものである。また、本発明は、設備改造等、設置面積に制約がある場合の排水処理装置に応用可能な技術に関するものである。 The present invention relates to a treatment apparatus for washing wastewater and washing wastewater, and more particularly to a treatment apparatus for washing wastewater and washing wastewater discharged from nuclear facilities. The present invention also relates to a technique that can be applied to a wastewater treatment apparatus when the installation area is limited, such as facility modification.
例えば原子力施設から排出される洗濯排水もしくは洗浄排水(以下、代表的に洗濯排水という)には、洗剤、布繊維、脂肪分、炭水化物のような有機物質の他に、極微量の放射性物質が含まれている。放流規制値を満足させるために、これらの物質を除去し無害化しなければならない。 For example, laundry wastewater or washing wastewater (hereinafter referred to as laundry wastewater) discharged from nuclear facilities contains trace amounts of radioactive substances in addition to organic substances such as detergents, fabric fibers, fats, and carbohydrates. It is. These substances must be removed and detoxified in order to meet the release limits.
従来、洗濯排水を無害化する処理方法としては、洗濯排水に粉末活性炭や粉末イオン交換樹脂を添加し、それに含まれる有機物や放射性物質を吸着した後、プレコートフィルタによってろ過する処理方法や、洗濯排水を直接限外ろ過膜や逆浸透膜によってろ過し、その濃縮液を蒸発濃縮する処理方法がある。また、近年になって、洗濯排水にオゾンを添加して、その中の有機物を酸化分解する方法が試みられている。 Conventional treatment methods for detoxifying laundry wastewater include treatment methods that add powdered activated carbon or powder ion exchange resin to laundry wastewater, adsorb organic substances and radioactive substances contained in the wastewater, and then filter them with a precoat filter. There is a treatment method in which the solution is directly filtered through an ultrafiltration membrane or a reverse osmosis membrane, and the concentrated solution is evaporated and concentrated. In recent years, an attempt has been made to add ozone to laundry wastewater and oxidatively decompose organic substances therein.
しかし、プレコートフィルタによってろ過する処理方法は、添加する粉末活性炭や粉末イオン交換樹脂によって、放射性廃棄物の量が増加するという問題がある。また、直接限外ろ過膜や逆浸透膜によってろ過し、その濃縮液を蒸発濃縮する方法は、蒸発濃縮液中に、洗剤中の相当量の非放射性塩類と共に放射性物質が混在するため、エネルギー消費量が大きいだけでなく放射性廃棄物の量がやはり増加し、結果として処理コストが高くなるという問題がある。 However, the processing method of filtering with a precoat filter has a problem that the amount of radioactive waste increases due to the added powdered activated carbon or powder ion exchange resin. In addition, the method of directly filtering through an ultrafiltration membrane or reverse osmosis membrane and evaporating and concentrating the concentrated liquid consumes energy because the evaporative concentrated liquid contains radioactive substances together with a considerable amount of non-radioactive salts in the detergent. There is a problem that not only the amount is large but also the amount of radioactive waste is increased, resulting in high processing costs.
更に、オゾンを添加する方法は、洗剤に含まれる界面活性剤を分解するのに効果的であるが、オゾン消費量が非常に多くなる。オゾンは比較的高価な酸化剤であるため、設備費及び運転費が非常に大きく、甚だ不経済であるという欠点があった。 Furthermore, the method of adding ozone is effective in decomposing the surfactant contained in the detergent, but the amount of ozone consumption is very large. Since ozone is a relatively expensive oxidizer, there is a disadvantage that the equipment cost and the operation cost are very high and it is very uneconomical.
従って、本発明の目的は、原子力施設からの洗濯排水を効果的に処理できると共に、低廉な設備費及び運転費で放射性廃棄物の量を大幅に低減することができる処理方法及び装置を提供することである。 Accordingly, an object of the present invention is to provide a treatment method and apparatus capable of effectively treating laundry wastewater from a nuclear facility and greatly reducing the amount of radioactive waste with low equipment and operating costs. That is.
この目的を達成するために、請求項1に記載の本発明による洗濯排水の処理装置は、原子力施設からの洗濯排水を活性汚泥と曝気混合する生物処理槽と、該生物処理槽内に設けられ、前記曝気混合により得られた混合液を固液分離する精密ろ過膜と、前記曝気混合のため前記精密ろ過膜の直下に設けられた第1曝気手段と、発生した気泡が前記精密ろ過膜に接触しない前記生物処理槽内の位置に設けられた第2曝気手段と、前記精密ろ過膜からの膜ろ過水を受ける膜ろ過水槽と、前記生物処理槽における余剰汚泥を受ける余剰汚泥槽とを備える洗濯排水の処理装置が提供される。 In order to achieve this object, a wastewater treatment apparatus according to the present invention described in claim 1 is provided in a biological treatment tank for aeration and mixing of laundry wastewater from a nuclear facility with activated sludge, and the biological treatment tank. , A microfiltration membrane for solid-liquid separation of the liquid mixture obtained by the aeration mixing, a first aeration means provided immediately below the microfiltration membrane for the aeration mixing, and generated bubbles in the microfiltration membrane Second aeration means provided at a position in the biological treatment tank that does not contact, a membrane filtration water tank that receives membrane filtrate from the microfiltration membrane, and an excess sludge tank that receives excess sludge in the biological treatment tank. A laundry wastewater treatment apparatus is provided.
この洗濯排水の処理装置は、請求項2に記載の本発明のように、前記余剰汚泥槽から余剰汚泥の一部を引き抜いて前記余剰汚泥槽に戻す循環ポンプと、該循環ポンプに連通してその下流側に配置されたオゾン反応槽とを更に備え、前記循環ポンプはその上流側でオゾン源に連絡していることが好ましい。
As in the present invention according to
また、請求項3に記載のように、前記オゾン源から乾燥余剰汚泥1kgあたり約0.04〜0.08kgのオゾンを前記余剰汚泥に添加することが好ましい。 In addition, as described in claim 3, it is preferable to add about 0.04 to 0.08 kg of ozone per kg of dried excess sludge from the ozone source to the excess sludge.
また、この洗濯排水の処理装置は、請求項4に記載の本発明のように、受け入れた洗浄排水を脱離液と混合して前記生物処理槽に供給する混合槽と、前記生物処理槽から活性汚泥の一部を引き抜いて前記混合槽に戻す循環ポンプと、該循環ポンプに連通してその下流側に配置されたオゾン反応槽とを更に備え、前記循環ポンプはその上流側でオゾン源に連絡していることが好ましい。 In addition, as in the present invention according to claim 4, the laundry wastewater treatment apparatus includes a mixing tank that mixes the received cleaning wastewater with a desorption liquid and supplies the mixed wastewater to the biological treatment tank, and the biological treatment tank. A circulation pump for extracting a part of the activated sludge and returning it to the mixing tank; and an ozone reaction tank arranged on the downstream side in communication with the circulation pump, the circulation pump serving as an ozone source on the upstream side It is preferable to contact.
この場合、請求項5に記載のように、前記オゾン源から乾燥汚泥1kgあたり約0.04〜0.1kgのオゾンを前記活性汚泥の一部に添加することが好ましい。 In this case, as described in claim 5, it is preferable to add about 0.04 to 0.1 kg of ozone per kg of dry sludge from the ozone source to a part of the activated sludge.
この洗濯排水の処理装置には、請求項6に記載のように、前記余剰汚泥槽に過酸化水素水が添加されてよい。 As described in claim 6, hydrogen peroxide water may be added to the surplus sludge tank.
その場合、請求項7に記載のように、記過酸化水素水の注入量は乾燥余剰汚泥1kgあたりほぼ0.05〜0.1kgであることが好ましい。 In that case, as described in claim 7, the injection amount of the hydrogen peroxide solution is preferably about 0.05 to 0.1 kg per 1 kg of the dried excess sludge.
本発明の請求項1に記載した本発明の洗濯排水の処理装置によれば、原子力施設から排出される洗濯排水を活性汚泥と曝気混合し、得られた混合液を精密ろ過膜によって固液分離するようにしたので、原子力施設からの洗濯排水を効果的に処理できると共に、放射性廃棄物を大幅に低減することができ、しかも設備費及び運転費が低く頗る経済的である。
また、請求項1に記載の本発明によると、洗濯排水の処理装置は、原子力施設からの洗濯排水を活性汚泥と曝気混合する生物処理槽と、該生物処理槽内に設けられ、前記曝気混合により得られた混合液を固液分離する精密ろ過膜と、前記曝気混合のため前記精密ろ過膜の直下に設けられた第1曝気手段と、発生した気泡が前記精密ろ過膜に接触しない前記生物処理槽内の位置に設けられた第2曝気手段と、前記精密ろ過膜からの膜ろ過水を受ける膜ろ過水槽と、前記生物処理槽における余剰汚泥を受ける余剰汚泥槽とを備えているので、2つの曝気手段を設けることによって、生物処理槽内の過曝気や汚泥沈降を防止できるだけでなく、精密ろ過膜の目詰まり及び過曝気による膜の振動での機械的劣化を軽減し、それによって精密ろ過膜の寿命を延ばすことが可能となる。また、洗濯排水流入時間内の処理性能だけでなく、流入しない時間帯での汚泥の自己消化が最小限にとどめることが可能となり、処理水水質の悪化を回避することができる。
According to the laundry wastewater treatment apparatus of the first aspect of the present invention, the laundry wastewater discharged from the nuclear facility is aerated and mixed with activated sludge, and the obtained mixed liquid is solid-liquid separated by a microfiltration membrane. As a result, it is possible to effectively treat the washing waste water from the nuclear facility, to greatly reduce the radioactive waste, and to reduce the equipment cost and operation cost.
According to the present invention as set forth in claim 1, the wastewater treatment apparatus is provided in the biological treatment tank for aeration mixing of the wastewater from the nuclear facility with activated sludge, and the aeration mixing A microfiltration membrane for solid-liquid separation of the liquid mixture obtained by the above, a first aeration means provided immediately below the microfiltration membrane for the aeration mixing, and the organism in which the generated bubbles do not contact the microfiltration membrane Since it comprises a second aeration means provided at a position in the treatment tank, a membrane filtration water tank that receives membrane filtrate from the microfiltration membrane, and an excess sludge tank that receives excess sludge in the biological treatment tank, By providing two aeration means, not only can the over-aeration and sludge sedimentation in the biological treatment tank be prevented, but also the mechanical deterioration due to membrane vibration due to clogging and over-aeration of the microfiltration membrane can be reduced, thereby improving precision. Life of filtration membrane It is possible to extend the. Moreover, not only the treatment performance within the washing drainage inflow time but also the self-digestion of the sludge in the time zone when it does not flow can be minimized, and the deterioration of the treated water quality can be avoided.
また、請求項2に記載の洗濯排水の処理装置のように、余剰汚泥槽から余剰汚泥の一部を引き抜いて前記余剰汚泥槽に戻す循環ポンプと、該循環ポンプに連通してその下流側に配置されたオゾン反応槽とを更に備え、前記循環ポンプはその上流側でオゾン源に連絡している構成では、余剰汚泥の約70〜90%を酸化分解して炭酸ガスと水にすることができる。
In addition, as in the laundry wastewater treatment apparatus according to
この請求項2に記載の洗濯排水の処理装置において、請求項3の本発明のように、オゾン源から乾燥余剰汚泥1kgあたり約0.04〜0.08kgのオゾンを余剰汚泥に添加するようにすると、余剰汚泥の酸化分解が不十分となって余剰汚泥の減少量が少なくなったり、オゾンが過剰となり、未反応のオゾンの処理装置が必要となったりする問題を事前に阻止することができる。
In the laundry wastewater treatment apparatus according to
更に、請求項4に記載の本発明のように、受け入れた洗浄排水を脱離液と混合して生物処理槽に供給する混合槽と、前記生物処理槽から活性汚泥の一部を引き抜いて前記混合槽に戻す循環ポンプと、該循環ポンプに連通してその下流側に配置されたオゾン反応槽とを更に備え、前記循環ポンプはその上流側でオゾン源に連絡していると、洗濯排水が日中のみに発生する場合の処理に好適であると共に、オゾン反応槽で未反応のオゾンが存在しても混合槽で洗濯排水中の有機物の酸化に利用できる。この場合、請求項5に記載のように、オゾン源から乾燥汚泥1kgあたり約0.04〜0.1kgのオゾンを活性汚泥の一部に添加すると、請求項3と同様に、余剰汚泥の酸化分解が不十分となって余剰汚泥の減少量が少なくなったり、オゾンが過剰となり、未反応のオゾンの処理装置が必要となったりする問題を事前に阻止することができるので都合がよい。 Further, as in the present invention according to claim 4, the received washing wastewater is mixed with the desorption liquid and supplied to the biological treatment tank, and a part of the activated sludge is extracted from the biological treatment tank. A circulation pump that returns to the mixing tank; and an ozone reaction tank that communicates with the circulation pump and is disposed downstream of the circulation pump. The circulation pump communicates with an ozone source on the upstream side of the circulation pump. It is suitable for a treatment that occurs only during the day, and even if unreacted ozone is present in the ozone reaction tank, it can be used for oxidation of organic matter in the laundry wastewater in the mixing tank. In this case, as described in claim 5, when approximately 0.04 to 0.1 kg of ozone per kg of dry sludge is added from the ozone source to a part of the activated sludge, oxidation of excess sludge is performed as in claim 3. This is convenient because problems such as insufficient decomposition and a decrease in excess sludge, or excessive ozone and a need for an unreacted ozone treatment device can be prevented in advance.
請求項6に記載の本発明のように、余剰汚泥槽に過酸化水素水を添加することにより、余剰汚泥の約70〜90%を酸化分解して炭酸ガスと水にすることができる。この過酸化水素水の注入量は、請求項7に記載の本発明のように、乾燥余剰汚泥1kgあたりほぼ0.05〜0.1kgとすると、余剰汚泥の酸化分解が不十分となって余剰汚泥の減少量が少なくなったり、過酸化水素水が過剰となり、未反応の過酸化水素水の還元剤が必要となったりすることがない。 As in the present invention described in claim 6, by adding hydrogen peroxide water to the excess sludge tank, about 70 to 90% of the excess sludge can be oxidized and decomposed into carbon dioxide gas and water. If the amount of hydrogen peroxide water injected is about 0.05 to 0.1 kg per 1 kg of dry surplus sludge as in the present invention according to claim 7, the surplus sludge is not sufficiently oxidized and decomposed. There is no reduction in the amount of sludge reduction, excessive hydrogen peroxide solution, and no need for a reducing agent for unreacted hydrogen peroxide solution.
次に、添付図面を参照して、本発明の好適な実施の形態について詳細に説明するが、図中、同一符号は同一又は対応部分を示すものとする。また、本発明は、以下の説明から分かるように、この実施の形態に限定されるものではなく、種々の改変が可能である。 Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals denote the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.
(実施の形態1)
図1は、処理方法を実施するための処理設備もしくは処理系統の一実施の形態を示している。図1において、先ず洗濯排水1が生物処理槽(膜分離槽と呼んでもよい)2に流入する。生物処理槽2の中には浮遊した活性汚泥フロックが保持されており、その中に膜モジュールからなる平膜状の分離膜3が浸漬されている。活性汚泥を保持する方法として、粒状担体や繊維状担体を用いる方法があるが、好適な実施の形態ではこれらの各種担体を用いず、浮遊性の活性汚泥フロックを用いることが好ましい。担体を用いない理由は、担体表面に層状に付着成長した活性汚泥の内部が嫌気状態となりやすく、それが剥離したとき分離膜3を閉塞させるからである。
(Embodiment 1)
Figure 1 shows an embodiment of a treatment facility or processing system for carrying out the processing method. In FIG. 1, laundry wastewater 1 first flows into a biological treatment tank (which may be called a membrane separation tank) 2. A floating activated sludge floc is held in the
なお、通常、原子力施設の洗濯排水は日中の操業によって発生し、夜間はまったく発生しないような流出パターンが多く、排水流量と水質の変動が激しいので、洗濯排水1は、図示しない調整槽もしくは混合槽に一旦流入させ、そこで流量と水質が均一化されたのち、生物処理槽2に流入させるように構成することができる。
Normally, washing wastewater in nuclear facilities is generated by daytime operations, and there are many outflow patterns that do not occur at night, and the wastewater flow rate and water quality fluctuate drastically. It can be configured to once flow into the mixing tank, where the flow rate and water quality are equalized and then flow into the
分離膜3は、この実施の形態では細孔径0.4μmの精密ろ過膜であって、水は通過するが活性汚泥や微細粒子は通過できない機能を有している。生物処理槽2内の好ましくは底部において分離膜3の下方には、外部のブロア(図示せず)に通じる散気管(曝気手段)6が設置されており、この散気管6を経由して空気5が生物処理槽2内に供給される。空気5によって活性汚泥と洗濯排水は混合・曝気されると共に、分離膜3の表面が気泡洗浄され、分離膜3に活性汚泥が付着して細孔が閉塞されるのを防止する。生物処理槽2とその近くに配置された膜ろ過水槽7との間には水位差が存在しており、この水位差で分離膜3を通過した清澄な膜ろ過水4は、膜ろ過水槽7に流入し、処理水8として放流される。なお、膜ろ過水4をポンプ吸引することにより膜ろ過水槽7に流入させるようにしてもよい。
In this embodiment, the separation membrane 3 is a microfiltration membrane having a pore diameter of 0.4 μm, and has a function of allowing water to pass but not allowing activated sludge or fine particles to pass. An aeration pipe (aeration means) 6 communicating with an external blower (not shown) is installed in the
一方、洗濯排水中の有機成分の分解に伴なって増加した活性汚泥は、余剰汚泥9として生物処理槽2から引き抜いて余剰汚泥槽10に導入され、ここから余剰汚泥ポンプ11によって脱水機12に送られ、脱水機12で脱水処理して脱水ケーキ13となる。このとき発生する脱離液14は生物処理槽2に戻される。洗濯排水が原子力施設からの排水である場合、その中に含まれる微量の放射性核種は、活性汚泥フロック中に保持されており、余剰汚泥9と共に脱水ケーキ13に含まれ除去される。因みに、除染係数(洗濯排水中の放射能濃度/処理水中の放射能濃度比)は10〜20である。
On the other hand, the activated sludge increased with the decomposition of the organic components in the washing wastewater is extracted from the
この活性汚泥フロックは、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、栄養源としてアンモニウム塩やリン酸塩を添加しながら洗濯排水で馴致し、活性汚泥濃度が約6000〜10000mg/L程度に達するまで増殖させる。その後、栄養源の添加は停止して、洗濯排水中に含まれる微量の窒素(N)やリン(P)だけの貧栄養状態で処理することが好ましい。これによって、生物処理槽2中の活性汚泥の自己消化量が増加し、その結果、余剰活性汚泥量が少なくなり、そのため、脱水ケーキ13の量も低減させることができる。
This activated sludge floc was initially introduced with sewage sludge and sludge used in industrial wastewater treatment as seed sludge, adapted to laundry drainage while adding ammonium salt and phosphate as nutrient sources, and the activated sludge concentration is Grow until reaching about 6000-10000 mg / L. Thereafter, the addition of the nutrient source is stopped, and the treatment is preferably performed in an oligotrophic state of only a small amount of nitrogen (N) and phosphorus (P) contained in the laundry wastewater. As a result, the amount of activated sludge in the
更に、処理水8を洗濯用水として再利用するためには、栄養源としての塩類の添加による処理水8中の塩類の増加量を少なくすることが必要である。塩類の増加は洗濯物の黄ばみの原因となるからである。上述のように栄養源の添加を停止することによって処理水8の再利用率は50〜70%にすることができる。 Furthermore, in order to reuse the treated water 8 as washing water, it is necessary to reduce the increase in the amount of salts in the treated water 8 due to the addition of salts as a nutrient source. This is because an increase in salt causes yellowing of the laundry. By stopping the addition of the nutrient source as described above, the reuse rate of the treated water 8 can be 50 to 70%.
(実施の形態2)
処理方法を実施するための処理設備の実施の形態2を示す図2から分かるように、この実施の形態2は、図1の実施の形態1に循環ポンプ15,オゾン源としてのオゾン反応槽20,酸素富化器17及びオゾン発生器18並びにそれらに関係した配管類が付加されているほかは実施の形態1と実質的に同じ構成である。この実施の形態2においては、循環ポンプ15によって余剰汚泥槽10から余剰汚泥の一部を引き抜き、オゾン反応槽20に導入する。その際、乾燥空気16から酸素富化器17及びオゾン発生器18によって発生させたオゾン19を循環ポンプ15の吸引側に混入し、オゾン反応槽20で溶解させたのち余剰汚泥槽10へと戻す。これによって、余剰汚泥の約70〜90%は酸化分解されて炭酸ガスと水となる。
(Embodiment 2)
As can be seen from Figure 2 showing a second embodiment of the processing equipment for carrying out the processing method, the second embodiment, the circulating pump 15 to the first embodiment of FIG. 1, the ozone reaction vessel as an ozone source 20. The configuration is substantially the same as that of the first embodiment except that an oxygen enricher 17 and an ozone generator 18 and piping related thereto are added. In the second embodiment, a part of the excess sludge is extracted from the excess sludge tank 10 by the circulation pump 15 and introduced into the ozone reaction tank 20. At that time, ozone 19 generated by the oxygen enricher 17 and the ozone generator 18 from the dry air 16 is mixed into the suction side of the circulation pump 15, dissolved in the ozone reaction tank 20, and then returned to the excess sludge tank 10. . As a result, about 70 to 90% of the excess sludge is oxidized and decomposed into carbon dioxide and water.
オゾン19の注入量は、乾燥余剰汚泥1kgあたり約0.04〜0.08kgであることが好ましい。約0.04kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって、脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。約0.08kgより多いとオゾン19が過剰となり、酸素富化器17及びオゾン発生器18の装置規模が増加するだけでなく、未反応のオゾンの処理装置が必要となる。 The amount of ozone 19 injected is preferably about 0.04 to 0.08 kg per 1 kg of dry surplus sludge. If it is less than about 0.04 kg, the oxidative decomposition of surplus sludge becomes insufficient, the amount of decrease of surplus sludge decreases, the scale of the dehydrator 12 increases, and the amount of dehydrated cake 13 increases. If it exceeds about 0.08 kg, the ozone 19 becomes excessive, and not only the device scales of the oxygen enricher 17 and the ozone generator 18 are increased, but also an unreacted ozone treatment device is required.
(実施の形態3)
図3は、処理方法を実施するための処理設備の実施の形態3を示している。図3の実施の形態3においては、生物処理槽2の前工程として混合槽もしくは調整槽21が設けられており、この混合槽21に、洗濯排水1及び脱離液14を導入すると共に、生物処理槽2中の活性汚泥を循環ポンプ15で引き抜きオゾン反応槽20を経由して導入している。その際、乾燥空気16から酸素富化器17及びオゾン発生器18によって発生させたオゾン19を循環ポンプ15の吸引側に混入することについては、図2の実施の形態と同様である。
(Embodiment 3)
Figure 3 shows a third embodiment of the treatment facility for carrying out the processing method. In Embodiment 3 of FIG. 3, the mixing tank or the adjustment tank 21 is provided as a pre-process of the
図3の実施の形態3においては、オゾン19の注入量が乾燥汚泥1kgあたり約0.04〜0.1kgであることが好ましい。約0.04kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。また、注入量が約0.1kgより多いとオゾン19が過剰となり、酸素富化器17及びオゾン発生器18の装置規模が増加するだけでなく、未反応のオゾンの処理装置が必要となる。なお、図2の実施の形態よりもやや多くのオゾン量を投入するのは、オゾン反応槽20で未反応のオゾンを、混合槽21で洗濯排水1中の有機物の酸化に利用できるからである。 In Embodiment 3 of FIG. 3, it is preferable that the injection amount of ozone 19 is about 0.04 to 0.1 kg per 1 kg of dry sludge. If it is less than about 0.04 kg, the oxidative decomposition of surplus sludge becomes insufficient, the amount of surplus sludge decreases, the scale of the dehydrator 12 increases, and the amount of dewatered cake 13 increases. Further, when the injection amount is more than about 0.1 kg, the ozone 19 becomes excessive, and not only the device scale of the oxygen enricher 17 and the ozone generator 18 is increased, but also an unreacted ozone treatment device is required. The reason why a slightly larger amount of ozone is introduced than in the embodiment of FIG. 2 is that unreacted ozone can be used in the ozone reaction tank 20 for oxidation of organic matter in the laundry wastewater 1 in the mixing tank 21. .
(実施の形態4)
図4に示された実施の形態4は、過酸化水素水22が余剰汚泥槽10に添加されるほかは図1の実施の形態1と実質的に同じ構成である。余剰汚泥槽10に過酸化水素水22を添加することにより、余剰汚泥の約70〜90%は酸化分解されて炭酸ガスと水となる。
(Embodiment 4)
Fourth implementation shown in FIG. 4, in addition to hydrogen peroxide 22 is added to the excess sludge tank 10 is in the form 1 substantially the same configuration of the embodiment of Figure 1. By adding the hydrogen peroxide solution 22 to the excess sludge tank 10, about 70 to 90% of the excess sludge is oxidized and decomposed into carbon dioxide gas and water.
過酸化水素水22の注入量は、乾燥余剰汚泥1kgあたり0.05〜0.1kg程度であることが好ましい。約0.05kgより少ないと余剰汚泥の酸化分解が不十分となり、余剰汚泥の減少量が少なくなって、脱水機12の規模が大きくなり、脱水ケーキ13の量が増加する。また、注入量が約0.1kgより多いと過酸化水素水22が過剰となり、不経済であるだけでなく、未反応の過酸化水素水22の還元剤が必要となる。 The injection amount of the hydrogen peroxide solution 22 is preferably about 0.05 to 0.1 kg per 1 kg of dried excess sludge. If the amount is less than about 0.05 kg, the oxidative decomposition of the excess sludge becomes insufficient, the amount of reduction of the excess sludge decreases, the scale of the dehydrator 12 increases, and the amount of the dehydrated cake 13 increases. If the injection amount is more than about 0.1 kg, the hydrogen peroxide solution 22 becomes excessive, which is not economical, and a reducing agent for the unreacted hydrogen peroxide solution 22 is required.
(参考例1)
原子力施設から排出された洗濯排水を図1に示す処理設備で処理した。洗濯排水の水質は、BOD180mg/L,COD125mg/L,SS70mg/L,窒素(N)4mg/L,リン(P)0.5mg/L,電導度500μS/cm,放射能濃度2×10-3Bq/mLであった。また、生物処理槽のBOD容積負荷は0.8kg/m3・d,COD容積負荷は0.6kg/m3・d,活性汚泥濃度は約10000mg/Lであった。なお、ここで、Lはリットルである。このときの処理結果を表1に示す。表1から分かるように、処理水の水質は、放流規制値(30mg/L以下)を十分に満足するものであった。また、処理水を洗濯用水として再利用しても、洗濯物の黄ばみを生じさせないことが確認された。
( Reference Example 1)
Washing wastewater discharged from the nuclear facility was treated with the treatment facility shown in FIG. Water washing wastewater, BOD180mg / L, COD125mg / L , SS70mg / L, nitrogen (N) 4mg / L, phosphorus (P) 0.5mg / L, conductivity of 500 .mu.S / cm, the
(参考例2,3及び4)
参考例1で用いたのと同じ洗濯排水を図2,図3及び図4に示す処理設備でそれぞれ処理した結果を表1に示す。
( Reference Examples 2, 3 and 4)
Table 1 shows the results of treating the same laundry wastewater as used in Reference Example 1 with the treatment facilities shown in FIGS.
上述した実施の形態1〜4においては、ブロワから供給された空気5が散気管6から噴射されて気泡となり分離膜3の表面を洗浄するため、活性汚泥が膜表面に積層して透過水量が低下するのを防いでいる。しかし、排水流量が多く、その汚濁物質(BOD,COD)濃度が低い場合には、生物処理槽2への空気供給量は、BOD分解に必要な空気量よりも過剰(過曝気)となることがあり、これによって、活性汚泥フロックが細分化して、分離膜3を目詰まりさせ易くするだけでなく、汚泥の自己消化による処理水質の悪化という悪循環を招く可能性がある。また、洗濯排水はその中の残存する洗剤によって泡の発生が著しいことがあり、過剰の曝気によって生物処理槽2から溢れる可能性がある。更に、原子力施設に限らないが、設置面積を最小限にするため、調整槽もしくは混合槽(実施の形態3)の容量を削減しなければならないことがある。因みに、生物処理方法は、24時間連続運転で負荷変動を極力回避することによって処理性能が安定し、良好な処理水質が得られる。しかし、洗濯排水が流入する時間内に、生物処理槽2で洗濯排水を処理しなければならない場合があり、むしろ洗濯排水1が流入しない時間帯での低負荷対策が課題となった。
In the first to fourth embodiments described above, the air 5 supplied from the blower is jetted from the diffuser tube 6 to become bubbles, and the surface of the separation membrane 3 is washed. Prevents the decline. However, when the wastewater flow rate is high and the pollutant (BOD, COD) concentration is low, the air supply amount to the
(実施の形態5)
図5は、本発明の処理方法を実施するための図1,2,3又は4に記載の処理設備の一改良例を示す図であり、特に、図1,2,3又は4に記載の処理設備における諸問題を解決するための改良部分を抽出して示している。図5において、洗濯排水1は生物処理槽2に流入する。生物処理槽2の中には浮遊した活性汚泥フロックが保持されており、その中に、実施の形態1において用いられた分離膜と同様のものでよい平膜状の分離膜3が浸漬されている。生物処理槽2内には、分離膜3の直下部に第1散気管(第1曝気手段)6aが設置されると共に、後述する位置に第2散気管(第2曝気手段)6bが設置されており、これらの散気管6a及び6bには図示しないブロワからの空気5が弁7a,7bを自動又は手動で選択的に経由して供給されるようになっている。生物処理槽2と膜ろ過水4の抜き出し位置の水位差又はポンプ吸引で分離膜3を通過した清澄な膜ろ過水4は、生物処理槽2の外部に処理水として流出する。
(Embodiment 5)
FIG. 5 is a view showing an improved example of the processing equipment shown in FIG. 1, 2, 3 or 4 for carrying out the processing method of the present invention, and in particular, shown in FIG. The improvement part for solving various problems in the processing equipment is extracted and shown. In FIG. 5, the laundry wastewater 1 flows into the
分離膜3によりろ過を行うときは、ブロワからの空気5を散気管から噴射することによって、活性汚泥と洗濯排水が曝気・混合されると共に、分離膜3の表面が気泡洗浄される。通常、6aからの空気量は膜面積1m2あたり約12〜20L/分であることが好ましい。空気量が約12L/分より少ないときは、膜表面の洗浄効果が不充分となり、約20L/分より多いときは、エネルギーの無駄となるばかりでなく、気泡による分離膜3の振動が過剰となり、膜の痛みが激しくなって機械的寿命が短くなる。 When filtration is performed by the separation membrane 3, the activated sludge and the washing waste water are aerated and mixed and air bubbles are washed on the surface of the separation membrane 3 by injecting air 5 from the blower from the diffuser pipe. Usually, the amount of air from 6a is preferably about 12 to 20 L / min per 1 m 2 of membrane area. When the amount of air is less than about 12 L / min, the effect of cleaning the membrane surface is insufficient, and when it is more than about 20 L / min, not only is energy wasted, but vibration of the separation membrane 3 due to bubbles becomes excessive. , Membrane pain becomes severe and mechanical life is shortened.
また、分離膜3への空気供給は間欠的に行うことができる。このとき、言うまでもなく膜ろ過は空気供給のときにのみ行われる。分離膜3によるろ過を停止するときは、弁7aを閉じて散気管6aからの空気供給を停止し、弁7bを開けて散気管6bから空気を供給する。これらの弁7a及び7bは自動又は手動で開閉することができる。本発明により付加された散気管6bは、そこから排出された気泡とその結果として得られる混合液とが直接に分離膜3に接触しないような位置に設けることが好ましい。弁7aが閉じ分離膜3でろ過されていないときに膜面を気泡洗浄すると、分離膜3の膜モジュールを構成する部材の接合面に過剰の振動を与えて、膜モジュールの機械的寿命を短くするという逆効果が生ずるからである。 Moreover, the air supply to the separation membrane 3 can be performed intermittently. At this time, it goes without saying that membrane filtration is performed only when air is supplied. When the filtration by the separation membrane 3 is stopped, the valve 7a is closed to stop the air supply from the diffuser pipe 6a, and the valve 7b is opened to supply the air from the diffuser pipe 6b. These valves 7a and 7b can be opened or closed automatically or manually. The diffuser tube 6b added according to the present invention is preferably provided at a position where the bubbles discharged from the diffuser tube 6b and the resulting mixed liquid do not directly contact the separation membrane 3. When the membrane surface is bubble-washed when the valve 7a is closed and not filtered by the separation membrane 3, excessive vibration is applied to the joint surfaces of the members constituting the membrane module of the separation membrane 3 to shorten the mechanical life of the membrane module. This is because the adverse effect of doing this occurs.
また、散気管6bからの空気は連続的又は間欠的に供給して、生物処理槽2の溶存酸素(DO)が約1〜6mg/Lとなるように空気量を調節することが好ましい。溶存酸素(DO)が1mg/L以下であれば活性汚泥が嫌気性になる危険があり、6mg/L以上を長期に継続すれば活性汚泥が細分化し、分離膜3の目詰まりを早めることになる。
Moreover, it is preferable to supply the air from the diffuser 6b continuously or intermittently and adjust the amount of air so that the dissolved oxygen (DO) in the
特に、洗濯排水が日中(例えば日勤の5〜8時間)のみに発生し、夜間は全く発生しないような場合であって、生物処理槽2の前側に上述した調整槽が設けられず、洗濯排水を、生物処理槽2から流出するまでの時間中に処理しなければならないような条件下では、以上の処理方法と矛盾しないように運転を行なう。即ち、洗濯排水1の流入時間帯は、分離膜3のろ過と散気管6aによる連続的又は間欠的曝気とを行ない、洗濯排水1の流入が停止した時間帯は、分離膜3のろ過及び散気管6aによる曝気は停止し、散気管6bで連続的又は間欠的に曝気を行なう。
In particular, washing drainage occurs only during the daytime (for example, 5-8 hours of day shift) and does not occur at all at night, and the above-described adjustment tank is not provided on the front side of the
このようにして処理された原子力施設から排出される洗濯排水中に含まれる微量の放射性核種は、活性汚泥フロック中に保持され、適時、生物処理槽2の外部に余剰汚泥として排出される(図1〜図4参照)。なお、除染係数(洗濯排水中の放射能濃度/処理水中の放射能濃度比)は、この改変例では約20以上であった。実施の形態1〜4と同様に、活性汚泥フロックは、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、栄養源としてアンモニウム塩やリン酸塩を添加しながら洗濯排水で馴致し、活性汚泥濃度が約6000〜10000mg/L程度に達するまで増殖させる。排水を処理すると、活性汚泥の増殖によりその濃度は増加するが、通常は、約10000〜20000mg/Lの範囲となるように余剰汚泥量を引き抜く(図5には余剰汚泥槽を図示していない)。なお、図5は生物処理槽が角型槽で、その片側の側壁下部に散気管6bを設けた場合を示している。
A small amount of radionuclide contained in the washing wastewater discharged from the nuclear facility treated in this way is retained in the activated sludge floc and is discharged as excess sludge to the outside of the
(実施の形態6)
図6は、本発明を実施するための図1,2,3又は4に記載した処理設備の別の改良例を示す図であり、特に改良部分を抽出して示しており、図5の改良例と異なる点は、散気管6c及び弁7cが追加されていることと、分離膜3及び散気管6aの設置位置が中心にあることである。また、散気管6c及び弁7cの作用は、実施の形態5に関連して説明した散気管6b及び弁7bとそれぞれ実質的に同じである。
(Embodiment 6)
FIG. 6 is a diagram showing another improvement example of the processing facility described in FIG. 1, 2, 3 or 4 for carrying out the present invention, in which an improved portion is particularly extracted and shown. The difference from the example is that an air diffuser 6c and a valve 7c are added, and the installation position of the separation membrane 3 and the air diffuser 6a is at the center. The operation of the air diffuser 6c and the valve 7c is substantially the same as that of the air diffuser 6b and the valve 7b described in connection with the fifth embodiment.
即ち、図6は、生物処理槽2が角型槽である場合には、その両側壁の下部近くに散気管6b及び散気管6cを配置しうることや、生物処理槽2が円形槽である場合には、その周壁の下部近くに散気管6b及び散気管6cを同心円状に配置しうることを示している。
That is, FIG. 6 shows that when the
(実施例1)
原子力施設から排出される洗濯排水を、図5に部分的に示す処理設備で処理した。この原子力施設では、洗濯排水は日中の8時間だけ発生し、残る16時間は発生しなかった。しかも、排水が発生した8時間の間に全て発生排水を処理する必要があった。排水水質は、COD100mg/L,SS70mg/L,放射能濃度2×10-3Bq/mLであった。このときの生物処理槽2のCOD容積負荷は0.3kg/m3・d,活性汚泥濃度は約10000mg/Lであった。処理結果を表2に示す。
(Example 1 )
Washing wastewater discharged from the nuclear facility was treated with the treatment equipment partially shown in FIG. In this nuclear facility, laundry drainage occurred only for 8 hours during the day and did not occur for the remaining 16 hours. In addition, it was necessary to treat the generated wastewater for 8 hours when the wastewater was generated. The wastewater quality was COD 100 mg / L, SS 70 mg / L, and
表2から分かるように、処理水水質は、排水流入前と流入後で変化しているが、いずれも放流規制値を十分に満足するものであった。なお、処理水とは、図5には示していないが、図1の実施の形態における膜ろ過水槽7を出た処理水を指している。生物処理槽2の形状は角型槽であった。運転日数が半年間を経ても、透過液流束が0.6m3/m2・d以下になることはなかった。
As can be seen from Table 2, the quality of the treated water changed before and after the inflow of the wastewater, but both satisfied the discharge regulation value sufficiently. In addition, although not shown in FIG. 5, the treated water has pointed out the treated water which left the membrane filtration water tank 7 in embodiment of FIG. The shape of the
(実施例2)
実施例1で用いたのと同じ洗濯排水を図6に示す処理設備で処理した結果を表2に示す。なお膜分離槽の形状は、円形槽であった。運転日数が半年間を経ても、透過液流束が0.6m3/m2・d以下になることはなかった。
(Example 2 )
Table 2 shows the results of treating the same laundry wastewater as used in Example 1 with the treatment facility shown in FIG. The shape of the membrane separation tank was a circular tank. The permeate flux did not fall below 0.6 m 3 / m 2 · d even after half a year of operation.
実施例1の洗濯排水を用いて図1の処理設備で処理した。その結果、処理水は実施例1及び2とほぼ同じ水質が得られたが、運転日数3ヶ月以内に透過流束が0.4m3/m2・d以下と減少し、改良効果が確認された。 It was treated with processing equipment 1 with the washing waste water of Example 1. As a result, the treated water had almost the same water quality as in Examples 1 and 2 , but the permeation flux decreased to 0.4 m 3 / m 2 · d or less within 3 months of operation, confirming the improvement effect. It was.
以上のように、本発明に係る原子力施設からの洗濯排水の処理装置は、原子力施設から排出される洗濯排水を活性汚泥と曝気混合し、得られた混合液を精密ろ過膜によって固液分離するようにしたので、原子力施設からの洗濯排水を効果的に処理できると共に、放射性廃棄物を大幅に低減することに用いて適している。 As described above, the treatment apparatus for washing wastewater from a nuclear facility according to the present invention aeration-mixes the washing wastewater discharged from the nuclear facility with activated sludge, and solid-liquid separates the obtained mixed liquid by a microfiltration membrane. Since it was made to do so, while being able to treat the washing drainage from a nuclear facility effectively, it is suitable for using for reducing radioactive waste significantly.
1 洗濯排水
2 生物処理槽
3 分離膜(精密ろ過膜)
4 膜ろ過水
5 空気
6 散気管
6a 散気管(第1曝気手段)
6b 散気管(第2曝気手段)
6c 散気管(第2曝気手段)
7 膜ろ過水槽
7a 弁
7b 弁
7c 弁
8 処理水
9 余剰汚泥
10 余剰汚泥槽
11 余剰汚泥ポンプ
12 脱水機
13 脱水ケーキ
14 脱離液
15 循環ポンプ
16 乾燥空気
17 酸素富化膜
18 オゾン発生器(オゾン源)
19 オゾン
20 オゾン反応槽(オゾン源)
21 混合槽
1
4 Membrane filtered water 5 Air 6 Air diffuser 6a Air diffuser (first aeration means)
6b Air diffuser (second aeration means)
6c Air diffuser (second aeration means)
7 Membrane Filtration Water Tank 7a Valve 7b Valve 7c Valve 8 Treated Water 9 Excess Sludge 10 Excess Sludge Tank 11 Excess Sludge Pump 12 Dehydrator 13 Dehydrated Cake 14 Desorbed Liquid 15 Circulation Pump 16 Dry Air 17 Oxygen Enriched Membrane 18 Ozone Generator ( Ozone source)
19 Ozone 20 Ozone reaction tank (ozone source)
21 Mixing tank
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005235417A JP4131734B2 (en) | 2000-11-17 | 2005-08-15 | Washing wastewater treatment equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350440 | 2000-11-17 | ||
JP2005235417A JP4131734B2 (en) | 2000-11-17 | 2005-08-15 | Washing wastewater treatment equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001260041A Division JP3913015B2 (en) | 2000-11-17 | 2001-08-29 | Washing wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006038871A JP2006038871A (en) | 2006-02-09 |
JP4131734B2 true JP4131734B2 (en) | 2008-08-13 |
Family
ID=35903975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005235417A Expired - Lifetime JP4131734B2 (en) | 2000-11-17 | 2005-08-15 | Washing wastewater treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4131734B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080071562A (en) | 2005-11-30 | 2008-08-04 | 아스텔라스세이야쿠 가부시키가이샤 | 2-aminobenzamide derivative |
JP2015073951A (en) * | 2013-10-09 | 2015-04-20 | 神鋼環境メンテナンス株式会社 | Method for operating organic waste water treatment plant |
CN104229985A (en) * | 2014-10-17 | 2014-12-24 | 苏州新协力环保科技有限公司 | Activated sludge purifying and processing method for wastewater |
JP6295218B2 (en) * | 2015-03-09 | 2018-03-14 | 株式会社Ls Nova | Plasma nano-powder, multiple separation filter, and method for producing radioactive substance remover |
-
2005
- 2005-08-15 JP JP2005235417A patent/JP4131734B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006038871A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008246386A (en) | Organic wastewater treatment apparatus | |
JP2007509740A (en) | Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration | |
JP2008264772A (en) | Membrane separation activated sludge apparatus and treatment method of organic substance-containing water | |
KR20180043689A (en) | Eco-friendly Sewage System By Contact Oxidation Method Using Plastic Material As Bio-film Filtration | |
JP4059790B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
JP2011088053A (en) | Equipment and method for desalination treatment | |
JP3913015B2 (en) | Washing wastewater treatment method | |
CN109704514A (en) | A kind of system and method for advanced treatment of wastewater and concentrated water disposition | |
JP4131734B2 (en) | Washing wastewater treatment equipment | |
JP2007038107A (en) | Method for treating organic drainage | |
JP5049929B2 (en) | Water treatment apparatus and water treatment method | |
JP5001923B2 (en) | Water treatment apparatus and water treatment method | |
JP4014581B2 (en) | Biological filtration device | |
KR101186606B1 (en) | Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater | |
KR100540986B1 (en) | Wastewater treatment system by means of membrane bio-reactor | |
JP4358652B2 (en) | Wastewater treatment apparatus and method | |
KR20130079834A (en) | Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof | |
JP2003088885A (en) | Method and apparatus for treating organic waste water | |
KR101679603B1 (en) | Water treatment apparatus using cleaning powder and submersed membranes module | |
KR20040020325A (en) | A method for treating the graywater by membrane | |
KR101054613B1 (en) | Apparatus for waste water single reactor composed of biological and membrane process | |
JP3807945B2 (en) | Method and apparatus for treating organic wastewater | |
JP3438508B2 (en) | Advanced water treatment method and apparatus | |
JP4390959B2 (en) | Wastewater treatment equipment | |
JP2005254207A (en) | Water treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080430 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4131734 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |