JP4609989B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment Download PDF

Info

Publication number
JP4609989B2
JP4609989B2 JP2004274386A JP2004274386A JP4609989B2 JP 4609989 B2 JP4609989 B2 JP 4609989B2 JP 2004274386 A JP2004274386 A JP 2004274386A JP 2004274386 A JP2004274386 A JP 2004274386A JP 4609989 B2 JP4609989 B2 JP 4609989B2
Authority
JP
Japan
Prior art keywords
oxygen
waste water
bacteria
phosphorus
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004274386A
Other languages
Japanese (ja)
Other versions
JP2006087990A (en
Inventor
聡 常田
彰 平田
昭彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2004274386A priority Critical patent/JP4609989B2/en
Publication of JP2006087990A publication Critical patent/JP2006087990A/en
Application granted granted Critical
Publication of JP4609989B2 publication Critical patent/JP4609989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、排水処理装置に係り、更に詳しくは、脱窒性リン蓄積細菌を用いて排水処理を行う際に、嫌気工程後に添加する有機物を不要にできる排水処理装置に関する。 The present invention relates to a waste water treatment equipment, and more particularly, in performing the wastewater treatment using a denitrifying phosphorus accumulating bacteria relates to waste water treatment equipment that can be made unnecessary organic matter added after anaerobic step.

湖沼、内湾、内海等の停滞的な閉鎖性水域においては、窒素やリンがアオコや赤潮の発生を引き起こすことから、前記閉塞性水域の健全な水環境を創出するには、当該水域に流入する生活排水から窒素及びリンを十分に除去する必要がある。そこで、排水から窒素及びリンを除去する排水処理技術として、所定の細菌を用いた種々の生物学的処理が知られており、この生物学的処理として、嫌気/無酸素/好気法(AO法)が知られている(特許文献1参照)。このAO法は、硝化細菌及び脱窒細菌を使って排水中から窒素成分を除去するとともに、リン蓄積細菌を使って排水中からリンを除去する方法である。ここで、脱窒細菌及びリン蓄積細菌による反応を進行させるには、排水中の有機物が必要不可欠である。 In stagnant closed water areas such as lakes, inner bays, inland seas, etc., nitrogen and phosphorus cause the occurrence of blue sea bream and red tide. Nitrogen and phosphorus must be sufficiently removed from domestic wastewater. Therefore, various biological treatments using predetermined bacteria are known as wastewater treatment techniques for removing nitrogen and phosphorus from wastewater. As this biological treatment, anaerobic / anoxic / aerobic methods (A 2 O method) is known (see Patent Document 1). The A 2 O method is a method of removing nitrogen components from wastewater using nitrifying bacteria and denitrifying bacteria and removing phosphorus from wastewater using phosphorus accumulating bacteria. Here, in order to advance the reaction by denitrifying bacteria and phosphorus accumulating bacteria, organic substances in the wastewater are indispensable.

しかしながら、前記AO法では、雨水等の流入により有機物濃度が低くなった排水の場合、脱窒及び脱リンのための有機炭素源を十分に確保することができず、窒素及びリンの効率的な除去は見込めないという問題がある。 However, in the A 2 O method, in the case of wastewater whose organic matter concentration has become low due to the inflow of rainwater or the like, it is not possible to sufficiently secure an organic carbon source for denitrification and phosphorus removal, and the efficiency of nitrogen and phosphorus There is a problem that it cannot be expected to be removed.

そこで、本発明者らは、前記AO法の問題を解決するべく、無炭素、無酸素条件下で脱窒及びリンの取り込みを同時に行える脱窒性リン蓄積細菌を利用した嫌気/好気/無酸素法(AOA法)を既提案した(特許文献1参照)。このAOA法では、先ず、嫌気工程で、脱窒性リン蓄積細菌により、有機物の摂取及びリンの放出が行われる。次に、好気工程で、硝化細菌を使ってアンモニア等を硝酸態窒素に変える硝化反応が行われる。そして、無酸素工程で、脱窒性リン蓄積細菌により、硝酸態窒素の窒素ガスへの変換及びリンの取り込みが行われる。このAOA法では、嫌気工程後、好気工程前に、有機物を排水に添加することで、好気工程時の脱窒性リン蓄積細菌によるリン取り込みを制限する。これは、有機物を添加しないと、好気工程時に、酸素の存在によって脱窒性リン蓄積細菌にリンが取り込まれてしまい、その分、後の無酸素工程で、リンと同時に取り込まれる硝酸態窒素の取り込み量が少なくなるからである。
特開2003−285096号公報
In order to solve the problem of the A 2 O method, the present inventors have made anaerobic / aerobic using denitrifying phosphorus accumulating bacteria that can simultaneously perform denitrification and phosphorus uptake under carbon-free and oxygen-free conditions. / An oxygen-free method (AOA method) has already been proposed (see Patent Document 1). In this AOA method, first, ingestion of organic matter and release of phosphorus are performed by denitrifying phosphorus accumulating bacteria in an anaerobic process. Next, in the aerobic process, a nitrification reaction is performed in which ammonia or the like is converted into nitrate nitrogen using nitrifying bacteria. In the oxygen-free process, conversion of nitrate nitrogen to nitrogen gas and phosphorus uptake are performed by denitrifying phosphorus accumulating bacteria. In this AOA method, the organic matter is added to the waste water after the anaerobic process and before the aerobic process, thereby limiting phosphorus uptake by denitrifying phosphorus accumulating bacteria during the aerobic process. This is because if no organic matter is added, phosphorus is taken into the denitrifying phosphorus-accumulating bacteria during the aerobic process due to the presence of oxygen, and nitrate nitrogen that is taken up simultaneously with phosphorus in the subsequent anaerobic process. This is because the amount of uptake is reduced.
JP 2003-285096 A

しかしながら、前記AOA法にあっては、嫌気工程後、好気工程前に、有機物を排水に別途添加する必要があるという問題がある。しかも、当該有機物の添加量は、好気工程時における脱窒性リン蓄積細菌のリン取り込みを阻害し、且つ、硝化細菌による硝化反応を阻害しない程度に調整しなければならず、有機物の添加制御が非常に困難になるという問題もある。   However, the AOA method has a problem that it is necessary to separately add organic matter to the waste water after the anaerobic process and before the aerobic process. In addition, the amount of organic matter added must be adjusted to such an extent that it inhibits the uptake of denitrifying phosphorus-accumulating bacteria during the aerobic process and does not inhibit the nitrification reaction by nitrifying bacteria. There is also a problem that becomes very difficult.

本発明は、このような問題に着目して案出されたものであり、その目的は、脱窒性リン蓄積細菌を用いて排水処理を行う際に、嫌気工程後に有機物を添加せずに排水処理を行うことができる排水処理装置を提供することにある。 The present invention has been devised by paying attention to such a problem. The purpose of the present invention is to perform drainage without adding organic matter after the anaerobic process when wastewater treatment is performed using denitrifying phosphorus-accumulating bacteria. and to provide a wastewater treatment equipment which can perform processing.

記目的を達成するため、本発明は、脱窒性リン蓄積細菌を含む排水が供給される排水領域と、この排水領域に対して隔壁で区分された酸素領域と、この酸素領域に酸素を供給する酸素供給手段とを備えた排水処理装置において、
前記隔壁は、前記酸素領域に供給された酸素を前記排水領域に透過可能にする構造をなすとともに、前記排水領域側の面に硝化細菌が担持され、
前記酸素供給手段は、前記隔壁を透過した酸素のうち前記硝化細菌で消費されずに前記排水領域内の排水中に溶存する酸素の濃度が0.5g/m 以下になるように酸素を供給する、という構成を採っている。
To achieve the pre-Symbol object, the present invention includes a drainage area effluent containing denitrifying phosphorus accumulating bacteria are supplied, and oxygen regions partitioned by the partition wall against the drainage area, the oxygen in this oxygen region In a wastewater treatment apparatus comprising an oxygen supply means for supplying,
The septum oxygen supplied to the oxygen region with forming a structure that transparently available to the drainage area, nitrifying bacteria is carried on the surface of the drainage area side,
The oxygen supply means supplies oxygen so that a concentration of oxygen dissolved in the wastewater in the drainage region is 0.5 g / m 3 or less without being consumed by the nitrifying bacteria among oxygen permeated through the partition wall. It has a configuration of “Yes”.

なお、本明細書において、「硝酸態窒素」とは、NO−N及びNO−Nの総称を意味する。 In the present specification, “nitrate nitrogen” means a generic name of NO 3 —N and NO 2 —N.

本発明によれば、脱窒性リン蓄積細菌により有機物の摂取及びリンの放出が行われる嫌気工程後に、酸素領域に酸素を供給すると、当該酸素が隔壁を通じて排水領域側に放出される。このとき、隔壁の排水領域側の面に存在する硝化細菌が酸素を消費することで、排水中のアンモニア成分を硝酸態窒素に変える硝化反応が行われる。そして、隔壁から放出された直後の酸素が優先的に硝化細菌によって消費され、残った僅かの酸素が排水中に溶存することになる。このため、排水中の脱窒性リン蓄積細菌には殆ど酸素が供給されなくなり、それによるリン取り込みが殆ど行われず、このリン取り込みを阻害する有機物の添加を行わなくてもよく、当該有機物の添加量の複雑な制御も不要となる。 According to the present invention , when oxygen is supplied to the oxygen region after an anaerobic process in which organic matter is ingested and phosphorus is released by denitrifying phosphorus accumulating bacteria, the oxygen is released to the drain region through the partition wall. At this time, the nitrifying bacteria present on the surface of the partition wall on the side of the drainage region consume oxygen, whereby a nitrification reaction is performed to convert the ammonia component in the drainage into nitrate nitrogen. Then, the oxygen immediately after being released from the partition wall is preferentially consumed by the nitrifying bacteria, and the remaining little oxygen is dissolved in the waste water. For this reason, almost no oxygen is supplied to the denitrifying phosphorus accumulating bacteria in the waste water, so that the phosphorus uptake is hardly performed, and it is not necessary to add an organic substance that inhibits this phosphorus uptake. Complex control of quantity is also unnecessary.

また、リン取り込みを阻害する有機物の添加を行わずに、しかも、排水処理に要する時間をAOA法で排水処理を行った場合とほほ同程度にすることができる。
Further , without adding an organic substance that inhibits phosphorus uptake, the time required for the wastewater treatment can be made substantially the same as when the wastewater treatment is performed by the AOA method.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本実施例に係る排水処理装置の概略構成図が示されており、図2には、図1中A部の拡大断面図が示されている。これらの図において、排水処理装置10は、脱窒性リン蓄積細菌及び硝化細菌を使って排水処理を行う排水処理槽12と、この排水処理槽12に酸素を供給する酸素供給手段としてのエアーポンプ13とを備えて構成されている。   FIG. 1 shows a schematic configuration diagram of a wastewater treatment apparatus according to the present embodiment, and FIG. 2 shows an enlarged sectional view of a portion A in FIG. In these figures, a wastewater treatment apparatus 10 includes a wastewater treatment tank 12 that performs wastewater treatment using denitrifying phosphorus accumulating bacteria and nitrifying bacteria, and an air pump as an oxygen supply means that supplies oxygen to the wastewater treatment tank 12. 13.

前記排水処理槽12は、脱窒性リン蓄積細菌を含む排水Hが供給管14から内部に供給される槽本体15と、この槽本体15の内部に配置され、硝化細菌Nが担持された細菌担持装置16と、槽本体15内の排水を攪拌する攪拌手段17とを備えている。   The waste water treatment tank 12 includes a tank body 15 into which waste water H containing denitrifying phosphorus-accumulating bacteria is supplied from a supply pipe 14, and bacteria that are arranged inside the tank body 15 and carry nitrifying bacteria N. A supporting device 16 and stirring means 17 for stirring the waste water in the tank body 15 are provided.

前記細菌担持装置16は、シリコン製のチューブ19を多数本結束することで構成される。   The bacteria carrier 16 is configured by bundling a large number of silicon tubes 19.

前記各チューブ19は、上下方向に延出する向きでそれぞれ配置されており、それらの一端側から、エアーポンプ13に繋がる供給路20を通じて内部空間S1(図2参照)に酸素が導入され、当該導入酸素が、各チューブ19の他端側に繋がる排出路21から外部に排出される構造となっている。また、各チューブ19の周壁19Aは、内部空間S1に供給された酸素をその外側に向かって透過可能にする構造をしているとともに、その外周面を覆うように硝化細菌Nが担持されている。ここで、硝化細菌Nの担持は、チューブ19の外周面に沿って硝化細菌Nを保持できる限り、種々の手法を採ることができる。本実施例では、チューブ19の外周面に、硝化細菌Nが付いたスラグウールWを巻きつけることで、硝化細菌Nを担持している。その他、硝化細菌Nが入ったゲルをチューブ19の外周面側に固定化してもよい。また、チューブ19の外周面に糸等を巻くことによって、当該外周面の摩擦係数を高くし、その状態で硝化細菌Nを付けるようにしてもよい。更に、グラフト重合等を使って、チューブ19の外周面に対し、化学的に表面修飾を施し硝化細菌Nを固定化することも可能である。   Each tube 19 is arranged in a direction extending in the vertical direction, and oxygen is introduced from one end side thereof into the internal space S1 (see FIG. 2) through the supply path 20 connected to the air pump 13, Introduced oxygen is discharged to the outside from a discharge path 21 connected to the other end of each tube 19. The peripheral wall 19A of each tube 19 has a structure that allows oxygen supplied to the internal space S1 to permeate outwardly, and nitrifying bacteria N are supported so as to cover the outer peripheral surface thereof. . Here, as long as the nitrifying bacteria N can be held along the outer peripheral surface of the tube 19, various methods can be used to carry the nitrifying bacteria N. In this embodiment, the nitrifying bacteria N are carried by winding the slag wool W with the nitrifying bacteria N around the outer peripheral surface of the tube 19. In addition, a gel containing nitrifying bacteria N may be immobilized on the outer peripheral surface side of the tube 19. Further, by winding a thread or the like around the outer peripheral surface of the tube 19, the friction coefficient of the outer peripheral surface may be increased, and the nitrifying bacteria N may be attached in that state. Furthermore, it is also possible to immobilize the nitrifying bacteria N by chemically modifying the outer peripheral surface of the tube 19 using graft polymerization or the like.

チューブ19の内部空間S1に供給された酸素は、前記排出路21から外部に排出される他に、周壁19Aを透過し、その外側に担持された硝化細菌Nに向かって放出される。そして、硝化細菌Nが放出酸素を消費し、消費されなかった残りの酸素が、細菌担持装置16を除く槽本体15の排水受容空間S2に放出される。   The oxygen supplied to the internal space S1 of the tube 19 is discharged from the discharge passage 21 to the outside, passes through the peripheral wall 19A, and is released toward the nitrifying bacteria N carried on the outside. The nitrifying bacteria N consumes the released oxygen, and the remaining oxygen that has not been consumed is released into the drainage receiving space S2 of the tank body 15 excluding the bacteria carrying device 16.

従って、チューブ19の内部空間S1は、エアーポンプ13から酸素が供給される酸素領域を構成し、槽本体15の排水受容空間S2は、脱窒性リン蓄積細菌を含む排水が供給される排水領域を構成する。そして、周壁19Aは、酸素領域と排水領域とを区分する隔壁を構成する。   Therefore, the internal space S1 of the tube 19 constitutes an oxygen region to which oxygen is supplied from the air pump 13, and the drainage receiving space S2 of the tank body 15 is a drainage region to which wastewater containing denitrifying phosphorus accumulating bacteria is supplied. Configure. The peripheral wall 19A constitutes a partition that separates the oxygen region and the drainage region.

前記攪拌手段17は、排水受容空間S2に配置された翼体17Aを図示しないモータ等で回転させることで、排水Hを攪拌可能とする構成となっているが、排水Hを攪拌可能な構成であれば何でも良い。   The stirring means 17 is configured to allow the drainage H to be stirred by rotating the wing body 17A disposed in the drainage receiving space S2 with a motor or the like (not shown). Anything is fine.

前記エアーポンプ13は、酸素がチューブ19から排水受容空間S2内に放出されたときに、排水H中の残存酸素濃度が0.5g/m以下になるように、供給流量等が調整される。この調整は、排出管路21中に設けた図示しない流量計等の流量に基づいてエアーポンプ13の駆動が制御される。その他、溶存酸素濃度を測定可能なDOメータユニットを使って、排水中の溶存酸素濃度の計測値を基にして、エアーポンプ13の駆動を制御してもよい。 The air pump 13 adjusts the supply flow rate and the like so that the residual oxygen concentration in the waste water H becomes 0.5 g / m 3 or less when oxygen is released from the tube 19 into the waste water receiving space S2. . In this adjustment, the driving of the air pump 13 is controlled based on the flow rate of a flow meter (not shown) provided in the discharge pipe 21. In addition, the driving of the air pump 13 may be controlled based on the measured value of the dissolved oxygen concentration in the waste water using a DO meter unit capable of measuring the dissolved oxygen concentration.

次に、排水処理装置12を使った排水処理手順について説明する。なお、ここでは、排水処理装置12を回分式の排水処理システムに適用している。   Next, a wastewater treatment procedure using the wastewater treatment device 12 will be described. Here, the waste water treatment device 12 is applied to a batch-type waste water treatment system.

有機物が含まれている排水Hが槽本体15内に供給される。そして、先ず、嫌気工程が行われる。すなわち、エアーポンプ13から細菌担持装置16側への酸素の供給を停止した状態で、攪拌手段17によって槽本体15内の排水Hが所定時間攪拌される。この過程で、排水Hに含まれる脱窒性リン蓄積細菌により、有機物の取り込み及びリンの放出が行われる。   Waste water H containing organic matter is supplied into the tank body 15. First, an anaerobic process is performed. That is, the waste water H in the tank body 15 is stirred for a predetermined time by the stirring means 17 in a state where the supply of oxygen from the air pump 13 to the bacteria carrying device 16 side is stopped. In this process, organic matter is taken up and phosphorus is released by denitrifying phosphorus accumulating bacteria contained in the waste water H.

そして、エアーポンプ13が作動し、各チューブ19内に酸素が供給される。この酸素は、各チューブ19の周壁19Aを透過し、その外周面側に担持された硝化細菌Nに優先的に供給され、当該硝化細菌Nの作用により、排水Hのアンモニア成分を硝酸態窒素に変える硝化反応が行われる。また、排水Hに含まれる脱窒性リン蓄積細菌によって、排水H中のリンが摂取され、同時に前述の硝化反応により生じた硝酸態窒素が窒素ガスに変換される。このとき、エアーポンプ13から供給された酸素は、チューブ19内の外側の硝化細菌Nに優先的に供給されて消費されるため、その僅かな残り分が、排水H中に溶存することになる。従って、脱窒性リン蓄積細菌は酸素に殆どさらされることがなく、酸素の存在による脱窒性リン蓄積細菌のリンの過剰吸収を抑制する有機物の添加が不要となり、当該有機物を添加しなくても、脱窒性リン蓄積細菌によって、リンの摂取と硝酸態窒素の変換とをバランス良く行うことができる。   Then, the air pump 13 is operated and oxygen is supplied into each tube 19. This oxygen permeates through the peripheral wall 19A of each tube 19 and is preferentially supplied to the nitrifying bacteria N carried on the outer peripheral surface side. By the action of the nitrifying bacteria N, the ammonia component of the waste water H is converted into nitrate nitrogen. A changing nitrification reaction takes place. Further, phosphorus in the wastewater H is ingested by the denitrifying phosphorus accumulating bacteria contained in the wastewater H, and at the same time, nitrate nitrogen generated by the nitrification reaction is converted into nitrogen gas. At this time, oxygen supplied from the air pump 13 is preferentially supplied to and consumed by the nitrifying bacteria N outside the tube 19, so that a small remaining amount is dissolved in the waste water H. . Therefore, denitrifying phosphorus accumulating bacteria are hardly exposed to oxygen, and it is not necessary to add an organic substance that suppresses excessive absorption of phosphorus in the denitrifying phosphorus accumulating bacteria due to the presence of oxygen. In addition, the denitrifying phosphorus accumulating bacteria can balance the intake of phosphorus and the conversion of nitrate nitrogen.

なお、前記排水処理装置10を使って、上述のように排水Hからリンや硝酸態窒素を除去するのに要する時間は、従来のAOA法での所要時間と同程度になることが、実験の結果、立証されている。   It should be noted that the time required to remove phosphorus and nitrate nitrogen from the waste water H as described above using the waste water treatment apparatus 10 is about the same as the time required for the conventional AOA method. The result is proven.

次に、排水Hの溶存酸素が脱窒性リン蓄積細菌の窒素除去速度に与える影響を検証するための実験を行った。   Next, an experiment was conducted to verify the effect of dissolved oxygen in wastewater H on the nitrogen removal rate of denitrifying phosphorus accumulating bacteria.

図3に示されるように、本実験装置30は、実験排水Hが入れられるビーカ32と、このビーカ32内の底壁32Aに設置され、磁性を帯びた攪拌子33と、ビーカ32の下に置かれ、攪拌子33を磁力で回転させるスターラー35と、ビーカ32の外側に配置されたエアーポンプ37と、ビーカ32内に設置され、エアーポンプ37からの酸素を実験排水Hに溶存する状態で曝気させる噴出ノズル38と、実験排水Hの溶存酸素濃度を測定するDOメータユニット39とを備えている。   As shown in FIG. 3, the present experimental apparatus 30 includes a beaker 32 into which experimental waste water H is put, a bottom wall 32 </ b> A in the beaker 32, a magnetic stir bar 33, and a beaker 32. A stirrer 35 that rotates the stirrer 33 by magnetic force, an air pump 37 disposed outside the beaker 32, and is installed in the beaker 32 so that oxygen from the air pump 37 is dissolved in the experimental waste water H. A jet nozzle 38 for aeration and a DO meter unit 39 for measuring the dissolved oxygen concentration of the experimental waste water H are provided.

前記実験装置30に対して、次の手順で実験を行った。   An experiment was performed on the experimental apparatus 30 according to the following procedure.

全有機炭素濃度が120g/m、アンモニア態窒素が30g/m、リン酸態リン濃度が15g/mとなる模擬排水250mlをビーカに入れた状態で、脱窒性リン蓄積細菌を含む汚泥懸濁液250mlを加え、MLSS濃度が2000g/mとなる実験排水Hを作成した。
そして、スターラー35の作動によって攪拌子33を回転させ、実験排水Hを嫌気条件下で2時間攪拌し、脱窒性リン蓄積細菌による有機物の取り込み及びリンの吐き出しを行わせた。その後、硝酸ナトリウムを添加し、実験排水Hの硝酸態窒素濃度を30g/mとした。そして、DOメータユニット39で実験排水Hの溶存酸素濃度を計測しながら、エアーポンプ37から実験排水Hに供給される空気の流量を調整し、実験排水Hの溶存酸素濃度が、0g/m、0.1g/m、0.5g/m、1.2g/m、2.0g/m、6.0g/mの6種類について、窒素除去速度を計測した。この窒素除去速度は、硝酸態窒素とアンモニア態窒素それぞれについて、経過時間と濃度の関係を求め、各濃度を加えた上で、それらの初期2時間分を1次近似し、その傾き(濃度差/経過時間)を計算することにより求めた。その結果を図4に示す。
Contains denitrifying phosphorus-accumulating bacteria in a beaker with 250 ml of simulated waste water with a total organic carbon concentration of 120 g / m 3 , ammonia nitrogen of 30 g / m 3 , and phosphate phosphorus concentration of 15 g / m 3 250 ml of sludge suspension was added, and an experimental waste water H having an MLSS concentration of 2000 g / m 3 was created.
Then, the stirrer 33 was rotated by the operation of the stirrer 35, and the experimental waste water H was stirred for 2 hours under anaerobic conditions, and organic substances were taken up and discharged by denitrifying phosphorus accumulating bacteria. Thereafter, sodium nitrate was added to adjust the nitrate nitrogen concentration of the experimental waste water H to 30 g / m 3 . And while measuring the dissolved oxygen concentration of the experimental waste water H with the DO meter unit 39, the flow rate of the air supplied from the air pump 37 to the experimental waste water H is adjusted, and the dissolved oxygen concentration of the experimental waste water H is 0 g / m 3. , 0.1 g / m 3 , 0.5 g / m 3 , 1.2 g / m 3 , 2.0 g / m 3 , 6.0 g / m 3 , nitrogen removal rates were measured. This nitrogen removal rate is obtained by calculating the relationship between elapsed time and concentration for each of nitrate nitrogen and ammonia nitrogen, adding each concentration, and firstly approximating the initial 2 hours, and the slope (concentration difference) / Elapsed time). The result is shown in FIG.

図4によれば、残存酸素濃度が0.5g/m以下の場合は、それを超える場合に比べ、窒素除去速度が格段に増大することが理解されるであろう。従って、排水処理槽12中で、チューブ19の外側の硝化細菌Nが消費仕切らずに、排水Hに溶存した酸素の濃度が0.5g/m以下になったときに、排水処理上有用となる。 According to FIG. 4, it will be understood that when the residual oxygen concentration is 0.5 g / m 3 or less, the nitrogen removal rate is remarkably increased as compared with the case where the residual oxygen concentration is more than 0.5 g / m 3 . Therefore, when the concentration of oxygen dissolved in the waste water H becomes 0.5 g / m 3 or less in the waste water treatment tank 12 without the nitrifying bacteria N outside the tube 19 being consumed, it is useful for waste water treatment. Become.

なお、前記実施例では、排水処理装置10を回分式の排水処理システムに適用した例を説明したが、排水処理装置10を連続式の排水処理システムに適用することもできる。この場合は、嫌気工程を行う槽を別途設け、当該槽にて嫌気工程による処理終了後、その排水を排水処理槽12に供給する構成となる。   In addition, although the example which applied the waste water treatment apparatus 10 to the batch type waste water treatment system was demonstrated in the said Example, the waste water treatment apparatus 10 can also be applied to a continuous waste water treatment system. In this case, the tank which performs an anaerobic process is provided separately, and it becomes the structure which supplies the wastewater to the waste water treatment tank 12 after the process by an anaerobic process is complete | finished in the said tank.

また、前記実施例では、上下方向に延びるチューブ19を使っているが、本発明はこれに限らず、酸素を透過する隔壁を使って、酸素領域と排水領域を区分し、排水領域側の隔壁の面に硝化細菌を担持させる構成である限り、種々の構成を採用することができる。   Moreover, in the said Example, although the tube 19 extended in an up-down direction is used, this invention is not restricted to this, The oxygen area | region and the drainage area are divided using the partition which permeate | transmits oxygen, and the partition by the side of a drainage area As long as the nitrifying bacteria are supported on the surface, various configurations can be adopted.

その他、本発明における各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   In addition, the structure of each part in this invention is not limited to the example of illustration structure, A various change is possible as long as there exists a substantially similar effect | action.

本実施例に係る排水処理装置の概略構成図。The schematic block diagram of the waste water treatment equipment which concerns on a present Example. 図1中A部の拡大断面図。The expanded sectional view of the A section in FIG. 実験装置を示す概念図。The conceptual diagram which shows an experimental apparatus. 溶存酸素濃度と窒素除去速度との関係を示す図表。The chart which shows the relationship between dissolved oxygen concentration and nitrogen removal rate.

符号の説明Explanation of symbols

10 排水処理装置
12 排水処理槽
13 エアーポンプ(酸素供給手段)
15 槽本体
19A 周壁(隔壁)
H 排水
N 硝化細菌
S1 内部空間(酸素領域)
S2 排水受容空間(排水領域)
10 Wastewater treatment equipment 12 Wastewater treatment tank 13 Air pump (oxygen supply means)
15 Tank body 19A Perimeter wall (partition wall)
H Wastewater N Nitrifying bacteria S1 Internal space (oxygen region)
S2 Drainage receiving space (drainage area)

Claims (1)

脱窒性リン蓄積細菌を含む排水が供給される排水領域と、この排水領域に対して隔壁で区分された酸素領域と、この酸素領域に酸素を供給する酸素供給手段とを備えた排水処理装置において、
前記隔壁は、前記酸素領域に供給された酸素を前記排水領域に透過可能にする構造をなすとともに、前記排水領域側の面に硝化細菌が担持され、
前記酸素供給手段は、前記隔壁を透過した酸素のうち前記硝化細菌で消費されずに前記排水領域内の排水中に溶存する酸素の濃度が0.5g/m 以下になるように酸素を供給することを特徴とする排水処理装置。
A wastewater treatment apparatus comprising a drainage region to which wastewater containing denitrifying phosphorus-accumulating bacteria is supplied, an oxygen region partitioned by a partition wall from the drainage region, and an oxygen supply means for supplying oxygen to the oxygen region In
The septum oxygen supplied to the oxygen region with forming a structure that transparently available to the drainage area, nitrifying bacteria is carried on the surface of the drainage area side,
The oxygen supply means supplies oxygen so that a concentration of oxygen dissolved in the wastewater in the drainage region is 0.5 g / m 3 or less without being consumed by the nitrifying bacteria among oxygen permeated through the partition wall. A wastewater treatment apparatus characterized by that.
JP2004274386A 2004-09-22 2004-09-22 Wastewater treatment equipment Expired - Fee Related JP4609989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274386A JP4609989B2 (en) 2004-09-22 2004-09-22 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274386A JP4609989B2 (en) 2004-09-22 2004-09-22 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2006087990A JP2006087990A (en) 2006-04-06
JP4609989B2 true JP4609989B2 (en) 2011-01-12

Family

ID=36229469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274386A Expired - Fee Related JP4609989B2 (en) 2004-09-22 2004-09-22 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4609989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035341A1 (en) * 2009-05-08 2011-03-24 Mathew Benedict Carlisle A medium for fixing bacteria
JP5039093B2 (en) * 2009-06-15 2012-10-03 株式会社栄電社 Manufacturing method of bioreactor element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification
JP2000218290A (en) * 1999-02-01 2000-08-08 Kitakyushu City Sewage treatment and sewage treating device
JP2003211185A (en) * 2002-01-25 2003-07-29 Hiroshima Pref Gov Powerless wastewater treatment method
JP2003251381A (en) * 2002-02-28 2003-09-09 Asahi Kasei Corp Nitrogen removing method by membrane bioreactor
JP2003285096A (en) * 2002-03-28 2003-10-07 Univ Waseda Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2004130249A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Biological dephosphorization accelerating method in anaerobic-aerobic circulation activated sludge treatment method
JP2004249252A (en) * 2003-02-21 2004-09-09 Mitsubishi Rayon Co Ltd Waste water treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085787A (en) * 1996-09-10 1998-04-07 Suido Kiko Kaisha Ltd Method and apparatus for nitrification-denitrification treatment.
JPH11333496A (en) * 1998-05-22 1999-12-07 Nissin Electric Co Ltd Microorganism carrier for denitrification
JP2000218290A (en) * 1999-02-01 2000-08-08 Kitakyushu City Sewage treatment and sewage treating device
JP2003211185A (en) * 2002-01-25 2003-07-29 Hiroshima Pref Gov Powerless wastewater treatment method
JP2003251381A (en) * 2002-02-28 2003-09-09 Asahi Kasei Corp Nitrogen removing method by membrane bioreactor
JP2003285096A (en) * 2002-03-28 2003-10-07 Univ Waseda Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2004130249A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Biological dephosphorization accelerating method in anaerobic-aerobic circulation activated sludge treatment method
JP2004249252A (en) * 2003-02-21 2004-09-09 Mitsubishi Rayon Co Ltd Waste water treatment method

Also Published As

Publication number Publication date
JP2006087990A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4796631B2 (en) Method and system for nitrifying and denitrifying sewage
JP4997460B2 (en) Wastewater treatment system
CN110891908B (en) Method for water treatment in a system comprising at least one sequencing batch reactor and a moving bed biofilm reactor
JP2008221160A (en) Denitrifying treatment device and denitrifying treatment method
JP2005305410A (en) Method and apparatus for removing nitrogen
JP2018138292A (en) Water treatment method and apparatus
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JPH02214597A (en) Device for nitrifying sewage
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP4609989B2 (en) Wastewater treatment equipment
JPH067789A (en) Bacteria immobilized carrier and biologically nitrogen removing apparatus using the carrier
KR101186845B1 (en) A hybrid process reactor for a simultaneous removal of ammonia and organics and Method of wastewater treatment.
CN213060364U (en) Nitrogen and phosphorus removal contact oxidation sewage treatment device
JPH1034185A (en) Drainage treatment method
KR100436960B1 (en) The Biological Nutrient Removal System Using The Porous Media
JP2003326297A (en) Nitrification method for waste water
JP4307275B2 (en) Wastewater treatment method
KR100321680B1 (en) Advance wastewater treatment method by wastewater passage alternation
JPH07136678A (en) Wastewater treatment method and tank
JP2004202387A (en) Sewage disposal treatment method
JP3285754B2 (en) Sewage treatment apparatus and operation method thereof
JP2006075784A (en) Biological purifying and circulating system tray
JP3697334B2 (en) Sewage treatment equipment
JPH08318290A (en) Aerobic sewage treatment tank and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees