JP5629448B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP5629448B2
JP5629448B2 JP2009234888A JP2009234888A JP5629448B2 JP 5629448 B2 JP5629448 B2 JP 5629448B2 JP 2009234888 A JP2009234888 A JP 2009234888A JP 2009234888 A JP2009234888 A JP 2009234888A JP 5629448 B2 JP5629448 B2 JP 5629448B2
Authority
JP
Japan
Prior art keywords
reaction
nitrogen
denitrification
heterotrophic
autotrophic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009234888A
Other languages
Japanese (ja)
Other versions
JP2011078938A (en
Inventor
▲徳▼明 黎
▲徳▼明 黎
明桂 江
明桂 江
金得 陳
金得 陳
耿全 宋
耿全 宋
志高 林
志高 林
至誠 王
至誠 王
Original Assignee
黎明興技術顧問股▲分▼有限公司
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102009048333A priority Critical patent/DE102009048333A1/en
Application filed by 黎明興技術顧問股▲分▼有限公司, 國立交通大學 filed Critical 黎明興技術顧問股▲分▼有限公司
Priority to JP2009234888A priority patent/JP5629448B2/en
Publication of JP2011078938A publication Critical patent/JP2011078938A/en
Application granted granted Critical
Publication of JP5629448B2 publication Critical patent/JP5629448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、窒素含有廃水処理技術に関し、詳しくは同一の反応槽内で硝化、独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理方法に関するものである。 The present invention relates to a nitrogen-containing wastewater treatment technique, and more particularly, wastewater that enables nitrification, autotrophic denitrification , heterotrophic denitrification , and removal of chemical oxygen demand to proceed simultaneously in the same reaction tank. It relates to a processing method.

生活排水、牧畜業及び養殖業排水、ごみ埋立地から滲出した水および工業廃水は大量の有機態窒素およびアンモニア態窒素を含有している。現今、窒素含有廃水を処理する方法の中では、生物硝化の脱窒方法が最も業界に汎用されているだけでなく、経済的である。 Domestic wastewater, livestock and aquaculture wastewater, water leached from landfills and industrial wastewater contain large amounts of organic nitrogen and ammonia nitrogen. Nowadays, in the method of treating a nitrogen-containing waste water, as well as denitrification method organisms nitrification is generic to most industries, it is economical.

従来の生物硝化の脱窒反応は図1に示すとおりである。まず硝化段階のステップは、微生物の働きによって有機態窒素をアンモニア化させ(Ammonification)、かつ水を加え、(pHによって)NH4 +またはNH3に分解させ、続いてアンモニア態窒素(NH4 +‐N)を亜硝酸態窒素(NO2 -‐N)に酸化させ、続いて亜硝酸態窒素を硝酸態窒素(NO3 -‐N)に酸化させる。この段階において、酸素を水に溶解させることによってアンモニア態窒素および亜硝酸塩に電子を提供するため、エネルギーを大量消費することが避けられない。続いて脱窒段階のステップは、嫌気性従属栄養脱窒菌が有機炭素源の代謝によってNO3 -をNO2 -に還元させ、続いてN2OおよびN2に連続還元させ、そののち大気中に拡散させる。しかし、一般の窒素含有廃水は有機炭素源が足りない。脱窒菌の働きを促進するために外部から炭素源を添加する必要がある。言い換えれば、生物硝化の脱窒方法はエネルギーを消費し、炭素源を添加する必要があるためコストが高くつくだけでなく、従属栄養細菌によって脱窒反応を進行させる際に大量の汚泥が堆積するため、厖大な汚泥処理費が必要である。また、硝化段階および脱窒段階は水に溶解する酸素の需要量が異なるため、業界は好気性硝化および嫌気性脱窒に対し異なるシステムを別々に設置しなければならない。従って経済効率があまりよくない。 A conventional bionitrification denitrification reaction is as shown in FIG. First, the step of nitrification step is to ammonia organic nitrogen by the action of microorganisms, add water and decompose (depending on pH) to NH 4 + or NH 3 , followed by ammonia nitrogen (NH 4 + -N) is oxidized to nitrite nitrogen (NO 2 -- N), followed by oxidation of nitrite nitrogen to nitrate nitrogen (NO 3 -- N). At this stage, oxygen is dissolved in water to provide electrons to ammonia nitrogen and nitrite, so that a large amount of energy is inevitable. Then step of denitrification stage, NO 3 anaerobic heterotrophic denitrifying bacteria by metabolism of organic carbon sources - the NO 2 - is reduced, followed by a continuous reduction in the N 2 O and N 2, then the air Spread inside. However, general nitrogen-containing wastewater lacks organic carbon sources. It is necessary to add a carbon source from the outside in order to facilitate the action of denitrifying bacteria. In other words, denitrification method organisms nitrification consumes energy, not only get higher cost due to the need of adding a carbon source, a large amount of sludge in the progress of the denitrification reaction is deposited by heterotrophic bacteria Therefore, enormous sludge treatment costs are necessary. Also, since the nitrification and denitrification stages have different demands for oxygen dissolved in water, the industry must install different systems for aerobic nitrification and anaerobic denitrification . Therefore, economic efficiency is not so good.

上述した従来の方法に対し、嫌気性アンモニア酸化法(Anaerobic Ammonium Oxidation, ANAMMOX)が徐々に発展し成熟してきた。例えば米国特許第5,078,884号は、嫌気環境下で独立栄養脱窒菌の作用によって直接NH4 +からNO2 -に電子を提供し、窒素を生成させることによって水中の総窒素を除去し、かつ水中のNH4 +が多過ぎ、NO2 -が足りない場合、一部分のNH4 +をNO2 -に酸化させ、そののち上述の反応を進行させる方法を掲示した。しかし、NH4 +を酸化させるには、好気環境下で進行しなければならないため、この嫌気性アンモニア酸化法は、NH4 +をNO2 -に酸化させ、NH4 +およびNO2 -に窒素を生成させるために二つ以上のシステムを設置するか、或いはこの二つの反応に必要な微生物を異なる中間物質に別々に付着させることが必要である。従って、この嫌気性アンモニア酸化法は設置コストが高くつき、メンテナンスの複雑度が高いだけでなく、土ごと水中の化学的酸素要求量を除去することができない。 Compared to the conventional methods described above, the anaerobic ammonia oxidation method (ANAMOX) has gradually developed and matured. For example U.S. Pat. No. 5,078,884 from NH 4 + directly NO 2 by the action of autotrophic denitrification bacteria under anaerobic environment - providing electrons to, removing total nitrogen in the water by generating a nitrogen In addition, when there is too much NH 4 + in the water and NO 2 is insufficient, a method of oxidizing a part of NH 4 + to NO 2 and then proceeding with the above reaction was posted. However, since the oxidize NH 4 +, must proceed under aerobic environment, the anaerobic ammonium oxidation method, NH 4 + and NO 2 - was to oxidize, NH 4 + and NO 2 - in It is necessary to install two or more systems to generate nitrogen, or to separately attach the microorganisms necessary for the two reactions to different intermediate materials. Therefore, this anaerobic ammonia oxidation method is expensive to install and not only has a high maintenance complexity, but also cannot remove the chemical oxygen demand in the soil and water.

米国特許第5,078,884号US Pat. No. 5,078,884

本発明の主な目的は、従属栄養性脱窒、独立栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理方法を提供することである。そのうち硝化反応、独立栄養性脱窒反応、従属栄養性脱窒反応および化学的酸素要求量の除去は同一の反応槽内で進行することが可能である。 The main object of the present invention is to provide a wastewater treatment method that allows heterotrophic denitrification , autotrophic denitrification and removal of chemical oxygen demand to proceed simultaneously. Among them, nitrification reaction, autotrophic denitrification reaction, heterotrophic denitrification reaction and removal of chemical oxygen demand can proceed in the same reaction tank.

上述の目的を達成するために、本発明による独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理方法は、同一の反応槽内で微生物の作用によって攪拌作業を行ないながら硝化反応、独立栄養性脱窒反応、従属栄養性脱窒反応および化学的酸素要求量の除去を進行させることである。そのうち微生物は硝化菌、独立栄養性脱窒菌および従属栄養性脱窒菌を含む。硝化反応は、硝化菌の作用によってアンモニア態窒素を亜硝酸態窒素に酸化させる。独立栄養性脱窒反応は、独立栄養性脱窒菌の作用によって直接アンモニア態窒素から亜硝酸態窒素に電子を提供し、窒素および硝酸態窒素を生成させる。従属栄養性脱窒反応は、従属栄養性脱窒菌の作用によって硝酸態窒素および化学的酸素要求量を消耗する。 In order to achieve the above-mentioned object, a wastewater treatment method capable of simultaneously proceeding autotrophic denitrification , heterotrophic denitrification and removal of chemical oxygen demand according to the present invention is performed in the same reaction vessel. In this process, the nitrification reaction, autotrophic denitrification reaction, heterotrophic denitrification reaction and removal of chemical oxygen demand are promoted while stirring work is performed by the action of microorganisms. Of which the microbe comprises nitrifying bacteria, the autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria. In the nitrification reaction, ammonia nitrogen is oxidized to nitrite nitrogen by the action of nitrifying bacteria. Autotrophic denitrification provides electrons from directly ammonium nitrogen to nitrite nitrogen by the action of autotrophic denitrifying bacteria to produce nitrogen and nitrate nitrogen. Heterotrophic denitrifying reaction consumes nitrate nitrogen and chemical oxygen demand by the action of heterotrophic denitrifying bacteria.

独立栄養性脱窒菌は、嫌気的アンモニア酸化細菌(Anaerobic ammonium oxidation bacteria)にすることが可能である。嫌気的アンモニア酸化細菌はプランクトマイセス(Plantomycetes)に分類され、ラテン語名がKuenenia stuttgartiensisのグラム陰性菌である。韓国生命工学研究所遺伝子銀行(Korean Collection for Type Cultures, KCTC)における寄託番号はKCTC 11551BP、寄託日付は2009年8月21日付である。 Autotrophic denitrifying bacteria can be anaerobic ammonium-oxidizing bacteria (Anaerobic ammonium oxidation bacteria). Anaerobic ammonia-oxidizing bacteria are classified as Plantomycins and are Latin-named gram-negative bacteria with the name Kuenenia stuttgartiansis. The deposit number at the Korean Collection for Type Cultures (KTCC) is KCTC 11551BP, and the deposit date is August 21, 2009.

上述した微生物は、反応槽内で浮遊成長することが可能である。反応槽は酸素を導入し、酸素溶解濃度を0.1から0.5mg/Lの間に維持することが可能である。   The above-described microorganisms can grow in suspension in the reaction tank. The reaction vessel can introduce oxygen and maintain the oxygen dissolution concentration between 0.1 and 0.5 mg / L.

従来の生物硝化の脱窒反応を示す模式図である。It is a schematic diagram which shows the conventional denitrification reaction of bionitrification . 本発明の一実施形態による独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理装置を示す模式図である。1 is a schematic diagram illustrating a wastewater treatment apparatus that allows autotrophic denitrification , heterotrophic denitrification , and removal of chemical oxygen demand to proceed simultaneously according to an embodiment of the present invention. 本発明の一実施形態による独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理装置においてのアンモニア態窒素の濃度変化および除去効率の百分率を表示する模式図である。The concentration change and removal efficiency of ammonia nitrogen in a wastewater treatment apparatus capable of simultaneously proceeding with autotrophic denitrification , heterotrophic denitrification , and removal of chemical oxygen demand according to an embodiment of the present invention. It is a schematic diagram which displays a percentage. 本発明の一実施形態による独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理方法においてのCODの濃度変化および除去効率の百分率を表示する模式図である。The percentage change in COD concentration change and removal efficiency in a wastewater treatment method that allows simultaneous autotrophic denitrification , heterotrophic denitrification , and removal of chemical oxygen demand according to one embodiment of the present invention. It is a schematic diagram to display.

本発明による廃水処理方法は、少なくとも硝化菌、独立栄養脱窒菌および従属栄養脱窒菌の作用によって効果を発揮する。そのうち硝化菌および従属栄養脱窒菌はいずれも従来の生物硝化脱窒方法による廃水処理場において大量に繁殖しているため、非常に獲得しやすい。独立栄養性脱窒菌は通常自然界中の水または活性化汚泥に存在しているが、数は非常に少ないため、培養する必要がある。本発明者は活性化汚泥を植種源とし、汚水処理所の連続攪拌槽反応器(Continuous Stirred Tank Reactor, CSTR)に培養環境を作って独立栄養脱窒菌を培養する。培養過程において高濃度のアンモニア態窒素を含有した廃水を反応器に注入し、かつ空気を導入することによって酸素溶解を高めれば、反応器内の既存の硝化菌が酸素溶解によって電子を獲得し、硝化反応を進行させ、アンモニア態窒素を亜硝酸塩に酸化させることが可能である。空気を導入するならば、硝化作用を促進することが可能なだけでなく、攪拌動力を供給することが可能である。水中の酸素溶解濃度は、0.1から0.5mg/Lの間に維持することが推奨され、0.2から0.3mg/Lに維持されればより好ましい。導入された空気量があまり多くないため、水中の酸素溶解濃度が明らかに上昇することはない。アンモニア態窒素は硝化過程において酸素溶解が足りないため、一部分の硝化反応のみが起こる。このとき硝化反応が硝酸塩を生成させるステップに至るまで持続できず、亜硝酸塩を生成させるステップに至ると停止する。従って、水中のアンモニア態窒素および亜硝酸塩が充分であれば、独立栄養性脱窒菌がアンモニア態窒素と亜硝酸塩によって脱窒反応を進行させ、成長することが可能である。三、四ヶ月が経過すれば独立栄養性脱窒菌の培養が完成する。培養が完成した独立栄養性脱窒菌はKuenenia stuttgartiensisと鑑定され、かつプランクトマイセス(Plantomycetes)に分類されるグラム陰性菌である。韓国生命工学研究所遺伝子銀行(Korean Collection for Type Cultures, KCTC)における寄託番号はKCTC 11551BP、寄託日付は2009年8月21日付である。この独立栄養性脱窒菌は、嫌気環境下で直接アンモニア態窒素から亜硝酸塩に電子を提供し、反応を起こして窒素および硝酸態窒素を生成させることが可能である。 Wastewater treatment method according to the invention exhibits an effect by at least nitrifying bacteria, the action of autotrophic denitrification bacteria and heterotrophic denitrifying bacteria. Due to the them breeding in large quantities in wastewater treatment plants by nitrifying bacteria and any heterotrophic denitrifying bacteria conventional biological nitrification denitrification method, very easy to acquire. Although autotrophic denitrifying bacteria normally present in the water or activation sludge in nature, since the number is very small, it is necessary to culture. The present inventors have activated sludge inoculum, continuous stirred tank reactor wastewater treatment plant (Continuous Stirred Tank Reactor, CSTR) to create a culture environment for culturing autotrophic denitrification bacteria. By injecting wastewater containing a high concentration of ammonia nitrogen into the reactor during the culturing process and increasing oxygen dissolution by introducing air, the existing nitrifying bacteria in the reactor acquire electrons through oxygen dissolution, It is possible to proceed with the nitrification reaction and oxidize ammonia nitrogen to nitrite. If air is introduced, not only can nitrification be promoted, but also stirring power can be supplied. It is recommended that the oxygen dissolution concentration in water be maintained between 0.1 and 0.5 mg / L, more preferably 0.2 to 0.3 mg / L. Since the amount of air introduced is not very large, the concentration of dissolved oxygen in water does not clearly increase. Since ammonia nitrogen lacks oxygen dissolution during the nitrification process, only a partial nitrification reaction occurs. At this time, the nitrification reaction cannot be continued until it reaches the step of generating nitrate, and stops when it reaches the step of generating nitrite. Thus, if sufficient ammonia nitrogen and nitrite in water, autotrophic denitrifying bacteria allowed to proceed denitrification by ammonia nitrogen and nitrite, it is possible to grow. Third, the culture of autotrophic denitrifying bacteria After a lapse of four months to complete. Autotrophic denitrifying bacteria culture is completed are appraised as Kuenenia stuttgartiensis, and a gram negative bacterium classified in the plan transfected Streptomyces (Plantomycetes). The deposit number at Korean Collection for Type Cultures (KCTC) is KCTC 11551BP, and the deposit date is August 21, 2009. The autotrophic denitrification bacteria, to provide electrons from directly ammonia nitrogen into nitrite under anaerobic environment, it is possible to produce nitrogen and nitrate nitrogen causing the reaction.

培養が完成した独立栄養性脱窒菌は、硝化菌および従属栄養性脱窒菌とともに同一の反応槽内で窒素含有廃水の浄化を進めることが可能である。本発明による廃水処理方法は、多種類の微生物を交ぜて成長させるために反応槽に水を注入するステップと、窒素含有廃水を反応槽に導入し、流出水を反応槽から排出するステップと、単一の反応槽内で微生物の作用によって攪拌しながら、硝化反応、独立栄養性脱窒反応、従属栄養性脱窒反応および化学的酸素要求量の除去を同時に進行させるステップと、を含む。そのうちの微生物は硝化菌、独立栄養脱窒菌、従属栄養脱窒菌を含む。 Autotrophic denitrifying bacteria culture was completed, it is possible to proceed to purify the nitrogen-containing wastewater in the same reaction vessel with nitrifying bacteria and heterotrophic denitrifying bacteria. The wastewater treatment method according to the present invention includes a step of injecting water into a reaction tank to grow a mixture of various types of microorganisms, a step of introducing nitrogen-containing wastewater into the reaction tank, and discharging effluent water from the reaction tank; Advancing nitrification reaction, autotrophic denitrification reaction, heterotrophic denitrification reaction and removal of chemical oxygen demand simultaneously with stirring by the action of microorganisms in a single reaction vessel. Microorganisms of which comprises nitrifying bacteria, autotrophic denitrification bacteria, heterotrophic denitrifying bacteria.

窒素含有廃水中のアンモニア態窒素は、硝化菌の作用および酸素の供給によって硝化反応が起こり、亜硝酸態窒素に酸化する。独立栄養性脱窒反応は、独立栄養性脱窒菌の作用によって直接アンモニア態窒素から亜硝酸態窒素に電子を提供し、窒素および硝酸態窒素を生成させる。従属栄養性脱窒反応は、従属栄養性脱窒菌の作用によって硝酸態窒素および化学的酸素要求量を消耗し、かつ窒素を生成させる。これらの反応は同時に反応槽内で攪拌することによって均一に進行する。上述した反応によって窒素含有廃水中のアンモニア態窒素および化学的酸素要求量を確実に除去し、浄化目的を達成することが可能である。 Ammonia nitrogen in the nitrogen-containing wastewater undergoes a nitrification reaction by the action of nitrifying bacteria and the supply of oxygen, and is oxidized to nitrite nitrogen. Autotrophic denitrification provides electrons from directly ammonium nitrogen to nitrite nitrogen by the action of autotrophic denitrifying bacteria to produce nitrogen and nitrate nitrogen. Heterotrophic denitrification is exhausted nitrate nitrogen and chemical oxygen demand by the action of heterotrophic denitrifying bacteria, and to produce nitrogen. These reactions proceed uniformly by stirring simultaneously in the reaction vessel. By the above-described reaction, it is possible to reliably remove the ammonia nitrogen and chemical oxygen demand in the nitrogen-containing wastewater and achieve the purification purpose.

そのうちの硝化菌、独立栄養性脱窒菌および従属栄養性脱窒菌は、反応槽内で均一に攪拌されることで浮遊成長する。上述した反応は連続攪拌槽反応器に限らず、連続回分反応器内(Sequencing Batch Reactor, SBR)で進行することが可能である。 Nitrifying bacteria of which autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria uniformly suspended growth by being stirred in the reaction vessel. The above-described reaction is not limited to a continuous stirred tank reactor, and can proceed in a continuous batch reactor (SBR).

システム中の酸素溶解濃度が0.5mg/L以下である場合、硝化菌による硝化反応が不十分であるが、システム中のアンモニア態窒素が充分であり、亜硝酸態窒素が独立栄養性脱窒反応によって迅速に消耗されるため、硝化反応に伴って生成する亜硝酸態窒素は比較的低い濃度に終始維持される。従って、システム中の硝化反応を一定の速度で持続させることが可能である。 When the oxygen dissolution concentration in the system is 0.5 mg / L or less, the nitrification reaction by the nitrifying bacteria is insufficient, but the ammonia nitrogen in the system is sufficient, and the nitrite nitrogen is autotrophic denitrification. Since it is consumed quickly by the reaction, the nitrite nitrogen produced by the nitrification reaction is maintained at a relatively low concentration throughout. Therefore, it is possible to maintain the nitrification reaction in the system at a constant rate.

以下、本発明の構造および特徴を下記実施形態に基づいて説明する。本発明は、下記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。   Hereinafter, the structure and features of the present invention will be described based on the following embodiments. The present invention is not limited to the following embodiments, and can be implemented in various forms without departing from the spirit of the invention.

(第一実施形態)
図2に示すように、本発明による独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理装置10は、連続攪拌槽反応器(Continuous Stirred Tank Reactor, CSTR)であり、かつ反応槽12、微生物、複数の空気散布器14、空気散布モーター16および沈殿池18を備える。
(First embodiment)
As shown in FIG. 2, the wastewater treatment apparatus 10 capable of simultaneously proceeding with autotrophic denitrification , heterotrophic denitrification and removal of chemical oxygen demand according to the present invention comprises a continuous stirred tank reactor ( And a reaction tank 12, microorganisms, a plurality of air sprayers 14, an air spray motor 16, and a sedimentation basin 18, and a continuous sterilized tank reactor (CSTR).

微生物は、硝化菌、独立栄養性脱窒菌および従属栄養性脱窒菌を含み、かつ反応槽12内に均一に攪拌されることで浮遊成長する。空気散布器14は、反応槽12内の底部に配置される。空気散布モーター16は空気散布器14に接続されるため反応槽12の液面下に空気を輸送し、酸素溶解濃度を高めることが可能である。沈殿池18は反応槽12に連接される。空気散布器14および空気散布モーター16は硝化反応に必要な酸素を適切に供給することが可能なだけでなく、攪拌動力を提供することによって反応を均一に進行させることが可能である。 Microorganisms, nitrifying bacteria, include autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria, and uniformly suspended growth by being stirred in the reaction vessel 12. The air spreader 14 is disposed at the bottom of the reaction vessel 12. Since the air spraying motor 16 is connected to the air spraying device 14, it can transport air below the liquid level of the reaction tank 12 and increase the oxygen dissolution concentration. The sedimentation basin 18 is connected to the reaction tank 12. The air sprayer 14 and the air spray motor 16 can appropriately supply the oxygen necessary for the nitrification reaction, and can uniformly promote the reaction by providing stirring power.

処理待ちの窒素含有廃水は直接反応槽12内に導入され、反応後、沈殿池18に流入し、浮遊微粒子の沈殿を行なう。沈殿池18は上層液が外部に排出され、部分の汚泥が管路20によって反応槽12に戻る。廃水処理装置10は、水力滞留時間(Hydraulic Retention Time, HRT)が24時間であり、汚泥滞留時間(Sludge retention time, SRT)が18日間であり、水中の酸素溶解濃度が0.2から0.3mg/Lである。流入水の汚染物濃度、流出水の汚染物濃度及び汚染物の除去率は図3および図4に示すとおりである。図3に示すように、流入水のアンモニア態窒素濃度は900から1100mg−N/Lの間である。廃水処理装置によって処理された後、流出水のアンモニア態窒素濃度は44から208mg−N/Lの間であるため、アンモニア態窒素の除去率が78から95%に達する。図4に示すように、流入水の化学的酸素要求量は618から833mg/Lの間であり、流出水の化学的酸素要求量は208から435mg/Lの間であるため、除去率が46から63%に達する。つまり、廃水処理装置は水中のアンモニア態窒素および化学的酸素要求量を同時に除去することが可能である。   Nitrogen-containing wastewater awaiting treatment is directly introduced into the reaction tank 12, and after the reaction, it flows into the sedimentation basin 18 and precipitates suspended particulates. In the sedimentation basin 18, the upper layer liquid is discharged to the outside, and part of the sludge is returned to the reaction tank 12 by the pipe line 20. The wastewater treatment apparatus 10 has a hydraulic retention time (HRT) of 24 hours, a sludge retention time (SRT) of 18 days, and an oxygen dissolution concentration in water of 0.2 to 0.00. 3 mg / L. The contaminant concentration of the inflow water, the contaminant concentration of the effluent water, and the contaminant removal rate are as shown in FIGS. As shown in FIG. 3, the ammonia nitrogen concentration of the influent water is between 900 and 1100 mg-N / L. After being treated by the wastewater treatment apparatus, the ammonia nitrogen concentration of the effluent is between 44 and 208 mg-N / L, so that the ammonia nitrogen removal rate reaches 78 to 95%. As shown in FIG. 4, the chemical oxygen demand of the influent water is between 618 and 833 mg / L, and the chemical oxygen demand of the effluent is between 208 and 435 mg / L, so the removal rate is 46 Reaching 63%. That is, the wastewater treatment apparatus can simultaneously remove ammonia nitrogen and chemical oxygen demand in water.

(第二実施形態)
同様に連続攪拌槽反応器を採用し、HRTを24時間、SRTを18日間、水中の酸素溶解濃度を0.2から0.3mg/Lの間に設定する場合、流入水および流出水の汚染物濃度は次のとおりである。
(Second embodiment)
Similarly, when a continuous stirred tank reactor is adopted, HRT is set for 24 hours, SRT is set for 18 days, and the oxygen dissolution concentration in water is set between 0.2 and 0.3 mg / L, contamination of influent and effluent. The substance concentration is as follows.

Figure 0005629448
Figure 0005629448

このシステムは総窒素の除去率が49.2%である。計算結果によってそのうちの44.2%の総窒素は独立栄養性脱窒菌の作用によって窒素に還元され、大気に拡散する。残りの5%は従属栄養性脱窒菌の作用によって大気に拡散する。廃水中の総窒素は主に独立栄養性脱窒菌の作用によって除去されるため、従属栄養脱窒菌の作用のみに頼る従来の方法と比べて本発明による廃水処理方法は、汚泥量を大幅に減少させ、後続の汚泥処理にかかるコストを削減し、有機炭素源の需要量を確実に減少させることが可能である。化学的酸素要求量(Chemical Oxygen demand, COD)の除去率は33.4%である。そのうちの30.0%は従属栄養性脱窒菌によって消耗され、残りの3.4%は別種類の従属栄養細菌によって消耗される。 This system has a total nitrogen removal rate of 49.2%. Of which 44.2% of the total nitrogen by the calculation results are reduced to nitrogen by the action of autotrophic denitrification bacteria, to diffuse into the atmosphere. The remaining 5% is diffused into the atmosphere by the action of heterotrophic denitrifying bacteria. For total nitrogen in wastewater is removed mainly by the action of autotrophic denitrification bacteria, wastewater treatment method according to the present invention as compared to conventional methods that rely only on the action of heterotrophic denitrifying bacteria, largely sludge amount It is possible to reduce the cost for the subsequent sludge treatment and to surely reduce the demand for organic carbon sources. The removal rate of chemical oxygen demand (COD) is 33.4%. 30.0% of them is consumed by heterotrophic denitrifying bacteria, the remaining 3.4% is consumed by another type of heterotrophic bacteria.

(第三実施形態)
連続攪拌槽反応器を採用し、HRTを24時間、SRTを18日間、水流の酸素溶解濃度を0.2から0.3mg/Lの間に設定する場合、流入水および流出水の汚染物濃度は次のとおりである。
(Third embodiment)
When a continuous stirred tank reactor is used, HRT is set to 24 hours, SRT is set to 18 days, and the oxygen dissolution concentration of the water stream is set between 0.2 and 0.3 mg / L Is as follows.

Figure 0005629448
Figure 0005629448

このシステムは総窒素の除去率が60.9%である。計算結果によってそのうちの54.7%の総窒素は独立栄養性脱窒菌の作用によって窒素に還元され、大気に拡散する。残りの6.2%は従属栄養性脱窒菌の作用によって大気に拡散する。CODの除去率は42.9%である。そのうちの19.7%は従属栄養性脱窒菌によって消耗され、残りの23.2%は別種類の従属栄養細菌によって消耗される。 This system has a total nitrogen removal rate of 60.9%. Of which 54.7% of the total nitrogen by the calculation results are reduced to nitrogen by the action of autotrophic denitrification bacteria, to diffuse into the atmosphere. The remaining 6.2% is diffused into the atmosphere by the action of heterotrophic denitrifying bacteria. The removal rate of COD is 42.9%. 19.7% of which is consumed by heterotrophic denitrifying bacteria, the remaining 23.2% is consumed by another type of heterotrophic bacteria.

本発明は、同一の反応槽内で硝化反応、独立栄養性脱窒反応および従属栄養性脱窒反応を進行させることが可能であるため、窒素含有廃水中のアンモニア態窒素、亜硝酸態窒素、硝酸態窒素および化学的酸素要求量を確実に除去することが可能となる。硝化菌、独立栄養性脱窒菌および従属栄養性脱窒菌は反応槽内に均一に攪拌されることで浮遊成長するため、二つ以上の反応槽を設置するか、付着成長に用いる二つ以上の中間物質を提供する必要はない。従って、設置コストを確実に削減し、操作およびメンテナンスを簡単にすることが可能である。廃水中の総窒素の多くは独立栄養性脱窒菌の作用によって除去されるため、本発明は汚泥量および有機炭素源の需要量を大幅に減少させることが可能である。 The present invention, nitrification in the same reaction vessel, since it is possible to proceed autotrophic denitrification and heterotrophic denitrification, ammonium nitrogen in the nitrogen-containing waste water, nitrite nitrogen, It is possible to reliably remove nitrate nitrogen and chemical oxygen demand. Nitrifying bacteria, for autotrophic denitrifying bacteria and heterotrophic denitrifying bacteria floating grown uniformly be stirred in the reaction vessel, or to install more than one reaction vessel, two used for accretion There is no need to provide these intermediate materials. Therefore, it is possible to reliably reduce the installation cost and simplify the operation and maintenance. Since many total nitrogen in waste water are removed by the action of autotrophic denitrifying bacteria present invention can greatly reduce the demand for sludge volume and the organic carbon source.

10:廃水処理装置、 12:反応槽、 14:空気分布器、 16:空気分布モーター、 18:沈殿池、 20:管路。   10: Waste water treatment device, 12: Reaction tank, 14: Air distributor, 16: Air distribution motor, 18: Sedimentation basin, 20: Pipe line.

KCTC 11551BP   KCTC 11551BP

Claims (4)

独立栄養性脱窒、従属栄養性脱窒および化学的酸素要求量の除去を同時に進行させることを可能とする廃水処理方法であって、
多種類の微生物を交ぜて成長させるために反応槽に水を注入するステップと、
窒素含有廃水を反応槽に導入し、流出水を反応槽から排出するステップと、
単一の反応槽内で微生物の作用によって攪拌作業を行ないながら硝化反応、独立栄養性脱窒反応、従属栄養性脱窒反応および化学的酸素要求量の除去を同時に進行させるステップを含み、
微生物は、硝化菌、2009年8月21日付けで韓国生命工学研究所遺伝子銀行に寄託された寄託番号がKCTC 11551BPである独立栄養性脱窒菌および従属栄養性脱窒菌を含み、
反応槽内の酸素溶解濃度は、0.1から0.5mg/Lであり、
硝化反応は、硝化菌の作用によってアンモニア態窒素を亜硝酸態窒素に酸化させ、独立栄養性脱窒反応は、独立栄養性脱窒菌の作用によってアンモニア態窒素から亜硝酸態窒素に電子を提供し、窒素および硝酸態窒素を生成させ、従属栄養性脱窒反応は、従属栄養性脱窒菌の作用によって硝酸態窒素および化学的酸素要求量を消耗することを特徴とする廃水処理方法。
A wastewater treatment method capable of simultaneously proceeding with autotrophic denitrification, heterotrophic denitrification and removal of chemical oxygen demand,
Injecting water into the reaction vessel to mix and grow many types of microorganisms;
Introducing nitrogen-containing wastewater into the reaction vessel and discharging effluent from the reaction vessel;
Including simultaneously performing nitrification reaction, autotrophic denitrification reaction, heterotrophic denitrification reaction and removal of chemical oxygen demand while stirring work by the action of microorganisms in a single reaction tank,
Microorganisms, including nitrifying bacteria, Friday, August 21, 2009 with the Korean life Engineering Institute gene bank in the deposited deposit number KCTC 11551BP a is autotrophic denitrifying bacteria, and, the heterotrophic denitrifying bacteria,
The oxygen dissolution concentration in the reaction vessel is 0.1 to 0.5 mg / L,
The nitrification reaction oxidizes ammonia nitrogen to nitrite nitrogen by the action of nitrifying bacteria, and the autotrophic denitrification reaction provides electrons from ammonia nitrogen to nitrite nitrogen by the action of autotrophic denitrifying bacteria. A wastewater treatment method characterized in that nitrogen and nitrate nitrogen are produced, and the heterotrophic denitrification reaction consumes nitrate nitrogen and chemical oxygen demand by the action of heterotrophic denitrifying bacteria.
微生物は、反応槽内で浮遊成長することを特徴とする請求項1に記載の廃水処理方法。   The wastewater treatment method according to claim 1, wherein the microorganisms grow in a floating state in the reaction tank. 反応槽は、硝化反応に必要な酸素が導入されることを特徴とする請求項1に記載の廃水処理方法。   The wastewater treatment method according to claim 1, wherein oxygen necessary for the nitrification reaction is introduced into the reaction tank. 硝化反応、独立栄養性脱窒反応、従属栄養性脱窒反応および化学的酸素要求量の除去は、均一な攪拌によって反応槽内で進行することを特徴とする請求項1に記載の廃水処理方法。   2. The wastewater treatment method according to claim 1, wherein the nitrification reaction, autotrophic denitrification reaction, heterotrophic denitrification reaction, and removal of chemical oxygen demand proceed in the reaction tank by uniform stirring. .
JP2009234888A 2009-10-06 2009-10-09 Wastewater treatment method Active JP5629448B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102009048333A DE102009048333A1 (en) 2009-10-06 2009-10-06 Treating nitrogen containing waste water, comprises providing reactor with liquid for growth of several microorganisms, and introducing nitrogen containing waste water into the reactor and discharging effluent from the reactor
JP2009234888A JP5629448B2 (en) 2009-10-06 2009-10-09 Wastewater treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009048333A DE102009048333A1 (en) 2009-10-06 2009-10-06 Treating nitrogen containing waste water, comprises providing reactor with liquid for growth of several microorganisms, and introducing nitrogen containing waste water into the reactor and discharging effluent from the reactor
JP2009234888A JP5629448B2 (en) 2009-10-06 2009-10-09 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2011078938A JP2011078938A (en) 2011-04-21
JP5629448B2 true JP5629448B2 (en) 2014-11-19

Family

ID=47424871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234888A Active JP5629448B2 (en) 2009-10-06 2009-10-09 Wastewater treatment method

Country Status (2)

Country Link
JP (1) JP5629448B2 (en)
DE (1) DE102009048333A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045153B (en) * 2014-06-29 2016-04-06 桂林理工大学 A kind of device reducing nitrous oxide generating capacity in anaerobic ammonia oxidation reactor
CN104045152B (en) * 2014-06-29 2015-12-30 桂林理工大学 A kind of method that Anammox operational process is optimized
TWI586610B (en) * 2015-01-15 2017-06-11 黎明興技術顧問股份有限公司 Fluidized bed reactor for ammonia laden wastewater and method for treating ammonia laden wastewater
CN105347625A (en) * 2015-11-20 2016-02-24 中国地质大学(北京) Method for removing nitrate in underground water and reactor
CN107311305B (en) * 2016-04-26 2020-09-11 中国石油化工股份有限公司 Rapid starting method of completely autotrophic nitrogen removal process
CN108191059A (en) * 2018-01-30 2018-06-22 沈阳东源环境科技有限公司 A kind of livestock breeding wastewater processing method of more technology couplings
CN110467276B (en) * 2019-09-16 2021-09-28 南京大学 Preparation and application of sulfur autotrophic and heterotrophic denitrification and denitrification biological filler
CN111979138B (en) * 2020-05-21 2022-06-21 厦门大学 Heterotrophic nitrification aerobic denitrifying bacterium Y15 and application thereof
CN114591878B (en) * 2022-05-10 2022-08-19 齐鲁工业大学 Process for preparing mariculture tail water treatment microbial inoculum and tail water treatment method
CN115820466B (en) * 2022-09-21 2023-11-07 恒臻(无锡)生物科技有限公司 Sulfur autotrophic denitrification strain, bacterial preparation and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007089A1 (en) 1988-02-05 1989-08-10 Gist-Brocades N.V. Anoxic ammonia oxidation
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP4572504B2 (en) * 2003-03-24 2010-11-04 栗田工業株式会社 Biological denitrification method
JP5347221B2 (en) * 2004-09-30 2013-11-20 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
JP4375567B2 (en) * 2005-03-04 2009-12-02 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid

Also Published As

Publication number Publication date
JP2011078938A (en) 2011-04-21
DE102009048333A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5629448B2 (en) Wastewater treatment method
US7972513B2 (en) Process for treating nitrogenous wastewater with simultaneous autotrophic denitrification, hetertrophic denitrification and COD removal
US6423229B1 (en) Bioreactor systems for biological nutrient removal
JP5126690B2 (en) Wastewater treatment method
EP2447221A1 (en) Method for treating wastewater containing ammonia nitrogen
KR100436186B1 (en) Municipal Wastewater Treatment Apparatus and Process with a Continuous Feed and Cyclic Aeration
US20160207807A1 (en) Wastewater treatment system
JP5098183B2 (en) Waste water treatment method and apparatus
KR102311712B1 (en) Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media
Zhang et al. Integration of nitrification and denitrifying dephosphatation in airlift loop sequencing batch biofilm reactor
JP2006246847A (en) Method and device for culturing anaerobic ammonia-oxidizing bacterium
Bhattacharya et al. Evaluation of nitrification kinetics for treating ammonium nitrogen enriched wastewater in moving bed hybrid bioreactor
KR100733823B1 (en) Compact apparatus and method for wastewater treatment using genus bacillus
KR102057374B1 (en) Sewage treatment system using granule
KR102094020B1 (en) Device and Method for continuous feeding andintermittent discharge in sewage and wastewater treatment plant
JP4655954B2 (en) Culture method and apparatus for anaerobic ammonia oxidizing bacteria
RU2751356C1 (en) Method for removing nitrogen-containing compounds from wastewater
TWI359794B (en)
KR101615981B1 (en) Apparatus for Wastewater treatment Having Returning Device of Fluidized Carrier
WO2013041893A1 (en) Modified continuous flow sequencing batch reactor and a method for treating waste water
KR19980025254A (en) Wastewater purification treatment system and method using vertical rotary contact filtering method
TWI454430B (en) Wastewater treatment process and apparatus with loop-arrangment microorganism carriers
JP5126691B2 (en) Wastewater treatment method
CN105174628B (en) A kind of wastewater treatment method
JP3858271B2 (en) Wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250