JP2006289347A - Method and apparatus for treating waste water - Google Patents

Method and apparatus for treating waste water Download PDF

Info

Publication number
JP2006289347A
JP2006289347A JP2006037164A JP2006037164A JP2006289347A JP 2006289347 A JP2006289347 A JP 2006289347A JP 2006037164 A JP2006037164 A JP 2006037164A JP 2006037164 A JP2006037164 A JP 2006037164A JP 2006289347 A JP2006289347 A JP 2006289347A
Authority
JP
Japan
Prior art keywords
tank
anaerobic ammonia
ammonia
wastewater
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006037164A
Other languages
Japanese (ja)
Other versions
JP5098183B2 (en
Inventor
Tatsuo Sumino
立夫 角野
Kazuichi Isaka
和一 井坂
Satoshi Tokida
聡 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006037164A priority Critical patent/JP5098183B2/en
Publication of JP2006289347A publication Critical patent/JP2006289347A/en
Application granted granted Critical
Publication of JP5098183B2 publication Critical patent/JP5098183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for treating waste water capable of shortening the start-up period for the apparatus and of high-speed, stable denitrification during normal operation after the start-up period which cannot be achieved by conventional anaerobic ammonia oxidizing bacteria. <P>SOLUTION: In the treatment of the waste water containing nitrogen, at least ammonia, in an anaerobic ammonia oxidizing bath 18 using the anaerobic ammonia oxidizing bacteria for denitrification with ammonia and nitrous acid as a substrate, the collected sludge in which the anaerobic ammonia oxidizing bacteria having a specific proliferation rate of 0.39 per day or more in seed sludge are collected and cultured is brought into contact with the waste water containing nitrogen in the anaerobic ammonia oxidizing bath 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は廃水処理方法及び装置に係り、特に少なくともアンモニアを含有する窒素含有廃水の窒素除去に使用され、アンモニアと亜硝酸とを基質とする嫌気性アンモニア酸化細菌を用いた廃水処理方法及び装置に関する。   The present invention relates to a wastewater treatment method and apparatus, and more particularly, to a wastewater treatment method and apparatus using anaerobic ammonia-oxidizing bacteria that are used for nitrogen removal of nitrogen-containing wastewater containing at least ammonia and using ammonia and nitrous acid as substrates. .

食品工場や化学工場などでは、低濃度から高濃度までの各種濃度のアンモニアが廃水として排出される。これらのアンモニア廃液は、水域の富栄養化や溶存酸素低下の原因となり、処理の必要性が強く望まれている。   In food factories and chemical factories, various concentrations of ammonia from low to high concentrations are discharged as waste water. These ammonia waste liquids cause eutrophication of water bodies and decrease in dissolved oxygen, and the necessity for treatment is strongly desired.

一般に、低濃度から中濃度までのアンモニア廃液の処理では微生物を使用した生物学的な生物処理が多く行われている。この生物処理では、好気硝化と嫌気脱窒とによる硝化・脱窒処理が行なわれる。好気硝化では、硝化槽においてアンモニア酸化細菌(Nitrosomonas属、Nitrosococcus 属、Nitrosospira属、Nitrosolobus属等)と、亜硝酸酸化細菌(Nitrobactor 属、Nitrospira属、Nitrococcus 属、Nitospina 属等)とによって、処理される窒素含有廃水中のアンモニア性窒素及び亜硝酸性窒素の好気的な酸化が行われる。一方、嫌気脱窒では、脱窒槽においてPseudomonas denitrificans 等の従属栄養細菌による嫌気的な脱窒が行われる。   In general, in the treatment of ammonia waste liquid from low concentration to medium concentration, many biological biological treatments using microorganisms are performed. In this biological treatment, nitrification / denitrification treatment by aerobic nitrification and anaerobic denitrification is performed. Aerobic nitrification is treated in the nitrification tank with ammonia oxidizing bacteria (genus Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospira, Nitrococcus, Nitospina, etc.). Aerobic oxidation of ammonia nitrogen and nitrite nitrogen in the nitrogen-containing wastewater. On the other hand, anaerobic denitrification involves anaerobic denitrification by heterotrophic bacteria such as Pseudomonas denitrificans in a denitrification tank.

また、好気硝化では、硝化槽の負荷が0.2〜0.3kg−N/m3 /日の範囲で運転される。一方、嫌気脱窒では、脱窒槽の負荷が0.2〜0.4kg−N/m3 /日の範囲で運転される。したがって、処理する窒素含有廃水中の総窒素濃度が30〜40mg/Lの範囲である場合に、硝化槽では6〜8時間、脱窒槽では5〜8時間の滞留時間が必要とされるため、大規模な廃水処理装置を設けなければならないという問題があった。 In aerobic nitrification, the nitrification tank is operated at a load of 0.2 to 0.3 kg-N / m 3 / day. On the other hand, in anaerobic denitrification, the denitrification tank is operated at a load of 0.2 to 0.4 kg-N / m 3 / day. Therefore, when the total nitrogen concentration in the nitrogen-containing wastewater to be treated is in the range of 30 to 40 mg / L, a residence time of 6 to 8 hours is required in the nitrification tank and 5 to 8 hours in the denitrification tank. There was a problem that a large-scale wastewater treatment device had to be provided.

その上、産業廃水等の無機質のみ含有される窒素含有廃水では、硝化槽及び脱窒槽の負荷は上述した負荷と同様に設定されるが、脱窒を行なう際に有機物が必要とされる。したがって、処理する窒素含有廃水中の窒素濃度に対して3〜4倍濃度のメタノールを添加しなければならず、イニシャルコストばかりでなく多大なランニングコストを要するという新たな問題があった。   In addition, in nitrogen-containing wastewater containing only inorganic substances such as industrial wastewater, the loads of the nitrification tank and the denitrification tank are set in the same manner as described above, but organic matter is required when performing denitrification. Therefore, it is necessary to add methanol having a concentration of 3 to 4 times the nitrogen concentration in the nitrogen-containing wastewater to be treated, and there is a new problem that not only the initial cost but also a great running cost is required.

これに対し、最近、特許文献1に開示されているように、下記の反応を行う嫌気性アンモニア酸化法による窒素除去が注目されている。この方法は、アンモニアの一部を亜硝酸型の硝化細菌により亜硝酸に変換し、この亜硝酸と残りのアンモニアを嫌気性アンモニア酸化細菌で同時脱窒する方法である。この方法は、アンモニアの一部を亜硝酸にするので、必要酸素量が少なく、また脱窒を少ない有機物で処理できるので、処理コストが安価になるというメリットがある。   On the other hand, recently, as disclosed in Patent Document 1, attention has been paid to nitrogen removal by an anaerobic ammonia oxidation method in which the following reaction is performed. In this method, a part of ammonia is converted into nitrite by a nitrite type nitrifying bacterium, and this nitrite and the remaining ammonia are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium. This method has the merit that the processing cost is low because a part of ammonia is converted into nitrous acid, so that the amount of necessary oxygen is small and denitrification can be performed with an organic substance.

[化1]
NH4 + +1.32NO2 +0.066HCO3 +0.13H+
→1.02N2 +0.26NO3 +0.066CH20.50.15+2.03H2
特開2001−037467号公報
[Chemical 1]
NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
JP 2001-037467 A

しかしながら、嫌気性アンモニア酸化細菌は、1菌体が2菌体に増殖する時間(倍加時間)として11日を要することが報告されており、増殖速度が遅い上に菌体収率が低いために、嫌気性アンモニア酸化法による廃水処理装置の立ち上げに時間がかかると共に、処理槽内に高濃度の嫌気性アンモニア酸化細菌を保持することが難しく、安定した廃水処理ができないという問題がある。   However, it has been reported that anaerobic ammonia-oxidizing bacteria require 11 days as the time required for one cell to grow into two cells (doubling time), and the growth rate is slow and the cell yield is low. In addition, it takes time to start up a wastewater treatment apparatus using an anaerobic ammonia oxidation method, and it is difficult to retain a high concentration of anaerobic ammonia oxidation bacteria in a treatment tank, and thus there is a problem that stable wastewater treatment cannot be performed.

本発明はこのような事情に鑑みてなされたもので、装置の立ち上げ期間を短縮でき、且つ立ち上げ後の定常運転時には従来の嫌気性アンモニア酸化細菌では得られない高速脱窒を安定して行うことができると共に、従来の硝化・脱窒法よりも装置を大幅にコンパクト化することができる廃水処理方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the startup period of the apparatus can be shortened, and stable high-speed denitrification that cannot be obtained by conventional anaerobic ammonia-oxidizing bacteria during steady operation after startup. It is an object of the present invention to provide a wastewater treatment method and apparatus that can be performed and that can greatly reduce the size of the apparatus compared to conventional nitrification / denitrification methods.

本発明の請求項1は前記目的を達成するために、亜硝酸とアンモニアを基質として脱窒を行なう嫌気性アンモニア酸化細菌を用いて少なくともアンモニアを含む窒素含有廃水を処理槽内で処理する廃水処理方法において、前記処理槽内では、種汚泥から比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥を前記窒素含有廃水に接触させることを特徴とする廃水処理方法を提供する。 In order to achieve the above object, claim 1 of the present invention is a wastewater treatment in which nitrogen-containing wastewater containing at least ammonia is treated in a treatment tank using anaerobic ammonia-oxidizing bacteria that perform denitrification using nitrous acid and ammonia as substrates. In the method, in the treatment tank, the wastewater treatment method is characterized in that the accumulated sludge in which the anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more from the seed sludge is brought into contact with the nitrogen-containing wastewater. I will provide a.

ここで窒素含有廃水とは、少なくともアンモニアを含む窒素含有廃水であって、嫌気性アンモニア酸化細菌のもう一方の基質である亜硝酸は各種の方法によって得ることができる。例えば、窒素含有廃水に含まれていても、窒素含有廃水に含まれるアンモニアの一部を硝化細菌で硝化して亜硝酸を生成するようにもよく、或いはタンク等から処理槽に添加するようにしてもよい。更には、アンモニアを硝化細菌で硝化して硝酸とし、この硝酸を生物還元して亜硝酸を生成してもよい。また、種汚泥としては、例えば活性汚泥や消化汚泥を好適に使用することができる。   Here, the nitrogen-containing wastewater is nitrogen-containing wastewater containing at least ammonia, and nitrous acid, which is another substrate of anaerobic ammonia-oxidizing bacteria, can be obtained by various methods. For example, even if it is contained in nitrogen-containing wastewater, a part of ammonia contained in the nitrogen-containing wastewater may be nitrified with nitrifying bacteria to generate nitrous acid, or added from a tank or the like to the treatment tank. May be. Furthermore, ammonia may be nitrified with nitrifying bacteria to form nitric acid, and this nitric acid may be bioreduced to produce nitrous acid. Moreover, as seed sludge, activated sludge and digested sludge can be used conveniently, for example.

本発明者は、嫌気性アンモニア酸化細菌の種類の中には、比増殖速度が0.39日-1以上の極めて増殖速度の速い嫌気性アンモニア酸化細菌が存在することを見いだし、この比増殖速度の速い嫌気性アンモニア酸化細菌を集積培養するための技術を確立した。そして、この集積培養した嫌気性アンモニア酸化細菌を集積汚泥を処理槽内に保持することで、安定した廃水処理を行えることを見いだした。 The present inventor has found that among the types of anaerobic ammonia oxidizing bacteria, there are anaerobic ammonia oxidizing bacteria having a very fast growth rate having a specific growth rate of 0.39 day -1 or more. A technology for enrichment culture of fast anaerobic ammonia oxidizing bacteria was established. And it was found that the anaerobic ammonia-oxidizing bacteria that were cultivated in an integrated manner could be treated stably by holding the accumulated sludge in the treatment tank.

請求項1によれば、嫌気性アンモニア酸化細菌を用いて窒素含有処理水を処理する際に、嫌気性アンモニア酸化細菌として、種汚泥から比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養したものを使用し、この嫌気性アンモニア酸化細菌と窒素含有廃水とを接触させるようにしたので、装置の立ち上げ期間を短縮でき、且つ立ち上げ後の定常運転時には従来の嫌気性アンモニア酸化細菌では得られない高速脱窒を安定して行うことができる。 According to claim 1, when treating nitrogen-containing treated water using anaerobic ammonia oxidizing bacteria, anaerobic ammonia oxidizing as anaerobic ammonia oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more from seed sludge. Since the anaerobic ammonia-oxidizing bacteria and nitrogen-containing wastewater are brought into contact with each other using bacteria accumulated in culture, the start-up period of the apparatus can be shortened, and the conventional anaerobic operation is possible during steady operation after start-up. High-speed denitrification that cannot be obtained with ammonia-oxidizing bacteria can be performed stably.

請求項2は請求項1において、前記集積汚泥は、前記種汚泥を培養槽内に保持し、前記基質を少なくとも含有する培養液を希釈率0.39〜24日-1で通液することによって集積培養されることを特徴とする。 A second aspect of the present invention is the first aspect of the present invention, wherein the accumulated sludge is obtained by holding the seed sludge in a culture tank and passing a culture solution containing at least the substrate at a dilution rate of 0.39 to 24 days- 1 . It is characterized by being concentrated and cultured.

請求項2は比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を含有する集積汚泥を集積培養するための方法であり、種汚泥を培養槽内に保持し、希釈率0.39〜24日-1で培養液を通液するようにした。これにより、比増殖速度0.39日-1以上の本発明における嫌気性アンモニア酸化細菌以外の他の細菌はウオッシュアウトされ(培養槽から洗い出されること)、集積培養によって得られる集積汚泥中には比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌が高濃度に集積される。この集積汚泥を廃水処理で使用することにより、安定した高速脱窒処理を行うことができる。希釈率(日-1)のより好ましい条件は1〜8日-1である。 Claim 2 is a method for accumulating and accumulating accumulated sludge containing anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day -1 or more. The seed sludge is retained in the culture tank, and the dilution rate is 0.39. The culture solution was allowed to flow through -24 days -1 . As a result, bacteria other than the anaerobic ammonia-oxidizing bacteria in the present invention having a specific growth rate of 0.39 day -1 or more are washed out (washed out from the culture tank), and accumulated in the accumulated sludge obtained by the accumulation culture. Has a high concentration of anaerobic ammonia-oxidizing bacteria with a specific growth rate of 0.39 day- 1 or more. By using this accumulated sludge for wastewater treatment, stable high-speed denitrification treatment can be performed. A more preferable condition for the dilution rate (day- 1 ) is 1-8 days- 1 .

請求項3は請求項1又は2において、前記集積汚泥中には前記嫌気性アンモニア酸化細菌が105 cells/mL以上含有されていることを特徴とする。 A third aspect is characterized in that, in the first or second aspect, the accumulated sludge contains 10 5 cells / mL or more of the anaerobic ammonia oxidizing bacteria.

これは、処理槽内において高い脱窒速度を得るためには、集積汚泥中に105 cells/mL以上の濃度で嫌気性アンモニア酸化細菌が含有されていることが好ましいからである。集積汚泥中に106 cells/mL以上含有されていることが一層好ましく、107 cells/mL以上含有されていることが特に好ましい。 This is because, in order to obtain a high denitrification rate in the treatment tank, it is preferable that the accumulated sludge contains anaerobic ammonia-oxidizing bacteria at a concentration of 10 5 cells / mL or more. More preferably, 10 6 cells / mL or more is contained in the accumulated sludge, and 10 7 cells / mL or more is particularly preferred.

請求項4は請求項1〜3の何れか1において、前記集積汚泥は、付着固定化担体、包括固定化担体、自己造粒物の何れかの形態で保持されていることを特徴とする。   A fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the accumulated sludge is held in any form of an adhesion immobilization carrier, a entrapping immobilization carrier, and a self-granulated product.

このように、集積汚泥を、付着固定化担体、包括固定化担体、自己造粒物の何れかの形態で保持すれば、処理槽から嫌気性アンモニア酸化細菌が流出しにくくなるので、処理槽内の嫌気性アンモニア酸化細菌濃度を高濃度に維持することができる。   In this way, if the accumulated sludge is held in any form of an adhesion immobilization carrier, a entrapping immobilization carrier, or a self-granulated product, anaerobic ammonia-oxidizing bacteria are less likely to flow out of the treatment tank. The anaerobic ammonia oxidizing bacteria concentration can be maintained at a high concentration.

請求項5請求項1〜4の何れか1において、前記窒素含有処理水中の有機炭素量Cと総窒素量Nとの比であるC/N比が0.1以上3以下であることを特徴とする。   5. The C / N ratio, which is a ratio of the amount of organic carbon C and the total amount of nitrogen N in the nitrogen-containing treated water, is 0.1 or more and 3 or less. And

これは、C/N比が0.1以上3以下において高い窒素除去率を得ることができるためであり、より好ましい範囲は0.2〜1の範囲である。   This is because a high nitrogen removal rate can be obtained when the C / N ratio is 0.1 or more and 3 or less, and a more preferable range is 0.2 to 1.

請求項6請求項1〜5の何れか1において、前記処理槽では嫌気性条件下で処理が行われることを特徴とする。   6. The method according to any one of claims 1 to 5, wherein the treatment tank is treated under anaerobic conditions.

嫌気性アンモニア酸化細菌は嫌気性の細菌であり、それに合わせて処理槽内の雰囲気を形成したものである。   Anaerobic ammonia-oxidizing bacteria are anaerobic bacteria, and the atmosphere in the treatment tank is formed accordingly.

請求項7請求項1〜5の何れか1において、前記処理槽内に前記嫌気性アンモニア酸化細菌の包括固定化担体と硝化細菌を含有する硝化汚泥とが投入されると共に、該処理槽では好気性条件下で処理が行われることを特徴とする。   7. The process according to claim 1, wherein the treatment tank is filled with the entrapped immobilization support for the anaerobic ammonia-oxidizing bacteria and the nitrified sludge containing the nitrifying bacteria. The treatment is performed under tempering conditions.

嫌気性アンモニア酸化細菌は嫌気性の細菌であるが、請求項7のように、処理槽内に嫌気性アンモニア酸化細菌の包括固定化担体と硝化汚泥とを投入すると、包括固定化担体の外側に硝化汚泥の生物膜が形成されるので、外側に好気性細菌である硝化細菌が存在し、内部に嫌気性細菌である嫌気性アンモニア酸化細菌が存在する付着・包括担体が形成される。そして、処理槽内を好気性条件にして付着・包括担体を用いて処理すれば、1つの処理槽で硝化反応と嫌気性アンモニア酸化反応を行うことができる。   The anaerobic ammonia oxidizing bacterium is an anaerobic bacterium. However, when the entrapping immobilization support and the nitrified sludge of the anaerobic ammonia oxidizing bacterium are put into the treatment tank as in claim 7, the anaerobic ammonia oxidizing bacterium is placed outside the entrapping immobilization support. Since a biofilm of nitrified sludge is formed, an attached / entrapped carrier in which nitrifying bacteria that are aerobic bacteria exist outside and anaerobic ammonia oxidizing bacteria that are anaerobic bacteria exist inside is formed. And if the inside of a processing tank is made into an aerobic condition and it processes using an adhesion | attachment and a comprehensive support | carrier, nitrification reaction and anaerobic ammonia oxidation reaction can be performed with one processing tank.

本発明の請求項8は前記目的を達成するために、亜硝酸とアンモニアを基質として脱窒を行なう嫌気性アンモニア酸化細菌を用いて少なくともアンモニアを含む窒素含有廃水を処理槽内で処理する廃水処理装置において、前記処理槽内には、種汚泥から比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥が投入されていることを特徴とする廃水処理装置を提供する。   In order to achieve the above object, claim 8 of the present invention is a wastewater treatment for treating nitrogen-containing wastewater containing at least ammonia in a treatment tank by using anaerobic ammonia oxidizing bacteria that perform denitrification using nitrous acid and ammonia as substrates. In the apparatus, a wastewater treatment apparatus is provided, wherein the treatment tank is filled with an accumulated sludge obtained by accumulating anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day-1 or more from the seed sludge. To do.

請求項8は、本発明を装置として構成したものであり、装置の立ち上げ期間を短縮でき、且つ立ち上げ後の定常運転時には従来の嫌気性アンモニア酸化細菌では得られない高速脱窒を安定して行うことができる。また、従来の硝化・脱窒法の装置に比べて大幅にコンパクト化することができる。   Claim 8 comprises the present invention as an apparatus, which can shorten the start-up period of the apparatus and stabilize high-speed denitrification that cannot be obtained by conventional anaerobic ammonia-oxidizing bacteria during steady operation after start-up. Can be done. In addition, it can be made much more compact than conventional nitrification / denitrification equipment.

請求項9は請求項8において、前記廃水処理装置には、前記窒素含有廃水中のアンモニアの一部を亜硝酸及び/又は硝酸に変換する硝化槽が設けられることを特徴とする。   A ninth aspect of the present invention according to the eighth aspect is characterized in that the wastewater treatment apparatus is provided with a nitrification tank for converting a part of ammonia in the nitrogen-containing wastewater into nitrous acid and / or nitric acid.

請求項9は、嫌気性アンモニア酸化細菌の基質であるアンモニアと亜硝酸のうちの亜硝酸を得るための1態様であり、硝化槽において窒素含有廃水中のアンモニアの一部を亜硝酸及び/又は硝酸に変換するようにしたものである。   Claim 9 is one embodiment for obtaining nitrous acid among ammonia and nitrous acid, which is a substrate of anaerobic ammonia oxidizing bacteria, and in the nitrification tank, a part of ammonia in the nitrogen-containing wastewater is converted to nitrous acid and / or This is converted to nitric acid.

この場合、アンモニアから亜硝酸への変換は、アンモニア酸化細菌を主体とした亜硝酸型の硝化槽により達成できる。また、アンモニアから硝酸を経由して亜硝酸を得るには、アンモニア酸化細菌と亜硝酸酸化細菌を含有する通常の硝化槽に加えて、従属栄養性脱窒細菌と有機物とを含有する脱窒槽により達成できる。即ち、アンモニアをアンモニア酸化細菌と亜硝酸酸化細菌により硝酸まで硝化し、得られた硝酸を有機物を水素供与体として従属栄養性脱窒細菌により亜硝酸に生物還元する。   In this case, conversion from ammonia to nitrite can be achieved by a nitrite type nitrification tank mainly composed of ammonia oxidizing bacteria. In addition, in order to obtain nitrite from ammonia via nitric acid, in addition to a normal nitrification tank containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, a denitrification tank containing heterotrophic denitrifying bacteria and organic matter is used. Can be achieved. That is, ammonia is nitrified to ammonia by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and the resulting nitric acid is bioreduced to nitrous acid by heterotrophic denitrifying bacteria using organic substances as hydrogen donors.

請求項10は請求項8又は9において、前記廃水処理装置には、硝酸を亜硝酸に還元する従属栄養型の脱窒槽が設けられることを特徴とする。   A tenth aspect of the present invention is characterized in that, in the eighth or ninth aspect, the wastewater treatment apparatus is provided with a heterotrophic denitrification tank that reduces nitric acid to nitrous acid.

請求項10は、請求項10で説明した硝酸から亜硝酸を得るための脱窒槽を設けたものであり、従属栄養型の脱窒槽により硝酸を亜硝酸に還元するようにしたものである。この硝酸から亜硝酸への還元には、有機物を水素供与体として必要とするので、窒素含有廃水中に含有される有機物が多すぎる場合に好適である。   A tenth aspect is provided with a denitrification tank for obtaining nitrous acid from the nitric acid described in the tenth aspect, wherein nitric acid is reduced to nitrous acid by a heterotrophic denitrification tank. This reduction from nitric acid to nitrous acid requires an organic substance as a hydrogen donor, and is therefore suitable when there is too much organic substance contained in the nitrogen-containing wastewater.

請求項11は、前記廃水処理装置には、前記処理槽内に有機物を添加する有機物添加手段が設けられることを特徴とする請求項8〜10の何れか1の廃水処理装置。   An eleventh aspect of the present invention is the wastewater treatment apparatus according to any one of the eighth to tenth aspects, wherein the wastewater treatment apparatus is provided with an organic substance addition means for adding an organic substance into the treatment tank.

請求項11は、窒素含有廃水中に含有される有機物が少なすぎる場合に好適である。   Claim 11 is suitable when the amount of organic matter contained in the nitrogen-containing wastewater is too small.

請求項12は請求項8〜11の何れか1において、前記処理槽では嫌気性条件下で処理が行われることを特徴とする。   A twelfth aspect is characterized in that, in any one of the eighth to eleventh aspects, the treatment is performed in an anaerobic condition in the treatment tank.

嫌気性アンモニア酸化細菌は嫌気性の細菌であり、それに合わせて処理槽内の雰囲気を形成したものである。   Anaerobic ammonia-oxidizing bacteria are anaerobic bacteria, and the atmosphere in the treatment tank is formed accordingly.

請求項13は請求項8〜11の何れか1において、 前記処理槽内に前記嫌気性アンモニア酸化細菌の包括固定化担体と硝化汚泥とが投入されると共に、該処理槽内にエアーを曝気するエアー曝気手段が設けられることを特徴とする。   A thirteenth aspect of the present invention is the method according to any one of the eighth to eleventh aspects, wherein the entrapped immobilization support for the anaerobic ammonia-oxidizing bacteria and nitrified sludge are introduced into the treatment tank, and air is aerated in the treatment tank. An air aeration means is provided.

請求項13は請求項7を装置として構成したものである。   The thirteenth aspect constitutes the seventh aspect as an apparatus.

以上説明したように、本発明に係る廃水処理方法及び装置によれば、装置の立ち上げ期間を短縮でき、且つ立ち上げ後の定常運転時には従来の嫌気性アンモニア酸化細菌では得られない高速脱窒を安定して行うことができる。また、従来の硝化・脱窒法よりも装置を大幅にコンパクト化することができる。   As described above, according to the wastewater treatment method and apparatus according to the present invention, the startup period of the apparatus can be shortened, and high-speed denitrification that cannot be obtained by conventional anaerobic ammonia-oxidizing bacteria during steady operation after startup. Can be performed stably. In addition, the apparatus can be made more compact than the conventional nitrification / denitrification method.

以下、添付図面に従って本発明に係る嫌気性アンモニア酸化細菌の培養方法及び装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of an anaerobic ammonia-oxidizing bacteria culture method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

本発明者は、嫌気性アンモニア酸化細菌の中には、比増殖速度が0.39日-1以上の極めて増殖速度の速い菌体が存在することを見いだし、この比増殖速度の速い菌体を集積培養するための技術を確立した。そして、集積培養した集積汚泥を用いる際の集積汚泥中の好ましい菌数濃度、集積汚泥の好ましい保持方法を確立することで、実装置として廃水処理装置を具体的に構成し、それにより嫌気性アンモニア酸化法による立ち上げ期間を短縮し、且つ定常運転時における安定した高速脱窒を達成するようにしたものである。 The present inventor has found that among anaerobic ammonia-oxidizing bacteria, there are cells with a very high growth rate having a specific growth rate of 0.39 day- 1 or more. A technique for enrichment culture was established. Then, by establishing a preferable concentration of bacteria in the accumulated sludge when using the accumulated sludge accumulated and cultured, and a preferable method for retaining the accumulated sludge, a waste water treatment device is specifically configured as an actual device, thereby anaerobic ammonia. The start-up period by the oxidation method is shortened, and stable high-speed denitrification during steady operation is achieved.

[A]先ず、本発明において見いだした比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌について説明する。 [A] First, an anaerobic ammonia oxidizing bacterium having a specific growth rate of 0.39 day- 1 or more found in the present invention will be described.

比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌は、16SrRNA遺伝子に基づいたDNA塩基配列の特定領域が、明細書の末尾に示す配列表の配列番号1〜9に示すもののうちの少なくとも1種類以上のものを含んでいる。 The anaerobic ammonia oxidizing bacterium having a specific growth rate of 0.39 day- 1 or more is the one in which the specific region of the DNA base sequence based on the 16S rRNA gene is shown in SEQ ID NOs: 1 to 9 in the sequence listing shown at the end of the specification. Including at least one of the following.

上記遺伝子配列を有する嫌気性アンモニア酸化細菌の比増殖速度は、FISH法で計測することにより求めた。FISH法は、嫌気性アンモニア酸化細菌の遺伝子にのみ発色するプローブを用いて選択的に発色させるもので、サンプルを超音波で分散処理した後、AMX820プローブにより染色し、傾向顕微鏡下でダイレクトにカウントすることで菌数を求めた。   The specific growth rate of anaerobic ammonia-oxidizing bacteria having the above gene sequence was determined by measuring by the FISH method. The FISH method uses a probe that develops color only for the genes of anaerobic ammonia-oxidizing bacteria. The sample is dispersed with ultrasound, then stained with an AMX820 probe, and counted directly under a trend microscope. The number of bacteria was calculated.

本発明における上記9種の遺伝子配列は、DDBJ(DNA Data Bank of Japan )に登録した。配列番号1の登録番号はAB164467、配列番号2の登録番号はAB164468、配列番号3の登録番号はAB164469、配列番号4の登録番号はAB164470、配列番号5の登録番号はAB164471、配列番号6の登録番号はAB164472、配列番号7の登録番号はAB164473、配列番号8の登録番号はAB164474、配列番号9の登録番号はAB164475である。   The nine gene sequences in the present invention were registered with DDBJ (DNA Data Bank of Japan). The registration number of SEQ ID NO: 1 is AB164467, the registration number of SEQ ID NO: 2 is AB164468, the registration number of SEQ ID NO: 3 is AB164469, the registration number of SEQ ID NO: 4 is AB164470, the registration number of SEQ ID NO: 5 is AB164471, the registration of SEQ ID NO: 6 The registration number of sequence number 7 is AB164473, the registration number of sequence number 8 is AB164474, and the registration number of sequence number 9 is AB164475.

[B]次に、比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養する培養方法について説明する。 [B] Next, a culture method for accumulating anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more will be described.

培養試験は、比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を含有する種汚泥を培養槽内に保持し、嫌気性アンモニア酸化細菌の基質であるアンモニアと亜硝酸とを少なくとも含有する培養液(例えば表1)を通液して連続培養した。連続培養における希釈率(日-1)は、0.1〜100の間で実施した。希釈率とは、連続培養で用いられる次式、dX/dt=μ・X−D・Xで定義される。 In the culture test, seed sludge containing anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more is retained in the culture tank, and contains at least ammonia and nitrous acid, which are substrates for anaerobic ammonia-oxidizing bacteria. The culture solution (for example, Table 1) to be passed through was continuously cultured. The dilution rate (day- 1 ) in continuous culture was between 0.1 and 100. The dilution rate is defined by the following formula used in continuous culture, dX / dt = μ · X−D · X.

ここで、μ:比増殖速度、X:菌体濃度(cells/mL)、t:培養時間(日)、D:希釈率(日-1)である。

Figure 2006289347
図1は、培養試験の結果であり、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌の菌数(cells/mL)と希釈率(日-1)との関係、及び共存する細菌と希釈率(日-1)との関係を示したものである。 Here, μ: specific growth rate, X: bacterial cell concentration (cells / mL), t: culture time (day), D: dilution rate (day −1).
Figure 2006289347
Fig. 1 shows the results of the culture test. The relationship between the number of anaerobic ammonia-oxidizing bacteria (cells / mL) and dilution rate (day- 1 ) with a specific growth rate of 0.39 day- 1 or more, and coexistence This shows the relationship between the bacteria to be used and the dilution rate (day- 1 ).

図1において「本発明の嫌気性アンモニア酸化細菌」とは比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌であり、「共存する細菌」とは、「本発明の嫌気性アンモニア酸化細菌」以外の細菌を言う。 In FIG. 1, the “anaerobic ammonia oxidizing bacterium of the present invention” is an anaerobic ammonia oxidizing bacterium having a specific growth rate of 0.39 day −1 or more, and the “coexisting bacteria” is “anaerobic ammonia of the present invention”. Bacteria other than “oxidizing bacteria”.

図1に示すように、希釈率を大きくしていくに従って、比増殖速度が0.39日-1以上の増殖速度の速い嫌気性アンモニア酸化細菌の菌数が急激に増加し、希釈率0.1(日-1)のときに菌数が103 (cells/mL)であったものが、希釈率0.39(日-1)で菌数が2倍の106 (cells/mL)になる。更に希釈率を増加すると、希釈率1(日-1)で菌数が108 (cells/mL)になり、希釈率3(日-1)で菌数は109 (cells/mL)でピークに達する。希釈率8(日-1)までは菌数が109 (cells/mL)で推移し、その後、菌数は次第に低下し、希釈率24(日-1)で106 (cells/mL)近くまで低下する。 As shown in FIG. 1, as the dilution rate is increased, the number of anaerobic ammonia-oxidizing bacteria having a rapid growth rate with a specific growth rate of 0.39 day −1 or more increases rapidly. 1 (day -1) number of bacteria when it is intended was 10 3 (cells / mL), the dilution factor 0.39 (day -1) 10 bacteria count twice in 6 (cells / mL) Become. Further increasing the dilution rate, the peak at a dilution 1 (day -1) number of bacteria becomes 10 8 (cells / mL), the number of bacteria at a dilution 3 (day -1) 10 9 (cells / mL) To reach. The number of bacteria remained at 10 9 (cells / mL) up to a dilution rate of 8 (day -1 ), and then the number of bacteria gradually decreased to nearly 10 6 (cells / mL) at a dilution rate of 24 (day -1 ). To fall.

これに対し、共存する菌は、希釈率1(日-1)で菌数が108 (cells/mL)と109 (cells/mL)との間で高濃度であったものが、希釈率を大きくしていくと、菌数が急激に減少し、希釈率24(日-1)で103 (cells/mL)近くまで低下する。 In contrast, the coexisting bacteria had a dilution rate of 1 (day- 1 ) and the number of bacteria was high between 10 8 (cells / mL) and 10 9 (cells / mL). As the value is increased, the number of bacteria rapidly decreases and decreases to near 10 3 (cells / mL) at a dilution rate of 24 (day −1 ).

このように、通常の集積培養で設定される希釈率0.1よりも、大きな希釈率で集積培養を行うと、比増殖速度が0.39日-1以上の増殖速度の速い嫌気性アンモニア酸化細菌が集積され、それ以外の共存する細菌は希釈率が大きすぎるために培養槽からウオッシュウアウトされることが分かる。これにより、集積汚泥中に比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌が高濃度に集積される。 As described above, when the enrichment culture is performed at a dilution rate larger than the dilution rate 0.1 set in the normal enrichment culture, the anaerobic ammonia oxidation having a rapid growth rate of a specific growth rate of 0.39 day- 1 or more. It can be seen that bacteria are accumulated and other coexisting bacteria are washed out of the culture tank because the dilution rate is too large. As a result, anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more are accumulated in the accumulated sludge at a high concentration.

廃水処理装置において実際に安定した高速脱窒を行うには、後記する[C]からも分かるように、集積汚泥中の菌数は少なくとも105 (cells/mL)以上必要であることが好ましい。また、嫌気性アンモニア酸化細菌は共存する細菌の略半数以上であることが好ましい。この結果から、比増殖速度が0.39日-1以上の増殖速度の速い嫌気性アンモニア酸化細菌の集積培養方法としては、希釈率0.39〜24日-1で培養液を通液することが好ましく、希釈率1〜10日-1がより好ましく、希釈率3〜8日-1が特に好ましい。 In order to perform stable high-speed denitrification in a wastewater treatment apparatus, it is preferable that the number of bacteria in the accumulated sludge is at least 10 5 (cells / mL) or more, as can be seen from [C] described later. Moreover, it is preferable that the anaerobic ammonia oxidizing bacteria is about half or more of the coexisting bacteria. This result, as a method of enrichment culture specific growth rate to zero. Day 39 -1 or more growth rate fast anaerobic ammonium oxidizing bacteria, to liquid permeation of the culture solution at a dilution from 0.39 to 24 days -1 The dilution ratio is more preferably 1 to 10 days −1 , and the dilution ratio 3 to 8 days −1 is particularly preferable.

実際に、種汚泥として下水処理場の活性汚泥、又は嫌気消化汚泥を用い、アンモニア性窒素濃度、亜硝酸性窒素濃度、硝酸性窒素濃度が1:1:3で、総窒素濃度が80mg/Lの培養液を、希釈率0.39〜24日-1で連続培養した結果、約5カ月で比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を106 (cells/mL)の菌数濃度になるように集積培養することができた。また、希釈率3〜8(日-1)で実施した場合には、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を108 (cells/mL)まで高濃度培養することができた。 Actually, activated sludge from an sewage treatment plant or anaerobic digested sludge is used as seed sludge, ammonia nitrogen concentration, nitrite nitrogen concentration, nitrate nitrogen concentration is 1: 1: 3, and total nitrogen concentration is 80 mg / L. 10 6 (cells / mL) of anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day - 1 or more in about 5 months. It was possible to cultivate the cells so that the number of bacteria would be as high as possible. When the dilution rate is 3 to 8 (day- 1 ), anaerobic ammonia-oxidizing bacteria with a specific growth rate of 0.39 day- 1 or higher should be cultured at a high concentration up to 10 8 (cells / mL). I was able to.

この結果から分かるように、窒素の基質が十分にある条件では希釈率(日-1)が重要であり、希釈率(日-1)を適切に設定することで基質濃度に影響されないように集積培養することができる。培養液の総窒素濃度としては、30〜400mg/Lの範囲を好ましく使用できるが、30〜100mg/Lの範囲がより好ましい。
[C]次に、上記の如く集積培養した集積汚泥中の嫌気性アンモニア酸化細菌の菌数と脱窒速度との関係について説明する。
As can be seen from this result, the dilution rate (day -1 ) is important under conditions where there is sufficient nitrogen substrate, and it is accumulated so that it is not affected by the substrate concentration by setting the dilution rate (day -1 ) appropriately. It can be cultured. As the total nitrogen concentration of the culture solution, a range of 30 to 400 mg / L can be preferably used, but a range of 30 to 100 mg / L is more preferable.
[C] Next, the relationship between the number of anaerobic ammonia-oxidizing bacteria in the accumulated sludge accumulated and cultured as described above and the denitrification rate will be described.

図2は、比増殖速度が0.39日-1以上の本発明の嫌気性アンモニア酸化細菌の菌数と脱窒速度との関係を示したものであり、廃水中のアンモニア濃度が20mg/L(低濃度)、70mg/L(中濃度)、200mg/L(高濃度)の3試験区について試験した。尚、嫌気性アンモニア酸化細菌のもう一つの基質である亜硝酸は、廃水中のアンモニアの窒素濃度1に対して1.32倍の窒素濃度になるようにタンクから添加した。 FIG. 2 shows the relationship between the number of anaerobic ammonia-oxidizing bacteria of the present invention having a specific growth rate of 0.39 day −1 or more and the denitrification rate, and the ammonia concentration in the wastewater is 20 mg / L. Three test sections (low concentration), 70 mg / L (medium concentration), and 200 mg / L (high concentration) were tested. Nitrous acid, another substrate for anaerobic ammonia-oxidizing bacteria, was added from the tank so that the nitrogen concentration was 1.32 times the nitrogen concentration of ammonia in the wastewater.

図2のグラフから分かるように、3つの試験区により多少違いはあるものの、集積汚泥中に嫌気性アンモニア酸化細菌を105 (cells/mL)以上保持することにより、脱窒速度0.3(kg−N/m3 /日)を得ることができ、高速脱窒が可能となる。特に、菌数が107 (cells/mL)以上では、高濃度のアンモニア廃水であっても脱窒速度0.8(kg−N/m3 /日)以上となり、従来の嫌気性アンモニア酸化細菌では得られなかった高速脱窒が可能となる。
[D]次に、上記の如く集積培養した嫌気性アンモニア酸化細菌の保持方法について説明する。
As can be seen from the graph of FIG. 2, although there are some differences between the three test plots, a denitrification rate of 0.3 (by an amount of 10 5 (cells / mL) or more of the anaerobic ammonia oxidizing bacteria in the accumulated sludge is maintained. kg-N / m 3 / day), and high-speed denitrification is possible. In particular, when the number of bacteria is 10 7 (cells / mL) or more, even a high concentration ammonia wastewater has a denitrification rate of 0.8 (kg-N / m 3 / day) or more, which is a conventional anaerobic ammonia oxidizing bacterium. High-speed denitrification that could not be obtained is possible.
[D] Next, a method for retaining anaerobic ammonia-oxidizing bacteria accumulated and cultured as described above will be described.

嫌気性アンモニア酸化細菌の保持方法としては、一般的に細菌の固定化として知られている付着固定化、及び包括固定化の2つの方法を好適に使用することができるが、浮遊菌や自己造粒物(グラニュール)でもよい。   As a method for retaining anaerobic ammonia-oxidizing bacteria, two methods of adhesion immobilization and entrapping immobilization generally known as immobilization of bacteria can be preferably used. Granules may be used.

付着固定化方法は、付着固定化材料の表面に嫌気性アンモニア酸化細菌を付着保持する方法であり、球状担体、筒状担体、紐状担体、ゲル状担体、不織布材料等のように表面積が大きく表面に凹凸の多い付着固定化材料を使用すると嫌気性アンモニア酸化細菌を多く保持することができ、処理性能が向上する。   The adhesion immobilization method is a method of adhering and holding anaerobic ammonia oxidizing bacteria on the surface of the adhesion immobilization material, and has a large surface area such as a spherical carrier, a cylindrical carrier, a string carrier, a gel carrier, and a nonwoven material. When an adhesion immobilization material with many irregularities is used on the surface, a large amount of anaerobic ammonia-oxidizing bacteria can be retained, and the processing performance is improved.

包括固定化方法は、嫌気性アンモニア酸化細菌(集積汚泥)と包括固定化材料(モノマー、プレポリマー)を混合し、この混合物を重合することでゲル担体の内部に嫌気性アンモニア酸化細菌を保持する方法である。モノマー材料としては、アクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマール等を好適に使用できる。プレポリマーとしては、ポリエチレングリコールジアクリレートやポリエチレングリコールメタクリレートを好適に使用することができる。包括固定化担体の形状は、球状や筒状等の包括固定化担体、紐状の包括固定化担体、不織布状の包括固定化担体等のように表面積が大きく表面に凹凸の多い形状のものが処理性能が向上する。   The entrapping immobilization method mixes anaerobic ammonia-oxidizing bacteria (accumulated sludge) and entrapping immobilization materials (monomer, prepolymer) and polymerizes the mixture to retain the anaerobic ammonia-oxidizing bacteria inside the gel carrier. Is the method. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like can be suitably used. As the prepolymer, polyethylene glycol diacrylate or polyethylene glycol methacrylate can be suitably used. The shape of the entrapping immobilization carrier has a shape with a large surface area and a lot of irregularities on the surface, such as a spherical or cylindrical entrapping immobilization carrier, a string-like entrapping immobilization carrier, a non-woven wrapping immobilization carrier, etc. Processing performance is improved.

表2は包括固定化担体の代表的な組成例である。   Table 2 shows typical composition examples of the entrapping immobilization carrier.

Figure 2006289347
表2の組成の懸濁液に過硫酸カリウムを0.25部添加すると重合が始まり、ゲル化する。このゲルを切断し、任意の大きさにすることにより、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を高濃度に含有する包括固定化担体を製造することができる。
[E]次に、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌の活性を効果的に発現させる有機物の必要性について説明する。
Figure 2006289347
When 0.25 part of potassium persulfate is added to the suspension having the composition shown in Table 2, polymerization starts and gelation occurs. By cutting this gel and making it an arbitrary size, it is possible to produce a entrapping immobilization carrier containing anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day -1 or more in a high concentration.
[E] Next, the necessity of an organic substance that effectively expresses the activity of anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more will be described.

試験は、上記の如く集積培養した集積汚泥を用い、窒素含有廃水を処理する処理槽内のC/N比を変えたときに総窒素除去率がどのように変わるかを試験した。窒素含有廃水としては、アンモニア性窒素濃度、亜硝酸性窒素濃度、硝酸性窒素濃度の比が1:0.5:0.5で、総窒素濃度(TN濃度)が80mg/Lになるようにした無機合成廃水を使用した。また、有機炭素源として酢酸ナトリウムを使用すると共に、酢酸ナトリウムの添加量を変えることでC/N比を変えた回分試験を行い、運転開始から4時間後の安定期における総窒素除去率を調べた。   The test was conducted to examine how the total nitrogen removal rate changes when the C / N ratio in the treatment tank for treating nitrogen-containing wastewater is changed using the accumulated sludge accumulated and cultured as described above. As nitrogen-containing wastewater, the ratio of ammonia nitrogen concentration, nitrite nitrogen concentration, nitrate nitrogen concentration is 1: 0.5: 0.5, and the total nitrogen concentration (TN concentration) is 80 mg / L. Inorganic synthetic wastewater was used. In addition, using sodium acetate as the organic carbon source and changing the C / N ratio by changing the amount of sodium acetate added, a batch test was conducted to examine the total nitrogen removal rate in the stable period 4 hours after the start of operation. It was.

図3は、処理槽内における有機炭素量Cと総窒素量Nとの比であるC/N比と、窒素含有廃水の総窒素除去率(TN除去率)との関係を示した試験結果である。図3から分かるように、C/N比を大きくしていくと、総窒素除去率は急激に大きくなり、C/N比が0.1で総窒素除去率が40%になり、C/N比が0.2で総窒素除去率が80%になる。C/N比が0.5で総窒素除去率が約90%でピークに達し、ピーク状態がC/N比0.8程度まで維持された後、総窒素除去率は緩やかに下降し、C/N比が3で総窒素除去率は約60%になる。   FIG. 3 is a test result showing the relationship between the C / N ratio, which is the ratio between the amount of organic carbon C and the total nitrogen N in the treatment tank, and the total nitrogen removal rate (TN removal rate) of nitrogen-containing wastewater. is there. As can be seen from FIG. 3, as the C / N ratio is increased, the total nitrogen removal rate increases rapidly, the C / N ratio is 0.1, and the total nitrogen removal rate is 40%. A ratio of 0.2 results in a total nitrogen removal rate of 80%. After the C / N ratio is 0.5 and the total nitrogen removal rate reaches a peak at about 90%, and the peak state is maintained up to about C / N ratio of about 0.8, the total nitrogen removal rate gradually decreases. When the / N ratio is 3, the total nitrogen removal rate is about 60%.

この結果から、高い総窒素除去率を得るには、C/N比を0.1以上3以下にすることが好ましく、より好ましいC/N比は0.2〜1の範囲である。
[F]次に、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を使用した本発明の廃水処理装置の具体的な構成を以下に説明する。
(F−1)図4は、本発明の第1の実施の形態の廃水処理装置10であり、アンモニアを少なくとも含有する窒素含有廃水の一部が、原水配管12から分岐した分岐配管14の流入路14Aから硝化槽16に流入すると共に、残りの窒素含有廃水は原水配管12を流れて嫌気性アンモニア酸化槽(処理槽に相当)18に流入する。硝化槽16内に棲息する硝化細菌としては、アンモニアを亜硝酸に変換するアンモニア酸化細菌と、亜硝酸を硝酸に変換する亜硝酸酸化細菌がある。これにより、窒素含有廃水中のアンモニアを亜硝酸及び/又は硝酸に変換する。硝化細菌の硝化槽16における保持形態はどのようなものでもよいが、例えば、付着固定或いは包括固定が好適に使用される。一方、嫌気性アンモニア酸化槽18内には、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥が棲息している。嫌気性アンモニア酸化細菌は、浮遊汚泥として棲息していてもよいが、付着固定、包括固定、自己造粒等により嫌気性アンモニア酸化槽18内に保持されることが好ましい。尚、図4では、包括固定化担体20の例で示してある。嫌気性アンモニア酸化槽18の処理水流出部には包括固定化担体20の流出を防止するスクリーン22が設けられる。
From this result, in order to obtain a high total nitrogen removal rate, it is preferable that the C / N ratio is 0.1 or more and 3 or less, and a more preferable C / N ratio is in the range of 0.2 to 1.
[F] Next, a specific configuration of the wastewater treatment apparatus of the present invention using anaerobic ammonia oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more will be described below.
(F-1) FIG. 4 shows the wastewater treatment apparatus 10 according to the first embodiment of the present invention, in which part of the nitrogen-containing wastewater containing at least ammonia flows into the branch pipe 14 branched from the raw water pipe 12. While flowing into the nitrification tank 16 from the path 14A, the remaining nitrogen-containing wastewater flows through the raw water pipe 12 and flows into the anaerobic ammonia oxidation tank (corresponding to the treatment tank) 18. The nitrifying bacteria that live in the nitrification tank 16 include ammonia oxidizing bacteria that convert ammonia into nitrite and nitrite oxidizing bacteria that convert nitrite into nitric acid. Thereby, ammonia in nitrogen-containing wastewater is converted into nitrous acid and / or nitric acid. Any holding form of the nitrifying bacteria in the nitrifying tank 16 may be used. For example, adhesion fixing or entrapping fixing is preferably used. On the other hand, in the anaerobic ammonia oxidation tank 18, accumulated sludge in which anaerobic ammonia oxidizing bacteria having a specific growth rate of 0.39 day −1 or more is accumulated and inhabited is inhabited. The anaerobic ammonia oxidizing bacteria may be inhabited as floating sludge, but is preferably held in the anaerobic ammonia oxidizing tank 18 by adhesion fixation, comprehensive fixation, self-granulation or the like. In FIG. 4, an example of the entrapping immobilization carrier 20 is shown. A screen 22 for preventing the entrapping immobilization carrier 20 from flowing out is provided at the treated water outflow portion of the anaerobic ammonia oxidation tank 18.

そして、硝化槽16で生成された亜硝酸及び/又は硝酸を含む硝化液は分岐配管14の流出路14Bから嫌気性アンモニア酸化槽18に供給される。これにより、嫌気性アンモニア酸化槽18内では、原水配管12から流入したアンモニアと硝化槽16から流入した亜硝酸を基質として嫌気性アンモニア酸化反応が行われ、アンモニアと亜硝酸とを同時脱窒する。ここで、硝化槽16から嫌気性アンモニア酸化槽18に供給される硝酸は、嫌気性アンモニア酸化槽18内の有機物を水素供与体として従属栄養性脱窒細菌により脱窒(生物還元)され、亜硝酸に変換されてから基質として利用される。   Then, the nitrification liquid containing nitrous acid and / or nitric acid generated in the nitrification tank 16 is supplied from the outflow path 14B of the branch pipe 14 to the anaerobic ammonia oxidation tank 18. As a result, in the anaerobic ammonia oxidation tank 18, anaerobic ammonia oxidation reaction is performed using ammonia flowing from the raw water pipe 12 and nitrous acid flowing from the nitrification tank 16 as substrates, thereby simultaneously denitrifying ammonia and nitrous acid. . Here, the nitric acid supplied from the nitrification tank 16 to the anaerobic ammonia oxidation tank 18 is denitrified (bioreduced) by heterotrophic denitrifying bacteria using the organic matter in the anaerobic ammonia oxidation tank 18 as a hydrogen donor, After being converted to nitric acid, it is used as a substrate.

嫌気性アンモニア酸化槽18で処理された処理水は処理水配管24から系外に排出される。これにより、窒素含有廃水中の窒素を除去する。尚、嫌気性アンモニア酸化槽18内におけるアンモニアと亜硝酸の比率は、1:1.32の近傍が好ましい。以下同様である。   The treated water treated in the anaerobic ammonia oxidation tank 18 is discharged out of the system from the treated water pipe 24. Thereby, nitrogen in nitrogen-containing wastewater is removed. The ratio of ammonia and nitrous acid in the anaerobic ammonia oxidation tank 18 is preferably in the vicinity of 1: 1.32. The same applies hereinafter.

この廃水処理装置10において、嫌気性アンモニア酸化槽18内に、比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥を棲息させることにより、装置の立ち上げ期間を短縮でき、且つ装置の定常運転時には高速脱窒を安定して行うことができる。   In this wastewater treatment apparatus 10, the start-up period of the apparatus is established by inhaling accumulated sludge in which anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day -1 or more are accumulated and cultured in the anaerobic ammonia oxidation tank 18. And high-speed denitrification can be stably performed during the steady operation of the apparatus.

尚、以下説明する廃水処理装置の別の実施態様では、硝化槽14、嫌気性アンモニア酸化槽18に棲息するアンモニア酸化細菌及び嫌気性アンモニア酸化細菌の保持形態については、同様なので省略する。また、スクリーン及び処理水配管の説明も省略する。
(F−2)図5は本発明の第2の実施の形態の廃水処理装置30であり、硝化反応と嫌気性アンモニア酸化反応とを嫌気性アンモニア酸化槽18の1槽で行うものである。
In another embodiment of the waste water treatment apparatus described below, the holding forms of the ammonia-oxidizing bacteria and the anaerobic ammonia-oxidizing bacteria living in the nitrification tank 14 and the anaerobic ammonia-oxidizing tank 18 are the same and are omitted. Further, the description of the screen and the treated water piping is also omitted.
(F-2) FIG. 5 shows the wastewater treatment apparatus 30 according to the second embodiment of the present invention, in which the nitrification reaction and the anaerobic ammonia oxidation reaction are performed in one tank of the anaerobic ammonia oxidation tank 18.

アンモニアを少なくとも含有する窒素含有廃水は、原水配管12からエアー曝気管26を備えた嫌気性アンモニア酸化槽18に流入する。嫌気性アンモニア酸化槽18内には、嫌気性アンモニア酸化細菌を集積培養した集積汚泥を包括固定化した包括固定化担体と、硝化細菌を含む硝化汚泥が投入されている。これにより、包括固定化担体の表面に硝化汚泥が付着するので、好気性状態の外側に好気性細菌である硝化細菌の生物膜層が形成され、嫌気性状態の内部に嫌気性アンモニア酸化細菌が包括固定化された付着・包括担体28が形成される。そして、嫌気性アンモニア酸化槽18に流入した窒素含有廃水中のアンモニアは、付着・包括担体28の硝化細菌と好気性状態で接触してアンモニアの一部が硝化され亜硝酸が生成される。この生成された亜硝酸と残りのアンモニアとが付着・包括担体28の嫌気性アンモニア酸化細菌と嫌気性状態で反応し、アンモニアと亜硝酸とが同時脱窒される。この場合、嫌気性アンモニア酸化槽18内には有機物が若干存在することが好ましい。このように、硝化細菌と嫌気性アンモニア酸化細菌とが保持された付着・包括担体28を使用することで、窒素含有廃水を嫌気性アンモニア酸化槽18の1槽で効率的に処理することができる。
(F−3)図6は本発明の第3の実施の形態の廃水処理装置40であり、図4の変形例である。
The nitrogen-containing wastewater containing at least ammonia flows into the anaerobic ammonia oxidation tank 18 provided with the air aeration pipe 26 from the raw water pipe 12. In the anaerobic ammonia oxidation tank 18, a entrapped immobilization carrier in which the accumulated sludge obtained by culturing anaerobic ammonia oxidizing bacteria is entrapped and a nitrifying sludge containing nitrifying bacteria are introduced. As a result, nitrified sludge adheres to the surface of the entrapping immobilization support, so that a biofilm layer of nitrifying bacteria that are aerobic bacteria is formed outside the aerobic state, and anaerobic ammonia-oxidizing bacteria are formed inside the anaerobic state. The adhesion / entrapping carrier 28 inclusively fixed is formed. Then, the ammonia in the nitrogen-containing wastewater that has flowed into the anaerobic ammonia oxidation tank 18 comes into contact with the nitrifying bacteria of the adhesion / entrapping carrier 28 in an aerobic state, and a part of the ammonia is nitrified to produce nitrous acid. The generated nitrous acid and the remaining ammonia react in an anaerobic state with the anaerobic ammonia-oxidizing bacteria of the adhesion / entrapping carrier 28, and ammonia and nitrous acid are simultaneously denitrified. In this case, it is preferable that some organic substances exist in the anaerobic ammonia oxidation tank 18. Thus, by using the adhesion / entrapping carrier 28 in which the nitrifying bacteria and the anaerobic ammonia oxidizing bacteria are retained, the nitrogen-containing wastewater can be efficiently treated in one tank of the anaerobic ammonia oxidizing tank 18. .
(F-3) FIG. 6 shows a wastewater treatment apparatus 40 according to the third embodiment of the present invention, which is a modification of FIG.

アンモニアを少なくとも含有する窒素含有廃水は、嫌気性アンモニア酸化槽18を経由して後段の硝化槽16に流入する。そして、硝化槽16での硝化反応により生成された亜硝酸及び/又は硝酸は戻り配管32を介して嫌気性アンモニア酸化槽18に戻される。これにより、嫌気性アンモニア酸化槽18では、原水配管12を介して流入するアンモニアと、硝化槽16から戻り配管32を介して戻された亜硝酸及び/又は硝酸とを同時脱窒する。この場合も、硝酸は上記説明した生物還元により亜硝酸に変換されてから基質として利用される。
(F−4)図7は本発明の第4の実施の形態の廃水処理装置50であり、窒素含有廃水中の有機物が多すぎる場合の装置構成である。
The nitrogen-containing wastewater containing at least ammonia flows into the nitrification tank 16 at the subsequent stage via the anaerobic ammonia oxidation tank 18. The nitrous acid and / or nitric acid generated by the nitrification reaction in the nitrification tank 16 is returned to the anaerobic ammonia oxidation tank 18 via the return pipe 32. Thereby, in the anaerobic ammonia oxidation tank 18, the ammonia flowing in via the raw water pipe 12 and the nitrous acid and / or nitric acid returned from the nitrification tank 16 via the return pipe 32 are simultaneously denitrified. Also in this case, nitric acid is used as a substrate after being converted to nitrous acid by the above-described bioreduction.
(F-4) FIG. 7 shows the wastewater treatment apparatus 50 according to the fourth embodiment of the present invention, and shows the apparatus configuration when there is too much organic matter in the nitrogen-containing wastewater.

図7に示すように、アンモニアの他に有機物を多く含有する窒素含有廃水の一部は、原水配管12から分岐した分岐配管14の流入路14Aを介して硝化槽16に流入すると共に、残りの窒素含有廃水は脱窒槽34を経由して嫌気性アンモニア酸化槽18に流入する。脱窒槽34内には、従属栄養性脱窒細菌の固定床36が設けられ、有機物を水素供与体として硝酸を亜硝酸に還元し、この還元による有機物の消費によりC/N比を下げる。分岐流路14の流出路14Bは2つの枝管に分かれ、第1の枝管14Cは脱窒槽34に接続される共に、第2の枝管14Dは嫌気性アンモニア酸化槽18に接続される。これにより、硝化槽14での硝化反応により亜硝酸と硝酸とが生成されると共に、生成された亜硝酸及び硝酸を含む硝化液の一部は第1の枝管14Cを介して脱窒槽34に流入し、脱窒槽34を介して嫌気性アンモニア酸化槽18に流入すると共に、残りの硝化液は嫌気性アンモニア酸化槽に直接流入する。脱窒槽34では、有機物を水素供与体として硝酸を亜硝酸に還元するので、脱窒槽34で窒素含有廃水中の有機物が低減される。嫌気性アンモニア酸化槽18では、残存する有機物を水素供与体として従属栄養性脱窒細菌により硝酸が還元され、嫌気性アンモニア酸化細菌の基質である亜硝酸が生成される。これにより、窒素含有廃水中の有機物が多すぎる場合であっても嫌気性アンモニア酸化槽18での嫌気性アンモニア酸化反応を適切に行うことができる。尚、従属栄養性脱窒細菌の脱窒槽34内での保持は固定床に限定されない。また、以下説明する廃水処理装置における脱窒槽34では従属栄養性脱窒細菌の保持形態については省略する。
(F−5)図8は本発明の第5の実施の形態の廃水処理装置60であり、窒素含有廃水中の有機物が多すぎる場合の装置構成の別態様である。
As shown in FIG. 7, a part of the nitrogen-containing wastewater containing a large amount of organic substances in addition to ammonia flows into the nitrification tank 16 through the inflow path 14A of the branch pipe 14 branched from the raw water pipe 12, and the remaining The nitrogen-containing wastewater flows into the anaerobic ammonia oxidation tank 18 via the denitrification tank 34. In the denitrification tank 34, a fixed bed 36 of heterotrophic denitrifying bacteria is provided, and nitric acid is reduced to nitrous acid using the organic matter as a hydrogen donor, and the C / N ratio is lowered by consumption of the organic matter by this reduction. The outflow passage 14B of the branch flow passage 14 is divided into two branch pipes, the first branch pipe 14C is connected to the denitrification tank 34, and the second branch pipe 14D is connected to the anaerobic ammonia oxidation tank 18. As a result, nitrite and nitric acid are generated by the nitrification reaction in the nitrification tank 14, and a part of the generated nitrification liquid containing nitrous acid and nitric acid is transferred to the denitrification tank 34 via the first branch pipe 14C. It flows in and flows into the anaerobic ammonia oxidation tank 18 through the denitrification tank 34, and the remaining nitrification liquid flows directly into the anaerobic ammonia oxidation tank. In the denitrification tank 34, nitric acid is reduced to nitrous acid using the organic substance as a hydrogen donor, so that the organic substance in the nitrogen-containing wastewater is reduced in the denitrification tank 34. In the anaerobic ammonia oxidation tank 18, nitrate is reduced by heterotrophic denitrifying bacteria using the remaining organic matter as a hydrogen donor, and nitrous acid, which is a substrate for anaerobic ammonia oxidizing bacteria, is generated. Thereby, even if it is a case where there is too much organic substance in nitrogen-containing wastewater, the anaerobic ammonia oxidation reaction in the anaerobic ammonia oxidation tank 18 can be performed appropriately. The retention of heterotrophic denitrifying bacteria in the denitrification tank 34 is not limited to a fixed bed. In addition, in the denitrification tank 34 in the wastewater treatment apparatus described below, the retention mode of heterotrophic denitrifying bacteria is omitted.
(F-5) FIG. 8 shows a wastewater treatment apparatus 60 according to the fifth embodiment of the present invention, which is another aspect of the apparatus configuration when there is too much organic matter in the nitrogen-containing wastewater.

図8に示すように、アンモニアの他に有機物を多く含有する窒素含有廃水は、脱窒槽34を経由して嫌気性アンモニア酸化槽18に流入する。また、嫌気性アンモニア酸化槽18の後段には硝化槽16が設けられ、硝化槽16からの硝化液の一部が戻り配管32を介して脱窒槽34と嫌気性アンモニア酸化槽18にそれぞれ戻される。   As shown in FIG. 8, the nitrogen-containing wastewater containing a large amount of organic substances in addition to ammonia flows into the anaerobic ammonia oxidation tank 18 via the denitrification tank 34. Further, a nitrification tank 16 is provided at the subsequent stage of the anaerobic ammonia oxidation tank 18, and a part of the nitrification liquid from the nitrification tank 16 is returned to the denitrification tank 34 and the anaerobic ammonia oxidation tank 18 through the return pipe 32. .

この装置構成によれば、脱窒槽34では、窒素含有廃水中の有機物を水素供与体として硝化槽16から戻された硝化液中の硝酸を亜硝酸に還元し、窒素含有廃水中の有機物を低減する。残存する有機物と生成した亜硝酸とは窒素含有廃水中のアンモニアと一緒に嫌気性アンモニア酸化槽18に流入し、硝化液中の硝酸を残存する有機物を水素供与体として還元して亜硝酸を生成し、アンモニアと亜硝酸とが嫌気性アンモニア酸化細菌により同時脱窒される。そして、嫌気性アンモニア酸化槽18で残留したアンモニアは硝化槽16で硝化処理され、前述したように硝化液の一部は脱窒槽34と嫌気性アンモニア酸化槽18に戻される。従って、処理水中に残留するアンモニア濃度を低減できる。
(F−6)図9は本発明の第6の実施の形態の廃水処理装置70で、窒素含有廃水中の有機物が少なすぎる場合の装置構成である。即ち、図4で説明した廃水処理装置10の装置構成に有機物を嫌気性アンモニア酸化槽18に供給する有機物供給タンク38を設けた場合である。これにより、窒素含有廃水中の有機物濃度が低い場合でも、嫌気性アンモニア酸化槽18内における有機炭素量Cと総窒素量Nとの比であるC/N比を0.1以上3以下、より好ましくは0.2〜1の範囲に設定することができるので、図3で説明したように脱窒処理性能を向上させることができる。
(F−7)図10は本発明の第7の実施の形態の廃水処理装置80であり、窒素含有廃水中の有機物が少なすぎる場合の装置構成の別態様である。
According to this apparatus configuration, in the denitrification tank 34, nitric acid in the nitrification liquid returned from the nitrification tank 16 is reduced to nitrous acid using organic substances in the nitrogen-containing wastewater as hydrogen donors, and organic substances in the nitrogen-containing wastewater are reduced. To do. The remaining organic matter and the produced nitrous acid flow into the anaerobic ammonia oxidation tank 18 together with the ammonia in the nitrogen-containing wastewater, and the remaining organic matter in the nitrification solution is reduced as a hydrogen donor to produce nitrous acid. Then, ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria. The ammonia remaining in the anaerobic ammonia oxidation tank 18 is nitrified in the nitrification tank 16, and a part of the nitrification liquid is returned to the denitrification tank 34 and the anaerobic ammonia oxidation tank 18 as described above. Therefore, the ammonia concentration remaining in the treated water can be reduced.
(F-6) FIG. 9 is a wastewater treatment apparatus 70 according to the sixth embodiment of the present invention, and shows the apparatus configuration when the amount of organic matter in the nitrogen-containing wastewater is too small. That is, the organic substance supply tank 38 for supplying organic substances to the anaerobic ammonia oxidation tank 18 is provided in the apparatus configuration of the wastewater treatment apparatus 10 described in FIG. Thereby, even when the organic substance density | concentration in nitrogen-containing wastewater is low, C / N ratio which is ratio of the organic carbon amount C in the anaerobic ammonia oxidation tank 18 and the total nitrogen amount N is 0.1-3, more Since it can set to the range of 0.2-1 preferably, the denitrification processing performance can be improved as demonstrated in FIG.
(F-7) FIG. 10 shows a wastewater treatment apparatus 80 according to the seventh embodiment of the present invention, which is another aspect of the apparatus configuration when the amount of organic matter in the nitrogen-containing wastewater is too small.

図10に示すように、アンモニアを含有する窒素含有廃水の一部は、原水配管12を介して多段式(図10は3段)の亜硝酸型の硝化槽16A、16B、16Cを経由して嫌気性アンモニア酸化槽18に流入すると共に、窒素含有廃水の残りは分岐配管14を介して嫌気性アンモニア酸化槽18に直接流入する。各硝化槽16A、16B、16Cには亜硝酸型の硝化細菌が包括固定化担体40として投入される。また、有機物を嫌気性アンモニア酸化槽18に供給する有機物供給タンク38が設けられる。これにより、窒素含有廃水中のアンモニアは多段式の亜硝酸型の硝化槽16によって全てのアンモニアが亜硝酸に変換され、嫌気性アンモニア酸化槽18に流入する。そして、嫌気性アンモニア酸化槽18では、3段目の硝化槽16Cから流入した亜硝酸と分岐配管14から流入したアンモニアとが同時脱窒される。この脱窒反応において、有機物供給タンクから供給される有機物によって、嫌気性アンモニア酸化槽内のC/N比が0.1以上3以下、より好ましくは0.2〜1の範囲に設定される。
(F−8)図11 は本発明の第8の実施の形態の廃水処理装置90で、嫌気性アンモニア酸化槽18の後段に硝化槽16を設けた図6の変形例である。即ち、硝化槽16からの硝化液を沈殿池42に一旦送液し、沈殿池42から返送汚泥と一緒に嫌気性アンモニア酸化槽18に戻すようにしたものである。
As shown in FIG. 10, a part of the nitrogen-containing wastewater containing ammonia passes through a raw water pipe 12 and passes through a multi-stage nitrite type nitrification tank 16A, 16B, 16C (FIG. 10 is three stages). While flowing into the anaerobic ammonia oxidation tank 18, the remainder of the nitrogen-containing wastewater flows directly into the anaerobic ammonia oxidation tank 18 via the branch pipe 14. A nitrite type nitrifying bacterium is introduced as a entrapping immobilization carrier 40 into each nitrification tank 16A, 16B, 16C. Further, an organic substance supply tank 38 for supplying organic substances to the anaerobic ammonia oxidation tank 18 is provided. As a result, ammonia in the nitrogen-containing wastewater is converted into nitrous acid by the multi-stage nitrite type nitrification tank 16 and flows into the anaerobic ammonia oxidation tank 18. In the anaerobic ammonia oxidation tank 18, nitrous acid flowing from the third-stage nitrification tank 16 </ b> C and ammonia flowing from the branch pipe 14 are simultaneously denitrified. In this denitrification reaction, the C / N ratio in the anaerobic ammonia oxidation tank is set in the range of 0.1 to 3 and more preferably in the range of 0.2 to 1 with the organic material supplied from the organic material supply tank.
(F-8) FIG. 11 shows a variation of FIG. 6 in which a nitrification tank 16 is provided at the rear stage of the anaerobic ammonia oxidation tank 18 in a wastewater treatment apparatus 90 according to an eighth embodiment of the present invention. That is, the nitrification liquid from the nitrification tank 16 is once sent to the sedimentation basin 42 and returned from the sedimentation basin 42 to the anaerobic ammonia oxidation tank 18 together with the return sludge.

(F−9)図12は本発明の第9の実施の形態の廃水処理装置100で、脱窒槽34、嫌気性アンモニア酸化槽18、硝化槽16を設けた図8の変形例であり、硝化槽16からの硝化液を沈殿池42に一旦送液し、沈殿池42から返送汚泥と一緒に嫌気性アンモニア酸化槽18に戻すようにしたものである。   (F-9) FIG. 12 shows a variation of FIG. 8 in which a denitrification tank 34, an anaerobic ammonia oxidation tank 18, and a nitrification tank 16 are provided in a wastewater treatment apparatus 100 according to the ninth embodiment of the present invention. The nitrification liquid from the tank 16 is once sent to the settling tank 42 and returned to the anaerobic ammonia oxidation tank 18 together with the returned sludge from the settling tank 42.

(実施例1)
実施例1は、図4で説明した本発明の廃水処理装置10を用いて窒素含有廃水の処理を行った。
Example 1
In Example 1, nitrogen-containing wastewater was treated using the wastewater treatment apparatus 10 of the present invention described in FIG.

表3は嫌気性アンモニア酸化槽に保持した包括固定化担体の製造に使用した集積汚泥等の組成と混合比である。この集積汚泥は前記した集積方法で集積した比増殖速度が0.39日-1以上の嫌気性アンモニア酸化細菌の9種を40%以上含有する汚泥であることをFISH法により確認済みである。 Table 3 shows the composition and mixing ratio of the accumulated sludge and the like used in the production of the entrapping immobilization support held in the anaerobic ammonia oxidation tank. It has been confirmed by the FISH method that this accumulated sludge is sludge containing 40% or more of nine types of anaerobic ammonia oxidizing bacteria having a specific growth rate of 0.39 day −1 or more accumulated by the accumulation method described above.

Figure 2006289347
過硫酸カリウムを添加することにより、上記組成はゲル化し、このゲルを3mm角の大きさに成形し、包括固定化担体として嫌気性アンモニア酸化槽に投入した。
Figure 2006289347
By adding potassium persulfate, the above composition gelled, this gel was formed into a 3 mm square size, and charged into an anaerobic ammonia oxidation tank as a entrapping immobilization carrier.

試験条件は以下の通りである。   The test conditions are as follows.

・使用廃水はアンモニア性窒素濃度90〜120mg/L含有すると共に、有機物をBODとして10〜30mg/L含有するものを使用した。   -The waste water used contained ammonia nitrogen concentration of 90-120 mg / L and organic substances containing 10-30 mg / L as BOD.

・窒素含有廃水の硝化槽と嫌気性アンモニア酸化槽への流量分配比を1.4:1とした。   The flow rate distribution ratio between the nitrogen-containing wastewater nitrification tank and the anaerobic ammonia oxidation tank was set to 1.4: 1.

・硝化槽には接触ろ材を充填して亜硝酸型の硝化細菌を保持すると共に、滞留時間を8時間とした。   -The nitrification tank was filled with a contact filter medium to hold nitrite-type nitrifying bacteria, and the residence time was 8 hours.

・嫌気性アンモニア酸化槽に包括固定化担体を充填率20%で充填し、滞留時間は2時間とした。   -The entrapping immobilization support was filled in an anaerobic ammonia oxidation tank at a filling rate of 20%, and the residence time was 2 hours.

・嫌気性アンモニア酸化細菌内を機械攪拌により低速攪拌した。   -The anaerobic ammonia oxidizing bacteria were stirred at a low speed by mechanical stirring.

上記試験条件で連続処理した結果、運転開始から1カ月の馴養後、安定した脱窒処理が行われ、処理水の総窒素濃度は4〜10mg/Lの低レベルで推移した。   As a result of continuous treatment under the above test conditions, stable denitrification treatment was performed after acclimatization for one month from the start of operation, and the total nitrogen concentration of the treated water changed at a low level of 4 to 10 mg / L.

(実施例2)
実施例2は、図5で説明した本発明の廃水処理装置を用いて窒素含有廃水の処理を行った。エアー曝気管を備えた嫌気性アンモニア酸化槽に投入した嫌気性アンモニア酸化細菌の包括固定化担体は、表3と同じ組成のものを使用した。
(Example 2)
In Example 2, nitrogen-containing wastewater was treated using the wastewater treatment apparatus of the present invention described in FIG. As the entrapping immobilization support for anaerobic ammonia-oxidizing bacteria introduced into an anaerobic ammonia-oxidizing tank equipped with an air aeration tube, one having the same composition as in Table 3 was used.

試験条件は以下の通りである。   The test conditions are as follows.

・使用廃水はアンモニア性窒素濃度90〜120mg/L含有すると共に、有機物をBODとして10〜30mg/L含有したものを使用した。   -The used waste water contained ammonia nitrogen concentration 90-120 mg / L, and used what contained organic substance 10-30 mg / L as BOD.

・嫌気性アンモニア酸化槽の滞留時間を5時間とした。   -The residence time of the anaerobic ammonia oxidation tank was 5 hours.

・嫌気性アンモニア酸化槽に投入した包括固定化担体の充填率は20%とした。   -The filling rate of the entrapping immobilization support charged into the anaerobic ammonia oxidation tank was 20%.

・運転開始前に嫌気性アンモニア酸化槽に亜硝酸型の硝化細菌を含む硝化汚泥を1000mg/Lになるように投入した。   -Before the start of operation, nitrified sludge containing nitrite-type nitrifying bacteria was introduced into an anaerobic ammonia oxidation tank so as to be 1000 mg / L.

・嫌気性アンモニア酸化槽内を機械攪拌により低速攪拌しながらエアー曝気管からエアを曝気し、嫌気性アンモニア酸化槽内の溶存酸素濃度が0.1〜0.5mg/Lになるようにした。   -Air was aerated from an air aeration pipe while stirring at low speed by mechanical stirring in the anaerobic ammonia oxidation tank so that the dissolved oxygen concentration in the anaerobic ammonia oxidation tank was 0.1 to 0.5 mg / L.

上記試験条件で連続処理した結果、運転開始から1カ月の馴養後、安定した脱窒処理が行われ、処理水の総窒素濃度は4〜8mg/Lの低レベルで推移した。   As a result of continuous treatment under the above test conditions, stable denitrification treatment was performed after acclimatization for one month from the start of operation, and the total nitrogen concentration of the treated water changed at a low level of 4 to 8 mg / L.

(実施例3)
実施例3は、図4で説明した本発明の廃水処理装置を用い、包括固定化担体を使用せずにて窒素含有廃水の処理を行った。
(Example 3)
In Example 3, the wastewater treatment apparatus of the present invention described with reference to FIG. 4 was used, and the nitrogen-containing wastewater was treated without using the entrapping immobilization support.

試験は、図4の廃水処理装置を2つ用意し、第1の装置の嫌気性アンモニア酸化槽内には、嫌気性アンモニア酸化細菌の含有濃度が4×106 (cells/mL)なるように集積汚泥を自己造粒の形態で投入した。また、第2の装置には、第1の装置と同様に嫌気性アンモニア酸化槽内には、嫌気性アンモニア酸化細菌の含有濃度が4×106 (cells/mL)なるように集積汚泥を自己造粒の形態で投入する他に、投入と同時にスポンジ担体を投入して自己造粒物をスポンジ担体に付着固定化するようにした。その他の条件は実施例1と同様である。 In the test, two wastewater treatment devices of FIG. 4 are prepared, and the concentration of the anaerobic ammonia oxidizing bacteria is 4 × 10 6 (cells / mL) in the anaerobic ammonia oxidizing tank of the first device. Accumulated sludge was charged in the form of self-granulation. In addition, the second apparatus has self-accumulated sludge so that the concentration of anaerobic ammonia-oxidizing bacteria is 4 × 10 6 (cells / mL) in the anaerobic ammonia-oxidizing tank as in the first apparatus. In addition to charging in the form of granulation, a sponge carrier was charged at the same time as the charging, and the self-granulated product was adhered and fixed to the sponge carrier. Other conditions are the same as in the first embodiment.

上記条件で連続処理した結果、運転開始から1カ月の馴養後、安定した脱窒処理が行われ、第1の装置では処理水の総窒素濃度は10〜13mg/Lの低レベルで推移し、第2の装置では総窒素濃度は10〜15mg/Lの低レベルで推移した。   As a result of continuous treatment under the above conditions, after one month of acclimatization from the start of operation, stable denitrification treatment is performed, and in the first device, the total nitrogen concentration of treated water changes at a low level of 10 to 13 mg / L, In the second apparatus, the total nitrogen concentration remained at a low level of 10 to 15 mg / L.

(実施例4)
実施例1の廃水処理装置、及び実施例3における第1の装置及び第2の装置のそれぞれについて、引き続き高負荷運転を行ったところ、表4の脱窒速度を得た。即ち、実施例1は嫌気性アンモニア酸化槽内に包括固定化担体を投入した場合、実施例3の第1の装置は自己造粒を投入した場合、実施例3の第2の装置は自己造粒をスポンジ担体に付着させた場合である。
Example 4
About each of the waste water treatment apparatus of Example 1, and the 1st apparatus and 2nd apparatus in Example 3, when the high load operation was performed continuously, the denitrification speed of Table 4 was obtained. That is, in Example 1, when the entrapping immobilization support is introduced into the anaerobic ammonia oxidation tank, when the first apparatus of Example 3 is charged with self-granulation, the second apparatus of Example 3 is self-generated. This is a case where the particles are adhered to a sponge carrier.

Figure 2006289347
表4から分かるように、包括固定化担体、自己造粒、付着担体の何れの脱窒速度も、これまで報告されている嫌気性アンモニア酸化細菌の脱窒速度よりも高い脱窒速度を示した。この結果は、比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥を使用したことに起因するものであり、この集積汚泥を使用することで高速脱窒を行うことができることが実証された。
Figure 2006289347
As can be seen from Table 4, the denitrification rates of the entrapping immobilization support, self-granulation, and adherent support were higher than the denitrification rates of anaerobic ammonia-oxidizing bacteria reported so far. . This result is attributed to the use of accumulated sludge obtained by accumulating anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more, and high-speed denitrification is performed by using this accumulated sludge. It has been demonstrated that it can.

また、繰り返し実施した試験結果から、高い脱窒速度を得るには、前記した配列表の配列番号1〜9の全てを含む必要はなく、少なくとも1種類以上のものを含むことが必要であることが分かった。しかし、集積汚泥中の密度の40%以上を9種の塩基配列を有する嫌気性アンモニア酸化細菌で占めることが一層好ましいことも分かった。   Moreover, in order to obtain a high denitrification rate from repeated test results, it is not necessary to include all of SEQ ID NOs: 1 to 9 in the above sequence listing, and it is necessary to include at least one type of sequence. I understood. However, it has been found that it is more preferable to occupy 40% or more of the density in the accumulated sludge with anaerobic ammonia-oxidizing bacteria having nine base sequences.

ちなみに、従来の硝化・脱窒法で、この種の窒素含有廃水を処理するには、硝化槽の滞留時間を4時間、脱窒槽の滞留時間を4時間必要であり、装置が大型化する。また、硝化槽でアンモニアを全量硝化するための大量のエアー量が必要であるばかりでなく、脱窒槽では大量のメタノールを必要とする。   Incidentally, in order to treat this type of nitrogen-containing wastewater by the conventional nitrification / denitrification method, the residence time of the nitrification tank is 4 hours, and the residence time of the denitrification tank is 4 hours, which increases the size of the apparatus. Further, not only a large amount of air is required to nitrify the entire amount of ammonia in the nitrification tank, but a large amount of methanol is required in the denitrification tank.

これに対し、比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を使用した本発明の廃水処理方法では、アンモニアの全量を硝化する必要はなくエアー量を大幅に低減できると共に、メタノールの添加も必要ない。また、装置もコンパクト化することができる。 On the other hand, in the wastewater treatment method of the present invention using anaerobic ammonia oxidizing bacteria having a specific growth rate of 0.39 day- 1 or more, it is not necessary to nitrify the entire amount of ammonia, and the amount of air can be greatly reduced. There is also no need to add. In addition, the apparatus can be made compact.

比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養する培養方法を説明する説明図Explanatory drawing explaining the culture | cultivation method which accumulates and cultures anaerobic ammonia-oxidizing bacteria with a specific growth rate of 0.39 day -1 比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌の菌数と脱窒速度との関係図Relationship between the number of anaerobic ammonia-oxidizing bacteria with a specific growth rate of 0.39 day- 1 or more and the denitrification rate C/N比と総窒素除去率との関係図Relationship diagram between C / N ratio and total nitrogen removal rate 本発明の第1の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 1st Embodiment of this invention 本発明の第2の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 2nd Embodiment of this invention 本発明の第3の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 3rd Embodiment of this invention 本発明の第4の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 4th Embodiment of this invention 本発明の第5の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 5th Embodiment of this invention 本発明の第6の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 6th Embodiment of this invention 本発明の第7の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 7th Embodiment of this invention 本発明の第8の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment equipment of the 8th Embodiment of this invention 本発明の第9の実施の形態の廃水処理装置の構成図The block diagram of the waste water treatment apparatus of the 9th Embodiment of this invention

符号の説明Explanation of symbols

10、30、40、50、60、70、80、90、100…廃水処理装置、12…原水配管、14…分岐配管、16…硝化槽、18…嫌気性アンモニア酸化槽、20…嫌気性アンモニア酸化細菌の包括固定化担体、22…スクリーン、24…処理水配管、26…エアー曝気管、28…付着・包括担体、32…戻り配管、34…脱窒槽、36…従属栄養性脱窒細菌の固定床、38…有機物供給タンク、40…硝化細菌の包括固定化担体、42…沈殿池
[配列表]
Sequence listing

<110> Hitachi plant engineering & construction co., Ltd
isaka kazuichi
sumino tatsuo
tsuneda satoshi
<120> Waste water Treatment Method and apparatus
<130> HP2006-007
<160> 9
<170> PatentIn version
<210> 1
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400> 1
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468

<210> 2
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400>2
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 3
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400>3
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 4
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400> 4
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgt gggatgaagg 60
ccctcgggtt gtaaaccact gtcgggagtt aagaattgta ggggtgctaa tagtatttct 120
acttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcatgtaggc ggctatgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaatggcgg tcgaaactgc atggcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
cgtcggcggc gaaagcgact ctctagaccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 5
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400>5
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgtgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 6
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400>6
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aagaagtgca gggatgttaa tagcgtctct 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgtgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 7
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400> 7
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aagaagtgcg gggatgttaa tagcgtcctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgcgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccagtagtc ctagccgtaa acgatggg 468
<210> 8
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction、 DNA sequence of 16SrRNA gene
<400>8
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtatgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 9
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction
<400>9
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaagcgact ctctagaccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
DESCRIPTION OF SYMBOLS 10, 30, 40, 50, 60, 70, 80, 90, 100 ... Waste water treatment apparatus, 12 ... Raw water piping, 14 ... Branch piping, 16 ... Nitrification tank, 18 ... Anaerobic ammonia oxidation tank, 20 ... Anaerobic ammonia Oxidizing bacteria inclusion immobilization carrier, 22 ... screen, 24 ... treated water piping, 26 ... air aeration pipe, 28 ... adhesion / entrapping carrier, 32 ... return piping, 34 ... denitrification tank, 36 ... heterotrophic denitrifying bacteria Fixed bed, 38 ... Organic substance supply tank, 40 ... Entrapment immobilization support for nitrifying bacteria, 42 ... Sedimentation basin [Sequence Listing]
Sequence listing

<110> Hitachi plant engineering & construction co., Ltd
isaka kazuichi
sumino tatsuo
tsuneda satoshi
<120> Waste water Treatment Method and apparatus
<130> HP2006-007
<160> 9
<170> PatentIn version
<210> 1
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 1
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468

<210> 2
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 2
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 3
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 3
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 4
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 4
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgt gggatgaagg 60
ccctcgggtt gtaaaccact gtcgggagtt aagaattgta ggggtgctaa tagtatttct 120
acttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcatgtaggc ggctatgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaatggcgg tcgaaactgc atggcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
cgtcggcggc gaaagcgact ctctagaccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 5
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 5
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaagtgca aggatgttaa tagcgttctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgtgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 6
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 6
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aagaagtgca gggatgttaa tagcgtctct 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgtgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 7
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 7
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aagaagtgcg gggatgttaa tagcgtcctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggccgcgtaa 240
gtcggttgtg aaagccttcc gctcaacgga aggacggcat ccgatactgc atggctcgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccagtagtc ctagccgtaa acgatggg 468
<210> 8
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction, DNA sequence of 16SrRNA gene
<400> 8
tcgagaatct ttcgcaatgc ccgcaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaggcgact ctctggtccg taactgacgc tgagtatgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468
<210> 9
<211> 468
<212> DNA
<213> unknown
<220>
<223> microorganism belonging to genus planctomycetes responsible for anaerobic ammonium-oxidizing reaction
<400> 9
tcgagaatct ttcgcaatgc ccgaaagggt gacgaagcga cgccgcgtgc gggaagaagg 60
ccttcgggtt gtaaaccgct gtcgggagtt aggaaatgca aggatgttaa tagcattctt 120
gcttgactaa ggctccggag gaagccacgg ctaactctgt gccagcagcc gcggtaatac 180
agaggcggca agcgttgttc ggaattattg ggcgtaaaga gcacgtaggc ggctgtgtaa 240
gtcggttgtg aaagccttcc gcttaacgga agaacggcat ccgatactgc atagcttgag 300
tgcgggaggg gagagtggaa cttctggtgg agcggtgaaa tgcgtagata tcagaaggaa 360
caccggcggc gaaagcgact ctctagaccg taactgacgc tgagtgtgcg aaagctaggg 420
gagcaaacgg gattagatac cccggtagtc ctagccgtaa acgatggg 468

Claims (13)

亜硝酸とアンモニアを基質として脱窒を行なう嫌気性アンモニア酸化細菌を用いて少なくともアンモニアを含む窒素含有廃水を処理槽内で処理する廃水処理方法において、
前記処理槽内では、種汚泥から比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥を前記窒素含有廃水に接触させることを特徴とする廃水処理方法。
In a wastewater treatment method for treating nitrogen-containing wastewater containing at least ammonia in a treatment tank using anaerobic ammonia-oxidizing bacteria that performs denitrification using nitrous acid and ammonia as substrates,
In the said processing tank, the wastewater treatment method characterized by making the accumulation sludge which carried out the accumulation culture | cultivation of the anaerobic ammonia oxidation bacteria of the specific growth rate 0.39 day- 1 or more from a seed sludge contact the said nitrogen-containing wastewater.
前記集積汚泥は、前記種汚泥を培養槽内に保持し、前記基質を少なくとも含有する培養液を希釈率0.39〜24日-1で通液することによって集積培養されることを特徴とする請求項1の廃水処理方法。 The accumulated sludge is accumulated and cultured by holding the seed sludge in a culture tank and passing a culture solution containing at least the substrate at a dilution rate of 0.39 to 24 days- 1. The wastewater treatment method according to claim 1. 前記集積汚泥中には前記嫌気性アンモニア酸化細菌が105cells/mL以上含有されていることを特徴とする請求項1又は2の廃水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein the accumulated sludge contains 10 5 cells / mL or more of the anaerobic ammonia-oxidizing bacteria. 前記集積汚泥は、付着固定化担体、包括固定化担体、自己造粒物の何れかの形態で前記処理槽内に保持されることを特徴とする請求項1〜3の何れか1の廃水処理方法。   The wastewater treatment according to any one of claims 1 to 3, wherein the accumulated sludge is retained in the treatment tank in any form of an adhesion immobilization carrier, a entrapping immobilization carrier, and a self-granulated product. Method. 前記処理槽内における有機炭素量Cと総窒素量Nとの比であるC/N比が0.1以上3以下であることを特徴とする請求項1〜4の何れか1の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 4, wherein a C / N ratio, which is a ratio of an organic carbon amount C and a total nitrogen amount N in the treatment tank, is 0.1 or more and 3 or less. . 前記処理槽では嫌気性条件下で処理が行われることを特徴とする請求項1〜5の何れか1の廃水処理方法。   The wastewater treatment method according to any one of claims 1 to 5, wherein the treatment tank is treated under anaerobic conditions. 前記処理槽内に前記嫌気性アンモニア酸化細菌の包括固定化担体と硝化細菌を含有する硝化汚泥とが投入されると共に、該処理槽では好気性条件下で処理が行われることを特徴とする請求項1〜5の何れか1の廃水処理方法。   The entrapping immobilization support for the anaerobic ammonia-oxidizing bacteria and nitrifying sludge containing nitrifying bacteria are introduced into the treatment tank, and the treatment is performed under aerobic conditions in the treatment tank. The wastewater treatment method according to any one of Items 1 to 5. 亜硝酸とアンモニアを基質として脱窒を行なう嫌気性アンモニア酸化細菌を用いて少なくともアンモニアを含む窒素含有廃水を処理槽内で処理する廃水処理装置において、
前記処理槽内には、種汚泥から比増殖速度0.39日-1以上の嫌気性アンモニア酸化細菌を集積培養した集積汚泥が投入されていることを特徴とする廃水処理装置。
In a wastewater treatment apparatus that treats nitrogen-containing wastewater containing at least ammonia in a treatment tank using anaerobic ammonia-oxidizing bacteria that performs denitrification using nitrous acid and ammonia as substrates,
The waste water treatment apparatus, wherein the treatment tank is filled with an accumulated sludge in which anaerobic ammonia-oxidizing bacteria having a specific growth rate of 0.39 day -1 or more are accumulated and cultured from the seed sludge.
前記廃水処理装置には、前記窒素含有廃水中のアンモニアの一部を亜硝酸及び/又は硝酸に変換する硝化槽が設けられることを特徴とする請求項8の廃水処理装置。   The wastewater treatment apparatus according to claim 8, wherein the wastewater treatment apparatus is provided with a nitrification tank for converting a part of ammonia in the nitrogen-containing wastewater into nitrous acid and / or nitric acid. 前記廃水処理装置には、硝酸を亜硝酸に還元する従属栄養型の脱窒槽が設けられることを特徴とする請求項8又は9の廃水処理装置。   The wastewater treatment apparatus according to claim 8 or 9, wherein the wastewater treatment apparatus is provided with a heterotrophic denitrification tank that reduces nitric acid to nitrous acid. 前記廃水処理装置には、前記処理槽内に有機物を添加する有機物添加手段が設けられることを特徴とする請求項8〜10の何れか1の廃水処理装置。   The wastewater treatment apparatus according to any one of claims 8 to 10, wherein the wastewater treatment apparatus is provided with an organic substance addition means for adding an organic substance into the treatment tank. 前記処理槽では嫌気性条件下で処理が行われることを特徴とする請求項8〜11の何れか1の廃水処理装置。   The wastewater treatment apparatus according to any one of claims 8 to 11, wherein the treatment tank is treated under anaerobic conditions. 前記処理槽内に前記嫌気性アンモニア酸化細菌の包括固定化担体と硝化汚泥とが投入されると共に、該処理槽内にエアーを曝気するエアー曝気手段が設けられることを特徴とする請求項8〜11の何れか1の廃水処理装置。   The entrapping immobilization support for the anaerobic ammonia-oxidizing bacteria and nitrified sludge are introduced into the treatment tank, and air aeration means for aerating air is provided in the treatment tank. The wastewater treatment apparatus according to any one of 11.
JP2006037164A 2005-03-16 2006-02-14 Waste water treatment method and apparatus Expired - Fee Related JP5098183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037164A JP5098183B2 (en) 2005-03-16 2006-02-14 Waste water treatment method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005075320 2005-03-16
JP2005075320 2005-03-16
JP2006037164A JP5098183B2 (en) 2005-03-16 2006-02-14 Waste water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2006289347A true JP2006289347A (en) 2006-10-26
JP5098183B2 JP5098183B2 (en) 2012-12-12

Family

ID=37410520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037164A Expired - Fee Related JP5098183B2 (en) 2005-03-16 2006-02-14 Waste water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5098183B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
JP2010221192A (en) * 2009-03-25 2010-10-07 Hitachi Plant Technologies Ltd Waste water treatment method
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
JP2013226491A (en) * 2012-04-24 2013-11-07 Panasonic Corp Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater
CN103435166A (en) * 2013-09-03 2013-12-11 北京工业大学 Method for quickly improving enrichment rate and degree of ammonia-oxidizing bacteria (AOB) in sequencing batch reactor (SBR)
JP2015128747A (en) * 2014-01-07 2015-07-16 水ing株式会社 Water treatment apparatus and water treatment method
JP6432961B1 (en) * 2018-06-21 2018-12-05 南京大学 Integrated apparatus for treating low carbon to nitrogen ratio wastewater and its operating method
CN110564619A (en) * 2019-10-15 2019-12-13 山东海景天环保科技股份公司 nitrifying bacteria agent and preparation method thereof
CN111333181A (en) * 2020-03-23 2020-06-26 西安建筑科技大学 Rapid filtration type anaerobic ammonia oxidation reaction method for treating low-concentration nitrogen-containing wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143888A (en) * 2000-11-09 2002-05-21 Kurita Water Ind Ltd Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004283032A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Nucleic acid fragment, nucleic acid fragment for detecting anamox bacterium, primer, probe, method for detecting anamox bacterium, and method for treating ammoniacal nitrogen-containing waste fluid
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP2006246847A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Method and device for culturing anaerobic ammonia-oxidizing bacterium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143888A (en) * 2000-11-09 2002-05-21 Kurita Water Ind Ltd Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP2003024985A (en) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd Dentrification apparatus and dentrification method
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2004074111A (en) * 2002-08-22 2004-03-11 Kurita Water Ind Ltd Waste liquid treatment method
JP2004283032A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Nucleic acid fragment, nucleic acid fragment for detecting anamox bacterium, primer, probe, method for detecting anamox bacterium, and method for treating ammoniacal nitrogen-containing waste fluid
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP2006246847A (en) * 2005-03-14 2006-09-21 Hitachi Plant Technologies Ltd Method and device for culturing anaerobic ammonia-oxidizing bacterium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
JP2010221192A (en) * 2009-03-25 2010-10-07 Hitachi Plant Technologies Ltd Waste water treatment method
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
JP2013226491A (en) * 2012-04-24 2013-11-07 Panasonic Corp Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater
CN103435166A (en) * 2013-09-03 2013-12-11 北京工业大学 Method for quickly improving enrichment rate and degree of ammonia-oxidizing bacteria (AOB) in sequencing batch reactor (SBR)
JP2015128747A (en) * 2014-01-07 2015-07-16 水ing株式会社 Water treatment apparatus and water treatment method
JP6432961B1 (en) * 2018-06-21 2018-12-05 南京大学 Integrated apparatus for treating low carbon to nitrogen ratio wastewater and its operating method
JP2019217487A (en) * 2018-06-21 2019-12-26 南京大学 Integrated device for treatment of low carbon/nitrogen ratio waste water and operation method thereof
CN110564619A (en) * 2019-10-15 2019-12-13 山东海景天环保科技股份公司 nitrifying bacteria agent and preparation method thereof
CN111333181A (en) * 2020-03-23 2020-06-26 西安建筑科技大学 Rapid filtration type anaerobic ammonia oxidation reaction method for treating low-concentration nitrogen-containing wastewater
CN111333181B (en) * 2020-03-23 2022-04-01 西安建筑科技大学 Rapid filtration type anaerobic ammonia oxidation reaction method for treating low-concentration nitrogen-containing wastewater

Also Published As

Publication number Publication date
JP5098183B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5098183B2 (en) Waste water treatment method and apparatus
Wagner et al. Aerobic granular sludge technology and nitrogen removal for domestic wastewater treatment
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP5629448B2 (en) Wastewater treatment method
Yang et al. Impacts of sludge retention time on the performance of an algal-bacterial bioreactor
JP3788601B2 (en) Nitrite-type nitrification carrier, production method thereof, and nitrogen removal method and apparatus using the same
JP2015013290A (en) Treatment method of drainage containing ammonia nitrogen
JP2001170684A (en) Ammonia-containing waste water treatment method and device therefor
JP4626884B2 (en) Culture method and apparatus for anaerobic ammonia oxidizing bacteria
JP4632135B2 (en) Method and apparatus for treating ammonia-containing liquid
Zhang et al. Integration of nitrification and denitrifying dephosphatation in airlift loop sequencing batch biofilm reactor
JP4600817B2 (en) Method for treating ammonia-containing water
JP2018174839A (en) Method for culturing microorganisms and wastewater treatment method and apparatus
Lim et al. Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
Choi et al. Aerobic denitrification by a heterotrophic nitrifying-aerobic denitrifying (HN-AD) culture enriched activated sludge
Subroto et al. Organic removal in domestic wastewater using anaerobic treatment system-MBBR with flow recirculation ratio and intermittent aeration
JP2008296164A (en) Nitrogen removal method and apparatus
Feng et al. Performance study of the reduction of excess sludge and simultaneous removal of organic carbon and nitrogen by a combination of fluidized-and fixed-bed bioreactors with different structured macroporous carriers
ud din Ahmad et al. Enhanced biological nutrient removal by the alliance of a heterotrophic nitrifying strain with a nitrogen removing ecosystem
JP4678577B2 (en) Wastewater treatment system
JP4817057B2 (en) Batch treatment of nitrogen-containing water
Lei et al. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system
JP4632025B2 (en) Method for producing entrapped immobilization microorganism carrier, entrapping immobilization microorganism carrier, and wastewater treatment apparatus
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees