JP2003285096A - Simultaneous denitrification and dephosphorization type treatment method for wastewater - Google Patents
Simultaneous denitrification and dephosphorization type treatment method for wastewaterInfo
- Publication number
- JP2003285096A JP2003285096A JP2002093011A JP2002093011A JP2003285096A JP 2003285096 A JP2003285096 A JP 2003285096A JP 2002093011 A JP2002093011 A JP 2002093011A JP 2002093011 A JP2002093011 A JP 2002093011A JP 2003285096 A JP2003285096 A JP 2003285096A
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- wastewater
- treatment method
- sludge
- wastewater treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排水中に含まれる
窒素およびリンを同時に除去するための排水処理方法に
関する。TECHNICAL FIELD The present invention relates to a wastewater treatment method for simultaneously removing nitrogen and phosphorus contained in wastewater.
【0002】[0002]
【従来の技術】湖沼・内湾・内海などの停滞性・閉鎖性
水域における水質汚濁の主な原因物質は有機物と栄養塩
(窒素およびリン)である。特に、生活排水に含まれる
栄養塩が過剰に蓄積された水域では、アオコや赤潮など
が発生する、いわゆる富栄養化問題が引き起こされてい
る。したがって、有機物の除去に加えて窒素およびリン
を適切に除去することのできる排水処理方法の開発は水
環境保全のために不可欠であり、社会的急務である。2. Description of the Related Art Organic substances and nutrients (nitrogen and phosphorus) are the main causative substances of water pollution in stagnant and closed water areas such as lakes, inner bays, and inland seas. In particular, a so-called eutrophication problem, in which water-bloom, red tide, etc. occur, is caused in water areas where nutrient salts contained in domestic wastewater are excessively accumulated. Therefore, the development of a wastewater treatment method that can appropriately remove nitrogen and phosphorus in addition to the removal of organic matter is indispensable for water environment conservation and is an urgent social need.
【0003】現在の排水処理技術は大別して生物学的処
理と物理化学的処理に分けられるが、富栄養化原因物質
である窒素およびリンなどの栄養塩を処理する場合に
は、経済面、環境負荷等を考慮すると生物学的処理が適
していると考えられる。The current wastewater treatment technology is roughly divided into biological treatment and physicochemical treatment. When treating nutrient salts such as nitrogen and phosphorus which are eutrophication-causing substances, economic and environmental factors are considered. Considering the load, biological treatment is considered to be suitable.
【0004】生物学的に窒素成分を除去する方法は、好
気性条件下での硝化細菌による硝化と、無酸素条件下で
の脱窒細菌による脱窒から成り立つ。一方、リンの除去
はリン蓄積細菌(PAO)と呼ばれる特殊な微生物を利
用して行われる。この微生物は嫌気性条件下で炭素源を
用いたリンの放出、つづく好気性条件下で酸素を用いた
リンの取り込みを行うが、リンの取り込み量が放出量を
若干上回るためリンの除去が可能となる。このような有
用微生物の代謝作用を利用して有機物、窒素およびリン
を同時に除去できる方法として、嫌気/無酸素/好気法
(A2O法)が下水処理施設で広く採用されている。The method of biologically removing nitrogen components consists of nitrification by nitrifying bacteria under aerobic conditions and denitrification by denitrifying bacteria under anoxic conditions. On the other hand, phosphorus is removed by utilizing a special microorganism called phosphorus accumulating bacteria (PAO). This microorganism releases phosphorus using a carbon source under anaerobic conditions and then takes up phosphorus using oxygen under aerobic conditions. However, since the amount of phosphorus uptake slightly exceeds the amount released, it is possible to remove phosphorus. Becomes The anaerobic / anoxic / aerobic method (A 2 O method) is widely adopted in sewage treatment facilities as a method for simultaneously removing organic substances, nitrogen and phosphorus by utilizing the metabolic action of such useful microorganisms.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この方
法では、ほとんどの炭素源が嫌気性条件でリン蓄積細菌
によって消費されてしまい、次の無酸素条件で炭素源が
不足し、脱窒能が低下するという問題点が生じる。特に
日本の下水のように窒素に対する炭素の比率が小さい排
水においては、炭素源の不足により十分な窒素除去がで
きない。However, in this method, most of the carbon source is consumed by the phosphorus accumulating bacteria under anaerobic conditions, and the carbon source becomes insufficient under the next anoxic condition, resulting in a decrease in denitrification capacity. There is a problem of doing. Especially in wastewater with a low ratio of carbon to nitrogen, such as Japanese sewage, nitrogen cannot be sufficiently removed due to lack of a carbon source.
【0006】そこで、発明者らは無炭素・無酸素条件下
で脱窒およびリンの取り込みを同時に行う脱窒性リン蓄
積細菌(DNPAO)に着目した。Therefore, the present inventors have focused on a denitrifying phosphorus accumulating bacterium (DNPAO) which simultaneously performs denitrification and phosphorus uptake under carbon-free and oxygen-free conditions.
【0007】この脱窒性リン蓄積細菌は、A2O法で運
転されている下水処理場の汚泥に大抵含まれているが、
その排水処理への寄与率は低い。すなわち、窒素除去は
脱窒細菌、リン除去はリン蓄積細菌が担うように設計さ
れているA2O法では、無酸素槽において硝酸イオンと
有機炭素源が共存するため、一般の脱窒細菌が優占化し
てしまい、結果として脱窒性リン蓄積細菌が優占化でき
ず、その機能が有効に活用されない。This denitrifying phosphorus accumulating bacterium is mostly contained in the sludge of the sewage treatment plant operated by the A 2 O method.
Its contribution to wastewater treatment is low. That is, in the A 2 O method, which is designed so that the nitrogen removal is performed by the denitrifying bacteria and the phosphorus removal is performed by the phosphorus accumulating bacteria, the nitrate ion and the organic carbon source coexist in the anoxic tank. As a result, the denitrifying phosphorus-accumulating bacteria cannot be dominated, and their function is not effectively utilized.
【0008】また、脱窒性リン蓄積細菌はいまだ単離さ
れていないことから、その生理学的性質についてはほと
んどわかっていないのが現状である。Further, since the denitrifying phosphorus-accumulating bacterium has not been isolated yet, little is known about its physiological properties.
【0009】したがって、本発明は、これまでに水処理
プロセスに応用されたことのない脱窒性リン蓄積細菌を
利用した排水処理方法を提供することを目的としてお
り、これにより、排水中の窒素およびリンの効率的な同
時除去を可能にしようとするものである。Therefore, an object of the present invention is to provide a wastewater treatment method utilizing a denitrifying phosphorus-accumulating bacterium that has never been applied to a water treatment process. It aims to enable efficient and simultaneous removal of phosphorus.
【0010】[0010]
【課題を解決するための手段】本発明に用いる脱窒性リ
ン蓄積細菌は、上記の通り、いまだ単離されておらず、
その生理学的性質には不明な点が多いが、ここ数年の研
究により電子受容体として硝酸態結合酸素(NO3−
O)を利用してリンを吸収する、すなわち脱窒能(NO
3→N2への還元力)があることが判明した。図5に脱窒
性リン蓄積細菌の代謝機構を示す。そして、出願人ら
は、鋭意検討の結果、この脱窒性リン蓄積細菌の生理学
的特徴を有効に利用する排水処理方法を開発した。As described above, the denitrifying phosphorus-accumulating bacterium used in the present invention has not been isolated yet,
There are many unclear points about its physiological properties, but studies of the last few years have shown that nitrate-bound oxygen (NO 3 −) as an electron acceptor.
O) is used to absorb phosphorus, that is, denitrification capacity (NO
3 → N 2 reduction power). Figure 5 shows the metabolic mechanism of denitrifying phosphorus-accumulating bacteria. As a result of intensive studies, the applicants have developed a wastewater treatment method that effectively utilizes the physiological characteristics of the denitrifying phosphorus-accumulating bacteria.
【0011】すなわち、本発明は、排水中のリンおよび
窒素を同時に処理する排水処理方法であって、少なくと
も脱窒性リン蓄積細菌を含む汚泥および/または脱窒性
リン蓄積細菌が固定化された生物膜の存在下、嫌気工
程、好気工程、および無酸素工程の順に排水を処理する
ことをその特徴としている。That is, the present invention is a wastewater treatment method for simultaneously treating phosphorus and nitrogen in wastewater, wherein sludge containing at least denitrifying phosphorus-accumulating bacteria and / or denitrifying phosphorus-accumulating bacteria are immobilized. It is characterized by treating wastewater in the order of anaerobic process, aerobic process, and anoxic process in the presence of biofilm.
【0012】また、本発明においては、好気工程初期に
有機炭素源を供給すること、さらにはその有機炭素源の
供給量が20〜50mg-TOC・L-1であることが好まし
い。Further, in the present invention, it is preferable that the organic carbon source is supplied in the early stage of the aerobic process, and that the supply amount of the organic carbon source is 20 to 50 mg-TOC · L -1 .
【0013】また、本発明においては、無酸素工程終了
直後に余剰汚泥の引き抜きを行うことが好ましい。Further, in the present invention, it is preferable to remove excess sludge immediately after the end of the anoxic process.
【0014】また、本発明においては、回分式または連
続式のいずれでも処理を行うことが可能であり、連続式
で排水を処理する場合には余剰汚泥の一部を嫌気工程へ
返送することが好ましい。Further, in the present invention, the treatment can be carried out by either a batch system or a continuous system, and when treating the wastewater by the continuous system, a part of the excess sludge can be returned to the anaerobic process. preferable.
【0015】本発明に用いる脱窒性リン蓄積細菌は、上
記の通りA2O法で運転されている下水処理場の汚泥に
大抵含まれているため容易に入手することができるが、
好ましくは採取した汚泥を馴養し、脱窒性リン蓄積細菌
を優占化させたものを使用する。優占化を確認する方法
としては、嫌気工程での有機物の取り込みおよびリンの
放出、ならびに有機物の存在しない無酸素工程での脱窒
反応およびリンの取り込みを公知の測定方法により調べ
ることで確認することができる。The denitrifying phosphorus-accumulating bacteria used in the present invention can be easily obtained because it is mostly contained in the sludge of the sewage treatment plant operated by the A 2 O method as described above.
Preferably, the collected sludge is acclimated and the denitrifying phosphorus accumulating bacteria are predominantly used. As a method for confirming the dominance, it is confirmed by investigating the uptake of organic substances and the release of phosphorus in the anaerobic process, and the denitrification reaction and the uptake of phosphorus in the anoxic process in the absence of organic substances by known measurement methods. be able to.
【0016】[0016]
【発明の実施の形態】本発明の排水処理方法は、少なく
とも脱窒性リン蓄積細菌を含む汚泥および/または脱窒
性リン蓄積細菌が固定化された生物膜の存在下、嫌気工
程、好気工程、および無酸素工程の順に排水を処理する
ことを特徴としている。BEST MODE FOR CARRYING OUT THE INVENTION The wastewater treatment method of the present invention comprises an anaerobic process and an aerobic process in the presence of a sludge containing at least denitrifying phosphorus-accumulating bacteria and / or a biofilm on which the denitrifying phosphorus-accumulating bacteria are immobilized. It is characterized by treating wastewater in the order of a process and an anoxic process.
【0017】上記のような本発明の処理方法において、
その処理形式としては回分式でも連続式でもよい。即
ち、従来のA2Oプロセスでは、好気槽から無酸素槽へ
処理水を一部循環させる必要があるため、曝気時間をコ
ントロールして1槽で全ての工程を済ませることは事実
上不可能であり、必ず3槽以上に分ける必要がある。こ
れに対し、本発明の方法においては、曝気時間をコント
ロールして1槽で全工程を行い、排水処理を完結するこ
とができるため、1槽である回分式であっても3槽以上
に分ける連続式であってもどちらでも構わない。In the processing method of the present invention as described above,
The processing method may be a batch method or a continuous method. That is, in the conventional A 2 O process, since it is necessary to circulate part of the treated water from the aerobic tank to the anoxic tank, it is virtually impossible to complete all the steps in one tank by controlling the aeration time. Therefore, it is necessary to divide it into three or more tanks. On the other hand, in the method of the present invention, the aeration time can be controlled to carry out all the steps in one tank to complete the wastewater treatment, so even if the batch type is one tank, it is divided into three or more tanks. Either continuous type or both may be used.
【0018】以下、本発明の処理方法を図1に示す処理
フローに従って説明する。The processing method of the present invention will be described below in accordance with the processing flow shown in FIG.
【0019】まず、少なくとも脱窒性リン蓄積細菌を含
む汚泥および/または脱窒性リン蓄積細菌が固定化され
た生物膜が入った処理槽に排水を供給し、嫌気工程に入
る。この嫌気工程では、リン蓄積細菌と脱窒性リン蓄積
細菌による有機物の摂取、およびリンの放出が行われ
る。First, wastewater is supplied to a treatment tank containing a sludge containing at least denitrifying phosphorus-accumulating bacteria and / or a biofilm on which the denitrifying phosphorus-accumulating bacteria are immobilized, and the anaerobic process is started. In this anaerobic process, the organic substances are taken up by the phosphorus-accumulating bacteria and the denitrifying phosphorus-accumulating bacteria, and phosphorus is released.
【0020】処理対象である窒素およびリンを含む排水
は、水不溶性の懸濁性物質を含む場合にはこれを物理的
に除去する一次処理が施されたものであることが好まし
いが、特に限定されない。また、排水のpH値は、塩酸
や水酸化ナトリウム等の通常pH調整に使用しうる化合
物により6.5〜8.5に調整することが好ましく、
7.0〜7.5に調整することがより好ましい。さら
に、排水の温度については、極端に高かったり低かった
りすることがない限り、特に限定されず、好ましくは、
15〜40℃の範囲である。When the waste water containing nitrogen and phosphorus to be treated contains a water-insoluble suspending substance, it is preferably subjected to a primary treatment for physically removing it, but it is not particularly limited. Not done. The pH value of the waste water is preferably adjusted to 6.5 to 8.5 with a compound such as hydrochloric acid or sodium hydroxide that can be used for normal pH adjustment,
It is more preferable to adjust it to 7.0 to 7.5. Further, the temperature of the drainage is not particularly limited unless it is extremely high or low, and preferably,
It is in the range of 15 to 40 ° C.
【0021】また、本発明の嫌気工程に用いる汚泥とし
ては、脱窒性リン蓄積細菌が含まれているものであれば
良い。好ましくは採取した脱窒性リン蓄積細菌を含む汚
泥を嫌気/無酸素条件で馴養し、脱窒性リン蓄積細菌を
優占化させる。この馴養では、嫌気条件終了時に硝酸ナ
トリウム等の硝酸イオン源を微生物の活性状態により適
当量添加する必要はあるが、その他については本発明の
処理方法における嫌気工程および無酸素工程と同様に排
水を供給しつつ、各条件を脱窒性リン蓄積細菌が優占化
するまでこれらの工程を繰り返し行えばよい。また、汚
泥中の脱窒性リン蓄積細菌が優占化しているかどうか
は、嫌気工程での有機物の取り込みおよびリンの放出、
ならびに有機物の存在しない無酸素工程での脱窒反応お
よびリンの取り込み量をクロマトグラフ等の公知の測定
方法により調べることで確認することができる。The sludge used in the anaerobic process of the present invention may be any sludge containing denitrifying phosphorus accumulating bacteria. Preferably, the collected sludge containing denitrifying phosphorus-accumulating bacteria is acclimated under anaerobic / anoxic conditions to make the denitrifying phosphorus-accumulating bacteria dominant. In this acclimation, it is necessary to add an appropriate amount of a nitrate ion source such as sodium nitrate at the end of the anaerobic condition depending on the active state of the microorganism, but for the other, drainage is performed similarly to the anaerobic step and the anoxic step in the treatment method of the present invention. These steps may be repeated while supplying each condition until the denitrifying phosphorus-accumulating bacteria become dominant. Whether or not the denitrifying phosphorus-accumulating bacteria in the sludge are dominant is determined by the uptake of organic substances and the release of phosphorus in the anaerobic process.
In addition, it can be confirmed by examining the denitrification reaction and the phosphorus uptake amount in the anoxic step in which no organic substance is present by a known measurement method such as chromatography.
【0022】また、本発明の嫌気工程に用いる生物膜と
しては、活性炭、セメントボール、有機性ポリマー等の
公知の担体に脱窒性リン蓄積細菌が固定化されたもので
あればよく、その固定化方法としては、付着固定化法、
自己固定化法、包括固定化法等の公知の方法でよく、限
定されない。この生物膜は、増殖速度の遅い硝化細菌が
生物膜内側に、脱窒性リン蓄積細菌が生物膜外側に局在
化するような生態構造を為し、したがって、ここから剥
離する菌体の多くは脱窒性リン蓄積細菌であるので、汚
泥を用いた場合と比較して、引き抜き汚泥中のリン含有
量を高める効果が期待できる。The biofilm used in the anaerobic process of the present invention may be any biofilm in which denitrifying phosphorus-accumulating bacteria are immobilized on a known carrier such as activated carbon, cement balls, organic polymers, and the like. As a method of solidification, an adhesion fixing method,
A known method such as a self-immobilization method and a comprehensive immobilization method may be used without any limitation. This biofilm has an ecological structure in which nitrifying bacteria with a slow growth rate are localized inside the biofilm, and denitrifying phosphorus-accumulating bacteria are localized outside the biofilm. Is a denitrifying phosphorus-accumulating bacterium, it can be expected to have an effect of increasing the phosphorus content in the extracted sludge as compared with the case of using sludge.
【0023】また、上記汚泥または生物膜の初期投入量
としては、特に限定されないが、好ましくはMLSS濃
度で3000〜6000mg/lである。The initial amount of the sludge or biofilm is not particularly limited, but is preferably 3000 to 6000 mg / l in MLSS concentration.
【0024】また、嫌気工程での処理時間としては、リ
ン蓄積細菌および脱窒性リン蓄積細菌による有機物の取
り込みが終了するまでが好ましい。The treatment time in the anaerobic process is preferably until the uptake of organic substances by the phosphorus accumulating bacteria and the denitrifying phosphorus accumulating bacteria is completed.
【0025】次に、処理槽内にエアーポンプにより空気
を送り込むことで好気工程処理を行う。この好気工程で
は、硝化細菌によるアンモニア態窒素の硝酸態窒素への
酸化、およびリン蓄積細菌によるリンの取り込みが行わ
れる。Next, the aerobic process is performed by sending air into the processing tank with an air pump. In this aerobic process, nitrifying bacteria oxidize ammonia nitrogen to nitrate nitrogen, and phosphorus accumulating bacteria take up phosphorus.
【0026】この好気工程において、リン蓄積細菌によ
る過剰なリン取り込みが行われると、後の無酸素工程に
おいて、その生理学的性質上、脱窒性リン蓄積細菌によ
る硝酸態窒素の取り込みが十分に行われないことがある
ため、好気工程初期に有機炭素源を少量添加し、そのリ
ン取り込み量を制限することが好ましい。添加する有機
炭素源としては酢酸などの低級脂肪酸が使用でき、これ
以外にも嫌気工程における発酵により低級脂肪酸に変換
される有機物等が使用できる。また、有機炭素源の供給
量としては、適宜最適な条件を検討し決定するべきであ
るが、好ましくは、20〜50mg-TOC・L-1、より好
ましくは、30〜45mg-TOC・L-1である。In this aerobic process, if excessive phosphorus uptake by phosphorus-accumulating bacteria is carried out, in the subsequent anoxic process, due to its physiological properties, uptake of nitrate nitrogen by denitrifying phosphorus-accumulating bacteria will be sufficient. Since it may not be carried out, it is preferable to add a small amount of an organic carbon source at the beginning of the aerobic process to limit the phosphorus incorporation amount. As the organic carbon source to be added, a lower fatty acid such as acetic acid can be used, and in addition to this, an organic substance or the like that is converted into a lower fatty acid by fermentation in an anaerobic process can be used. Further, the supply amount of the organic carbon source should be appropriately determined by considering the optimum conditions, but is preferably 20 to 50 mg-TOC · L −1 , more preferably 30 to 45 mg-TOC · L −. Is 1 .
【0027】また、処理槽内に送り込む空気の量は、硝
化反応の起こる範囲の溶存酸素濃度0.3〜3mg/l
を維持できる量であればよく、また、装置形状や微生物
量により適宜決定すればよいが、好ましくは50〜20
00ml/min、より好ましくは、100〜500m
l/minである。The amount of air sent into the treatment tank is such that the concentration of dissolved oxygen in the range where the nitrification reaction occurs is 0.3 to 3 mg / l.
Can be maintained, and may be appropriately determined depending on the shape of the device and the amount of microorganisms, but preferably 50 to 20
00 ml / min, more preferably 100-500 m
1 / min.
【0028】さらに、好気工程での処理時間はアンモニ
ア態窒素の硝酸態窒素への酸化が終わるまでが好まし
い。Further, the treatment time in the aerobic step is preferably until the oxidation of ammonia nitrogen to nitrate nitrogen is completed.
【0029】次に、好気工程にて処理された処理水を無
酸素工程で処理する。ここでは、脱窒性リン蓄積細菌に
よる脱窒反応およびリンの取り込みが行われる。Next, the treated water treated in the aerobic process is treated in the anoxic process. Here, the denitrification reaction and phosphorus uptake by the denitrifying phosphorus-accumulating bacteria are performed.
【0030】上記のように好気工程初期において有機炭
素源を添加した場合には、好気工程におけるリンの取り
込み量が制限されているため、脱窒性リン蓄積細菌によ
り硝酸態結合酸素が電子受容体としてリンと同時に取り
込まれ、処理液の脱窒および脱リンが効率よく行われ
る。As described above, when the organic carbon source is added in the early stage of the aerobic process, the amount of phosphorus taken up in the aerobic process is limited. It is taken in at the same time as phosphorus as a receptor, and the treatment solution is efficiently denitrified and dephosphorized.
【0031】無酸素工程終了後は、沈降法、膜分離法等
の公知の固液分離方法により汚泥と処理水とを分離し、
処理水を排出することで排水処理が完了する。回分式に
より排水の処理を行った場合には、処理水の排出量を適
宜制限し、処理槽内での液滞留時間を調整することが好
ましく、これにより窒素およびリンの除去率を向上させ
ることができる。なお、連続式である場合には、排水の
流入速度を調整することで液滞留時間の調整ができるこ
とは言うまでもない。After completion of the anoxic step, sludge and treated water are separated by a known solid-liquid separation method such as a sedimentation method or a membrane separation method,
The wastewater treatment is completed by discharging the treated water. When the wastewater is treated by the batch method, it is preferable to appropriately limit the discharge amount of the treated water and adjust the liquid retention time in the treatment tank, thereby improving the removal rate of nitrogen and phosphorus. You can In the case of the continuous type, it goes without saying that the liquid retention time can be adjusted by adjusting the inflow rate of the waste water.
【0032】また、余剰汚泥の引き抜きは、上記固液分
離により分離した汚泥を引き抜くことで行っても良い
が、無酸素工程終了直後に行うことが好ましい。この場
合、処理水も一緒に引き抜いてしまうことになるが、汚
泥が均一に懸濁した状態であるため、汚泥のMLSSお
よび懸濁液の引き抜き量から汚泥の引き抜き量を正確に
把握することができ、汚泥の分離状態によって実質的な
引き抜き量が左右されてしまう上記固液分離後の余剰汚
泥引き抜きと比較して、安定的に一定量の汚泥を引き抜
くことができる。また、連続式の場合には引き抜かれた
余剰汚泥の一部、および沈降槽に流出した汚泥を嫌気槽
へ返送し、MLSS濃度を維持することが好ましい。The excess sludge can be withdrawn by withdrawing the sludge separated by the solid-liquid separation, but it is preferably performed immediately after the anoxic process is completed. In this case, the treated water will be drawn out together, but since the sludge is in a state of being uniformly suspended, it is possible to accurately grasp the drawn amount of the sludge from the drawn amount of the sludge of the sludge and the suspension. As a result, a certain amount of sludge can be stably withdrawn as compared with the above-mentioned excess sludge withdrawal after solid-liquid separation in which the substantial amount of withdrawal depends on the state of sludge separation. Further, in the case of the continuous system, it is preferable to return a part of the extracted excess sludge and the sludge that has flown to the sedimentation tank to the anaerobic tank to maintain the MLSS concentration.
【0033】以下、実施例により本発明をさらに詳細に
説明するが、この開示の一部を為す記載および図面は本
発明の範囲をなんら限定するものではなく、当業者には
様々な代替実施の形態、実施例、および運用技術が明ら
かとなろう。したがって、本発明の技術的範囲は、明細
書および図面から妥当な特許請求の範囲に係る発明特定
事項によってのみ定められるものである。Hereinafter, the present invention will be described in more detail with reference to Examples. However, the description and the drawings constituting a part of this disclosure do not limit the scope of the present invention in any way, and those skilled in the art can make various alternative implementations. The morphology, examples, and operational techniques will be apparent. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention according to the scope of claims appropriate from the specification and the drawings.
【0034】[0034]
【実施例】実施例1
図2に示すような有効容積2Lの回分式反応槽(SB
R)を用いて、20分の流入工程、90分の嫌気工程、
90分の好気工程、195分の無酸素工程、30分の沈
降工程、25分の処理水引き抜き工程からなる1サイク
ルを、1日3サイクル、14日間運転し、排水中のリン
および窒素の同時除去行った。処理した人工排水の成分
を表1、また、表1の栄養液の成分を表2に示す。EXAMPLES Example 1 A batch reaction tank (SB) having an effective volume of 2 L as shown in FIG.
R), 20 minutes inflow process, 90 minutes anaerobic process,
One cycle consisting of 90 minutes of aerobic process, 195 minutes of oxygen-free process, 30 minutes of sedimentation process, and 25 minutes of treated water drawing process was operated for 3 cycles a day for 14 days to remove phosphorus and nitrogen in the wastewater. Simultaneous removal was performed. Table 1 shows the components of the treated artificial drainage, and Table 2 shows the components of the nutrient solution shown in Table 1.
【0035】[0035]
【表1】 [Table 1]
【表2】 [Table 2]
【0036】用いた種汚泥は、A2O法を採用している
下水処理場(東京都江東区の有明下水処理場)の好気槽
から引き抜いたものである。この汚泥はすでに無酸素条
件下でのリンの取り込み能を示していたことから脱窒性
リン蓄積細菌がかなりの割合を占めていたと思われる。
本実施例ではこの汚泥を反応槽にMLSS濃度5500
mg/lとなるように投入した。The seed sludge used was extracted from the aerobic tank of a sewage treatment plant (Ariake sewage treatment plant in Koto Ward, Tokyo) that uses the A 2 O method. Since this sludge had already exhibited phosphorus uptake ability under anoxic conditions, it is considered that denitrifying phosphorus accumulating bacteria accounted for a considerable proportion.
In this example, this sludge was added to the reaction tank at an MLSS concentration of 5500.
It was added so that it became mg / l.
【0037】また、好気条件でのリン蓄積細菌によるリ
ンの取り込みを一時的に阻害するために、有機炭素源を
1〜6日目までは25mg−TOC・L-1、7日目〜1
4日目までは40mg−TOC・L-1となるように好気
工程初期に供給した。また、無酸素工程終了直後に、処
理過程で増殖した余剰汚泥を排出するために33mlの
余剰汚泥を含む処理水を引き抜き、汚泥滞留時間(SR
T)を20日に維持した。また、沈降工程後の25分の
処理水引き抜き工程では処理水を1L排出することで液
滞留時間(HRT)を16時間に維持した。全運転時間
を通じ、排水のpH値は7.0〜7.2の範囲に保っ
た。In order to temporarily inhibit the phosphorus uptake by the phosphorus-accumulating bacteria under aerobic conditions, the organic carbon source was 25 mg-TOC.L -1 until the 1st to 6th days, and the 7th to 1st days.
Until the 4th day, the amount was 40 mg-TOC · L −1 and was supplied at the beginning of the aerobic process. Immediately after the end of the anoxic process, the treated water containing 33 ml of excess sludge was drawn out to discharge the excess sludge grown in the treatment process, and the sludge retention time (SR
T) was maintained for 20 days. In the 25-minute treated water drawing step after the sedimentation step, 1 L of treated water was discharged to maintain the liquid retention time (HRT) at 16 hours. The pH value of the wastewater was kept in the range of 7.0 to 7.2 during the whole operation time.
【0038】以上のような条件により行った排水処理の
結果を図3および図4に示す。図3は嫌気工程、好気工
程および無酸素工程の各終了時におけるリン濃度の経日
変化、図4は無酸素工程終了時におけるアンモニアおよ
び硝酸濃度の経日変化ならびに窒素除去率を示す。な
お、1日のデータは、3サイクルのうち1サイクルのデ
ータを示す。The results of the wastewater treatment performed under the above conditions are shown in FIGS. 3 and 4. FIG. 3 shows the daily changes in the phosphorus concentration at the end of each of the anaerobic process, the aerobic process and the anoxic process, and FIG. 4 shows the daily changes in the ammonia and nitric acid concentrations at the end of the anoxic process and the nitrogen removal rate. In addition, the data of 1 day shows the data of 1 cycle among 3 cycles.
【0039】なお、上記において、リンの濃度分析は、
Standard Methodsfor the E
xamination of Water and W
astewater(APHA,1992)に従った。
また硝酸と亜硝酸の濃度はアニオンカラム(IC−An
ion−PW, 東ソー)とUV検出器(UV−801
1, 東ソー)を装備した液体クロマトグラフ(DP−
8020、東ソー)で測定した。全有機炭素(TOC)
はTOCアナライザー(TOC−5000,島津製作
所)によって分析した。アンモニアはカチオンカラム
(CS, Dioinex)を装備したイオンクロマト
グラフ(DX−120, Dioinex)で分析し
た。In the above, the phosphorus concentration analysis is
Standard Methods for the E
xamination of Water and W
Aster water (APHA, 1992) was followed.
The concentrations of nitric acid and nitrous acid are the anion column (IC-An
ion-PW, Tosoh) and UV detector (UV-801)
1, liquid chromatography (DP- equipped with Tosoh)
8020, Tosoh). Total Organic Carbon (TOC)
Was analyzed by a TOC analyzer (TOC-5000, Shimadzu Corporation). Ammonia was analyzed by an ion chromatograph (DX-120, Dionex) equipped with a cation column (CS, Dioinex).
【0040】図3および図4から、全期間を通して排水
中のリンが平均93%以上、窒素が平均88%以上除去
されていることがわかる。It can be seen from FIGS. 3 and 4 that phosphorus in the wastewater is removed by 93% or more on average and nitrogen by 88% or more on average in the entire drainage period.
【0041】[0041]
【発明の効果】したがって、本発明によれば、脱窒性リ
ン蓄積細菌を利用した排水処理方法を提供することがで
き、これにより排水中の窒素およびリンの効率的な同時
除去を行うことが可能となる。Therefore, according to the present invention, it is possible to provide a wastewater treatment method utilizing denitrifying phosphorus-accumulating bacteria, whereby nitrogen and phosphorus in wastewater can be efficiently removed simultaneously. It will be possible.
【図1】 本発明の処理方法の処理フロー。FIG. 1 is a processing flow of a processing method of the present invention.
【図2】 実施例で用いた回分式反応槽の模式図。FIG. 2 is a schematic diagram of a batch reaction tank used in Examples.
【図3】 嫌気工程、好気工程および無酸素工程の各終
了時におけるリン濃度の経日変化を示すグラフ。FIG. 3 is a graph showing the daily change of phosphorus concentration at the end of each of the anaerobic process, the aerobic process and the anoxic process.
【図4】 無酸素工程終了時におけるアンモニアおよび
硝酸濃度の経日変化ならびに窒素除去率を示すグラフ。FIG. 4 is a graph showing changes over time in the concentration of ammonia and nitric acid and the nitrogen removal rate at the end of the anoxic process.
【図5】 脱窒性リン蓄積細菌の代謝機構を示す模式
図。FIG. 5 is a schematic diagram showing the metabolic mechanism of a denitrifying phosphorus-accumulating bacterium.
1 反応槽 2 排水流入路 3 処理水排出路 4 攪拌モーター 5 攪拌羽根 6 エアーポンプ 7 空気供給路 1 reaction tank 2 drainage inflow channel 3 treated water discharge channel 4 stirring motor 5 stirring blades 6 air pump 7 Air supply path
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D003 AA14 AB02 BA02 BA04 CA07 CA08 EA14 EA25 EA30 FA06 FA10 4D040 BB08 BB32 BB42 BB63 BB67 BB72 BB82 BB93 DD03 DD14 DD18 DD31 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4D003 AA14 AB02 BA02 BA04 CA07 CA08 EA14 EA25 EA30 FA06 FA10 4D040 BB08 BB32 BB42 BB63 BB67 BB72 BB82 BB93 DD03 DD14 DD18 DD31
Claims (6)
る排水処理方法であって、少なくとも脱窒性リン蓄積細
菌が含まれる汚泥および/または脱窒性リン蓄積細菌が
固定化された生物膜の存在下、嫌気工程、好気工程、お
よび無酸素工程の順に排水を処理することを特徴とす
る、排水処理方法。1. A wastewater treatment method for simultaneously treating phosphorus and nitrogen in wastewater, comprising a sludge containing at least denitrifying phosphorus-accumulating bacteria and / or a biofilm on which the denitrifying phosphorus-accumulating bacteria are immobilized. A wastewater treatment method comprising treating wastewater in the order of an anaerobic process, an aerobic process, and an anoxic process in the presence.
ることを特徴とする請求項1に記載の排水処理方法。2. The wastewater treatment method according to claim 1, wherein an organic carbon source is supplied at the initial stage of the aerobic process.
-TOC・L-1であることを特徴とする請求項2に記載の
排水処理方法。3. The supply amount of the organic carbon source is 20 to 50 mg
-TOC * L < -1 >, The wastewater treatment method of Claim 2 characterized by the above-mentioned.
き抜きを行うことを特徴とする、請求項1〜3のいずれ
かに記載の排水処理方法。4. The wastewater treatment method according to claim 1, wherein excess sludge is drawn out immediately after the end of the anoxic process.
とを特徴とする請求項1〜4のいずれかに記載の排水処
理方法。5. The wastewater treatment method according to any one of claims 1 to 4, wherein the wastewater is treated in a batch system or a continuous system.
余剰汚泥の一部を前記嫌気工程へ返送することを特徴と
する、請求項5に記載の排水処理方法。6. The wastewater treatment method according to claim 5, wherein when the wastewater is treated by the continuous method, a part of the excess sludge is returned to the anaerobic process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002093011A JP4267860B2 (en) | 2002-03-28 | 2002-03-28 | Nitrogen and phosphorus simultaneous removal type wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002093011A JP4267860B2 (en) | 2002-03-28 | 2002-03-28 | Nitrogen and phosphorus simultaneous removal type wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003285096A true JP2003285096A (en) | 2003-10-07 |
JP4267860B2 JP4267860B2 (en) | 2009-05-27 |
Family
ID=29237669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002093011A Expired - Fee Related JP4267860B2 (en) | 2002-03-28 | 2002-03-28 | Nitrogen and phosphorus simultaneous removal type wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4267860B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006087990A (en) * | 2004-09-22 | 2006-04-06 | Univ Waseda | Wastewater treatment apparatus and wastewater treatment tank |
JP2008036558A (en) * | 2006-08-08 | 2008-02-21 | Fuji Electric Holdings Co Ltd | Treatment method of nitrogen containing waste liquid |
JP2009214007A (en) * | 2008-03-10 | 2009-09-24 | Ihi Corp | Activated sludge treating method for wastewater and activated sludge treatment apparatus |
JP2011194373A (en) * | 2010-03-23 | 2011-10-06 | Mayekawa Mfg Co Ltd | Treatment method and apparatus of rice processing wastewater |
JP2013236996A (en) * | 2012-05-14 | 2013-11-28 | Hitachi Ltd | Water treatment process |
JP2014124625A (en) * | 2012-12-27 | 2014-07-07 | Japan Organo Co Ltd | Effluent treatment method |
JP2014172032A (en) * | 2013-03-13 | 2014-09-22 | Toshiba Corp | Method and apparatus for recovering phosphorus from phosphorus-containing waste water |
JP2015024368A (en) * | 2013-07-25 | 2015-02-05 | 株式会社前川製作所 | Organic waste water treatment method and apparatus |
JP2016113357A (en) * | 2014-12-10 | 2016-06-23 | 株式会社前川製作所 | Producing method of phosphoric acid fertilizer and producing device of phosphoric acid fertilizer |
CN108178438A (en) * | 2017-12-29 | 2018-06-19 | 冯湛钧 | A kind of rural domestic sewage treatment system and purification method |
CN109956563A (en) * | 2019-04-25 | 2019-07-02 | 西南交通大学 | A kind of preparation method and applications of high-efficiency aerobic Denitrifying Phosphate Accumulating Organisms immobilized spherule |
CN110484458A (en) * | 2018-08-28 | 2019-11-22 | 华中科技大学 | It is a kind of to handle acclimation and screening method of the low C/N than the aerobic denitrification polyP bacteria of sewage |
JP2022065712A (en) * | 2020-10-16 | 2022-04-28 | 株式会社日水コン | Supernatant water drainage device and supernatant water drainage method |
CN116216919A (en) * | 2023-05-05 | 2023-06-06 | 杭州师范大学钱江学院 | Treatment method of phosphorus-containing rural sewage and composite material used by same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007525186A (en) | 2003-05-22 | 2007-09-06 | ジェネンコー・インターナショナル・インク | Metabolically modified bacterial strains with non-functionalized endogenous gluconate transporters |
JP6188264B1 (en) * | 2016-12-19 | 2017-08-30 | フィル−ジャパン ワールドワイド マネジメント サービス, インコーポレイテッド | Activated sludge process for simultaneous biological removal of nitrogen and phosphorus |
-
2002
- 2002-03-28 JP JP2002093011A patent/JP4267860B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006087990A (en) * | 2004-09-22 | 2006-04-06 | Univ Waseda | Wastewater treatment apparatus and wastewater treatment tank |
JP4609989B2 (en) * | 2004-09-22 | 2011-01-12 | 学校法人早稲田大学 | Wastewater treatment equipment |
JP2008036558A (en) * | 2006-08-08 | 2008-02-21 | Fuji Electric Holdings Co Ltd | Treatment method of nitrogen containing waste liquid |
JP4622958B2 (en) * | 2006-08-08 | 2011-02-02 | 富士電機ホールディングス株式会社 | Nitrogen-containing waste liquid treatment method |
JP2009214007A (en) * | 2008-03-10 | 2009-09-24 | Ihi Corp | Activated sludge treating method for wastewater and activated sludge treatment apparatus |
JP2011194373A (en) * | 2010-03-23 | 2011-10-06 | Mayekawa Mfg Co Ltd | Treatment method and apparatus of rice processing wastewater |
JP2013236996A (en) * | 2012-05-14 | 2013-11-28 | Hitachi Ltd | Water treatment process |
JP2014124625A (en) * | 2012-12-27 | 2014-07-07 | Japan Organo Co Ltd | Effluent treatment method |
JP2014172032A (en) * | 2013-03-13 | 2014-09-22 | Toshiba Corp | Method and apparatus for recovering phosphorus from phosphorus-containing waste water |
JP2015024368A (en) * | 2013-07-25 | 2015-02-05 | 株式会社前川製作所 | Organic waste water treatment method and apparatus |
JP2016113357A (en) * | 2014-12-10 | 2016-06-23 | 株式会社前川製作所 | Producing method of phosphoric acid fertilizer and producing device of phosphoric acid fertilizer |
CN108178438A (en) * | 2017-12-29 | 2018-06-19 | 冯湛钧 | A kind of rural domestic sewage treatment system and purification method |
CN110484458A (en) * | 2018-08-28 | 2019-11-22 | 华中科技大学 | It is a kind of to handle acclimation and screening method of the low C/N than the aerobic denitrification polyP bacteria of sewage |
CN109956563A (en) * | 2019-04-25 | 2019-07-02 | 西南交通大学 | A kind of preparation method and applications of high-efficiency aerobic Denitrifying Phosphate Accumulating Organisms immobilized spherule |
CN109956563B (en) * | 2019-04-25 | 2021-06-25 | 西南交通大学 | Preparation method and application of efficient aerobic denitrification phosphorus-accumulating bacteria immobilized pellet |
JP2022065712A (en) * | 2020-10-16 | 2022-04-28 | 株式会社日水コン | Supernatant water drainage device and supernatant water drainage method |
JP7186757B2 (en) | 2020-10-16 | 2022-12-09 | 株式会社日水コン | Supernatant water drainage device and supernatant water drainage method |
CN116216919A (en) * | 2023-05-05 | 2023-06-06 | 杭州师范大学钱江学院 | Treatment method of phosphorus-containing rural sewage and composite material used by same |
Also Published As
Publication number | Publication date |
---|---|
JP4267860B2 (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoo et al. | Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor | |
US8323487B2 (en) | Waste water treatment apparatus | |
JP4224951B2 (en) | Denitrification method | |
WO2012039814A1 (en) | Optimized nutrient removal from wastewater | |
JP4267860B2 (en) | Nitrogen and phosphorus simultaneous removal type wastewater treatment method | |
JP3460745B2 (en) | Biological nitrification denitrification method and apparatus | |
JP4925208B2 (en) | Aerobic granule formation method, water treatment method and water treatment apparatus | |
TW201024231A (en) | System and method for treating waste water containing ammonia | |
JP6445855B2 (en) | Nitrogen treatment method and nitrogen treatment apparatus | |
JP3214707B2 (en) | Wastewater treatment method using intermittent discharge type long aeration process | |
JP2011056383A (en) | Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water | |
JP3351149B2 (en) | Simultaneous removal of nitrogen and phosphorus from wastewater. | |
JP4915036B2 (en) | Denitrification method and denitrification apparatus | |
JP2003053385A (en) | Biological denitrification equipment | |
CN113226996A (en) | Water treatment process for simultaneous carbon, nitrogen and phosphorus reduction in a sequencing batch moving bed biofilm reactor | |
JP5055667B2 (en) | Biological denitrification method and biological denitrification apparatus | |
JP5055670B2 (en) | Denitrification method and denitrification apparatus | |
JP4529277B2 (en) | Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal | |
KR100586535B1 (en) | Advanced wastewater treatment system and method using nitrifying microorganisms granule reactor | |
JP2003266095A (en) | Method for forming nitrification granules | |
Kapagiannidis et al. | Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions | |
JP2004298841A (en) | Method for treating nitrogen-containing wastewater | |
CN116282543A (en) | Composite biological directional conversion system and method for purifying inorganic nitrogen in mariculture tail water | |
KR100705541B1 (en) | A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control | |
JP2001252686A (en) | Anaerobic treatment method for organic waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090219 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |