JP2013226491A - Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater - Google Patents

Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater Download PDF

Info

Publication number
JP2013226491A
JP2013226491A JP2012099211A JP2012099211A JP2013226491A JP 2013226491 A JP2013226491 A JP 2013226491A JP 2012099211 A JP2012099211 A JP 2012099211A JP 2012099211 A JP2012099211 A JP 2012099211A JP 2013226491 A JP2013226491 A JP 2013226491A
Authority
JP
Japan
Prior art keywords
nitrogen
genus
nitrite
treatment tank
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012099211A
Other languages
Japanese (ja)
Other versions
JP6046373B2 (en
Inventor
Hironori Kito
佑典 鬼頭
Takashi Sakakibara
隆司 榊原
Hiroto Yamazaki
博人 山崎
Munetaka Negoro
宗孝 根來
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Institute of National Colleges of Technologies Japan
Original Assignee
Panasonic Corp
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Institute of National Colleges of Technologies Japan filed Critical Panasonic Corp
Priority to JP2012099211A priority Critical patent/JP6046373B2/en
Publication of JP2013226491A publication Critical patent/JP2013226491A/en
Application granted granted Critical
Publication of JP6046373B2 publication Critical patent/JP6046373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: ammonia nitrogen and nitrite nitrogen can be mixed together to show an optimum ratio, when a nitrite nitrogen solution can be efficiently produced, because the ratio between the ammonia nitrogen and the nitrite nitrogen, which can be efficiently decomposed, cannot be easily adjusted by pH, though an anammox method, in which the ammonia nitrogen can be decomposed even into nitrogen gas and water, has the advantage that efficient decomposition can be performed.SOLUTION: A method for producing a nitrite nitrogen solution includes the steps of: loading ammonia nitrogen-containing wastewater into a treatment tank; loading a microbial community, which has three capabilities, that is to say, an ammonia nitrogen oxidizing capability, a nitrite nitrogen oxidizing capability and nitrate nitrogen reducibility, into the treatment tank; and aerating the inside of the treatment tank.

Description

本発明はアンモニア性窒素を含む排水を処理するために利用することのできる亜硝酸性窒素を、窒素を含む排水から微生物を利用して製造する製造方法および製造装置に関するものである。   The present invention relates to a production method and a production apparatus for producing nitrite nitrogen that can be used for treating wastewater containing ammonia nitrogen by using microorganisms from wastewater containing nitrogen.

窒素含有排水の処理においては、アンモニア性窒素の処理が重要となる。アンモニア性窒素の処理方法としては、いくつかの方法が知られている。科学的な処理方法としては、たとえば、アンモニアストリッピング法が知られている。これは、アンモニア性窒素をpHの高い溶液中で、水(HO)とアンモニア(NH)に分解するものである。アンモニアは大気中に放出するか、硫酸アンモニウムという形で回収することもできる。しかし、科学的な方法はpHの調節や、温度調節といった点で費用がかさむという問題がある。 In the treatment of nitrogen-containing wastewater, treatment of ammonia nitrogen is important. Several methods are known for treating ammonia nitrogen. As a scientific treatment method, for example, an ammonia stripping method is known. This decomposes ammoniacal nitrogen into water (H 2 O) and ammonia (NH 3 ) in a solution having a high pH. Ammonia can be released into the atmosphere or recovered in the form of ammonium sulfate. However, the scientific method has a problem that it is expensive in terms of pH adjustment and temperature adjustment.

一方、微生物を用いてアンモニア性窒素を処理する方法も知られている。これは、硝化菌によって、アンモニア性窒素から亜硝酸性窒素、硝酸性窒素に変換し、硝酸性窒素から脱窒菌によって水と窒素ガスを発生させるという手順である。この方法はアンモニア性窒素を窒素ガスまで分解するため、環境にはよいと考えられる。しかし、脱窒菌の活動のために、メタノールなどの有機物が必要となる。この有機物は人為的に添加する必要があるので、このための費用が必要となる。   On the other hand, a method of treating ammonia nitrogen using a microorganism is also known. This is a procedure in which ammonia nitrogen is converted to nitrite nitrogen and nitrate nitrogen by nitrifying bacteria, and water and nitrogen gas are generated from nitrate nitrogen by denitrifying bacteria. This method is considered good for the environment because it decomposes ammonia nitrogen into nitrogen gas. However, organic matter such as methanol is required for the activity of denitrifying bacteria. Since this organic matter must be added artificially, the cost for this is required.

微生物を用いてアンモニア性窒素を処理する他の方法としては、アナモックス法が知られている。この方法は、独立栄養性脱窒微生物(「アナモックス微生物」と称す)を利用して、アンモニア性窒素と亜硝酸性窒素を主として窒素と水に分解する。アナモックス微生物は、脱窒を行う際に有機物を必要としない。すなわち、極めて低コストでアンモニア性窒素を分解することができるという特徴を有する。   An anammox method is known as another method for treating ammonia nitrogen using a microorganism. This method utilizes autotrophic denitrifying microorganisms (referred to as “anammox microorganisms”) to decompose ammoniacal nitrogen and nitrite nitrogen mainly into nitrogen and water. Anammox microorganisms do not require organic substances for denitrification. That is, it has a feature that ammonia nitrogen can be decomposed at a very low cost.

特許文献1は、この方法でアンモニア性窒素を処理する方法を提供している。図5にこの方法を概説する。この硝化処理方法は、原水を処理する硝化槽101と、硝化槽101に原水を送液するためのポンプ105と、硝化槽101内に配設されたpHセンサ102と、pHセンサ102の出力に基づいてポンプ105を制御する制御器103によって実施される。   Patent Document 1 provides a method for treating ammonia nitrogen by this method. FIG. 5 outlines this method. This nitrification method includes a nitrification tank 101 for treating raw water, a pump 105 for feeding raw water to the nitrification tank 101, a pH sensor 102 disposed in the nitrification tank 101, and an output of the pH sensor 102. Based on the controller 103 that controls the pump 105 based on the above.

アナモックス法では、アンモニア性窒素と亜硝酸性窒素の割合が、処理効率を向上させるのに、重要とされている。すなわち、アンモニア性窒素1に対して亜硝酸性窒素の割合が0.5〜2の範囲にするのが最も効率が高いとされている。硝化槽101内に配設されたpHセンサ102は、この割合を管理するために配置されている。アンモニア性窒素はアルカリ性であり、亜硝酸性窒素は酸性であるため、アンモニア性窒素と亜硝酸性窒素の割合が変わると、pHが変化する。制御器103は、硝化槽101内の溶液のpHが酸性側に振れたら、原水の供給量を増やすようにポンプ105を制御する。   In the anammox method, the ratio of ammonia nitrogen and nitrite nitrogen is regarded as important for improving the treatment efficiency. That is, it is said that the efficiency is highest when the ratio of nitrite nitrogen to ammonia nitrogen 1 is in the range of 0.5-2. The pH sensor 102 disposed in the nitrification tank 101 is disposed to manage this ratio. Since ammonia nitrogen is alkaline and nitrite nitrogen is acidic, the pH changes when the ratio of ammonia nitrogen and nitrite nitrogen changes. The controller 103 controls the pump 105 so as to increase the supply amount of the raw water when the pH of the solution in the nitrification tank 101 is shifted to the acidic side.

特開2003−24983号公報JP 2003-24983 A

アナモックス法はアンモニア性窒素を窒素ガスと水にまで分解でき、しかもコストは高くならないといった利点がある。しかしながら、特許文献1の方法のように、アンモニア性窒素と亜硝酸性窒素の割合をpHで制御するのは、容易ではない。特にpHは二酸化炭素や温度などの影響を受けるため、非常に難しい制御であると言える。   The Anammox method has the advantage that ammonia nitrogen can be decomposed into nitrogen gas and water, and the cost is not increased. However, as in the method of Patent Document 1, it is not easy to control the ratio of ammonia nitrogen and nitrite nitrogen with pH. In particular, since pH is affected by carbon dioxide and temperature, it can be said that it is a very difficult control.

本発明は上記課題に鑑みて想到されたものであり、アナモックス法で利用できる亜硝酸性窒素溶液を効率よく産生する方法および装置を、窒素含有排水の亜硝酸型硝化処理方法および窒素含有排水の処理装置として提供するものである。より具体的には、本発明の亜硝酸型硝化処理方法は、
窒素成分を含有する排水を処理槽に投入する工程と、
アンモニア性窒素酸化能、亜硝酸性窒素酸化能、および硝酸性窒素還元能の3つの能力を有する微生物群を処理槽に投入する工程と、
前記処理槽内を曝気する工程と、
を有することを特徴とする。
The present invention has been conceived in view of the above problems, and a method and apparatus for efficiently producing a nitrite-based nitrogen solution that can be used in the anammox method, a nitrite-type nitrification method for nitrogen-containing wastewater, and nitrogen-containing wastewater It is provided as a processing device. More specifically, the nitrite type nitrification treatment method of the present invention is:
A step of introducing wastewater containing nitrogen components into the treatment tank;
Introducing a group of microorganisms having three abilities of ammonia nitrogen oxidizing ability, nitrite nitrogen oxidizing ability, and nitrate nitrogen reducing ability into a treatment tank;
Aeration of the inside of the treatment tank;
It is characterized by having.

また、本発明の窒素含有排水の処理装置は、
窒素成分を有する排水が投入される処理槽と、
培地と共にアンモニア性窒素酸化能、亜硝酸性窒素酸化能、硝酸性窒素還元能の3つの能力を有する微生物群を培養した培養液を生成する培養槽と、
前記培養槽から前記処理槽へ前記培養液を送液する送液手段と、
前記処理槽内を曝気する曝気装置を有することを特徴とする。
Moreover, the nitrogen-containing wastewater treatment apparatus of the present invention is
A treatment tank into which wastewater having a nitrogen component is introduced;
A culture tank for producing a culture solution in which a group of microorganisms having three capabilities of ammonia nitrogen oxidizing ability, nitrite nitrogen oxidizing ability, and nitrate nitrogen reducing ability are cultured together with a medium;
Liquid feeding means for feeding the culture solution from the culture tank to the treatment tank;
It has the aeration apparatus which aerates the inside of the said processing tank, It is characterized by the above-mentioned.

本発明では、アンモニア性窒素酸化能、亜硝酸性窒素酸化能および硝酸性窒素還元能の3つの能力を有する微生物群を利用するので、アンモニア性窒素や硝酸性窒素を亜硝酸性窒素に処理することができる。この亜硝酸性窒素を含有する溶液(これを「副原水」と呼ぶ。)は、アナモックス法を用いた原水処理に利用することができる。   In the present invention, a microorganism group having three abilities, ammonia nitrogen oxidization ability, nitrite nitrogen oxidization ability and nitrate nitrogen reduction ability is used, so that ammonia nitrogen and nitrate nitrogen are treated with nitrite nitrogen. be able to. This solution containing nitrite nitrogen (referred to as “sub-raw water”) can be used for raw water treatment using the Anammox method.

すなわち、アナモックス法におけるアンモニア性窒素と亜硝酸性窒素の比率は所定の値が効果的であることがわかっているので、処理槽中のアンモニア性窒素の比率と、亜硝酸性窒素の比率を直接測定し、最も効果的な比率になるように、原水と副原水を混合することができる。   In other words, the ratio of ammonia nitrogen and nitrite nitrogen in the anammox method has been found to be effective at a predetermined value, so the ratio of ammonia nitrogen in the treatment tank and the ratio of nitrite nitrogen can be directly calculated. Raw water and secondary raw water can be mixed to measure and to the most effective ratio.

また、副原水は、等モルのアンモニア性窒素と共に亜臨界処理を行うことで、水と窒素ガスに分解し回収することもできる。   In addition, the secondary raw water can be decomposed into water and nitrogen gas and recovered by performing subcritical treatment with equimolar ammoniacal nitrogen.

本発明に係る亜硝酸性窒素溶液の製造装置の構成を説明する図である。It is a figure explaining the structure of the manufacturing apparatus of the nitrite nitrogen solution which concerns on this invention. 本発明に係る微生物群のアンモニア性窒素酸化能を示すグラフである。It is a graph which shows the ammoniacal nitrogen oxidation ability of the microorganisms group which concerns on this invention. 本発明に係る微生物群のアンモニア性窒素酸化能(pH=8.0の時)を示すグラフである。It is a graph which shows the ammoniacal nitrogen oxidation ability (when pH = 8.0) of the microorganisms group which concerns on this invention. 各微生物のアンモニア性窒素、亜硝酸性窒素および硝酸性窒素の処理能力を示す図である。It is a figure which shows the processing capacity of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen of each microorganism. 従来のアナモックス法を実施する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which enforces the conventional anammox method.

以下、本発明を図面を用いて説明するが、下記の説明は、本発明の一実施形態を例示するものであり、下記の実施形態に限定されるものではない。本発明の趣旨を逸脱しない限り、下記の説明は変更することができる。   Hereinafter, although the present invention is explained using a drawing, the following explanation illustrates one embodiment of the present invention and is not limited to the following embodiment. The following description can be changed without departing from the spirit of the present invention.

本発明に利用する微生物群は、アンモニア性窒素を酸化する能力(アンモニア性窒素酸化能)と、亜硝酸性窒素を酸化する能力(亜硝酸性窒素酸化能)と、硝酸性窒素を還元する能力(硝酸性窒素還元能)の3つをともに有する微生物群である。より具体的には、アンモニア性窒素酸化能とは、アンモニア性窒素を亜硝酸性窒素に酸化する能力をいう。また、亜硝酸性窒素酸化能とは、亜硝酸性窒素を硝酸性窒素に酸化する能力をいう。また、硝酸性窒素還元能とは、硝酸性窒素を亜硝酸性窒素に還元する能力である。   The microorganism group used in the present invention has the ability to oxidize ammonia nitrogen (ammonia nitrogen oxidation ability), the ability to oxidize nitrite nitrogen (nitrite nitrogen oxidation ability), and the ability to reduce nitrate nitrogen. It is a group of microorganisms having both (nitric nitrogen reducing ability). More specifically, the ammoniacal nitrogen oxidizing ability refers to the ability to oxidize ammoniacal nitrogen to nitrite nitrogen. The nitrite nitrogen oxidizing ability refers to the ability to oxidize nitrite nitrogen to nitrate nitrogen. The nitrate nitrogen reducing ability is the ability to reduce nitrate nitrogen to nitrite nitrogen.

このような能力を有する微生物は、現在のところ、自然界には知られていない。本発明の発明者は、好気性の硝化菌を高濃度のアンモニア環境で馴化培養することで、この3つの能力を有する微生物群を得た。このような能力を有する微生物群は、16SrDNA検索によって、シュードモナス属(Pseudomonas属)、ブレビバシラス属(Brevibacillus属)、アシネトバクター属(Acinetobacter属)、そしてミクロバクテリウム属(Microbacterium属)に属する微生物から構成されていることがわかった。   At present, microorganisms having such ability are not known in nature. The inventor of the present invention obtained a group of microorganisms having these three abilities by acclimating and culturing aerobic nitrifying bacteria in a high concentration ammonia environment. The group of microorganisms having such ability is composed of microorganisms belonging to the genus Pseudomonas (genus Pseudomonas), the genus Brevibacillus (genus Brevibacillus), the genus Acinetobacter (genus Acinetobacter), and the genus Microbacterium (genus Microbacterium) by 16S rDNA search. I found out.

本発明の亜硝酸性窒素溶液の製造方法においては、これらの微生物群を培地中で培養し、培養液を生成する。   In the method for producing a nitrite nitrogen solution of the present invention, these microorganism groups are cultured in a medium to produce a culture solution.

これらの微生物群は、以下の方法で得た。まず、既製品である消臭微生物製剤(Effective Micro organism groups;(有)トレント製バイオバスター)を種菌とした。この種菌は、好気性で硝化作用を有する菌群(複数種が混在している)である。この種菌を室温で連続曝気を行いながら一定期間毎に培地を入れ替え、その都度アンモニウムイオン濃度を高くする馴化培養を行った。培地の成分を表1に示す。   These microorganism groups were obtained by the following method. First, a ready-to-use deodorant microorganism preparation (Effective Micro organism groups; Biotorster manufactured by Trent) was used as an inoculum. This inoculum is an aerobic and nitrifying group of bacteria (multiple types are mixed). The inoculum was continuously aerated at room temperature, and the medium was changed at regular intervals, and acclimation culture was performed to increase the ammonium ion concentration each time. Table 1 shows the components of the medium.

アンモニウムイオン源は、硫酸アンモニウムを使用した。初回は、2,500mg/Lの濃度から開始し、10回目の培地の入れ替えの際には、10倍の25,000mg/Lの濃度まで高めた。培地の交換は、アンモニウムイオン濃度が50%以上減少したら交換することとした。なお、培地のpHは7〜8となるようにNaOHで調節した。   As the ammonium ion source, ammonium sulfate was used. The first time was started from a concentration of 2,500 mg / L, and the concentration was increased 10 times to 25,000 mg / L at the 10th medium replacement. The medium was replaced when the ammonium ion concentration decreased by 50% or more. Note that the pH of the medium was adjusted with NaOH so as to be 7-8.

10回目の培地を入れ替えた後、馴化培養した微生物群の酸化能を調べた。図2には、その結果を示す。横軸は時間(日数)であり、縦軸は態窒素濃度(ppm)である。pHは7.8に維持されている。四角は、アンモニア性窒素濃度であり、ひし形は亜硫酸性窒素であり、三角は硝酸性窒素である。馴化培養した菌(または「微生物」とも呼ぶ)のいる培地では、アンモニア性窒素が時間と共に減少し、亜硝酸性窒素はその濃度を増加させた。また、硝酸性窒素の量は全く増えなかった。   After exchanging the medium for the 10th time, the oxidizing ability of the cultivated microorganism group was examined. FIG. 2 shows the result. The horizontal axis is time (days), and the vertical axis is the nitrogen concentration (ppm). The pH is maintained at 7.8. The squares are ammoniacal nitrogen concentrations, the diamonds are sulfite nitrogens, and the triangles are nitrate nitrogens. In medium with conditioned cultures (also called “microorganisms”), ammoniacal nitrogen decreased with time, and nitrite nitrogen increased its concentration. Also, the amount of nitrate nitrogen did not increase at all.

培地が酸性領域(pH3.0〜pH6.0未満)の場合は亜硝酸性窒素に酸化する割合が少なく、また、アンモニア性窒素含有溶液がアルカリ性領域(pH9.0〜pH11.0)の場合でも亜硝酸性窒素に酸化する割合が少なかったが、pHを6.0以上9.0未満の領域においては亜硝酸性窒素に酸化する割合が増加し、図3に示すように、pH8.0の近傍では特に酸化の割合が高くなった。この結果を見ると60日後には、ほぼ100%のアンモニア性窒素を亜硝酸性窒素に酸化していた。また、硝酸性窒素については、全く増えていなかった。   When the medium is in the acidic region (pH 3.0 to less than pH 6.0), the rate of oxidation to nitrite nitrogen is small, and even when the ammoniacal nitrogen-containing solution is in the alkaline region (pH 9.0 to pH 11.0) Although the rate of oxidation to nitrite nitrogen was small, the rate of oxidation to nitrite nitrogen increased in the region where the pH was 6.0 or more and less than 9.0, and as shown in FIG. In the vicinity, the oxidation rate was particularly high. According to this result, almost 60% of the ammoniacal nitrogen was oxidized to nitrite nitrogen after 60 days. In addition, nitrate nitrogen was not increased at all.

この馴化培養した微生物群が上記の4種を含むと同定した方法は後述するが、寒天培地を用いて、コロニーを作らせ、これらの4種をそれぞれ分離し、それぞれの能力を調べた。図4には、図4(a)ブレビバシラス属、図4(b)シュードモナス属、図4(c)ミクロバクテリウム属、図4(d)アシネトバクター属のそれぞれに対して、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素を与えて、80日間好機条件下で培養した際の、それぞれの成分の変化を調べた結果である。黒四角はアンモニア性窒素、黒丸は亜硝酸性窒素、そして黒三角は硝酸性窒素である。いずれの菌もアンモニア性窒素と硝酸性窒素が減少し、亜硝酸性窒素が上昇した。   A method for identifying the cultivated microorganism group as containing the above four species will be described later. Colonies were made using an agar medium, and each of these four species was isolated and examined for its ability. FIG. 4 shows ammonia nitrogen, nitrous acid for each of FIG. 4 (a) Brevibacillus, FIG. 4 (b) Pseudomonas, FIG. 4 (c) Microbacterium, and FIG. 4 (d) Acinetobacter. It is the result of investigating the change of each component when giving nitrogen and nitrate nitrogen and culture | cultivating on the favorable conditions for 80 days. The black square is ammoniacal nitrogen, the black circle is nitrite nitrogen, and the black triangle is nitrate nitrogen. In both bacteria, ammonia nitrogen and nitrate nitrogen decreased, and nitrite nitrogen increased.

これより、この馴化培養した菌群は、アンモニア性窒素を亜硝酸性窒素に分解するアンモニア性窒素酸化能を有しているといえる。また、硝酸性窒素を減少させて、亜硝酸性窒素を増加させているので、少なくとも、これらの菌群を集めた微生物群としてみると、硝酸性窒素還元能があると言える。また、そもそもこれらの微生物群は好気性の硝化菌であることを考えると、亜硝酸性窒素を硝酸性窒素に酸化する亜硝酸性窒素酸化能は有していると考えられる。したがって、これらの微生物群は、アンモニア性窒素酸化能、亜硝酸性窒素酸化能および硝酸性窒素還元能の3つの能力を有する微生物群である。また、少なくともこれらの微生物群は、アンモニア性窒素酸化能と硝酸性窒素還元能を有する。   From this, it can be said that this cultivated bacterial group has the ability to oxidize ammonia nitrogen, which decomposes ammonia nitrogen into nitrite nitrogen. Moreover, since nitrate nitrogen is decreased and nitrite nitrogen is increased, it can be said that there is at least nitrate nitrogen reducing ability when viewed as a group of microorganisms collected from these fungal groups. Considering that these microorganisms are aerobic nitrifying bacteria in the first place, it is considered that they have nitrite nitrogen oxidizing ability to oxidize nitrite nitrogen to nitrate nitrogen. Therefore, these microbial groups are microbial groups having three abilities, ammoniacal nitrogen oxidizing ability, nitrite nitrogen oxidizing ability, and nitrate nitrogen reducing ability. In addition, at least these microbial groups have ammonia nitrogen oxidizing ability and nitrate nitrogen reducing ability.

このように馴化培養して得た微生物は、99%以上の相同性をもって、上記4種の細菌と同種であると判断した。同定には、16SrDNA塩基配列解析を用いた。16SrDNAは、リボソームの一部である小サブユニットを構成する16SrRNAの遺伝情報を持つDNAである。このDNAは、如何なる生物にも存在し、異種間で塩基配列に差異を持つ。そのため、種の判別に適している。特に細菌においては、ある部分が、共通した塩基配列をもつ。そのためDNAの増幅の際に、同一のプライマー(ユニバーサルプライマー)を用いることができる。   The microorganisms obtained by culturing in this way were judged to be the same species as the above four types of bacteria with a homology of 99% or more. For identification, 16S rDNA nucleotide sequence analysis was used. 16S rDNA is DNA having genetic information of 16S rRNA that constitutes a small subunit that is a part of a ribosome. This DNA exists in any organism and has a difference in base sequence between different species. Therefore, it is suitable for species discrimination. Particularly in bacteria, certain parts have a common base sequence. Therefore, the same primer (universal primer) can be used for DNA amplification.

そして、これらの微生物の16SrDNAと既知の微生物の配列を、Web上で無料公開されているデータベース(DDBJ/EMBL/GenBank http://www.ddbj.nig.ac.jp/intro−j.html)を用い、BLAST検索を行うことで相同性を調べた。   Then, the 16S rDNA of these microorganisms and the sequences of known microorganisms are available on the database (DDBJ / EMBL / GenBank http://www.ddbj.nig.ac.jp/intro-j.html) The homology was examined by performing a BLAST search.

より具体的な手順は以下のようにした。まず、市販のDNA抽出キットを使用して、馴化培養した微生物のDNAを抽出した。次にこのDNAを9Fプライマーと926Rプライマーを用いてPCR増幅を行い、16SrDNAを増幅した。この増幅した16SrDNAから塩基配列を解析した。解析した塩基配列をBLAST検索にかけて、相同性の高い微生物を調べた。   A more specific procedure was as follows. First, the DNA of the conditioned microorganism was extracted using a commercially available DNA extraction kit. Next, this DNA was subjected to PCR amplification using 9F primer and 926R primer to amplify 16SrDNA. The nucleotide sequence was analyzed from the amplified 16S rDNA. The analyzed base sequence was subjected to BLAST search to examine microorganisms with high homology.

以上の結果、馴化培養によって得られた微生物群は、シュードモナス属(Pseudomonas属)、ブレビバシラス属(Brevibacillus属)、アシネトバクター属(Acinetobacter属)、そしてミクロバクテリウム属(Microbacterium属)に属する微生物と99%の相同性を有する微生物を含んでいた。すなわち、本発明で用いる微生物群は、これら4つの属に属する微生物の集合体に硝酸性窒素還元能を持つように馴化培養した微生物群である。   As a result of the above, the microorganism group obtained by acclimation culture includes 99% of microorganisms belonging to the genus Pseudomonas, the genus Brevibacillus, the genus Acinetobacter, and the genus Microbacterium. Microorganisms having the same homology. That is, the group of microorganisms used in the present invention is a group of microorganisms that have been conditioned and cultured so that the aggregate of microorganisms belonging to these four genera has nitrate nitrogen reducing ability.

言い換えると、これらの微生物群は、16SrDNAの相同性検索で99%の相同性を有して上記4つの属のいずれかに属する微生物からなり、さらに、硝酸性窒素を亜硝酸性窒素に還元できる微生物群であるといえる。   In other words, these microorganism groups consist of microorganisms belonging to any of the above four genera with 99% homology in the 16S rDNA homology search, and can further reduce nitrate nitrogen to nitrite nitrogen. It can be said that it is a microbial group.

これらの微生物は、馴化培養の後は、培地において培養し、培養液とする。培地は、表1で示した培地であってもよく、また硝酸性窒素を含んだ排水でよい。培養の際には、温度は25℃乃至40℃程度がよい。液温が高い方が増殖しやすいためである。   After acclimation culture, these microorganisms are cultured in a medium to obtain a culture solution. The medium may be the medium shown in Table 1 or may be waste water containing nitrate nitrogen. When culturing, the temperature is preferably about 25 to 40 ° C. This is because the higher the liquid temperature, the easier the growth.

図1に本発明の亜硝酸性窒素溶液の製造装置(処理装置)1を示す。本発明の亜硝酸性窒素溶液の製造装置1は、処理槽2と、原水を処理槽2に送液する送液ポンプ4と、処理液を処理槽2から排出する排出ポンプ6と、処理槽2中で曝気する曝気装置8と、上記の微生物群を培養した培養液を貯留する培養槽10と、培養槽10から培養液を処理槽2に送液する培養液ポンプ12と、処理槽2中に配設された、DO検出装置14、pH検出装置15、アンモニア濃度検出装置16、亜硝酸濃度検出装置17、及び硝酸濃度検出装置18と、これらの検出装置および送液ポンプ4、排出ポンプ6、培養液ポンプ12と接続され、検出装置からの信号に基づき、各種ポンプを制御する制御装置20を有する。   FIG. 1 shows a manufacturing apparatus (processing apparatus) 1 for a nitrite-based nitrogen solution according to the present invention. The apparatus 1 for producing a nitrite nitrogen solution of the present invention includes a treatment tank 2, a liquid feed pump 4 for feeding raw water to the treatment tank 2, a discharge pump 6 for discharging the treatment liquid from the treatment tank 2, and a treatment tank. 2, an aeration apparatus 8 for aeration, a culture tank 10 for storing a culture solution in which the above-described microorganism group is cultured, a culture solution pump 12 for sending the culture solution from the culture tank 10 to the treatment tank 2, and the treatment tank 2. DO detector 14, pH detector 15, ammonia concentration detector 16, nitrous acid concentration detector 17, and nitric acid concentration detector 18, and these detectors, feed pump 4, and discharge pump disposed in the interior 6. A control device 20 is connected to the culture solution pump 12 and controls various pumps based on signals from the detection device.

処理槽2は、必要な大きさを有する容器であり、蓋体を有しているのが望ましい。本発明に用いる微生物以外の細菌の混入を排除するためである。処理槽2には散気管8bが底部に固定され、散気管8bより伸びる送風管8c(一点鎖線で示した。)が処理槽2外部に続く。送風管8cには、ブロア8aが接続され、必要量の空気を散気管8bに送ることができる。なお、ブロア8aは、制御装置20に連結されており、制御装置20は指示Cbでブロア8aの風量を制御することができる。ブロア8a、散気管8bおよび送風管8cで曝気装置8が構成される。   The processing tank 2 is a container having a necessary size and desirably has a lid. This is to eliminate contamination of bacteria other than the microorganism used in the present invention. A diffuser pipe 8b is fixed to the bottom of the treatment tank 2, and a blower pipe 8c (shown by a one-dot chain line) extending from the diffuser pipe 8b continues to the outside of the treatment tank 2. A blower 8a is connected to the blower pipe 8c, and a necessary amount of air can be sent to the diffuser pipe 8b. The blower 8a is connected to the control device 20, and the control device 20 can control the air volume of the blower 8a with the instruction Cb. The aeration device 8 is configured by the blower 8a, the diffuser tube 8b and the blower tube 8c.

また、処理槽2中には、DO検出装置14、pH検出装置15、アンモニア濃度検出装置16、亜硝酸濃度検出装置17、及び硝酸濃度検出装置18が配設されている。それぞれ、処理槽2中の処理液の状態を検出するための検出装置であり、ここに上げた検出装置以外の検出装置があってもよい。なお、ここに上げた検出装置を含み、検出手段19と呼ぶ。   In the treatment tank 2, a DO detection device 14, a pH detection device 15, an ammonia concentration detection device 16, a nitrous acid concentration detection device 17, and a nitric acid concentration detection device 18 are disposed. Each is a detection device for detecting the state of the processing liquid in the processing tank 2, and there may be a detection device other than the detection device raised here. In addition, the detection apparatus raised here is called the detection means 19.

原水は、窒素成分を有する排水である。つまり、原水は、工場からの排水を初め、下水などの生活用水であってもよい。また、すでに、好気性硝化菌によって処理を済ませた処理水であってもよい。本発明に利用する微生物群は、硝酸性窒素まで酸化が進んでいても、これを亜硝酸性窒素に還元することができるからである。また処理対象となる排水中にはアンモニア性窒素が高濃度で含まれていてもよい。   Raw water is waste water having a nitrogen component. That is, the raw water may be domestic water such as sewage as well as waste water from the factory. Alternatively, treated water that has already been treated with aerobic nitrifying bacteria may be used. This is because the group of microorganisms used in the present invention can be reduced to nitrite nitrogen even if oxidation proceeds to nitrate nitrogen. Moreover, ammonia nitrogen may be contained in high concentration in the waste water to be treated.

培養槽10には培地と本発明に係る微生物群が投入されている。培地と微生物群の混合物を培養液と呼ぶ。培養槽10中でも微生物の増殖を図るため、培養槽10にはヒータ10hと温度センサ10Tが配置されていてもよい。これらのヒータ10hおよび温度センサ10Tも制御装置20と連結される。ヒータ10hは、電源10hbに接続されており、スイッチ10hsの制御で通電可能に構成されている。   The culture tank 10 is charged with the culture medium and the microorganism group according to the present invention. A mixture of a culture medium and a group of microorganisms is called a culture solution. In order to allow microorganisms to grow in the culture tank 10, a heater 10h and a temperature sensor 10T may be arranged in the culture tank 10. These heater 10 h and temperature sensor 10 T are also connected to the control device 20. The heater 10h is connected to a power source 10hb and is configured to be energized under the control of the switch 10hs.

制御装置20は、温度センサ10Tから温度信号Tbで培養槽10内の温度を検出し、スイッチ10hsを指示Chsで制御することで、培養槽10内の温度を制御することができる。培養槽10には培養液ポンプ12が連結されており、送液管12pを介して、処理槽2中に培養液を送液することができる。培養液ポンプ12と送液管12pで送液手段が形成される。なお、送液手段は、培養液ポンプ12と送液管12pという構成に限定されることなく、他の方法で構成されてもよい。例えば、必要量の培養液を計量し、別容器に入れて、処理槽2に投入するなどである。この培養液ポンプ12も制御装置20に連結され、制御装置20からの指示Cmで制御されている。   The control device 20 can control the temperature in the culture tank 10 by detecting the temperature in the culture tank 10 with the temperature signal Tb from the temperature sensor 10T and controlling the switch 10hs with the instruction Chs. A culture solution pump 12 is connected to the culture tank 10, and the culture solution can be supplied into the treatment tank 2 through the liquid supply pipe 12 p. A liquid feeding means is formed by the culture liquid pump 12 and the liquid feeding pipe 12p. In addition, a liquid feeding means is not limited to the structure of the culture solution pump 12 and the liquid feeding pipe 12p, You may be comprised by another method. For example, a necessary amount of culture solution is weighed, put into a separate container, and put into the treatment tank 2. This culture medium pump 12 is also connected to the control device 20 and controlled by an instruction Cm from the control device 20.

処理槽2には、排水管6pが連結されており、排水管6pには排水ポンプ6が連結されている。処理済みの溶液を処理槽2から排出するためである。排水ポンプ6も、制御装置20と連結され制御装置20からの指示Cexで動作が制御される。   A drain pipe 6p is connected to the treatment tank 2, and a drain pump 6 is connected to the drain pipe 6p. This is because the treated solution is discharged from the treatment tank 2. The drainage pump 6 is also connected to the control device 20 and its operation is controlled by an instruction Cex from the control device 20.

排出ポンプ6の上流側には、フィルタ手段22を設けてもよい。フィルタ手段22は処理液を濾過して、微生物群を濾しとるためである。したがって、フィルタはおよそ0.1〜1.0μmを濾過できるMF膜(Microfiltration Membrane)が好適に利用できる。   Filter means 22 may be provided on the upstream side of the discharge pump 6. The filter means 22 is for filtering the treatment liquid to filter out the microorganism group. Therefore, an MF membrane (Microfiltration Membrane) capable of filtering about 0.1 to 1.0 μm can be suitably used as the filter.

フィルタ手段22を通過しなかった処理液中には、微生物群が多く残留しているので、この残渣液は培養槽10若しくは処理槽2に戻す。本発明の微生物群は馴化培養によって3つの能力を有する貴重な微生物であるので、再利用を図るためである。   Since a large number of microorganisms remain in the treatment liquid that has not passed through the filter means 22, this residual liquid is returned to the culture tank 10 or the treatment tank 2. This is because the microorganism group of the present invention is a valuable microorganism having three abilities by acclimation culture, and is intended for reuse.

制御装置20は、検出手段19からの測定値に基づいて処理槽2中の状態を判断し、原水が処理される状況に応じて、処理液を排出し、原水を処理槽2に投入し、さらに培養液を培養槽10から処理槽2に追加する。また、培養槽10中の状態を判断し、処理槽10の温度を制御するようにしてもよい。   The control device 20 determines the state in the treatment tank 2 based on the measurement value from the detection means 19, discharges the treatment liquid and throws the raw water into the treatment tank 2 according to the situation where the raw water is treated, Further, the culture solution is added from the culture tank 10 to the treatment tank 2. Moreover, the state in the culture tank 10 may be determined and the temperature of the processing tank 10 may be controlled.

以上のように構成された亜硝酸性窒素溶液の製造装置1の動作について説明する。制御装置20から送液ポンプ4に対する指示Cinによって送液ポンプ4は原水を処理槽2中に送液する。処理槽2中の液面高は、液面検出器2Lによって検出され、信号SLによって制御装置20に送信される。   Operation | movement of the manufacturing apparatus 1 of the nitrite nitrogen solution comprised as mentioned above is demonstrated. In response to an instruction Cin from the control device 20 to the liquid feed pump 4, the liquid feed pump 4 feeds raw water into the treatment tank 2. The liquid level in the processing tank 2 is detected by the liquid level detector 2L and transmitted to the control device 20 by the signal SL.

処理槽2中に所定の容量の原水が投入されたら、制御装置20は、培養液ポンプ12に指示Cmを送り、培養槽10から所定量の培養液を処理槽2に送る。そして、制御装置20は、指示Cbによって曝気装置8のブロア8aを作動させ、処理槽2中の原水に酸素を送る。   When a predetermined volume of raw water is introduced into the treatment tank 2, the control device 20 sends an instruction Cm to the culture solution pump 12 and sends a predetermined amount of culture solution from the culture vessel 10 to the treatment vessel 2. And the control apparatus 20 operates the blower 8a of the aeration apparatus 8 by instruction | indication Cb, and sends oxygen to the raw | natural water in the processing tank 2. FIG.

この曝気によって処理槽2中を酸素リッチな状況とし、微生物群に好気性条件下でアンモニア性窒素を亜硝酸性窒素に酸化するアンモニア性窒素酸化能を発揮させる。また、図2で示したように、馴化培養した微生物群は、亜硝酸までで、反応がとまり、硝酸までは酸化されない。また、仮に硝酸まで反応が進んだり、硝酸性窒素を含有する原水が投入されても、亜硝酸性窒素に還元される。これらの成分濃度の変化は、アンモニア濃度検出装置16、亜硝酸濃度検出装置17、硝酸濃度検出装置18でモニタする。   By this aeration, the inside of the treatment tank 2 is brought into an oxygen-rich state, and the microorganism group is made to exhibit the ammoniacal nitrogen oxidizing ability that oxidizes ammoniacal nitrogen to nitrite nitrogen under aerobic conditions. In addition, as shown in FIG. 2, the cultivated microorganism group is reacted up to nitrous acid, and the reaction is stopped, and nitric acid is not oxidized. Further, even if the reaction proceeds to nitric acid or raw water containing nitrate nitrogen is added, it is reduced to nitrite nitrogen. Changes in these component concentrations are monitored by the ammonia concentration detector 16, the nitrous acid concentration detector 17, and the nitric acid concentration detector 18.

曝気は連続して行う必要はなく、主としてDO検出装置14によって検出された溶存酸素濃度に基づいて行えばよい。あるいは、アンモニア濃度、亜硝酸濃度、硝酸濃度の値を考慮してもよい。すなわち、微生物群にアンモニア性窒素酸化能および亜硝酸性窒素酸化能を効率的に行えるだけの曝気を行えばよい。このようにすることで、運転コストを削減することができる。   Aeration does not need to be performed continuously, and may be performed mainly based on the dissolved oxygen concentration detected by the DO detector 14. Or you may consider the value of ammonia concentration, nitrous acid concentration, and nitric acid concentration. That is, it is only necessary to aerate the microorganism group so as to efficiently perform the ammoniacal nitrogen oxidizing ability and the nitrite nitrogen oxidizing ability. By doing in this way, an operating cost can be reduced.

制御装置20は、処理槽2中のアンモニア濃度検出装置16によって、アンモニアの残量をモニタする。もし、あらかじめ調べておいた時間でアンモニア濃度が減少しなければ、微生物群の活性が低いか、微生物群の数が少ないかである。その際は、ブロア量を増やす若しくは、さらに培養液を追加する。   The control device 20 monitors the remaining amount of ammonia by the ammonia concentration detection device 16 in the treatment tank 2. If the ammonia concentration does not decrease in the time examined in advance, the activity of the microorganism group is low or the number of microorganism groups is small. In that case, increase the amount of blower or add more culture solution.

また、pH検出装置15によって検出したpHの値によっては、pH調整剤を投入する指示を出してもよい。もちろん、処理槽2へpH調整剤を投入する自動投入機を設置し、それを制御してpH調整剤を投入するようにしてもよい。なお、pH調整剤としては、苛性ソーダ(NaOH)等が好適に利用できる。処理槽2中には、亜硝酸性窒素が増え、pHは酸性側に向かうからである。   Further, depending on the pH value detected by the pH detection device 15, an instruction to add a pH adjusting agent may be issued. Of course, you may make it install the automatic charging machine which throws a pH adjuster into the processing tank 2, and throws a pH adjuster by controlling it. In addition, caustic soda (NaOH) etc. can be utilized suitably as a pH adjuster. This is because nitrite nitrogen increases in the treatment tank 2 and the pH tends to the acidic side.

制御装置20は、亜硝酸濃度検出装置17と硝酸濃度検出装置18によって亜硝酸濃度の増加と硝酸濃度の減少を監視し、所定の割合になった時点で、曝気を止める。そして、フィルタ手段22を介して貯蔵タンク25に処理水を移し、次の処理液を導入し、次の処理を開始する。   The control device 20 monitors the increase in the nitrous acid concentration and the decrease in the nitric acid concentration by the nitrous acid concentration detection device 17 and the nitric acid concentration detection device 18, and stops aeration when the ratio reaches a predetermined ratio. Then, the treated water is transferred to the storage tank 25 through the filter means 22, the next treatment liquid is introduced, and the next treatment is started.

なお、排水管6pにMF膜などのフィルタ手段22を配置した場合は、濾過されなかった処理液を再度処理槽2に戻す。この状態で新たに原水を入れ、上記と同様の処理を行う。この場合は、原水に添加する培養液の量を予め少なくしておいてもよい。   In addition, when the filter means 22 such as an MF membrane is disposed in the drain pipe 6p, the processing liquid that has not been filtered is returned to the processing tank 2 again. In this state, fresh water is added and the same treatment as above is performed. In this case, the amount of the culture solution added to the raw water may be reduced in advance.

以上のように本発明の窒素含有排水の処理装置1(「亜硝酸性窒素溶液の製造装置」とも言える。)で本発明の亜硝酸型硝化処理方法を実施すれば、亜硝酸性窒素溶液を多量に得ることができる。このような亜硝酸性窒素溶液は、アナモックス反応において、アンモニア性窒素と亜硝酸性窒素の割合を所定の値にするための副原水として用いることで、容易にアナモックス反応を制御することができる。   As described above, if the nitrite-type nitrification method of the present invention is carried out in the nitrogen-containing wastewater treatment apparatus 1 of the present invention (also referred to as “a nitrite-nitrogen solution manufacturing apparatus”), Can be obtained in large quantities. Such a nitrite-based nitrogen solution can easily control the anammox reaction by using it as a secondary raw water for setting the ratio of ammonia nitrogen and nitrite nitrogen to a predetermined value in the anammox reaction.

また、亜硝酸性窒素は等モルのアンモニア性窒素と共に亜臨界処理を行うことで、水と窒素ガスにして回収することもできる。   Also, nitrite nitrogen can be recovered as water and nitrogen gas by performing subcritical treatment together with equimolar amounts of ammonia nitrogen.

本発明の亜硝酸性窒素溶液の製造方法は、工場や生活排水などの有機物を含有した排水を、水と窒素に変換する際に有用となる亜硝酸性窒素溶液を効率よく生成する際に好適に利用することができる。   The method for producing a nitrite nitrogen solution of the present invention is suitable for efficiently producing a nitrite nitrogen solution that is useful when converting wastewater containing organic matter such as factory and domestic wastewater into water and nitrogen. Can be used.

1 亜硝酸性窒素溶液の製造装置
2 処理槽
2L 液面検出器
4 送液ポンプ
6 排出ポンプ
6p 排水管
8 曝気装置
8a ブロア
8b 散気管
8c 送風管
10 培養槽
10h ヒータ
10hb 電源
10hs スイッチ
10T 温度センサ
12 培養液ポンプ
12p 送液管
14 DO検出装置
15 pH検出装置
16 アンモニア濃度検出装置
17 亜硝酸濃度検出装置
18 硝酸濃度検出装置
19 検出手段
20 制御装置
22 フィルタ手段
25 貯蔵タンク
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of nitrite nitrogen solution 2 Processing tank 2L Liquid level detector 4 Liquid feed pump 6 Discharge pump 6p Drain pipe 8 Aeration apparatus 8a Blower 8b Air diffuser pipe 8c Blower pipe 10 Culture tank 10h Heater 10hb Power supply 10hs Switch 10T Temperature sensor DESCRIPTION OF SYMBOLS 12 Culture liquid pump 12p Liquid feeding pipe 14 DO detection apparatus 15 pH detection apparatus 16 Ammonia concentration detection apparatus 17 Nitrite concentration detection apparatus 18 Nitric acid concentration detection apparatus 19 Detection means 20 Control apparatus 22 Filter means 25 Storage tank

Claims (5)

窒素成分を含有する排水を処理槽に投入する工程と、
アンモニア性窒素酸化能、亜硝酸性窒素酸化能、および硝酸性窒素還元能の3つの能力を有する微生物群を処理槽に投入する工程と、前記処理槽内を曝気する工程と、を有することを特徴とする窒素含有排水の亜硝酸型硝化処理方法。
A step of introducing wastewater containing nitrogen components into the treatment tank;
A process of introducing a group of microorganisms having three capabilities of ammonia nitrogen oxidization ability, nitrite nitrogen oxidation ability, and nitrate nitrogen reduction ability into a treatment tank; and aeration of the inside of the treatment tank. A nitrite-type nitrification method for nitrogen-containing wastewater.
前記微生物群には、シュードモナス属(Pseudomonas属)、ブレビバシラス属(Brevibacillus属)、アシネトバクター属(Acinetobacter属)、ミクロバクテリウム属(Microbacterium属)に属する少なくとも1つの細菌を高濃度アンモニア環境で酸素を与えながら馴化培養した微生物を含むことを特徴とする請求項1に記載された窒素含有排水の亜硝酸型硝化処理方法。   The microorganism group is given oxygen in a high-concentration ammonia environment with at least one bacterium belonging to the genus Pseudomonas (genus Pseudomonas), the genus Brevibacillus (genus Brevibacillus), the genus Acinetobacter (genus Acinetobacter), or the genus Microbacterium (genus Microbacterium). The nitrite-type nitrification method for nitrogen-containing wastewater according to claim 1, comprising microorganisms that have been acclimatized and cultured. 窒素成分を有する排水が投入される処理槽と、
培地と共にアンモニア性窒素酸化能、亜硝酸性窒素酸化能、硝酸性窒素還元能の3つの能力を有する微生物群を培養した培養液を生成する培養槽と、
前記培養槽から前記処理槽へ前記培養液を送液する送液手段と、
前記処理槽内を曝気する曝気装置を有することを特徴とする窒素含有排水の処理装置。
A treatment tank into which wastewater having a nitrogen component is introduced;
A culture tank for producing a culture solution in which a group of microorganisms having three capabilities of ammonia nitrogen oxidizing ability, nitrite nitrogen oxidizing ability, and nitrate nitrogen reducing ability are cultured together with a medium;
Liquid feeding means for feeding the culture solution from the culture tank to the treatment tank;
A nitrogen-containing wastewater treatment apparatus, comprising an aeration apparatus for aeration of the inside of the treatment tank.
前記微生物群には、シュードモナス属(Pseudomonas属)、ブレビバシラス属(Brevibacillus属)、アシネトバクター属(Acinetobacter属)、ミクロバクテリウム属(Microbacterium属)に属する少なくとも1つの細菌を、高濃度アンモニア環境で酸素を与えながら馴化培養した微生物が含まれていることを特徴とする請求項3に記載された窒素含有排水の処理装置。   The microorganism group includes at least one bacterium belonging to the genus Pseudomonas (genus Pseudomonas), the genus Brevibacillus (genus Brevibacillus), the genus Acinetobacter (genus Acinetobacter), the genus Microbacterium (genus Microbacterium), and oxygen in a high-concentration ammonia environment. The treatment apparatus for nitrogen-containing wastewater according to claim 3, characterized in that it contains microorganisms acclimated and cultured while being applied. 前記処理槽には、
少なくともアンモニア濃度検出装置、亜硝酸濃度検出装置を含む検出手段を有し、
前記検出手段からの出力に基づいて前記送液手段を制御する制御装置をさらに有することを特徴とする請求項3または4の何れかの請求項に記載された窒素含有排水の処理装置。
In the treatment tank,
It has a detection means including at least an ammonia concentration detection device and a nitrite concentration detection device,
5. The nitrogen-containing wastewater treatment apparatus according to claim 3, further comprising a control device that controls the liquid feeding unit based on an output from the detection unit.
JP2012099211A 2012-04-24 2012-04-24 Nitrogen-containing wastewater treatment equipment Active JP6046373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099211A JP6046373B2 (en) 2012-04-24 2012-04-24 Nitrogen-containing wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099211A JP6046373B2 (en) 2012-04-24 2012-04-24 Nitrogen-containing wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2013226491A true JP2013226491A (en) 2013-11-07
JP6046373B2 JP6046373B2 (en) 2016-12-14

Family

ID=49674758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099211A Active JP6046373B2 (en) 2012-04-24 2012-04-24 Nitrogen-containing wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP6046373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225113A1 (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method
CN114058548A (en) * 2021-11-29 2022-02-18 东方绿水(北京)环境科技有限公司 Novel aerobic denitrifying bacterium and application thereof in biological denitrification of sewage/wastewater
CN114873738A (en) * 2022-05-09 2022-08-09 南京大学 Method for measuring wastewater microorganism soluble organic nitrogen
CN116409884A (en) * 2022-04-07 2023-07-11 华中科技大学 Application of aerobic denitrification compound microbial inoculant in enhanced denitrification in improved A/O process

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180297A (en) * 1982-01-29 1983-10-21 イーエヌエスアール・コーポレーシヨン Method of treating waste water by activated sludge
JPS6463388A (en) * 1987-05-23 1989-03-09 Takeda Chemical Industries Ltd Production of l-sorbose by seed subculture and device therefor
JP2003024983A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Nitrification treatment method
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
JP2004305816A (en) * 2003-04-02 2004-11-04 Hitachi Plant Eng & Constr Co Ltd Nitrification method and apparatus, and waste water treatment equipment
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2008017713A (en) * 2006-07-10 2008-01-31 Japan Science & Technology Agency Method for enrichment culture of ammonia-oxidizing bacterium community and denitrifying bacterium community
JP2009000645A (en) * 2007-06-22 2009-01-08 Kazuo Tonoga Ammonia nitrogen-nitrate nitrogen simultaneous denitrification decomposition removing and nitrogen cycle-biomass-biological catalytic oxidation filtration apparatus
JP2010017639A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Organic raw water denitrification method by control of nitrite-type nitrification
JP2010221191A (en) * 2009-03-25 2010-10-07 Hitachi Plant Technologies Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012005474A (en) * 2010-06-26 2012-01-12 Yoichi Kadokami Activator for nitrification and denitrification
JP5347221B2 (en) * 2004-09-30 2013-11-20 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180297A (en) * 1982-01-29 1983-10-21 イーエヌエスアール・コーポレーシヨン Method of treating waste water by activated sludge
JPS6463388A (en) * 1987-05-23 1989-03-09 Takeda Chemical Industries Ltd Production of l-sorbose by seed subculture and device therefor
JP2003024983A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Nitrification treatment method
JP2003039092A (en) * 2001-07-30 2003-02-12 Kurita Water Ind Ltd Biological denitrification treatment method
JP2004305816A (en) * 2003-04-02 2004-11-04 Hitachi Plant Eng & Constr Co Ltd Nitrification method and apparatus, and waste water treatment equipment
JP5347221B2 (en) * 2004-09-30 2013-11-20 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
JP2006289347A (en) * 2005-03-16 2006-10-26 Hitachi Plant Technologies Ltd Method and apparatus for treating waste water
JP2008017713A (en) * 2006-07-10 2008-01-31 Japan Science & Technology Agency Method for enrichment culture of ammonia-oxidizing bacterium community and denitrifying bacterium community
JP2009000645A (en) * 2007-06-22 2009-01-08 Kazuo Tonoga Ammonia nitrogen-nitrate nitrogen simultaneous denitrification decomposition removing and nitrogen cycle-biomass-biological catalytic oxidation filtration apparatus
JP2010017639A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Organic raw water denitrification method by control of nitrite-type nitrification
JP2010221191A (en) * 2009-03-25 2010-10-07 Hitachi Plant Technologies Ltd Wastewater treatment method and wastewater treatment apparatus
JP2012005474A (en) * 2010-06-26 2012-01-12 Yoichi Kadokami Activator for nitrification and denitrification

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225113A1 (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method
JP2019202244A (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method
JP7133359B2 (en) 2018-05-21 2022-09-08 株式会社日立製作所 Nitrogen treatment method
CN114058548A (en) * 2021-11-29 2022-02-18 东方绿水(北京)环境科技有限公司 Novel aerobic denitrifying bacterium and application thereof in biological denitrification of sewage/wastewater
CN114058548B (en) * 2021-11-29 2022-06-07 东方绿水(北京)环境科技有限公司 Aerobic denitrifying bacterium and application thereof in biological denitrification of sewage/wastewater
CN116409884A (en) * 2022-04-07 2023-07-11 华中科技大学 Application of aerobic denitrification compound microbial inoculant in enhanced denitrification in improved A/O process
CN114873738A (en) * 2022-05-09 2022-08-09 南京大学 Method for measuring wastewater microorganism soluble organic nitrogen
CN114873738B (en) * 2022-05-09 2023-03-14 南京大学 Method for measuring wastewater microorganism soluble organic nitrogen

Also Published As

Publication number Publication date
JP6046373B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
Du et al. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor
Gao et al. Nitrogen removal from low COD/TIN real municipal sewage by coupling partial denitrification with anammox in mainstream
Zeng et al. Nitritation and denitritation of domestic wastewater using a continuous anaerobic–anoxic–aerobic (A2O) process at ambient temperatures
Chang et al. Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter
Zhang et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors
EP2172430B1 (en) A method for removing the contamination of c, n utilizing heterotrophic ammonia-oxidizing bacteria
Toh et al. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater
Wu et al. Low energy treatment of landfill leachate using simultaneous partial nitrification and partial denitrification with anaerobic ammonia oxidation
Frutos et al. Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber
Liang et al. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate
Hasan et al. Simultaneous NH4+-N and Mn2+ removal from drinking water using a biological aerated filter system: Effects of different aeration rates
Zhang et al. New insights into co-treatment of mature landfill leachate with municipal sewage via integrated partial nitrification, Anammox and denitratation
KR20130111920A (en) Optimized nutrient removal from wastewater
CN110156174B (en) Mixed strain fermentation biological pretreatment method for high-concentration high-salt pharmaceutical wastewater
US20160207807A1 (en) Wastewater treatment system
Nuansawan et al. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate
CN106673192A (en) Technology for removing total nitrogen in garbage leachate by anammox and special device thereof
JP6046373B2 (en) Nitrogen-containing wastewater treatment equipment
CN113336337B (en) Novel integrated denitrification device and application
Gao et al. Nutrients removal from low C/N actual municipal wastewater by partial nitritation/anammox (PN/A) coupling with a step-feed anaerobic-anoxic-oxic (A/A/O) system
Zheng et al. Effect of blending landfill leachate with activated sludge on the domestic wastewater treatment process
CN109264850B (en) Integrated anaerobic ammonia oxidation membrane bioelectrochemical system and sewage denitrification and decarbonization treatment process
KR20170009155A (en) Nitrogen removing system of side stream comprising high concentrated nitrogen
US7960171B2 (en) Method and equipment for cultivating anaerobic ammonium-oxidizing bacteria
Feng et al. Effect of magnetic powder on nitrous oxide emissions from a sequencing batch reactor for treating domestic wastewater at low temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161117

R150 Certificate of patent or registration of utility model

Ref document number: 6046373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250