JP2003039092A - Biological denitrification treatment method - Google Patents

Biological denitrification treatment method

Info

Publication number
JP2003039092A
JP2003039092A JP2001230012A JP2001230012A JP2003039092A JP 2003039092 A JP2003039092 A JP 2003039092A JP 2001230012 A JP2001230012 A JP 2001230012A JP 2001230012 A JP2001230012 A JP 2001230012A JP 2003039092 A JP2003039092 A JP 2003039092A
Authority
JP
Japan
Prior art keywords
nitrogen
denitrification
concentration
nitrite
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001230012A
Other languages
Japanese (ja)
Other versions
JP4867099B2 (en
Inventor
Rei Imashiro
麗 今城
Goel Rajiv
ゴエル ラジブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001230012A priority Critical patent/JP4867099B2/en
Publication of JP2003039092A publication Critical patent/JP2003039092A/en
Application granted granted Critical
Publication of JP4867099B2 publication Critical patent/JP4867099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To denitrify ammonia nitrogen in raw water with a batch treatment tank to thereby make a denitrification treatment apparatus at the later step unnecessary. SOLUTION: A raw water supply step for supplying raw water containing ammonia nitrogen to a batch treatment tank 1, the first denitrification step for removing ammonia nitrogen in the presence of nitrite nitrogen by the action of denitrification microorganisms using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, the second denitrification step for further denitrifying by adding an electron donor to the denitrified water resulting from the first denitrification step, a separation step for separating the denitrified water resulting from the second denitrification step into a supernatant and precipitated sludge, and a discharge step for discharging the supernatant are repeated in the biological denitrification treatment method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
を含む原水中のアンモニア性窒素を、アンモニア性窒素
を電子供与体とし、亜硝酸性窒素を電子受容体とする脱
窒微生物の作用により亜硝酸性窒素の存在下に生物脱窒
する生物脱窒処理方法に関する。
TECHNICAL FIELD The present invention relates to the action of a denitrifying microorganism that uses ammoniacal nitrogen in raw water containing ammoniacal nitrogen as an electron donor for ammoniacal nitrogen and nitrite nitrogen as an electron acceptor. The present invention relates to a biological denitrification treatment method in which biological denitrification is performed in the presence of nitrate nitrogen.

【0002】[0002]

【従来の技術】排液中に含まれるアンモニア性窒素は河
川、湖沼及び海洋などにおける富栄養化の原因物質の一
つであり、排液処理工程で効率的に除去する必要があ
る。一般に、排水中のアンモニア性窒素は、アンモニア
性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化
し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸
性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及
び硝酸性窒素を従属栄養性細菌である脱窒菌により、有
機物を電子供与体として利用して窒素ガスにまで分解す
る脱窒工程との2段階の生物反応を経て窒素ガスにまで
分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in drainage is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the drainage treatment process. Generally, ammoniacal nitrogen in wastewater is a nitrification process in which ammoniacal nitrogen is oxidized to nitrite nitrogen by ammonia-oxidizing bacteria, and this nitrite nitrogen is further oxidized to nitrate nitrogen by nitrite-oxidizing bacteria. Nitrogen gas and nitrogen gas are transformed into nitrogen gas by a denitrification process in which organic substances are used as electron donors to decompose them into nitrogen gas by denitrifying bacteria, which are heterotrophic bacteria. Be disassembled.

【0003】しかし、このような従来の硝化脱窒法で
は、脱窒工程において電子供与体としてメタノールなど
の有機物を多量に必要とし、また硝化工程では多量の酸
素が必要であるため、ランニングコストが高いという欠
点がある。
However, in such a conventional nitrification denitrification method, a large amount of an organic substance such as methanol is required as an electron donor in the denitrification step, and a large amount of oxygen is required in the nitrification step, so that the running cost is high. There is a drawback that.

【0004】これに対して、近年、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする独立
栄養性微生物を利用し、アンモニア性窒素と亜硝酸性窒
素とを反応させて脱窒する方法が提案された。この方法
であれば、有機物の添加は不要であるため、従属栄養性
の脱窒菌を利用する方法と比べて、コストを低減するこ
とができる。また、独立栄養性の微生物は収率が低く、
汚泥の発生量が従属栄養性微生物と比較すると著しく少
ないので、余剰汚泥の発生量を抑えることができる。更
に、従来の硝化脱窒法で観察されるNOの発生がな
く、環境に対する負荷を低減できるといった特長もあ
る。
On the other hand, in recent years, an autotrophic microorganism having ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor has been used to react ammonia nitrogen with nitrite nitrogen. A method of denitrification was proposed. This method does not require addition of organic matter, and thus can reduce the cost as compared with the method using heterotrophic denitrifying bacteria. Also, the yield of autotrophic microorganisms is low,
Since the amount of sludge generated is significantly smaller than that of the heterotrophic microorganisms, the amount of excess sludge generated can be suppressed. Furthermore, there is a feature that N 2 O generated by the conventional nitrification denitrification method is not generated and the load on the environment can be reduced.

【0005】この独立栄養性脱窒微生物(以下「ANA
MMOX微生物」と称す。)を利用する生物脱窒プロセ
ス(ANAMMOXプロセス)は、Strous, M. et. a
l., Appl. Microbiol. Biotechnol. Vol.50, p.589-596
(1998) に報告されており、以下のような反応でアンモ
ニア性窒素と亜硝酸性窒素が反応して窒素ガスに分解さ
れると考えられている。
This autotrophic denitrifying microorganism (hereinafter referred to as "ANA
MMOX microorganism ". ) Is used in Strous, M. et. A.
l., Appl. Microbiol. Biotechnol. Vol.50, p.589-596
(1998), it is considered that ammoniacal nitrogen and nitrite nitrogen react with each other in the following reaction to decompose into nitrogen gas.

【0006】[0006]

【化1】 [Chemical 1]

【0007】即ち、ANAMMOX微生物を利用して脱
窒処理を行う場合、ANAMMOX微生物を保持するA
NAMMOX反応槽に流入する被処理水(原水)は、ア
ンモニア性窒素(NH−N)に対し、亜硝酸性窒素
(NO−N)を0.5〜2倍、特に1〜1.5倍の割
合で含むことが好ましい。
[0007] That is, when denitrification treatment is carried out using the ANAMMOX microorganism, the A that holds the ANAMMOX microorganism is used.
The water to be treated (raw water) flowing into the NAMMOX reaction tank is 0.5 to 2 times, particularly 1 to 1.5 times, nitrite nitrogen (NO 2 -N) with respect to ammonia nitrogen (NH 4 -N). It is preferable to include it in a double ratio.

【0008】上記ANAMMOX微生物を利用すること
により、従来の硝化脱窒と比較して曝気量の低減、メタ
ノール等の有機物添加量の削減、余剰汚泥の低減が可能
となる。
The use of the above-mentioned ANAMMOX microorganism makes it possible to reduce the amount of aeration, the amount of organic substances such as methanol added, and the amount of excess sludge as compared with the conventional nitrification denitrification.

【0009】なお、反応生成物として窒素の他に硝酸が
生成する。このため、ANAMMOX反応後に生成した
硝酸を還元して窒素ガスに変換する脱窒処理が必要とな
る。
In addition to nitrogen, nitric acid is produced as a reaction product. For this reason, a denitrification process for reducing the nitric acid produced after the ANAMMOX reaction and converting it to nitrogen gas is required.

【0010】ところで、ANAMMOX微生物は独立栄
養性微生物であり、収率が低く増殖速度が遅い。その比
増殖速度は、最大で0.065day−1(1日で1.
065倍に増殖する)と報告されている。実際の培養で
は、処理水中の基質濃度は低く、生物のフロック内部ま
で十分に基質が浸透しないため、比増殖速度は0.02
〜0.05day−1程度の値となる。
By the way, the ANAMMOX microorganism is an autotrophic microorganism and has a low yield and a slow growth rate. The specific growth rate is 0.065 day -1 at maximum (1.
It grows 065 times). In actual culture, the substrate concentration in the treated water is low and the substrate does not sufficiently penetrate into the flocs of the organism, so the specific growth rate is 0.02.
The value is about 0.05 day −1 .

【0011】ANAMMOX微生物の活性に阻害を与え
る要因としては、酸素の混入と高濃度亜硝酸への暴露が
ある。即ち、ANAMMOX微生物は、酸素に対する耐
性は低く、酸素分圧1%においても不可逆的に阻害を受
ける。亜硝酸による阻害は、亜硝酸性窒素濃度50〜2
00mg/L程度から生じ、高濃度ほど阻害作用が大き
くなると言われている(Strous, M. et. al., Appl. En
viron. Microbiol. Vol.65 (7), p.3248-3250 (199
9))。
Factors that impede the activity of the ANAMMOX microorganism are oxygen contamination and exposure to high concentrations of nitrite. That is, the ANAMMOX microorganism has low resistance to oxygen and is irreversibly inhibited even at an oxygen partial pressure of 1%. Inhibition by nitrite is based on nitrite nitrogen concentration of 50 to 2
It occurs from about 00 mg / L, and it is said that the higher the concentration, the greater the inhibitory effect (Strous, M. et. Al., Appl. En.
viron. Microbiol. Vol.65 (7), p.3248-3250 (199
9)).

【0012】ANAMMOX微生物を利用した反応槽方
式としては、例えば、砂やプラスチック、スポンジ、ゲ
ルなど、微生物を付着させた担体を充填したカラムに、
上向流又は下向流で排水を通水する方法が用いられる。
反応槽の負荷は担体表面に付着した微生物量で決定さ
れ、担体の比表面積が大きいほど保持できる微生物量が
多くなり、高い負荷を取ることができる。
As a reaction tank system using ANAMMOX microorganisms, for example, a column packed with a carrier to which microorganisms are adhered, such as sand, plastic, sponge or gel, is used.
A method of passing drainage in an upflow or a downflow is used.
The load of the reaction tank is determined by the amount of microorganisms adhering to the surface of the carrier. The larger the specific surface area of the carrier, the larger the amount of microorganisms that can be retained, and the higher the load can be.

【0013】また、槽内に浮遊状態で保持した微生物を
利用する方式も用いられる。この方式の場合、後段に固
液分離装置を設け、濃縮された微生物を反応槽へ返送
し、反応槽内の微生物濃度を高めることにより高い負荷
を得る手法がある。
Further, a method of utilizing microorganisms held in a floating state in the tank is also used. In the case of this method, there is a method in which a solid-liquid separation device is provided in the subsequent stage, the concentrated microorganisms are returned to the reaction tank, and the concentration of the microorganisms in the reaction tank is increased to obtain a high load.

【0014】更に、グラニュール状にした汚泥を反応槽
内に充填し、上向流で通水するUSB(Upflow Sludge
Bed:上向流汚泥床)方式も利用できる。この場合、槽
内に保持できる微生物濃度は上記担体添加、浮遊形式よ
りも高くでき、そのため高い容積負荷を得ることが可能
である。グラニュールの径は0.25〜2.5mmに維
持するのが処理効率の面で好ましい。グラニュールの径
は、反応により発生するガスによる槽内液の撹拌によっ
て生じる剪断力と、槽内上向流の流速の影響を受け、ま
た、適度な上向流速を保持して、グラニュールと被処理
水とを効果的に接触させて高い処理効率を得るために、
運転に際しては上向流速の管理が重要である。このた
め、発生ガスにより槽内液を撹拌すると共に、処理水の
一部を循環して適度な上向流速を確保することが行われ
ている。また、槽内に保持できるグラニュール量は装置
上部に設置したGSS(固液分離装置)の性能にも影響
を受けるため、この形状も重要である。
Further, a USB (Upflow Sludge) which is filled with granulated sludge in a reaction tank and flows in an upward flow.
Bed: Upflow sludge bed) system is also available. In this case, the concentration of microorganisms that can be retained in the tank can be made higher than that in the above-mentioned carrier addition or floating type, and therefore a high volume load can be obtained. In terms of processing efficiency, it is preferable to maintain the diameter of the granule at 0.25 to 2.5 mm. The diameter of the granule is affected by the shearing force generated by stirring the liquid in the tank by the gas generated by the reaction and the flow velocity of the upward flow in the tank. In order to effectively contact the water to be treated and obtain high treatment efficiency,
It is important to control the upward flow velocity during operation. For this reason, the generated gas is used to stir the liquid in the tank and to circulate a part of the treated water to ensure an appropriate upward flow velocity. Further, the amount of granules that can be held in the tank is also affected by the performance of the GSS (solid-liquid separation device) installed in the upper part of the device, so this shape is also important.

【0015】反応槽の方式としては、SBR方式(回分
式反応槽)も報告されている(Strous, M. et. al., Ap
pl. Microbiol. Biotechnol. Vol.50, p.589-596 (199
8)。この方式は、浮遊状態或いはペレット状態の汚泥を
反応槽内に保持し、被処理水を添加して撹拌することで
被処理水と微生物とを接触させ、処理終了後撹拌を止
め、反応槽内で微生物を沈殿させて上澄水を処理水とし
て排出するものである。この反応槽の利点は、固液分離
装置を別に設ける必要がなく反応槽の設置面積を小さく
できること、反応槽が一槽のため管理が簡便であるこ
と、撹拌には機械撹拌やガス撹拌などが利用でき、担体
添加やUSB方式の場合のような厳密な撹拌強度の制御
が必要ないこと、槽内が完全混合となるため高濃度の原
水が流入しても即座に希釈され、高濃度基質による阻害
が起きにくいことなどが挙げられる。
As the reaction system, the SBR system (batch reaction system) has also been reported (Strous, M. et. Al., Ap.
Pl. Microbiol. Biotechnol. Vol.50, p.589-596 (199
8). In this method, sludge in the floating state or pellet state is held in the reaction tank, the water to be treated is added and stirred to bring the water to be treated into contact with the microorganisms, and after the treatment is completed, the stirring is stopped and the reaction tank is At this point, microorganisms are precipitated and the supernatant water is discharged as treated water. The advantages of this reaction tank are that it does not require a separate solid-liquid separation device, the installation area of the reaction tank can be reduced, the reaction tank is a single tank, and it is easy to manage. It can be used and does not require rigorous control of stirring strength as in the case of the USB method and USB method. Since the inside of the tank is completely mixed, it is immediately diluted even if high-concentration raw water flows in, depending on the high-concentration substrate. It is difficult to cause inhibition.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、従来に
おいては、ANAMMOX微生物による脱窒処理にSB
R方式を採用する技術は十分に確立されていない。
However, in the prior art, SB has been used for denitrification treatment by ANAMMOX microorganisms.
The technology that uses the R method is not well established.

【0017】従来、SBR方式を利用したANAMMO
X反応としては、アンモニア性窒素と亜硝酸性窒素を同
濃度で含む合成排水を処理したものが報告されており、
この場合、反応終了後の反応槽内には亜硝酸性窒素は検
出されず、アンモニア性窒素と硝酸性窒素が常時存在す
ることとなる。即ち、前述のANAMMOX反応の反応
式からも明らかなように、反応にはアンモニア性窒素に
対して亜硝酸性窒素を多く必要とし、また、反応生成物
として硝酸性窒素が生成する。従って、アンモニア性窒
素と亜硝酸性窒素とを同濃度で含む排水を処理した場合
には、亜硝酸性窒素は消費され、アンモニア性窒素が残
留し、硝酸性窒素が生成する。
Conventionally, ANAMMO using the SBR system
As the X reaction, it has been reported that synthetic wastewater containing ammoniacal nitrogen and nitrite nitrogen at the same concentration is treated.
In this case, nitrite nitrogen is not detected in the reaction tank after completion of the reaction, and ammonia nitrogen and nitrate nitrogen are always present. That is, as is clear from the above-described reaction formula of the ANAMMOX reaction, the reaction requires a large amount of nitrite nitrogen with respect to ammonia nitrogen, and nitrate nitrogen is produced as a reaction product. Therefore, when the wastewater containing the same concentration of ammonia nitrogen and nitrite nitrogen is treated, the nitrite nitrogen is consumed, the ammonia nitrogen remains, and nitrate nitrogen is produced.

【0018】ANAMMOX反応では硝酸性窒素が反応
生成物として生成することは知られており、従って、後
段で硝酸性窒素を還元して窒素ガスに変換する脱窒処理
が必要となるが、この脱窒処理では残存するアンモニア
性窒素を処理することはできない。従って、SBR反応
槽内に残存するアンモニア性窒素と硝酸性窒素を処理す
るためには、後段でアンモニア性窒素を酸化し、酸化態
窒素を脱窒するという二段階の処理を必要とするため、
実用的ではない。
It is known that nitrate nitrogen is produced as a reaction product in the ANAMMOX reaction. Therefore, a denitrification treatment for reducing the nitrate nitrogen and converting it into nitrogen gas is required in the latter stage. Nitrogen treatment cannot treat residual ammoniacal nitrogen. Therefore, in order to treat the ammoniacal nitrogen and the nitrate nitrogen that remain in the SBR reaction tank, it is necessary to perform a two-stage treatment of oxidizing the ammoniacal nitrogen and denitrifying the oxidized nitrogen in the latter stage.
Not practical.

【0019】一方で、ANAMMOX反応にアンモニア
性窒素が不足する場合には、反応後に亜硝酸性窒素が残
留し、残留した高濃度の亜硝酸性窒素によりANAMM
OX微生物が阻害を受ける可能性がある。
On the other hand, when the ammonia nitrogen is insufficient in the ANAMMOX reaction, the nitrite nitrogen remains after the reaction, and the high concentration of the remaining nitrite nitrogen causes the ANAMM.
OX microbes may be inhibited.

【0020】従って、ANAMMOX反応を行うSBR
反応槽において、アンモニア性窒素も亜硝酸性窒素も高
濃度に残留させないようにするためには、SBR反応槽
に導入する被処理水のアンモニア性窒素と亜硝酸性窒素
との比率を、当該SBR反応槽の処理状況に適当な値に
調整する必要がある。このためには、アンモニア性窒素
を含有する排水を硝化して排水中のアンモニア性窒素の
一部を亜硝酸性窒素とする前段のアンモニア酸化工程に
おける運転管理が重要となるが、従来において、アンモ
ニア性窒素と亜硝酸性窒素との比率を適当な値に調整し
得る運転管理手法は確立されていないのが現状である。
Therefore, the SBR carrying out the ANAMMOX reaction
In order to prevent both ammoniacal nitrogen and nitrite nitrogen from remaining in a high concentration in the reaction tank, the ratio of the ammoniacal nitrogen and the nitrite nitrogen of the water to be treated introduced into the SBR reaction tank is set to the SBR. It is necessary to adjust the value to an appropriate value depending on the processing conditions of the reaction tank. For this purpose, it is important to manage the operation in the preceding ammonia oxidation step in which the wastewater containing ammoniacal nitrogen is nitrified and a part of the ammoniacal nitrogen in the wastewater is converted to nitrite nitrogen. At present, there is no established operation management method capable of adjusting the ratio of nitrogen dioxide to nitrite nitrogen to an appropriate value.

【0021】本発明者らは、本発明に到る研究の過程
で、アンモニア性窒素濃度300mg−N/L、800
mg−N/L、1500mg−N/Lの各排水を、容積
10Lの硝化槽に導入してアンモニア性窒素の一部を亜
硝酸性窒素に酸化し、この硝化液を容積10Lの円筒型
SBR反応槽でANAMMOX反応により脱窒処理を行
った。ANAMMOX反応後にアンモニア性窒素が残存
しないことを目的として、アンモニア酸化工程で曝気量
を増やし、亜硝酸性窒素がアンモニア性窒素の1.5倍
以上となるよう運転すると、実際の硝化液中の亜硝酸性
窒素の比率はアンモニア性窒素の1.8〜2.0倍とな
り、亜硝酸性窒素がANAMMOX反応槽内で処理しき
れずに残存し、特に高濃度のアンモニア性窒素を含有す
る排水の場合には、残存する亜硝酸性窒素が350mg
−N/Lにも達し、これによりANAMMOX微生物が
阻害を受け、脱窒能を失うという問題が生じた。そこ
で、亜硝酸性窒素による阻害を受けないよう、アンモニ
ア酸化工程で亜硝酸性窒素がアンモニア性窒素の1.3
倍となることを目安として運転すると、実際の処理水中
の亜硝酸性窒素の比率はアンモニア性窒素の1.0〜
1.3倍となり、ANAMMOX反応槽内でアンモニア
性窒素が残存し、特に高濃度のアンモニア性窒素を含有
する排水を処理する場合には、残存するアンモニア性窒
素濃度は175mg−N/Lにも達し、その後の硝化脱
窒処理の負荷が高いという問題が生じた。
In the course of the research leading to the present invention, the inventors of the present invention conducted an ammonia nitrogen concentration of 300 mg-N / L, 800
Each of the mg-N / L and 1500 mg-N / L wastewater was introduced into a nitrification tank having a volume of 10 L to oxidize a part of ammoniacal nitrogen into nitrite nitrogen, and the nitrification solution was used as a cylindrical SBR having a volume of 10 L. The denitrification process was performed by the ANAMMOX reaction in the reaction tank. If the amount of aeration is increased in the ammonia oxidation step and the nitrite nitrogen is operated to be 1.5 times or more of the ammonia nitrogen in order to prevent the ammonia nitrogen from remaining after the ANAMMOX reaction, the nitrogen content in the actual nitrification solution is increased. The ratio of nitrate nitrogen is 1.8 to 2.0 times that of ammonia nitrogen, and nitrite nitrogen remains unprocessed in the ANAMMOX reaction tank, especially in the case of waste water containing a high concentration of ammonia nitrogen. Contains 350 mg of residual nitrite nitrogen
-N / L was also reached, which caused the problem that the ANAMMOX microorganism was inhibited and lost the denitrification ability. Therefore, in order to prevent the inhibition by nitrite nitrogen, nitrite nitrogen should be 1.3% of that of ammonia nitrogen in the ammonia oxidation step.
When operating as a guide, the actual ratio of nitrite nitrogen in the treated water is 1.0 to 10% of that of ammonia nitrogen.
It becomes 1.3 times, and ammoniacal nitrogen remains in the ANAMMOX reaction tank, and when treating wastewater containing particularly high concentration of ammoniacal nitrogen, the residual ammoniacal nitrogen concentration is as high as 175 mg-N / L. However, there was a problem that the load of the subsequent nitrification denitrification treatment was high.

【0022】このようにアンモニア酸化工程での亜硝酸
化率を後段の脱窒状況に応じて設定することは非常に困
難である。
As described above, it is very difficult to set the nitrite conversion rate in the ammonia oxidation step according to the denitrification situation in the latter stage.

【0023】本発明は上記従来の実情に鑑みてなされた
ものであって、前述の如く、固液分離装置を別に設ける
必要がなく反応槽の設置面積を小さくできる;反応槽が
一槽のため管理が簡便である;撹拌には機械撹拌やガス
撹拌などが利用でき、担体添加やUSB方式の場合のよ
うな厳密な撹拌速度の制御が必要ない;槽内が完全混合
となるための高濃度の原水が流入しても即座に希釈さ
れ、高濃度基質による阻害が起きにくい;といった優れ
た利点を有するSBR方式(回分式)の反応槽を用い
て、ANAMMOX反応によりアンモニア性窒素を除去
し、その後同一の反応槽内で残存する亜硝酸性窒素と生
成した硝酸性窒素を脱窒処理することにより、後段の脱
窒処理装置を不要とする生物脱窒処理方法を提供するこ
とを目的とする。
The present invention has been made in view of the above conventional circumstances, and as described above, it is possible to reduce the installation area of the reaction tank without separately providing a solid-liquid separation device; because the reaction tank is one tank. Easy management; mechanical stirring or gas stirring can be used for stirring, and strict control of stirring speed is not required as in the case of adding a carrier or USB method; high concentration for complete mixing in the tank Using the SBR system (batch system) reaction tank, which has the excellent advantages of being diluted immediately after the inflow of raw water of (1) and being less likely to be inhibited by high-concentration substrates, ammonia nitrogen is removed by the ANAMMOX reaction. After that, by denitrifying the remaining nitrite nitrogen and the generated nitrate nitrogen in the same reaction tank, it is an object to provide a biological denitrification treatment method that does not require a denitrification treatment device in the subsequent stage. .

【0024】本発明はまた、ANAMMOX反応処理水
中のアンモニア性窒素の残存を防止して、窒素成分を殆
ど含まない処理水を安定に得ることができる生物脱窒処
理方法を提供することを目的とする。
[0024] Another object of the present invention is to provide a biological denitrification treatment method which can prevent ammonia nitrogen from remaining in the ANAMMOX reaction treated water and stably obtain treated water containing almost no nitrogen component. To do.

【0025】[0025]

【課題を解決するための手段】本発明の生物脱窒処理方
法は、アンモニア性窒素を含有する原水を回分処理槽に
供給し、該槽内の微生物の作用により脱窒する生物脱窒
処理方法であって、 アンモニア性窒素を含有する原水を回分処理槽に供
給する原水供給工程と、 アンモニア性窒素を亜硝酸性窒素の存在下に、アン
モニア性窒素を電子供与体とし、亜硝酸性窒素を電子受
容体とする脱窒微生物の作用により脱窒する第1脱窒工
程と、 第1脱窒工程の脱窒処理液に電子供与体を添加して
さらに脱窒する第2脱窒工程と、 第2脱窒工程の脱窒処理液を上澄液と沈殿汚泥と沈
殿分離する分離工程と、 上澄液を排出する排出工程とを繰り返し行うことを
特徴とする。
The method for biological denitrification of the present invention is a method for biological denitrification in which raw water containing ammoniacal nitrogen is supplied to a batch treatment tank and denitrified by the action of microorganisms in the tank. That is, a raw water supply step of supplying raw water containing ammoniacal nitrogen to a batch treatment tank, and ammoniacal nitrogen in the presence of nitrite nitrogen, using ammoniacal nitrogen as an electron donor, and nitrite nitrogen A first denitrification step of denitrifying by the action of a denitrifying microorganism serving as an electron acceptor, and a second denitrification step of adding an electron donor to the denitrification treatment liquid of the first denitrification step and further denitrifying, The method is characterized in that the separation step of separating the denitrification treatment liquid of the second denitrification step from the supernatant liquid and the sedimentation sludge by sedimentation and the discharging step of discharging the supernatant liquid are repeated.

【0026】本発明では、回分処理槽にアンモニア性窒
素を含有する原水を供給し、第1脱窒工程において、ア
ンモニア性窒素をANAMMOX微生物により除去す
る。そして、第2脱窒工程において第1脱窒工程で残存
する亜硝酸性窒素と生成した硝酸性窒素を脱窒処理する
ことにより、アンモニア性窒素、亜硝酸性窒素及び硝酸
性窒素が除去された良好な水質の処理水を得ることがで
き、後段の脱窒処理装置を不要とすることができる。
In the present invention, raw water containing ammoniacal nitrogen is supplied to the batch treatment tank, and the ammoniacal nitrogen is removed by the ANAMMOX microorganism in the first denitrification step. Then, in the second denitrification step, the nitrite nitrogen remaining in the first denitrification step and the generated nitric nitrogen are subjected to a denitrification treatment to remove ammoniacal nitrogen, nitrite nitrogen and nitrate nitrogen. It is possible to obtain treated water of good water quality and to eliminate the need for a denitrification treatment device in the latter stage.

【0027】特に請求項2、とりわけ請求項3,4又は
請求項5,6の方法によれば、ANAMMOX反応によ
るアンモニア性窒素の残留を防止し、反応後残留する亜
硝酸性窒素と生成した硝酸性窒素を第2脱窒工程で脱窒
処理することにより、窒素成分を殆ど含まない、高水質
の処理水を得ることができる。
In particular, according to the method of claim 2, particularly the methods of claims 3 and 4 or claims 5 and 6, it is possible to prevent the ammonia nitrogen from remaining by the ANAMMOX reaction, and to leave the nitrite nitrogen remaining after the reaction and the generated nitric acid. By performing denitrification treatment of neutral nitrogen in the second denitrification step, it is possible to obtain treated water of high water quality containing almost no nitrogen component.

【0028】[0028]

【発明の実施の形態】以下に図面を参照して本発明の生
物脱窒処理方法の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the biological denitrification treatment method of the present invention will be described in detail below with reference to the drawings.

【0029】図1〜3は本発明の生物脱窒処理方法の実
施に好適な回分処理槽(SBR脱窒槽)を示す系統図で
ある。図1〜3において同一機能を奏する部材には同一
符号を付してある。
1 to 3 are system diagrams showing a batch treatment tank (SBR denitrification tank) suitable for carrying out the biological denitrification processing method of the present invention. In FIGS. 1 to 3, members having the same functions are designated by the same reference numerals.

【0030】図1の回分処理槽1は撹拌機2を備え、原
水を供給する原水供給配管3、処理水を排出する処理水
排出配管4、第1脱窒工程の電子受容体としての亜硝酸
性窒素含有液を添加する亜硝酸添加配管5及び第2脱窒
工程の電子供与体としてのメタノールを添加するメタノ
ール添加配管6が設けられている。各配管3,4,5,
6にはそれぞれポンプP,P,P,Pが設けら
れている。回分処理槽1には、ANAMMOX微生物を
含む汚泥が保持されている。
The batch treatment tank 1 in FIG. 1 is equipped with an agitator 2, a raw water supply pipe 3 for supplying raw water, a treated water discharge pipe 4 for discharging treated water, and nitrous acid as an electron acceptor in the first denitrification step. A nitrous acid addition pipe 5 for adding a nitrogen-containing liquid and a methanol addition pipe 6 for adding methanol as an electron donor in the second denitrification step are provided. Each pipe 3, 4, 5,
Pumps P 1 , P 2 , P 3 , and P 4 are provided at 6, respectively. The batch treatment tank 1 holds sludge containing ANAMMOX microorganisms.

【0031】図1の回分処理槽1では、次のようにして
回分式で生物脱窒処理が行われる。
In the batch treatment tank 1 of FIG. 1, the biological denitrification process is performed in a batch manner as follows.

【0032】 原水供給工程 原水供給工程では、ポンプPを作動させて、アンモニ
ア性窒素を含有する原水の所定量を回分処理槽1に供給
する。
Raw Water Supply Step In the raw water supply step, the pump P 1 is operated to supply a predetermined amount of raw water containing ammoniacal nitrogen to the batch treatment tank 1.

【0033】 第1脱窒工程 回分処理槽1に供給された原水中のアンモニア性窒素
を、撹拌下、槽内のANAMMOX微生物の作用により
亜硝酸性窒素の存在下に脱窒処理する。従って、原水中
に亜硝酸性窒素を含まない場合、或いは、ANAMMO
X反応に必要な亜硝酸性窒素が不足する場合には、ポン
プPを作動させて亜硝酸性窒素を含有する液を回分処
理槽1に添加する。
First denitrification step The ammoniacal nitrogen in the raw water supplied to the batch treatment tank 1 is denitrified under stirring in the presence of nitrite nitrogen by the action of the ANAMMOX microorganism in the tank. Therefore, when the raw water does not contain nitrite nitrogen, or
When the nitrite nitrogen necessary for the X reaction is insufficient, the pump P 3 is operated to add the liquid containing the nitrite nitrogen to the batch treatment tank 1.

【0034】この亜硝酸性窒素含有液は、亜硝酸や亜硝
酸ナトリウム等の薬品の水溶液であっても良く、また、
原水の一部を別途アンモニア酸化細菌により硝化処理し
てアンモニア性窒素を亜硝酸性窒素に転換したものであ
っても良く、他系統の亜硝酸性窒素含有排水であっても
良い。
The nitrite nitrogen-containing liquid may be an aqueous solution of a chemical such as nitrous acid or sodium nitrite.
A part of the raw water may be nitrification-treated with ammonia-oxidizing bacteria to convert ammoniacal nitrogen into nitrite nitrogen, or wastewater containing nitrite nitrogen of another system may be used.

【0035】なお、アンモニア性窒素を含有する原水を
予め硝化処理し、原水中のアンモニア性窒素の一部をア
ンモニア酸化細菌により亜硝酸性窒素に転換した液であ
れば、このような亜硝酸性窒素含有液の添加を不要とす
ることができる。
If the raw water containing ammoniacal nitrogen is nitrified in advance and a part of the ammoniacal nitrogen in the raw water is converted to nitrite nitrogen by an ammonia-oxidizing bacterium, such a nitrite The addition of the nitrogen-containing liquid can be eliminated.

【0036】この場合、原水を硝化処理して得られる処
理液中のアンモニア性窒素濃度と亜硝酸性窒素濃度の比
は、NH−N:NO−N=1:1〜2、特にNH
−N:NO−N=1:1〜1.3の範囲であることが
好ましい。この範囲よりもアンモニア性窒素が多いと、
後述の実施例4の結果からも明らかなように、ANAM
MOX微生物による第1脱窒工程の脱窒処理でアンモニ
ア性窒素が残留し、このアンモニア性窒素は第2脱窒工
程でも処理されないため、処理水中にアンモニア性窒素
が残留することになる。また、この範囲よりも亜硝酸性
窒素が多いと後述の実施例4の結果からも明らかなよう
に、回分処理槽内の亜硝酸性窒素濃度が高いことにより
ANAMMOX微生物の活性が低下し、第1脱窒工程に
おいてアンモニア性窒素と亜硝酸性窒素が残留する。第
1脱窒工程で残留した亜硝酸性窒素は第2脱窒工程で処
理されるが、アンモニア性窒素は処理されないため、処
理水中にアンモニア性窒素が残留することになる。
In this case, the ratio of the concentration of ammonia nitrogen to the concentration of nitrite nitrogen in the treatment liquid obtained by nitrifying raw water is NH 4 —N: NO 2 —N = 1: 1 to 2, especially NH. Four
-N: NO 2 -N = 1: is preferably in the range of 1 to 1.3. If there is more ammonia nitrogen than this range,
As is clear from the results of Example 4 described later, ANAM
Ammoniacal nitrogen remains in the denitrification treatment in the first denitrification step by the MOX microorganism, and this ammoniacible nitrogen is not treated in the second denitrification step as well, so ammoniacal nitrogen remains in the treated water. Further, when the amount of nitrite nitrogen is higher than this range, as is clear from the results of Example 4 described below, the high concentration of nitrite nitrogen in the batch treatment tank reduces the activity of the ANAMMOX microorganism, In the denitrification step, ammoniacal nitrogen and nitrite nitrogen remain. The nitrite nitrogen remaining in the first denitrification step is treated in the second denitrification step, but the ammoniacal nitrogen is not treated, so that the ammoniacal nitrogen remains in the treated water.

【0037】同様に、第1脱窒工程で回分処理槽1に亜
硝酸性窒素含有液を添加する場合においても、回分処理
槽1に導入されるアンモニア性窒素と回分処理槽1内の
亜硝酸性窒素が上記範囲となるように亜硝酸性窒素含有
液添加量を制御することが好ましい。
Similarly, when the nitrite nitrogen-containing liquid is added to the batch treatment tank 1 in the first denitrification step, the ammonia nitrogen introduced into the batch treatment tank 1 and the nitrite in the batch treatment tank 1 are also added. It is preferable to control the addition amount of the nitrite nitrogen-containing liquid so that the neutral nitrogen falls within the above range.

【0038】 第2脱窒工程 第1脱窒工程終了後は、ポンプPを作動させて回分処
理槽1にメタノールを添加して、撹拌下、ANAMMO
X反応で生成した硝酸性窒素と残留する亜硝酸性窒素を
脱窒処理する。この第2脱窒工程で添加する電子供与体
としては、メタノール等の有機物(BOD)が用いられ
るが、微生物への収率が低く、回分処理槽1内の従属栄
養微生物の増殖を最低限に抑えることができる点で、メ
タノールを用いるのが好ましい。
Second denitrification step After the first denitrification step is completed, the pump P 4 is operated to add methanol to the batch treatment tank 1, and the mixture is stirred under stirring with ANAMMO.
The nitric acid nitrogen generated by the X reaction and the residual nitrite nitrogen are denitrified. Although an organic substance (BOD) such as methanol is used as the electron donor added in the second denitrification step, the yield to microorganisms is low and the growth of heterotrophic microorganisms in the batch treatment tank 1 is minimized. It is preferable to use methanol because it can be suppressed.

【0039】なお、メタノールの添加量は残留する亜硝
酸性窒素1モルに対して0.4〜0.6モル、硝酸性窒
素1モルに対して0.8〜1モル程度とするのが好まし
い。
The amount of methanol added is preferably 0.4 to 0.6 mol per 1 mol of the residual nitrite nitrogen, and 0.8 to 1 mol per 1 mol of the nitrate nitrogen. .

【0040】 分離工程 第2脱窒工程終了後は回分処理槽1内の撹拌を停止して
槽内液を静置することにより、汚泥を沈降させて分離す
る。
Separation Step After completion of the second denitrification step, the agitation in the batch treatment tank 1 is stopped and the liquid in the tank is allowed to stand, whereby the sludge is settled and separated.

【0041】 排出工程 槽内液を固液分離した後、ポンプPを作動させて回分
処理槽1内の上澄液を処理水として排出する。
After the liquid in the discharge step tank is separated into solid and liquid, the pump P 2 is operated to discharge the supernatant in the batch processing tank 1 as treated water.

【0042】上澄液を排出した後は、上記〜の工程
を繰り返す。
After discharging the supernatant, the above steps 1 to 3 are repeated.

【0043】なお、上記供給工程と第1脱窒工程と
は同時に行っても良い。この場合には、例えば、原水の
供給を開始すると共に、或いは原水の供給開始後、原水
の供給の終了前に亜硝酸性窒素含有液の添加を開始して
第1脱窒工程を開始する。
The supply step and the first denitrification step may be performed at the same time. In this case, for example, the first denitrification step is started by starting the supply of the raw water, or after the start of the supply of the raw water and before the end of the supply of the raw water, the addition of the nitrite nitrogen-containing liquid is started.

【0044】ところで、第1脱窒工程においては、前述
の如く原水中のアンモニア性窒素の量に対して共存する
亜硝酸性窒素の量に過不足があると、アンモニア性窒素
あるいは亜硝酸性窒素の残留で良好な水質の処理水を得
ることができなくなる。従って、第1脱窒工程におい
て、回分処理槽1に亜硝酸性窒素含有液を添加する場合
には、亜硝酸性窒素含有液を連続的または段階的に添加
して、槽内の亜硝酸性窒素濃度又はアンモニア性窒素濃
度に基いて亜硝酸性窒素含有液の添加を終了することが
好ましい。
By the way, in the first denitrification step, if the amount of nitrite nitrogen coexisting with the amount of ammonia nitrogen in the raw water is excessive or insufficient, as described above, ammonia nitrogen or nitrite nitrogen is present. It becomes impossible to obtain treated water having good water quality due to the residual amount. Therefore, in the first denitrification step, when the nitrite nitrogen-containing liquid is added to the batch treatment tank 1, the nitrite nitrogen-containing liquid is continuously or stepwise added to It is preferable to finish the addition of the nitrite nitrogen-containing liquid based on the nitrogen concentration or the ammonia nitrogen concentration.

【0045】なお、回分処理槽1内の亜硝酸性窒素濃度
又はアンモニア性窒素濃度の検出は、回分処理槽1内の
液を自動又は手動でサンプリングし、亜硝酸性窒素濃度
又はアンモニア性窒素濃度を測定することにより行うこ
とができる。測定には試薬を用いて比色法で定量する方
法、伝導度を測定するイオンクロマトグラフ法、イオン
電極法などがあるが、設備費、迅速性、信頼性の観点か
らイオン電極による方法が好ましい。イオン電極法の原
理は、基本的にpH電極と類似しており、対象とする成
分を選択的に通過する隔膜を用いて、電極内のイオン濃
度から対象成分の液中濃度を検出する。いずれの方法も
機器を用いて濃度計算されるため、検出した濃度を電気
的に出力することができる。そして、この信号をもと
に、亜硝酸性窒素含有液の添加ポンプ等の作動を制御す
ることができる。
The nitrite nitrogen concentration or the ammonia nitrogen concentration in the batch treatment tank 1 is detected by automatically or manually sampling the liquid in the batch treatment tank 1 to determine the nitrite nitrogen concentration or the ammonia nitrogen concentration. Can be measured. For the measurement, there are a colorimetric quantification method using a reagent, an ion chromatograph method for measuring conductivity, an ion electrode method, etc., but an ion electrode method is preferable from the viewpoints of equipment cost, promptness, and reliability. . The principle of the ion electrode method is basically similar to that of the pH electrode, and the concentration of the target component in the liquid is detected from the ion concentration in the electrode by using the diaphragm that selectively passes the target component. In either method, the concentration is calculated using a device, so the detected concentration can be electrically output. Then, based on this signal, the operation of the addition pump of the nitrite nitrogen-containing liquid can be controlled.

【0046】具体的には次のようにして亜硝酸性窒素含
有液の添加制御を行うことができる。
Specifically, the addition control of the liquid containing nitrite nitrogen can be controlled as follows.

【0047】(1) 亜硝酸性窒素濃度に基く添加制御 図2に示す如く、回分処理槽1内の亜硝酸性窒素濃度を
検出する亜硝酸濃度検出装置8を設け、槽内の亜硝酸性
窒素濃度に基いて亜硝酸性窒素含有液の添加を制御す
る。
(1) Addition Control Based on Nitrite Nitrogen Concentration As shown in FIG. 2, a nitrite concentration detecting device 8 for detecting the nitrite nitrogen concentration in the batch treatment tank 1 is provided, and The addition of the nitrite nitrogen-containing liquid is controlled based on the nitrogen concentration.

【0048】この亜硝酸濃度検出装置8は、亜硝酸電極
8Aにより亜硝酸性窒素濃度を検出するものである。な
お、亜硝酸性窒素濃度の検出にはpH調整が必要である
ため、図2では、回分処理槽1内の液を容器7に取り出
し、pH調整液を添加して亜硝酸電極8Aで亜硝酸性窒
素濃度を測定する。亜硝酸濃度検出装置8は、この測定
値に基いて、亜硝酸性窒素含有液の添加ポンプPの作
動を制御することができるように構成されている。
The nitrite concentration detector 8 detects the nitrite nitrogen concentration by the nitrite electrode 8A. Since pH adjustment is necessary to detect the nitrite nitrogen concentration, in FIG. 2, the liquid in the batch treatment tank 1 is taken out to the container 7, the pH adjusting liquid is added, and the nitrite electrode 8A is used to add nitrite. Measure the nitrogen concentration. The nitrite concentration detection device 8 is configured to be able to control the operation of the addition pump P 3 for the nitrite nitrogen-containing liquid based on this measured value.

【0049】回分処理槽1内の亜硝酸性窒素濃度に基く
制御を行うには、亜硝酸性窒素含有液を連続的あるいは
段階的に添加する。添加速度は、槽内に保持される汚泥
の活性に応じて決定することが好ましい。例えば、あら
かじめ槽内汚泥を採取しアンモニア性窒素と亜硝酸性窒
素を10〜100mg−N/L添加し、汚泥あたりの亜
硝酸性窒素除去速度を測定しておく。槽内に保持される
全汚泥量から槽内全体での亜硝酸性窒素の除去速度が算
出される(例えばa・gNO−N/hr)。連続的に
添加する場合、亜硝酸性窒素の除去速度と同等以下の速
度となるように添加し(例えば0.1〜0.9×a・g
NO−N/hr)、槽内液の亜硝酸性窒素が所定値以
上となったときに亜硝酸性窒素含有液の添加を停止す
る。段階的に添加する場合は、例えば5〜60minに
1回の頻度で槽内液に対して5〜50mg−N/L程度
亜硝酸性窒素を添加し、次の添加直前の槽内液の亜硝酸
性窒素濃度が所定値以上となったときに亜硝酸性窒素含
有液の添加を停止する。
To perform control based on the nitrite nitrogen concentration in the batch treatment tank 1, a nitrite nitrogen-containing liquid is added continuously or stepwise. The addition rate is preferably determined according to the activity of the sludge retained in the tank. For example, sludge in a tank is sampled in advance, ammoniacal nitrogen and nitrite nitrogen are added in an amount of 10 to 100 mg-N / L, and the nitrite nitrogen removal rate per sludge is measured. The removal rate of nitrite nitrogen in the whole tank is calculated from the total amount of sludge retained in the tank (for example, a · gNO 2 —N / hr). In the case of continuous addition, the addition rate should be equal to or less than the removal rate of nitrite nitrogen (for example, 0.1 to 0.9 × a · g).
NO 2 -N / hr), and when the nitrite nitrogen in the tank liquid reaches or exceeds a predetermined value, the addition of the nitrite nitrogen-containing liquid is stopped. When adding stepwise, for example, once every 5 to 60 minutes, about 5 to 50 mg-N / L of nitrite nitrogen is added to the in-tank solution, and the nitrous acid of the in-tank solution immediately before the next addition is added. The addition of the nitrite nitrogen-containing liquid is stopped when the nitrate nitrogen concentration exceeds a predetermined value.

【0050】この所定値は低過ぎると亜硝酸性窒素が不
足してアンモニア性窒素が残留する恐れがあり、高過ぎ
ると高濃度亜硝酸性窒素のためにANAMMOX微生物
が阻害を受ける恐れがあることから1〜50mg−N/
L、特に2〜20mg−N/L程度とするのが好まし
い。また、槽内液の亜硝酸性窒素濃度がこのような所定
値以上となった時点で第1脱窒工程を終了することが好
ましい。
If this predetermined value is too low, nitrite nitrogen may be insufficient and ammoniacal nitrogen may remain, and if it is too high, ANAMMOX microorganisms may be inhibited due to high concentration of nitrite nitrogen. From 1 to 50 mg-N /
L, particularly 2 to 20 mg-N / L is preferable. Further, it is preferable to end the first denitrification step when the concentration of nitrite nitrogen in the liquid in the tank becomes equal to or higher than such a predetermined value.

【0051】従って、亜硝酸濃度検出装置8は、槽内の
亜硝酸濃度の検出結果に基いて、亜硝酸性窒素含有液の
添加ポンプPの作動を停止する信号を出力すると共
に、その後メタノールの添加ポンプPの作動信号を出
力するように構成しても良い。
Therefore, the nitrite concentration detection device 8 outputs a signal for stopping the operation of the addition pump P 3 for the nitrite nitrogen-containing liquid based on the detection result of the nitrite concentration in the tank, and thereafter methanol. The operation signal of the addition pump P 4 may be output.

【0052】(2) アンモニア性窒素濃度に基く添加
制御 図3に示す如く、回分処理槽1内のアンモニア性窒素濃
度を検出するアンモニア濃度検出装置9を設け、槽内の
アンモニア性窒素濃度に基いて亜硝酸性窒素含有液の添
加を制御する。
(2) Addition Control Based on Ammonia Nitrogen Concentration As shown in FIG. 3, an ammonia concentration detecting device 9 for detecting the ammonia nitrogen concentration in the batch treatment tank 1 is provided, and the addition is based on the ammonia nitrogen concentration in the tank. Control the addition of the nitrite nitrogen-containing liquid.

【0053】このアンモニア濃度検出装置9は、アンモ
ニア電極9Aによりアンモニア性窒素濃度を検出するも
のである。アンモニア濃度検出装置9は、この測定値に
基いて、亜硝酸性窒素含有液の添加ポンプPの作動を
制御することができるように構成されている。
The ammonia concentration detecting device 9 detects the concentration of ammonia nitrogen by the ammonia electrode 9A. The ammonia concentration detection device 9 is configured to be able to control the operation of the addition pump P 3 for the nitrite nitrogen-containing liquid based on this measured value.

【0054】回分処理槽1内のアンモニア性窒素濃度に
基く制御を行うには、亜硝酸性窒素含有液を連続的ある
いは段階的に添加する。添加速度は、槽内に保持される
汚泥の活性に応じて決定することが好ましい。例えば、
あらかじめ槽内汚泥を採取しアンモニア性窒素と亜硝酸
性窒素を10〜100mg−N/L添加し、汚泥あたり
の亜硝酸性窒素除去速度を測定しておく。槽内に保持さ
れる全汚泥量から槽内全体での亜硝酸性窒素の除去速度
が算出される(例えばa・gNO−N/hr)。連続
的に添加する場合、亜硝酸性窒素の除去速度と同等以下
の速度となるように添加し(例えば0.1〜0.9×a
・gNO−N/hr)、槽内液のアンモニア性窒素が
所定値以下となったときに亜硝酸性窒素含有液の添加を
停止する。段階的に添加する場合は、例えば5〜60m
inに1回の頻度で槽内液に対して5〜50mg−N/
L程度亜硝酸性窒素を添加し、次の添加直前の槽内液の
アンモニア性窒素濃度が所定値以下となったときに亜硝
酸性窒素含有液の添加を停止する。
In order to perform control based on the concentration of ammonia nitrogen in the batch treatment tank 1, a nitrite nitrogen-containing liquid is added continuously or stepwise. The addition rate is preferably determined according to the activity of the sludge retained in the tank. For example,
The sludge in the tank is sampled in advance, ammoniacal nitrogen and nitrite nitrogen are added in an amount of 10 to 100 mg-N / L, and the nitrite nitrogen removal rate per sludge is measured. The removal rate of nitrite nitrogen in the whole tank is calculated from the total amount of sludge retained in the tank (for example, a · gNO 2 —N / hr). In the case of continuous addition, it is added at a rate equal to or less than the removal rate of nitrite nitrogen (for example, 0.1 to 0.9 × a).
· GNO 2 -N / hr), ammonium nitrogen intracisternal liquid stops addition of nitrite nitrogen-containing liquid when it becomes less than a predetermined value. When added in stages, for example, 5 to 60 m
5 to 50 mg-N / N in the tank liquid once per in
About N L of nitrite nitrogen is added, and the addition of the nitrite nitrogen-containing liquid is stopped when the concentration of ammonia nitrogen in the tank liquid immediately before the next addition becomes equal to or lower than a predetermined value.

【0055】この所定値は高過ぎると亜硝酸性窒素が不
足してアンモニア性窒素が残留する恐れがあり、低過ぎ
ると高濃度亜硝酸性窒素のためにANAMMOX微生物
が阻害を受ける恐れがあることから1〜30mg−N/
L、特に1〜10mg−N/L程度とするのが好まし
い。また、槽内液のアンモニア性窒素濃度がこのような
所定値以下となった時点で第1脱窒工程を終了すること
が好ましい。
If this predetermined value is too high, nitrite nitrogen may be insufficient and ammoniacal nitrogen may remain, and if it is too low, the high concentration of nitrite nitrogen may hinder ANAMMOX microorganisms. From 1 to 30 mg-N /
L, particularly 1 to 10 mg-N / L is preferable. Further, it is preferable to end the first denitrification step when the concentration of ammonia nitrogen in the liquid in the tank becomes equal to or less than such a predetermined value.

【0056】従って、アンモニア濃度検出装置9は、槽
内のアンモニア濃度の検出結果に基いて、亜硝酸性窒素
含有液の添加ポンプPの作動を停止する信号を出力す
ると共に、その後メタノールの添加ポンプPの作動信
号を出力するように構成しても良い。
Therefore, the ammonia concentration detection device 9 outputs a signal for stopping the operation of the addition pump P 3 for the nitrite nitrogen-containing liquid based on the detection result of the ammonia concentration in the tank, and thereafter, the addition of methanol. It may be configured to output the operation signal of the pump P 4 .

【0057】このようにして、回分処理槽1の槽内液の
亜硝酸性窒素濃度又はアンモニア性窒素濃度に基いて、
亜硝酸性窒素含有液の添加制御と、第1脱窒工程の終点
検出及び第2脱窒工程への移行を行うことにより、第1
脱窒工程での亜硝酸性窒素の過不足を防止して、亜硝酸
性窒素の残留を抑えた上で第2脱窒工程で除去し得ない
アンモニア性窒素を十分に除去して、高水質の処理水を
得ることができる。
In this way, based on the concentration of nitrite nitrogen or ammonia nitrogen in the liquid in the batch treatment tank 1,
By controlling the addition of the nitrite nitrogen-containing liquid, detecting the end point of the first denitrification process, and shifting to the second denitrification process,
Prevents excess and deficiency of nitrite nitrogen in the denitrification process, suppresses residual nitrite nitrogen, and sufficiently removes ammonia nitrogen that cannot be removed in the second denitrification process, resulting in high water quality. Treated water can be obtained.

【0058】なお、第2脱窒工程の終了は、回分処理
槽1内の硝酸性窒素濃度が設定濃度以下となったことを
検知することにより知ることができる。また、従来の従
属栄養微生物による脱窒反応と同様ORPの変化で知る
こともできる。
The end of the second denitrification step can be known by detecting that the concentration of nitrate nitrogen in the batch treatment tank 1 has become equal to or lower than the set concentration. Also, it can be known from the change of ORP as in the conventional denitrification reaction by heterotrophic microorganisms.

【0059】本発明において、処理対象となる原水は、
アンモニア性窒素を含む水であり、有機物及び有機性窒
素を含むものであってもよいが、これらは脱窒処理前に
予めアンモニア性窒素になる程度まで分解しておくこと
が好ましい。一般的には、下水、し尿、汚泥消化脱離
液、その他工場排水、埋立浸出水等のアンモニア性窒
素、有機性窒素及び有機物を含む排水が処理対象となる
場合が多いが、この場合、これらを必要に応じて好気性
又は嫌気性処理して有機物を分解して原水とすることが
好ましい。
In the present invention, the raw water to be treated is
Water containing ammonia nitrogen, which may contain organic substances and organic nitrogen, is preferably decomposed in advance to ammonia nitrogen before denitrification. Generally, sewage, human waste, sludge digestion and desorption liquid, other factory wastewater, landfill leachate, and other wastewater containing ammonia nitrogen, organic nitrogen, and organic matter are often treated. It is preferable to treat the above with aerobic or anaerobic treatment to decompose organic matter to obtain raw water.

【0060】[0060]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0061】実施例1 アンモニア400mg−N/Lを含む原水を、図1に示
す回分処理槽(容積10L)で処理した。槽内にはAN
AMMOX微生物を含む汚泥をMLVSS濃度で500
0mg/L保持し、温度30℃、pH7.5に制御し
た。なお、回分処理槽の上部気相部に窒素ガスを通気し
て酸素の混入を防止した。
Example 1 Raw water containing 400 mg-N / L of ammonia was treated in a batch treatment tank (volume: 10 L) shown in FIG. AN in the tank
Sludge containing AMMOX microorganisms at MLVSS concentration of 500
It was maintained at 0 mg / L, and the temperature was controlled at 30 ° C. and pH 7.5. It should be noted that nitrogen gas was ventilated in the upper gas phase part of the batch processing tank to prevent oxygen from being mixed.

【0062】回分処理槽における操作及び所要時間は次
の通りとし、1サイクル6hrで運転した。 原水供給工程:1.5hr 原水4Lを回分処理槽に供給する。 第1脱窒工程:2.5hr 第1脱窒工程期間中、10000mg/L亜硝酸水溶液
8mLを4minに1回の割合で回分処理槽に添加して
撹拌した。 第2脱窒工程:1.0hr 亜硝酸水溶液の添加を停止して、第1脱窒工程を終了し
た後、メタノール2.2gを添加して撹拌し、第2脱窒
工程を行った。 分離工程:0.5hr 撹拌を停止して槽内液を静置放置して沈殿分離した。 排出工程:0.5hr 上澄液を回分処理槽外に排出した。
The operation and required time in the batch treatment tank were as follows, and one cycle was operated for 6 hours. Raw water supply process: 1.5 hr 4 L of raw water is supplied to the batch treatment tank. First denitrification step: 2.5 hr During the first denitrification step, 1 mL of 10000 mg / L nitrous acid aqueous solution was added to the batch treatment tank once every 4 minutes and stirred. Second denitrification step: 1.0 hr After the addition of the nitrous acid aqueous solution was stopped and the first denitrification step was completed, 2.2 g of methanol was added and stirred to perform the second denitrification step. Separation step: 0.5 hr The stirring was stopped, and the liquid in the tank was allowed to stand and separated for precipitation. Discharge step: 0.5 hr, the supernatant was discharged out of the batch processing tank.

【0063】このときの回分処理槽内の液量、NH
N濃度、NO−N濃度及びNO−N濃度の経時変化
は図4に示す通りであり、窒素成分を殆ど含まない処理
水を得ることができた。
At this time, the liquid amount in the batch processing tank, NH 4
The changes with time of the N concentration, NO 2 —N concentration and NO 3 —N concentration are as shown in FIG. 4, and it was possible to obtain the treated water containing almost no nitrogen component.

【0064】ただし、この方法では、槽内のアンモニア
がなくなった後も亜硝酸水溶液が添加されたため、第1
脱窒工程終了後に100mg−N/Lの亜硝酸が残留す
るという不具合があった。
However, in this method, since the nitrous acid aqueous solution was added even after the ammonia in the tank was exhausted,
There was a problem that 100 mg-N / L of nitrous acid remained after completion of the denitrification process.

【0065】実施例2 実施例1において、回分処理槽として図2に示す回分処
理槽を用い、第1脱窒工程で、槽内亜硝酸濃度が10m
g−N/L以上となったときに亜硝酸水溶液の添加を停
止するようにしたこと以外は同様にして処理を行った。
Example 2 In Example 1, the batch treatment tank shown in FIG. 2 was used as the batch treatment tank, and the nitrite concentration in the tank was 10 m in the first denitrification step.
The treatment was carried out in the same manner except that the addition of the nitrous acid aqueous solution was stopped when the g-N / L or more was reached.

【0066】亜硝酸濃度の測定には隔膜型亜硝酸電極を
使用し、pHを1に調整するためpH調整液(無水硫酸
ナトリウム190g/L、硫酸53ml/L)を添加し
て亜硝酸濃度の測定を行い、亜硝酸濃度が10mg−N
/L以上となった時に電気信号を出力し、亜硝酸添加ポ
ンプを停止させる運転を行った。
A diaphragm type nitrite electrode was used for the measurement of the nitrite concentration, and a pH adjusting liquid (anhydrous sodium sulfate 190 g / L, sulfuric acid 53 ml / L) was added to adjust the pH to 1 to adjust the nitrite concentration. The nitrite concentration is 10 mg-N
When / L or more, an electric signal was output and the operation of stopping the nitrite addition pump was performed.

【0067】このときの回分処理槽内の液量、NH
N濃度、NO−N濃度及びNO−N濃度の経時変化
は図5に示す通りであり、亜硝酸濃度の上昇を抑えて効
率的な処理を行うことができた。なお、第2脱窒工程で
添加したメタノール量は1.05gであった。
At this time, the amount of liquid in the batch processing tank, NH 4
The changes with time of the N concentration, the NO 2 —N concentration, and the NO 3 —N concentration are as shown in FIG. 5, and it was possible to suppress the increase in the nitrite concentration and perform the efficient treatment. The amount of methanol added in the second denitrification step was 1.05 g.

【0068】実施例3 実施例1において、回分処理槽として、図3に示す回分
処理槽を用い、第1脱窒工程で、槽内アンモニア濃度が
10mg−N/L以下となった時に、電気信号を出力
し、亜硝酸添加ポンプを停止させて、亜硝酸水溶液の添
加を終了するようにしたこと以外は同様にして処理を行
った。
Example 3 In Example 1, the batch treatment tank shown in FIG. 3 was used as the batch treatment tank, and when the ammonia concentration in the tank became 10 mg-N / L or less in the first denitrification process, the The same process was performed except that a signal was output, the nitrite addition pump was stopped, and the addition of the nitrite aqueous solution was terminated.

【0069】このときの回分処理槽内の液量、NH
N濃度、NO−N濃度及びNO−N濃度の経時変化
は図6に示す通りであり、亜硝酸濃度の上昇を抑えて効
率的な処理を行うことができた。なお、第2脱窒工程で
添加したメタノール量は0.98gであった。
At this time, the amount of liquid in the batch processing tank, NH 4
The changes with time of the N concentration, the NO 2 —N concentration, and the NO 3 —N concentration are as shown in FIG. 6, and it was possible to suppress the increase in the nitrite concentration and perform the efficient treatment. The amount of methanol added in the second denitrification step was 0.98 g.

【0070】[0070]

【発明の効果】以上詳述した通り、本発明の生物脱窒処
理方法によれば、同一の回分処理槽で、ANAMMOX
反応によりアンモニア性窒素を除去した後、ANAMM
OX反応で残存する亜硝酸性窒素と生成した硝酸性窒素
を脱窒処理することができ、これにより後段の脱窒処理
装置を不要とすることができる。
As described in detail above, according to the biological denitrification treatment method of the present invention, the same batch treatment tank can be used for ANAMMOX.
After removing ammoniacal nitrogen by the reaction, ANAMM
The nitrite nitrogen remaining in the OX reaction and the generated nitrate nitrogen can be subjected to denitrification treatment, whereby the denitrification treatment device in the subsequent stage can be eliminated.

【0071】特に請求項2、とりわけ請求項3,4又は
請求項5,6の方法によれば、ANAMMOX反応によ
るアンモニア性窒素の残留を防止し、反応後残留する亜
硝酸性窒素と生成した硝酸性窒素を第2脱窒工程で脱窒
処理することにより、窒素成分を殆ど含まない、高水質
の処理水を得ることができる。
In particular, according to the method of claim 2, in particular, the method of claims 3 and 4 or 5 and 6, the ammonia nitrogen is prevented from remaining by the ANAMMOX reaction, and the nitrite nitrogen remaining after the reaction and the generated nitric acid. By performing denitrification treatment of neutral nitrogen in the second denitrification step, it is possible to obtain treated water of high water quality containing almost no nitrogen component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物脱窒処理方法の実施に好適な回分
処理槽を示す系統図である。
FIG. 1 is a system diagram showing a batch treatment tank suitable for carrying out the biological denitrification treatment method of the present invention.

【図2】本発明の生物脱窒処理方法の実施に特に好適な
回分処理槽を示す系統図である。
FIG. 2 is a system diagram showing a batch treatment tank particularly suitable for carrying out the biological denitrification treatment method of the present invention.

【図3】本発明の生物脱窒処理方法の実施に特に好適な
回分処理槽を示す系統図である。
FIG. 3 is a system diagram showing a batch treatment tank particularly suitable for carrying out the biological denitrification treatment method of the present invention.

【図4】実施例1における回分処理槽内の液量、NH
−N濃度、NO−N濃度及びNO−N濃度の経時変
化を示すグラフである。
FIG. 4 shows the amount of liquid in the batch processing tank and NH 4 in Example 1.
-N concentration is a graph showing the time course of NO 2 -N concentration and NO 3 -N concentration.

【図5】実施例2における回分処理槽内の液量、NH
−N濃度、NO−N濃度及びNO−N濃度の経時変
化を示すグラフである。
FIG. 5 shows the amount of liquid in the batch processing tank and NH 4 in Example 2.
-N concentration is a graph showing the time course of NO 2 -N concentration and NO 3 -N concentration.

【図6】実施例3における回分処理槽内の液量、NH
−N濃度、NO−N濃度及びNO−N濃度の経時変
化を示すグラフである。
FIG. 6 shows the amount of liquid in the batch processing tank and NH 4 in Example 3.
-N concentration is a graph showing the time course of NO 2 -N concentration and NO 3 -N concentration.

【符号の説明】[Explanation of symbols]

1 回分処理槽 2 撹拌機 8 亜硝酸濃度検出装置 8A 亜硝酸電極 9 アンモニア濃度検出装置 9A アンモニア電極 One-time processing tank 2 stirrer 8 Nitrite concentration detector 8A Nitrite electrode 9 Ammonia concentration detector 9A ammonia electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 1/20 C12N 1/20 F Fターム(参考) 4B065 AA01X AA99X AC20 BA22 BB02 BC12 CA56 4D040 AA01 AA61 BB01 BB07 BB51 BB63 BB91 DD03 DD14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12N 1/20 C12N 1/20 FF term (reference) 4B065 AA01X AA99X AC20 BA22 BB02 BC12 CA56 4D040 AA01 AA61 BB01 BB07 BB51 BB63 BB91 DD03 DD14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含有する原水を回分
処理槽に供給し、該槽内の微生物の作用により脱窒する
生物脱窒処理方法であって、 アンモニア性窒素を含有する原水を回分処理槽に供
給する原水供給工程と、 アンモニア性窒素を亜硝酸性窒素の存在下に、アン
モニア性窒素を電子供与体とし、亜硝酸性窒素を電子受
容体とする脱窒微生物の作用により脱窒する第1脱窒工
程と、 第1脱窒工程の脱窒処理液に電子供与体を添加して
さらに脱窒する第2脱窒工程と、 第2脱窒工程の脱窒処理液を上澄液と沈殿汚泥と沈
殿分離する分離工程と、 上澄液を排出する排出工程とを繰り返し行うことを
特徴とする生物脱窒処理方法。
1. A method for biological denitrification in which raw water containing ammoniacal nitrogen is supplied to a batch treatment tank and is denitrified by the action of microorganisms in the tank, wherein raw water containing ammoniacal nitrogen is batch treated. Raw water supply process to supply to the tank, and denitrification by the action of denitrifying microorganisms in which ammoniacal nitrogen is used as an electron donor and nitrite nitrogen is used as an electron acceptor in the presence of nitrite nitrogen. A first denitrification step, a second denitrification step of adding an electron donor to the denitrification treatment solution of the first denitrification step to further denitrify it, and a denitrification treatment solution of the second denitrification step as a supernatant liquid. A method for biological denitrification, which comprises repeatedly performing a separation step of separating the sludge from the settling sludge and a discharging step of discharging the supernatant.
【請求項2】 前記第1の脱窒工程において、該回分処
理槽に亜硝酸性窒素を添加することを特徴とする請求項
1に記載の生物脱窒処理方法。
2. The biological denitrification treatment method according to claim 1, wherein in the first denitrification step, nitrite nitrogen is added to the batch treatment tank.
【請求項3】 前記第1の脱窒工程において、該回分処
理槽内の亜硝酸性窒素の濃度が所定値以上となるまで、
亜硝酸性窒素を段階的に添加することを特徴とする請求
項2に記載の生物脱窒処理方法。
3. In the first denitrification step, until the concentration of nitrite nitrogen in the batch treatment tank reaches a predetermined value or more,
The biological denitrification treatment method according to claim 2, wherein nitrite nitrogen is added stepwise.
【請求項4】 前記第1の脱窒工程において、該回分処
理槽内の亜硝酸性窒素の濃度が所定値になった時点で第
2の脱窒工程に移行することを特徴とする請求項3に記
載の生物脱窒処理方法。
4. The second denitrification step is performed when the concentration of nitrite nitrogen in the batch treatment tank reaches a predetermined value in the first denitrification step. 3. The biological denitrification treatment method according to item 3.
【請求項5】 前記第1の脱窒工程において、該回分処
理槽内のアンモニア性窒素の濃度が所定値以下となるま
で、亜硝酸性窒素を段階的に添加することを特徴とする
請求項2に記載の生物脱窒処理方法。
5. The nitrite nitrogen is added stepwise in the first denitrification step until the concentration of ammoniacal nitrogen in the batch treatment tank becomes a predetermined value or less. 2. The biological denitrification treatment method described in 2.
【請求項6】 前記第1の脱窒工程において、該回分処
理槽内のアンモニア性窒素の濃度が所定値になった時点
で第2の脱窒工程に移行することを特徴とする請求項5
に記載の生物脱窒処理方法。
6. The method according to claim 5, wherein in the first denitrification step, the second denitrification step is started when the concentration of ammonia nitrogen in the batch treatment tank reaches a predetermined value.
The biological denitrification treatment method described in.
JP2001230012A 2001-07-30 2001-07-30 Biological denitrification method Expired - Fee Related JP4867099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230012A JP4867099B2 (en) 2001-07-30 2001-07-30 Biological denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230012A JP4867099B2 (en) 2001-07-30 2001-07-30 Biological denitrification method

Publications (2)

Publication Number Publication Date
JP2003039092A true JP2003039092A (en) 2003-02-12
JP4867099B2 JP4867099B2 (en) 2012-02-01

Family

ID=19062286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230012A Expired - Fee Related JP4867099B2 (en) 2001-07-30 2001-07-30 Biological denitrification method

Country Status (1)

Country Link
JP (1) JP4867099B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007117902A (en) * 2005-10-28 2007-05-17 Japan Organo Co Ltd Method and apparatus for treating ammonium ion-containing wastewater
JP2007237145A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Batch treatment process of nitrogen containing water
JP2008023498A (en) * 2006-07-25 2008-02-07 Ihi Corp Activated sludge treating method and apparatus of wastewater
JP2013226491A (en) * 2012-04-24 2013-11-07 Panasonic Corp Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238293A (en) * 1993-02-17 1994-08-30 Kurita Water Ind Ltd Biological nitrification/denitrification
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JPH08299987A (en) * 1995-05-09 1996-11-19 Kurita Water Ind Ltd Biological denitrification method
WO2000005177A1 (en) * 1998-07-24 2000-02-03 Dhv Water B.V. Process for the treatment of waste water containing specific components, e.g. ammonia
WO2000005176A1 (en) * 1998-07-24 2000-02-03 Paques Bio Systems B.V. Process for the treatment of waste water containing ammonia
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
JP2001170685A (en) * 1999-12-21 2001-06-26 Toru Aoi Treating device for nitrogen-containing waste water
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003037789A (en) * 2001-07-26 2003-02-07 Matsushita Electric Ind Co Ltd Reception terminal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238293A (en) * 1993-02-17 1994-08-30 Kurita Water Ind Ltd Biological nitrification/denitrification
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JPH08299987A (en) * 1995-05-09 1996-11-19 Kurita Water Ind Ltd Biological denitrification method
JP2001506535A (en) * 1996-08-23 2001-05-22 テクニシエ ウニベルジテイト デルフト Method of treating wastewater containing ammonia
WO2000005177A1 (en) * 1998-07-24 2000-02-03 Dhv Water B.V. Process for the treatment of waste water containing specific components, e.g. ammonia
WO2000005176A1 (en) * 1998-07-24 2000-02-03 Paques Bio Systems B.V. Process for the treatment of waste water containing ammonia
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170685A (en) * 1999-12-21 2001-06-26 Toru Aoi Treating device for nitrogen-containing waste water
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003037789A (en) * 2001-07-26 2003-02-07 Matsushita Electric Ind Co Ltd Reception terminal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572504B2 (en) * 2003-03-24 2010-11-04 栗田工業株式会社 Biological denitrification method
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2006122874A (en) * 2004-11-01 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Treatment method and apparatus for ammonia-containing liquid
KR101212660B1 (en) 2004-11-01 2012-12-14 가부시키가이샤 히타치플랜트테크놀로지 Method and apparatus for treating ammonia-containing liquid
JP4645157B2 (en) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP4632135B2 (en) * 2005-02-28 2011-02-16 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007117902A (en) * 2005-10-28 2007-05-17 Japan Organo Co Ltd Method and apparatus for treating ammonium ion-containing wastewater
JP2007237145A (en) * 2006-03-13 2007-09-20 Hitachi Plant Technologies Ltd Batch treatment process of nitrogen containing water
JP2008023498A (en) * 2006-07-25 2008-02-07 Ihi Corp Activated sludge treating method and apparatus of wastewater
JP4687597B2 (en) * 2006-07-25 2011-05-25 株式会社Ihi Activated sludge treatment method and activated sludge treatment apparatus for wastewater
JP2013226491A (en) * 2012-04-24 2013-11-07 Panasonic Corp Method and apparatus for nitrous acid-type nitrification treatment of nitrogen-containing wastewater

Also Published As

Publication number Publication date
JP4867099B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
JP4910266B2 (en) Nitrification method and treatment method of ammonia-containing nitrogen water
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4453397B2 (en) Biological nitrogen removal method
JP4872171B2 (en) Biological denitrification equipment
JP4882175B2 (en) Nitrification method
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4923348B2 (en) Biological denitrification method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2003033789A (en) Method for denitrificaton treatment using living organisms and device therefor
JP2003024984A (en) Biological denitrification method and biological denitrification apparatus
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP4867099B2 (en) Biological denitrification method
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2019217481A (en) Water treatment method
JP2001079593A (en) Removing method of nitrogen in waste water
WO2019244964A1 (en) Water treatment method and water treatment device
JP6667030B2 (en) Water treatment method
JP3677811B2 (en) Biological denitrification method
JP6754863B1 (en) Water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees