JP4925208B2 - Aerobic granule formation method, water treatment method and water treatment apparatus - Google Patents

Aerobic granule formation method, water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP4925208B2
JP4925208B2 JP2007236683A JP2007236683A JP4925208B2 JP 4925208 B2 JP4925208 B2 JP 4925208B2 JP 2007236683 A JP2007236683 A JP 2007236683A JP 2007236683 A JP2007236683 A JP 2007236683A JP 4925208 B2 JP4925208 B2 JP 4925208B2
Authority
JP
Japan
Prior art keywords
raw water
granule
reaction tank
microorganisms
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007236683A
Other languages
Japanese (ja)
Other versions
JP2009066505A (en
Inventor
聡 常田
直裕 岸田
正浩 江口
吉昭 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Organo Corp
Original Assignee
Waseda University
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Organo Corp filed Critical Waseda University
Priority to JP2007236683A priority Critical patent/JP4925208B2/en
Publication of JP2009066505A publication Critical patent/JP2009066505A/en
Application granted granted Critical
Publication of JP4925208B2 publication Critical patent/JP4925208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、好気性グラニュールの形成方法、水処理方法及び水処理装置に関する。   The present invention relates to an aerobic granule formation method, a water treatment method, and a water treatment apparatus.

下水や工場廃水などの原水に含まれる有機成分を処理することを目的として、微生物の同化および異化反応を利用する活性汚泥法が広く用いられている。微生物フロックを中心とする汚泥と、処理対象である原水とを溶存酸素の存在下で接触させることにより有機物を二酸化炭素にまで酸化し、反応槽の後段に設置した沈殿槽にて汚泥と処理水とを分離して処理水を得る好気性活性汚泥法は、設備が簡便であること、幅広い濃度の廃水を処理可能であることから、下水、産業排水を問わず広く使用されている。しかしながら、この活性汚泥法はフロック状の細菌を使用し、重力で処理水とフロックとを分離することから、糸状菌や放線菌等による沈降性不良(バルキング)の発生が問題となっている。また反応槽内の微生物濃度を高く取ることができないため、負荷が1.0kgBOD/m3/day程度と比較的低く、広い面積を必要とする点も課題となっている。 For the purpose of treating organic components contained in raw water such as sewage and factory wastewater, an activated sludge method using assimilation and catabolism of microorganisms is widely used. By contacting sludge, mainly microbial floc, and raw water to be treated in the presence of dissolved oxygen, the organic matter is oxidized to carbon dioxide, and the sludge and treated water are set in the sedimentation tank installed after the reaction tank. The aerobic activated sludge method for separating treated water to obtain treated water is widely used regardless of whether it is sewage or industrial wastewater because the facility is simple and wastewater with a wide concentration can be treated. However, since this activated sludge method uses floc-like bacteria and separates the treated water and flocs by gravity, the occurrence of poor sedimentation (bulking) due to filamentous fungi, actinomycetes, etc. is a problem. Moreover, since the microorganism concentration in a reaction tank cannot be taken high, the load is comparatively low as about 1.0 kgBOD / m < 3 > / day, and the point which requires a large area is also a subject.

このような問題点を解決するため、近年では反応槽内に充填材を投入して、この充填材に微生物を付着させることにより多量の微生物を反応槽内に保持することができる手法も開発されている。本手法は反応槽あたりの負荷を活性汚泥法より高く取ることが可能であることや、沈殿槽が不要であること、原生動物や後生動物が多く発生し、多様な生物が保持できることから汚泥の発生量が少ないなどの利点を有している。しかしながら、反応槽内に添加する充填物は高価なものが多く、また、定期的に充填物の補充が必要であるなど、処理コストが高くなる傾向がある。   In recent years, in order to solve such problems, a method has been developed that allows a large amount of microorganisms to be retained in the reaction tank by introducing a filler into the reaction tank and attaching the microorganism to the filler. ing. This method can increase the load per reaction tank higher than the activated sludge method, eliminates the need for a sedimentation tank, generates many protozoa and metazoans, and can retain various organisms. It has the advantage that the amount generated is small. However, many of the packing materials added to the reaction tank are expensive, and the processing cost tends to be high, such as the need to periodically replenish the packing materials.

一方、溶存酸素を必要としない嫌気処理においては単位微生物あたりの処理速度が遅いため、微生物自体を自己造粒させて比重の高い塊、いわゆるグラニュールを形成させることにより反応槽内の微生物濃度を飛躍的に高める手法が使用されている。グラニュール化微生物を使用する方法においては、高濃度の微生物を保持しうるため、反応槽あたりの処理速度が充填物を使用した方法と比較しても速い、充填物が不要、グラニュールの比重が高く沈降速度が速いため固液分離が容易等の利点を有している。このようなグラニュールを形成する微生物群は嫌気性メタン発酵のほか、好気性処理においては硝化菌群(特許文献1参照)や半回分式リアクタ(SBR)での形成が確認されている。   On the other hand, in anaerobic treatment that does not require dissolved oxygen, the treatment rate per unit microorganism is slow, so the microorganism concentration in the reaction vessel can be reduced by self-granulating the microorganism itself to form a so-called granule with a high specific gravity. A method of dramatically increasing is used. In the method using granulated microorganisms, since a high concentration of microorganisms can be retained, the processing speed per reaction tank is faster than the method using packing, no packing is required, and the specific gravity of granules And the sedimentation rate is high, and thus has an advantage of easy solid-liquid separation. In addition to anaerobic methane fermentation, microbial groups forming such granules have been confirmed to form in a nitrifying bacteria group (see Patent Document 1) and a semi-batch reactor (SBR) in an aerobic treatment.

特開2003−266095号公報JP 2003-266095 A

半回分式の処理装置においては一つの反応槽において、(1)原水の流入、(2)酸素供給および原水と微生物との接触、(3)微生物の沈降、(4)処理水の排出、といった4つの工程を経ることによって処理が行われるが、流入と排出が共に短時間で行われるため、処理流量の変動が大きく、実施設においては大きな流量調整槽が必要となる。そのため、小規模の装置においては簡便で有利な装置となり得るが、中〜大規模の装置においては適用することが困難である場合が多い。こういった問題を解決するためには従来から多くの装置で利用されている連続流入・排出型の装置構成とすることが好ましいが、有機物を処理し、かつ連続通水が可能な好気性グラニュールを形成させる方法は確認されていない。   In a semi-batch type treatment device, (1) inflow of raw water, (2) oxygen supply and contact between raw water and microorganisms, (3) sedimentation of microorganisms, and (4) discharge of treated water in one reaction tank. Although the process is performed through the four steps, both the inflow and the discharge are performed in a short time, so that the process flow rate varies greatly, and a large flow rate adjustment tank is required in the implementation. Therefore, although it can be a simple and advantageous apparatus in a small-scale apparatus, it is often difficult to apply in a medium to large-scale apparatus. In order to solve these problems, it is preferable to adopt a continuous inflow / discharge type device configuration that has been used in many devices, but an aerobic granule that can treat organic substances and allow continuous water flow. No method has been identified for forming the shell.

本発明は、連続通水式で好気性条件下において安定的にグラニュールを形成することが可能な好気性グラニュールの形成方法である。   The present invention is a method for forming an aerobic granule capable of stably forming granules under aerobic conditions with a continuous water flow system.

また、本発明は、処理対象となる有機物を含有する原水を省スペースかつ低コストで生物処理を行うことが可能となる水処理方法及び水処理装置である。   In addition, the present invention is a water treatment method and a water treatment apparatus capable of performing biological treatment of raw water containing an organic substance to be treated at a low cost and in a small space.

本発明は、有機物および鉄イオンを0.1mg−Fe/L以上含有する原水を反応槽の下部から空気とともに連続的に導入して前記反応槽中の微生物と接触させ、前記微生物を造粒させたグラニュールを形成するとともに、前記反応槽の上部に設けられた気固分離装置により前記微生物と処理水、空気とを分離する好気性グラニュールの形成方法であって、前記原水のC/N比を7以下となるように調整して前記反応槽に導入し、前記反応槽において、好気性条件下、硝化菌の共存下で前記グラニュールを形成する好気性グラニュールの形成方法である。 The present invention is an organic matter and iron ions are continuously introduced into together with air from the lower portion of the raw water and the reaction vessel containing 0.1 mg-Fe / L or more in contact with the microorganisms in the reactor, forming the microorganism A method for forming an aerobic granule that forms granulated granules and separates the microorganisms, treated water, and air by a gas-solid separation device provided at the top of the reaction tank , wherein the raw water C An aerobic granule forming method in which the / N ratio is adjusted to 7 or less and introduced into the reaction vessel, and the granule is formed in the reaction vessel in the presence of nitrifying bacteria under aerobic conditions. is there.

また、前記好気性グラニュールの形成方法において、前記反応槽内で硝化により生じた硝酸性窒素が5mg/L〜2000mg/Lの範囲となるように調整することが好ましい。   Moreover, in the formation method of the aerobic granule, it is preferable to adjust the nitrate nitrogen generated by nitrification in the reaction tank to be in the range of 5 mg / L to 2000 mg / L.

また、前記好気性グラニュールの形成方法において、前記原水中の有機物を嫌気性条件下で発酵させ、少なくとも一部を有機酸に変換した後、前記反応槽に導入することが好ましい。   Moreover, in the formation method of the aerobic granule, it is preferable that the organic matter in the raw water is fermented under anaerobic conditions to convert at least a part thereof into an organic acid, and then introduced into the reaction vessel.

また、本発明は、有機物および鉄イオンを0.1mg−Fe/L以上含有する原水のC/N比を7以下となるように調整する工程と、前記C/N比を7以下に調整した原水を反応槽の下部から空気とともに連続的に導入して前記反応槽中の微生物と接触させ、好気性条件下、硝化菌の共存下で、前記微生物を造粒させたグラニュールを形成して、前記有機物を生物処理する生物処理工程と、前記反応槽の上部に設けられた気固分離装置により前記生物処理した処理水、空気と前記微生物とを分離する分離工程と、を含む水処理方法である。 Further, the present invention is organic matter and iron ions and adjusting the C / N ratio of the raw water containing 0.1 mg-Fe / L or more so that the 7 or less, the C / N ratio of 7 below was adjusted raw water is continuously introduced into together with air into contact with the microorganisms in the reaction vessel from the bottom of the reaction vessel, under aerobic conditions, in the presence of nitrifying bacteria, granules obtained by granulating the microorganism A biological treatment process for biologically treating the organic matter, and a separation process for separating the biologically treated water , air, and the microorganisms by a gas-solid separation device provided at an upper part of the reaction tank. It is a water treatment method including.

さらに、本発明は、有機物および鉄イオンを0.1mg−Fe/L以上含有する原水のC/N比を7以下となるように調整する手段と、前記C/N比を7以下に調整した原水を微生物と接触させ、前記有機物を生物処理するための反応槽と、前記反応槽の下部からに前記原水を連続的に導入するための原水導入手段と、前記反応槽に酸素を供給するための酸素供給手段と、前記反応槽の上部に設けられ、前記生物処理した処理水、前記酸素と前記微生物とを分離する分離手段と、を備え、前記反応槽において、好気性条件下、硝化菌の共存下で、前記微生物を造粒させたグラニュールを形成する水処理装置である。
Furthermore, the present invention is organic matter and iron ions and means for adjusting the C / N ratio of the raw water containing 0.1 mg-Fe / L or more so that the 7 or less, the C / N ratio of 7 below The adjusted raw water is brought into contact with microorganisms, a reaction tank for biological treatment of the organic matter, a raw water introduction means for continuously introducing the raw water from the lower part of the reaction tank, and oxygen supplied to the reaction tank An oxygen supply means, and a biologically treated treated water , a separation means for separating the oxygen and the microorganisms , provided in an upper part of the reaction tank, and in the reaction tank, aerobic conditions, It is a water treatment device that forms granules in which the microorganisms are granulated in the presence of nitrifying bacteria.

本発明によれば、硝化菌の共存下で微生物を造粒させることにより、連続通水式で好気性条件下において安定的にグラニュールを形成することが可能となる好気性グラニュールの形成方法を提供することができる。   According to the present invention, a method for forming an aerobic granule that enables granulation in the presence of nitrifying bacteria to stably form granules under aerobic conditions in a continuous water flow system. Can be provided.

また、本発明によれば、硝化菌の共存下で微生物を造粒させることにより、連続通水式で好気性条件下において安定的にグラニュールを形成することが可能となり、処理対象となる有機物を含有する原水を省スペースかつ低コストで生物処理を行うことが可能となる水処理方法及び水処理装置を提供することができる。   In addition, according to the present invention, by granulating microorganisms in the presence of nitrifying bacteria, it becomes possible to stably form granules under aerobic conditions in a continuous water flow system, and organic matter to be treated It is possible to provide a water treatment method and a water treatment apparatus capable of performing biological treatment of raw water containing water at a low cost and at a low cost.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明者らは鋭意検討を行った結果、増殖速度の遅い硝化菌を細菌群に共存させることによって好気性条件下で連続接触式のシステムを用いた場合においても菌体のグラニュール化が可能であることを見出した。本手法を用いることにより、微生物を自己造粒させて沈降性のよい好気性グラニュールを形成させ、反応槽内に充填材等を設置することなく高濃度で微生物群を保持することが可能となり、低コストで高速な処理が可能となる。   As a result of intensive studies, the present inventors have made it possible to granulate cells even when a continuous contact system is used under aerobic conditions by allowing nitrifying bacteria having a slow growth rate to coexist with bacterial groups. I found out. By using this method, microorganisms can be self-granulated to form aerobic granules with good sedimentation, and it is possible to maintain a high concentration of microorganisms without installing a filler in the reaction tank. This enables high-speed processing at a low cost.

ここで、本明細書において「グラニュール」とは微生物の自己造粒体のことをいい特に制限はないが、例えばその粒径が125μm以上のものをいう。また、1Lのメスシリンダに微生物を含む汚泥を添加し、添加5分後の汚泥容積指標(SVI)[mL/g]であるSVI5と添加30分後のSVIであるSVI30との比率(SVI5/SVI30)が1.2以下であるものをグラニュールと呼ぶことがある。   In this specification, “granule” refers to a self-granulated body of microorganisms and is not particularly limited. For example, the granule refers to a particle having a particle diameter of 125 μm or more. Further, sludge containing microorganisms was added to a 1 L graduated cylinder, and the ratio of SVI5 which is the sludge volume index (SVI) [mL / g] 5 minutes after the addition and SVI30 which is SVI 30 minutes after the addition (SVI5 / A material having an SVI30) of 1.2 or less is sometimes called a granule.

また、本明細書において、「連続的に導入」、「連続通水」とは、「回分式」に対する方式であり、連続して反応槽に原水を投入して運転する方式である。反応槽への酸素の供給は連続的であっても間欠的であってもよい。   Further, in the present specification, “continuously introduced” and “continuous water flow” are methods for the “batch method”, and are a method in which raw water is continuously charged into the reaction tank for operation. The supply of oxygen to the reaction vessel may be continuous or intermittent.

処理対象となる原水としては例えば、食品工場廃水、化学工場廃水、半導体工場廃水、機械工場廃水等の産業廃水、生活廃水、下水、河川水等が挙げられ、生物分解性の有機物を含有する原水に対して容易に適用することができる。また、生物難分解性の有機物を処理する場合には、予め物理化学的処理を施し、生物分解性の物質に変換することによって処理が可能となる。   Examples of raw water to be treated include food factory wastewater, chemical factory wastewater, semiconductor factory wastewater, machine factory wastewater, and other industrial wastewater, domestic wastewater, sewage, river water, etc., and raw water containing biodegradable organic matter Can be easily applied. Moreover, when processing a biologically indegradable organic substance, a physicochemical process is performed beforehand and it can process by converting into a biodegradable substance.

以下に食品工場廃水を処理対象とした場合を一例として本実施形態に係る好気性グラニュールの形成方法、水処理方法及び水処理装置の適用について詳細に説明する。   Hereinafter, taking the case where food factory wastewater is treated as an example, the aerobic granule forming method, the water treatment method, and the application of the water treatment apparatus according to the present embodiment will be described in detail.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。図1の水処理装置1は、原水貯留槽10、反応槽12、分離手段である固液分離槽14、処理水槽16と、原水導入手段である原水導入ポンプ18と、酸素供給手段であるエアポンプ20とを備える。   An example of a water treatment apparatus according to an embodiment of the present invention is schematically shown in FIG. 1 includes a raw water storage tank 10, a reaction tank 12, a solid-liquid separation tank 14, which is a separation means, a treated water tank 16, a raw water introduction pump 18 which is a raw water introduction means, and an air pump which is an oxygen supply means. 20.

図1の水処理装置1において、原水貯留槽10の出口は原水導入配管により原水導入ポンプ18を介して反応槽12の入口に接続され、反応槽12の出口は反応液配管により固液分離槽14の入口に接続され、固液分離槽14の出口は処理水配管により処理水槽16の入口に接続されている。反応槽12の下部には酸素導入配管によりエアポンプ20が接続されている。また、固液分離槽14の下部は返送配管により返送ポンプ22を介して、原水導入配管の原水導入ポンプ18下流側に接続されてもよい。なお、図1の例では反応槽12と分離手段である固液分離槽14とは別の槽として構成されているが、反応槽と固液分離槽を1槽として構成してもよい。   In the water treatment apparatus 1 of FIG. 1, the outlet of the raw water storage tank 10 is connected to the inlet of the reaction tank 12 via a raw water introduction pump 18 by a raw water introduction pipe, and the outlet of the reaction tank 12 is a solid-liquid separation tank by a reaction liquid pipe. 14 and the outlet of the solid-liquid separation tank 14 is connected to the inlet of the treated water tank 16 by treated water piping. An air pump 20 is connected to the lower part of the reaction tank 12 through an oxygen introduction pipe. Moreover, the lower part of the solid-liquid separation tank 14 may be connected to the downstream side of the raw water introduction pump 18 of the raw water introduction pipe via the return pump 22 by a return pipe. In the example of FIG. 1, the reaction tank 12 and the solid-liquid separation tank 14 as a separation unit are configured as separate tanks, but the reaction tank and the solid-liquid separation tank may be configured as one tank.

本実施形態に係る好気性グラニュールの形成方法、水処理方法及び水処理装置1の動作について説明する。食品工場工場等より排出された有機物を含有する原水は原水貯留槽10へと送液され、原水水質の安定化が行われる。この際、原水中に固形物が含まれている場合にはスクリーン等によって取り除いておくことが好ましい。また、原水貯留槽10では原水の均一化を行うため、撹拌装置(機械撹拌、空気撹拌等)を設置することが好ましい。   The aerobic granule formation method, the water treatment method, and the operation of the water treatment apparatus 1 according to the present embodiment will be described. The raw water containing the organic matter discharged from the food factory or the like is sent to the raw water storage tank 10 to stabilize the raw water quality. At this time, when the solid water is contained in the raw water, it is preferably removed by a screen or the like. Moreover, in order to make the raw water uniform in the raw water storage tank 10, it is preferable to install a stirring device (mechanical stirring, air stirring, etc.).

原水は、原水導入ポンプ18により原水貯留槽10から反応槽12へ連続的に送液され、微生物と接触され、好気性条件下、硝化菌の共存下で、微生物を造粒させたグラニュールが形成されて原水中の有機物が生物処理される(生物処理工程)。反応槽12内では好気的に有機物の分解が行われるため、エアポンプ20により酸素源が供給される。酸素源としては酸素および空気等を使用することができる。この際、酸素源の供給量は原水中の有機物量や有機物負荷等により決定されるが、おおむね反応槽12内の溶存酸素濃度として0.5〜8mg/Lの範囲となるように供給することが好ましい。   The raw water is continuously fed from the raw water storage tank 10 to the reaction tank 12 by the raw water introduction pump 18, contacted with microorganisms, and granulated granules of microorganisms in the presence of nitrifying bacteria under aerobic conditions. The organic matter in the raw water that is formed is biologically treated (biological treatment step). Since organic substances are decomposed aerobically in the reaction tank 12, an oxygen source is supplied by the air pump 20. As the oxygen source, oxygen and air can be used. At this time, the supply amount of the oxygen source is determined by the amount of organic matter in the raw water, the load of the organic matter, etc., but it should be supplied so that the dissolved oxygen concentration in the reaction tank 12 is generally in the range of 0.5 to 8 mg / L. Is preferred.

生物処理された反応液は固液分離槽14へ送液され、処理水と微生物とが自然沈降等により分離される(分離工程)。処理水は処理水槽16へ送液される。微生物を含む汚泥は固液分離槽14より取り出され廃棄されてもよいし、返送ポンプ22により反応槽12の上流側へ返送されてもよい。   The biologically treated reaction liquid is sent to the solid-liquid separation tank 14, and the treated water and microorganisms are separated by natural sedimentation or the like (separation step). The treated water is sent to the treated water tank 16. The sludge containing microorganisms may be taken out from the solid-liquid separation tank 14 and discarded, or may be returned to the upstream side of the reaction tank 12 by the return pump 22.

本実施形態では、微生物を造粒させてグラニュール化を促進するために、反応槽12における微生物群に硝化菌を共存させる。ここで、本明細書において、「硝化菌の共存下」とは、反応槽12内で硝化により生じたアンモニア性窒素および有機態窒素由来の硝酸性窒素が5mg/L以上であることをいう。したがって、反応槽12内で硝化により生じたアンモニア性窒素および有機態窒素由来の硝酸性窒素が5mg/L以上生成する量に調整することが好ましく、10mg/L以上生成する量に調整することがより好ましい。硝酸性窒素が5mg/L未満であると、原水中に硝化の対象となる窒素が少ない状態となるため、微生物中に共存する硝化菌が少なくなり、安定的にグラニュールを形成することができない場合がある。グラニュール形成において反応槽12内で2000mg/L程度までの窒素濃度であれば阻害はほとんどみられないが、過剰量の窒素添加は窒素剤の費用のみならず、pH調整剤費、処理水中に残存した硝酸イオンを処理する費用がかかるなどのコストアップ要因となる。そのため、窒素の添加量は反応槽12出口において硝酸性窒素の濃度として100mg/L以下となるように調整することがより好ましい。   In this embodiment, nitrifying bacteria are allowed to coexist in the microorganism group in the reaction tank 12 in order to granulate microorganisms and promote granulation. Here, in the present specification, “in the presence of nitrifying bacteria” means that ammonia nitrogen generated by nitrification in the reaction tank 12 and nitrate nitrogen derived from organic nitrogen is 5 mg / L or more. Therefore, it is preferable to adjust the amount of ammonia nitrogen generated by nitrification in the reaction tank 12 and nitrate nitrogen derived from organic nitrogen to 5 mg / L or more, and to adjust to an amount of 10 mg / L or more. More preferred. If the nitrate nitrogen is less than 5 mg / L, the amount of nitrogen to be nitrified is low in the raw water, so that the number of nitrifying bacteria that coexist in the microorganism decreases, and granule cannot be formed stably. There is a case. In the granule formation, there is almost no inhibition if the nitrogen concentration is up to about 2000 mg / L in the reaction tank 12, but adding an excessive amount of nitrogen not only costs the nitrogen agent, but also costs the pH adjuster and the treated water. This increases costs such as the cost of processing the remaining nitrate ions. Therefore, it is more preferable to adjust the amount of nitrogen added so that the concentration of nitrate nitrogen at the outlet of the reaction tank 12 is 100 mg / L or less.

反応槽12における微生物群に硝化菌を共存させるため、原水のC/N比(全有機炭素(TOC)/全窒素(TN))を7以下となるように調整することが好ましい。原水のC/N比が7を超えると、原水中に硝化の対象となる窒素が少ない状態となるため、微生物中に共存する硝化菌が少なくなり、安定的にグラニュールを形成することができない場合がある。   In order for nitrifying bacteria to coexist in the microorganism group in the reaction tank 12, it is preferable to adjust the C / N ratio (total organic carbon (TOC) / total nitrogen (TN)) of the raw water to 7 or less. If the C / N ratio of the raw water exceeds 7, the amount of nitrogen that is the target of nitrification in the raw water will be small, so the number of nitrifying bacteria that coexist in the microorganism will be small and stable granules cannot be formed. There is a case.

通常の有機物処理においてはBODと窒素濃度の比が100:5程度(すなわちC/N比7.5程度)となるように原水に窒素源の添加を行う。これは微生物中の炭素と窒素との比から計算されるもので、必要量の窒素源を添加することによってBOD成分の処理が行われる。本実施形態においてはこの窒素源を過剰となるように添加する。過剰に添加された窒素源は反応槽12内にてBOD成分の処理に使用された後に、余剰分が硝化細菌群により硝酸イオンもしくは亜硝酸イオンにまで酸化される。   In a normal organic matter treatment, a nitrogen source is added to the raw water so that the ratio of BOD to nitrogen concentration is about 100: 5 (that is, C / N ratio is about 7.5). This is calculated from the ratio of carbon to nitrogen in the microorganism, and the BOD component is processed by adding a necessary amount of nitrogen source. In this embodiment, this nitrogen source is added so as to be excessive. The excessively added nitrogen source is used for the treatment of the BOD component in the reaction tank 12, and then the surplus is oxidized to nitrate ions or nitrite ions by the nitrifying bacteria group.

ここで、窒素源としては水中でアンモニウムイオンに解離する塩化アンモニウム、硫酸アンモニウム等の塩類や尿素、タンパク質、アミノ酸類、アミン類等の有機態窒素、またこれらを含有した肥料等が利用できるが、価格面からは塩化アンモニウム、硫酸アンモニウム、アンモニア、コーンスティープリカー等を使用することが好ましい。特にアンモニアはアンモニアストリッピング等により排水から回収したアンモニアを使用することも可能である。これらの成分の添加は原水貯留槽10、反応槽12、もしくは後述する有機酸発酵のための有機酸発酵槽に直接投入する方法のほか、それぞれの槽に流入する前段で添加することもできる。   Here, as the nitrogen source, salts such as ammonium chloride and ammonium sulfate that dissociate into ammonium ions in water, organic nitrogen such as urea, protein, amino acids, and amines, and fertilizers containing these can be used. From the aspect, it is preferable to use ammonium chloride, ammonium sulfate, ammonia, corn steep liquor or the like. In particular, ammonia can be ammonia recovered from wastewater by ammonia stripping or the like. These components can be added in the raw water storage tank 10, the reaction tank 12, or a method of directly feeding into the organic acid fermentation tank for organic acid fermentation described later, or in the previous stage of flowing into each tank.

反応槽12においてはBODの酸化反応以外に硝化反応が起こることにより、通常窒素1kgあたり7.17kgCaCO3のアルカリ度が消費されるため、原水中のアルカリ度が不足する場合には反応槽12にpH計等のpH測定手段およびアルカリ剤添加装置等のpH調整手段を設けてアルカリ剤等の注入を行ってもよい。このときのアルカリ剤添加により、反応槽12を好ましくはpH6〜8の範囲、より好ましくはpH6.5〜7.5の範囲とすればよい。 Since the nitrification reaction occurs in the reaction tank 12 in addition to the oxidation reaction of BOD, the alkalinity of 7.17 kg CaCO 3 is normally consumed per 1 kg of nitrogen. A pH measuring means such as a pH meter and a pH adjusting means such as an alkali agent adding device may be provided to inject the alkali agent or the like. By adding the alkali agent at this time, the reaction tank 12 is preferably in the range of pH 6 to 8, more preferably in the range of pH 6.5 to 7.5.

本実施形態における手法は様々な有機物質を対象として使用することが可能であるが、油脂分に関しては汚泥やグラニュールに付着して悪影響を及ぼす場合があるため、予め浮上分離、凝集加圧浮上装置、吸着装置等の既存の手法にてn−ヘキサン抽出物質として20mg/L以下程度まで除去しておくことが好ましい。   The method in the present embodiment can be used for various organic substances, but the oil and fat may adhere to sludge and granules and adversely affect them. It is preferable to remove to about 20 mg / L or less as an n-hexane extract by an existing method such as an apparatus or an adsorption apparatus.

また、タンパク質や糖類等は時に糸状菌の生育を促し、グラニュール化を阻害、もしくはグラニュール表面に繊維状に発生することにより沈降性不良を引き起こす場合がある。低分子の有機酸においては非常にグラニュールの形成が良好であり、例えば図2に示すように原水を反応槽12に流入させる前に有機酸発酵槽24を設け、予め嫌気条件下で原水中の有機物を有機酸にまで発酵させる手法は非常に有効である。有機酸発酵の条件は通常報告されている条件が使用できるが、例えば、有機物負荷5〜50kgCOD/m3/day程度(より好ましくは5〜20kgCOD/m3/day程度)、pH4.5〜7.0程度(反応温度によって最適pHは変化する)、ORP(酸化還元電位)−200〜−400程度、温度20℃〜40℃程度に調整することにより流入有機物は酢酸、乳酸、プロピオン酸、酪酸等の低分子有機酸にまで変化する。 In addition, proteins, saccharides and the like sometimes promote the growth of filamentous fungi, inhibit granulation, or cause fiber formation on the granule surface to cause poor sedimentation. In the case of a low molecular organic acid, the formation of granules is very good. For example, as shown in FIG. 2, an organic acid fermentation tank 24 is provided before the raw water is allowed to flow into the reaction tank 12, and the raw water is previously subjected to anaerobic conditions. The method of fermenting organic matter to organic acid is very effective. The conditions reported for organic acid fermentation can be those normally reported. For example, the organic load is about 5 to 50 kg COD / m 3 / day (more preferably about 5 to 20 kg COD / m 3 / day), pH 4.5 to 7 By adjusting the pH to about 0.0 (optimal pH varies depending on the reaction temperature), ORP (redox potential) -200 to -400, and temperature 20 to 40 ° C., the inflowing organic substances are acetic acid, lactic acid, propionic acid, butyric acid. It changes to low molecular organic acids such as.

また、原水中に栄養塩(窒素、リン)および微量金属元素が不足している場合にはこれらの添加設備を原水貯留槽10、反応槽12、もしくは有機酸発酵槽24、またはそれらの槽に流入する前段側に設けてもよい。食品工場廃水においては微量元素およびリンが不足することは稀であるため、窒素源を供給することとなることが多い。   In addition, when nutrient salts (nitrogen, phosphorus) and trace metal elements are insufficient in the raw water, these additional facilities are added to the raw water storage tank 10, the reaction tank 12, or the organic acid fermentation tank 24, or those tanks. You may provide in the front | former stage side which flows in. Food factory wastewater rarely lacks trace elements and phosphorus, so it often supplies a nitrogen source.

また、初期の立ち上げ時には反応槽12内に種汚泥を通常投入するが、この際に沈降促進剤として酸化鉄、フライアッシュ、珪藻土、ゼオライト、高炉スラグ等の粒径50μm以下の不溶性粉末や高分子凝集剤等を添加するとグラニュール形成が促進されるので好ましい。種汚泥濃度は装置にもよるが1000〜10000mg/L程度、酸化鉄等の不溶性粉末は200〜100000mg/L程度、高分子凝集剤は1〜1000mg/L程度とすることが好ましいが、複数回に分けて分割して投入することも可能である。   In addition, seed sludge is usually charged into the reaction tank 12 at the initial start-up. At this time, as a settling accelerator, iron oxide, fly ash, diatomaceous earth, zeolite, blast furnace slag, etc. It is preferable to add a molecular flocculant because granule formation is promoted. Although it depends on the apparatus, the seed sludge concentration is preferably about 1000 to 10000 mg / L, the insoluble powder such as iron oxide is preferably about 200 to 100,000 mg / L, and the polymer flocculant is preferably about 1 to 1000 mg / L. It is also possible to divide and throw in.

また、反応槽12内の有機物負荷としては低負荷ではグラニュールの形成が阻害され、高負荷では糸状菌等の増殖および硝化菌の増殖が阻害されてグラニュールの形状の維持が困難となる場合があるため、容積負荷としては1.0〜30kgBOD/m3/day(より好ましくは2.0〜20kgBOD/m3/day)、MLSS負荷としては0.1〜3.0kgBOD/kgMLSS/day(より好ましくは0.3〜1.0kgBOD/kgMLSS/day)とすることが好ましい。 In addition, when the organic substance load in the reaction tank 12 is low, granule formation is inhibited, while high load impairs the growth of filamentous fungi and the growth of nitrifying bacteria, making it difficult to maintain the shape of the granules. Therefore, the volumetric load is 1.0-30 kg BOD / m 3 / day (more preferably 2.0-20 kg BOD / m 3 / day), and the MLSS load is 0.1-3.0 kg BOD / kg MLSS / day ( More preferably 0.3 to 1.0 kg BOD / kg MLSS / day).

反応槽12内にグラニュール形成促進剤として鉄イオンを流入原水量に対して0.1〜10mg−Fe/L添加することが好ましく、1〜5mg−Fe/L添加することがより好ましい。この鉄イオンは溶液のpH値を調整することで微粒子またはコロイドを形成し、微生物の凝集を助け、グラニュールの形成を促進する。通常の廃水には鉄イオンが微量金属として含まれているが、これらを含まない、もしくはその濃度が十分ではない廃水を原水として使用する場合には上記濃度範囲となるように、水溶性の鉄の化合物を添加することが好ましい。また、原水に含まれるCa等がグラニュール形成促進剤として働く場合がある。   It is preferable to add 0.1 to 10 mg-Fe / L, more preferably 1 to 5 mg-Fe / L, of iron ions as a granule formation accelerator in the reaction tank 12 with respect to the inflow raw water amount. This iron ion adjusts the pH value of the solution to form fine particles or colloids, assists in the aggregation of microorganisms, and promotes the formation of granules. Ordinary wastewater contains iron ions as trace metals, but when using wastewater that does not contain these or its concentration is not enough as raw water, It is preferable to add the compound. Moreover, Ca etc. which are contained in raw water may work as a granule formation accelerator.

本実施形態に係る好気性グラニュールの形成方法によれば、これまで形成が困難と考えられていた連続通水式で好気性条件下においても安定的にグラニュールを形成することが可能となり、省スペースかつ低コストで生物処理を行うことが可能となる。   According to the formation method of aerobic granules according to the present embodiment, it becomes possible to stably form granules even under aerobic conditions in a continuous water flow method that has been considered difficult to form, Biological treatment can be performed in a space-saving and low-cost manner.

また、本実施形態に係る水処理方法及び水処理装置は、原水中の汚濁物質を好気性の微生物により生物化学的に処理する方法及び装置であって、微生物を自己造粒させて沈降性のよいグラニュールを形成させ、反応槽内に高密度で微生物を保持することにより高速な処理を実現することができる。   Further, the water treatment method and the water treatment apparatus according to the present embodiment are a method and apparatus for biochemically treating pollutants in raw water with aerobic microorganisms, wherein the microorganisms self-granulate and settle. High-speed processing can be realized by forming good granules and holding microorganisms at a high density in the reaction vessel.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1〜3、比較例1)
<原水中C/N比の影響>
好気性反応槽として内径64mm、高さ840mm(有効容積:約2.7L)の円筒形カラムに下部より酢酸ナトリウムを主体とした模擬排水を連続通水した。反応槽内の溶存酸素濃度は2〜3mg/Lに調整した。また、カラム上部には微生物と処理水、空気を分離するため気固分離装置(GSS:Gas−Solid Separator)を設置した。なお、このとき種汚泥として下水処理場より採取した活性汚泥を初期濃度として5000mgMLSS/Lとなるように添加した。また、原水にはグラニュール形成促進剤としてFeSO4をFeとして2mg/Lとなるように添加した。
(Examples 1 to 3, Comparative Example 1)
<Influence of raw water C / N ratio>
As an aerobic reaction tank, simulated drainage mainly composed of sodium acetate was continuously passed through a cylindrical column having an inner diameter of 64 mm and a height of 840 mm (effective volume: about 2.7 L). The dissolved oxygen concentration in the reaction vessel was adjusted to 2 to 3 mg / L. A gas-solid separator (GSS: Gas-Solid Separator) was installed at the top of the column to separate microorganisms, treated water, and air. At this time, activated sludge collected from the sewage treatment plant as seed sludge was added so as to have an initial concentration of 5000 mg MLSS / L. In addition, FeSO 4 was added to the raw water as a granule formation accelerator so as to be 2 mg / L as Fe.

実験はC/N比の影響を確認するため、窒素添加量を変化させて4通り実施した。表1に本実験に使用した原水組成を示す。   In order to confirm the influence of the C / N ratio, the experiment was performed in four ways by changing the nitrogen addition amount. Table 1 shows the raw water composition used in this experiment.

通常の生物処理で調整されるC/N比7.5(比較例1)においては糸状菌が繁殖して沈降性の非常に悪いフロック状になり、グラニュール化が確認されなかったが、C/N比を7以下に調整した実施例1〜3においては良好なグラニュールが形成された。また、良好なグラニュールが確認された実施例1〜3においては硝酸性窒素濃度が5mg/L以上確認され、微生物群中に硝化菌が生育していることが確認されたが、比較例1においては硝酸性窒素濃度が0〜3mg/Lであり、微生物群中に硝化菌が共存していないことが確認された。なお、硝酸性窒素濃度はJIS K0102(1998)に示される方法にて測定を行った。   At a C / N ratio of 7.5 (Comparative Example 1) adjusted by normal biological treatment, filamentous fungi grew and became a floc with very poor sedimentation, and granulation was not confirmed. In Examples 1 to 3 in which the / N ratio was adjusted to 7 or less, good granules were formed. Further, in Examples 1 to 3 in which good granules were confirmed, the nitrate nitrogen concentration was confirmed to be 5 mg / L or more, and it was confirmed that nitrifying bacteria were growing in the microorganism group. Comparative Example 1 , The nitrate nitrogen concentration was 0 to 3 mg / L, and it was confirmed that nitrifying bacteria did not coexist in the microorganism group. The nitrate nitrogen concentration was measured by the method shown in JIS K0102 (1998).

(実施例4〜6)
<処理対象有機物の影響>
実施例1と同様の装置を用いて流入有機物の影響を確認するために、処理対象有機物を変化させて試験を実施した。対象有機物のうち、TMAH(水酸化テトラメチルアンモニウム)については分子中に窒素を含有しているため、窒素源の添加は行わなかったが、その他の有機物については原水中のC/N比を5になるように調整して連続通水した。反応槽内の溶存酸素濃度は2〜3mg/Lに調整した。表3に本実験にて用いた原水組成を示す。
(Examples 4 to 6)
<Influence of organic substances to be treated>
In order to confirm the influence of the inflowing organic matter using the same apparatus as in Example 1, the test was performed by changing the processing target organic matter. Among the target organic substances, TMAH (tetramethylammonium hydroxide) contains nitrogen in the molecule, so the nitrogen source was not added, but the other organic substances had a C / N ratio of 5 in the raw water. It adjusted so that it might become, and it passed continuously. The dissolved oxygen concentration in the reaction vessel was adjusted to 2 to 3 mg / L. Table 3 shows the raw water composition used in this experiment.

表4に各有機炭素源を用いた場合のグラニュール化の有無と沈降性の指標として50日経過後のSVIについて示した。ペプトン−肉エキスを主体とした原水(実施例4)では初期にグラニュール状の塊が多くみられたが、通水を継続するにしたがって糸状菌が繁殖し、最終的には直径1cm程のふわふわしたボール状の沈降性の悪いグラニュールとなった。また、酢酸ナトリウム(実施例5)およびTMAH(実施例6)を主体とした原水においては初期より良好なグラニュール状となり、安定したグラニュールが形成された。また、良好なグラニュールが確認された実施例5及び6においては硝酸性窒素濃度がそれぞれ10〜20mg/L及び60〜70mg/L確認され、微生物群中に硝化菌が生育していることが確認された。一方、実施例4では硝酸性窒素濃度が85〜95mg/Lであった。   Table 4 shows SVI after 50 days as an indicator of the presence or absence of granulation and sedimentation when each organic carbon source is used. In the raw water mainly composed of peptone-meat extract (Example 4), many granular lumps were observed in the initial stage. However, filamentous fungi propagated as the water flow continued, and finally the diameter was about 1 cm in diameter. It became a fluffy ball-like granule with poor sedimentation. In addition, the raw water mainly composed of sodium acetate (Example 5) and TMAH (Example 6) was in a favorable granule shape from the beginning, and a stable granule was formed. In Examples 5 and 6 in which good granules were confirmed, nitrate nitrogen concentrations were confirmed to be 10 to 20 mg / L and 60 to 70 mg / L, respectively, and nitrifying bacteria were growing in the microorganism group. confirmed. On the other hand, in Example 4, the nitrate nitrogen concentration was 85 to 95 mg / L.

(実施例7)
<有機酸発酵との組み合わせ>
実施例4においてやや不安定なグラニュールが形成された肉エキス−ペプトンを主体にした原水(表3)において好気反応槽の前段に容積1.35Lの嫌気性有機酸発酵槽を設置してグラニュールの形成状態を観察した。嫌気性有機酸発酵槽の運転条件はpH5.0〜6.5、温度35℃、有機物負荷6.0kgCOD/m3/day、ORP−300程度とした。なお、好気性反応槽に関しては実施例1と同様のものを使用した。原水中のC/N比を2.7になるように調整して連続通水したが、一部の炭素は発酵槽内で消費され、反応槽内入口部分でのC/N比は2.1程度であった。また、反応槽内の溶存酸素濃度は2〜3mg/Lに調整した。
(Example 7)
<Combination with organic acid fermentation>
In the raw water (Table 3) mainly composed of meat extract-peptone in which a slightly unstable granule was formed in Example 4, an anaerobic organic acid fermenter having a volume of 1.35 L was installed in front of the aerobic reactor. The formation of granules was observed. The operating conditions of the anaerobic organic acid fermenter were pH 5.0 to 6.5, temperature 35 ° C., organic load 6.0 kg COD / m 3 / day, and ORP-300. The aerobic reaction tank was the same as in Example 1. The raw water was continuously adjusted to have a C / N ratio of 2.7, but a part of the carbon was consumed in the fermenter, and the C / N ratio at the inlet in the reactor was 2. It was about 1. The dissolved oxygen concentration in the reaction vessel was adjusted to 2 to 3 mg / L.

また、比較として有機酸発酵槽に空気を通気し、発酵を行わせない場合についても試験を実施した。結果を表5に示す。   Moreover, the test was implemented also about the case where air was ventilated to an organic acid fermenter as a comparison and fermentation was not performed. The results are shown in Table 5.

有機酸発酵槽内での発酵により、肉エキスおよびペプトンは大部分が酢酸、酪酸等の有機酸に変化した。発酵が起こらない系においては実施例4と同様に糸状菌が多量に発生し、沈降性の悪いグラニュールが形成されたが、通水継続と共に最終的に汚泥は流出したため、系を維持することができなかった。これに対し有機酸発酵を行った系に関しては良好なグラニュールが形成し、肉エキスやペプトン等のタンパク質系有機物を低分子有機酸に変化させることが好気性グラニュールの形成に有利であることが示された。また、良好なグラニュールが確認された系においては硝酸性窒素濃度が75〜85mg/L確認され、微生物群中に硝化菌が生育していることが確認された。一方、グラニュールの形成が不安定な系においても85〜95mg/Lと、十分な硝酸性窒素濃度を維持していた。   By the fermentation in the organic acid fermenter, most of the meat extract and peptone were changed to organic acids such as acetic acid and butyric acid. In a system where fermentation does not occur, a large amount of filamentous fungi were generated in the same manner as in Example 4, and granules with poor sedimentation were formed. I could not. On the other hand, good granule is formed in the system subjected to organic acid fermentation, and it is advantageous for the formation of aerobic granule to change protein-based organic matter such as meat extract and peptone to low molecular organic acid. It has been shown. Further, in a system in which good granules were confirmed, the nitrate nitrogen concentration was confirmed to be 75 to 85 mg / L, and it was confirmed that nitrifying bacteria were growing in the microorganism group. On the other hand, even in a system in which granule formation is unstable, a sufficient nitrate nitrogen concentration of 85 to 95 mg / L was maintained.

(実施例8、比較例2)
内径50mm、高さ3000mmの円筒カラム上部に空気と汚泥、処理水を分離するためのGSSを設置し、下部より表6に示した原水および空気を流入させた。原水中のC/N比を5.6になるように調整して連続通水した。空気量は1L/minとし、反応槽内の溶存酸素濃度として2〜3mg/Lとなるように調整した。また、比較例2として、ATU(アリルチオ尿素)を原水に対して86μmol/Lとなるように添加して硝化菌の活性を阻害させた系についても試験を実施した。
(Example 8, comparative example 2)
A GSS for separating air, sludge, and treated water was installed at the top of a cylindrical column having an inner diameter of 50 mm and a height of 3000 mm, and the raw water and air shown in Table 6 were introduced from the bottom. The raw water was continuously adjusted to have a C / N ratio of 5.6. The amount of air was 1 L / min, and the dissolved oxygen concentration in the reaction vessel was adjusted to 2 to 3 mg / L. Further, as Comparative Example 2, a test was also conducted on a system in which ATU (allylthiourea) was added to the raw water so as to be 86 μmol / L to inhibit the activity of nitrifying bacteria.

通水開始から60〜110日目における定常状態での試験結果の平均値を表7に、また汚泥状態の経時変化を表す写真を図3,4に示した。いずれもTOCの除去率は95%以上と高かったが、ATUを添加した系においては硝化が阻害されている。また図3,4から分かるように、ATUを添加しなかった実施例8(図3)においては明らかな造粒体が確認されたのに対して、ATUを添加して硝化菌が生育しない条件である比較例2(図4)においては造粒体の形成は確認されなかった。さらに、汚泥の沈降性の指標であるSVIも比較例2において高い値を示しており、実施例8の汚泥沈降性がよいことが確認された。また、良好なグラニュールが確認された実施例8においては硝酸性窒素が20〜30mg/L確認され、微生物群中に硝化菌が生育していることが確認された。一方、比較例2ではATUにより硝化が阻害され、硝酸性窒素濃度も0〜2mg/Lと非常に低い値であった。このことからグラニュールの形成には硝化菌の存在が大きなファクタとなっていることが示唆された。   The average values of the test results in the steady state on the 60th to 110th day from the start of water flow are shown in Table 7, and photographs showing the change in the sludge state with time are shown in FIGS. In both cases, the removal rate of TOC was as high as 95% or more, but nitrification was inhibited in the system to which ATU was added. In addition, as can be seen from FIGS. 3 and 4, in Example 8 (FIG. 3) in which ATU was not added, a clear granulated body was confirmed, whereas conditions in which nitrifying bacteria did not grow by adding ATU. In Comparative Example 2 (FIG. 4), formation of a granulated body was not confirmed. Furthermore, SVI, which is an index of sludge settling, also showed a high value in Comparative Example 2, confirming that the sludge settling in Example 8 was good. Moreover, in Example 8 in which good granules were confirmed, nitrate nitrogen was confirmed to be 20 to 30 mg / L, and it was confirmed that nitrifying bacteria were growing in the microorganism group. On the other hand, in Comparative Example 2, nitrification was inhibited by ATU, and the nitrate nitrogen concentration was a very low value of 0 to 2 mg / L. This suggests that the presence of nitrifying bacteria is a major factor in granule formation.

このように、硝化菌の共存下で微生物を造粒させることにより、連続通水式で好気性条件下において安定的にグラニュールを形成することが可能となり、処理対象となる有機物を含有する原水を省スペースかつ低コストで高速な生物処理を行うことができることは明らかである。   In this way, by granulating microorganisms in the presence of nitrifying bacteria, it becomes possible to form granules stably under aerobic conditions with continuous water flow, and raw water containing organic matter to be treated It is clear that high-speed biological treatment can be performed at low cost with low space.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the water treatment equipment concerning the embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施例8における汚泥状態の推移を示す写真である。It is a photograph which shows transition of the sludge state in Example 8 of this invention. 本発明の比較例2における汚泥状態の推移を示す写真である。It is a photograph which shows transition of the sludge state in the comparative example 2 of this invention.

符号の説明Explanation of symbols

1 水処理装置、10 原水貯留槽、12 反応槽、14 固液分離槽、16 処理水槽、18 原水導入ポンプ、20 エアポンプ、22 返送ポンプ、24 有機酸発酵槽。   DESCRIPTION OF SYMBOLS 1 Water treatment apparatus, 10 Raw water storage tank, 12 Reaction tank, 14 Solid-liquid separation tank, 16 Treated water tank, 18 Raw water introduction pump, 20 Air pump, 22 Return pump, 24 Organic acid fermentation tank.

Claims (5)

有機物および鉄イオンを0.1mg−Fe/L以上含有する原水を反応槽の下部から空気とともに連続的に導入して前記反応槽中の微生物と接触させ、前記微生物を造粒させたグラニュールを形成するとともに、前記反応槽の上部に設けられた気固分離装置により前記微生物と処理水、空気とを分離する好気性グラニュールの形成方法であって、前記原水のC/N比を7以下となるように調整して前記反応槽に導入し、前記反応槽において、好気性条件下、硝化菌の共存下で前記グラニュールを形成することを特徴とする好気性グラニュールの形成方法。 The organic matter and iron ions are continuously introduced into together with air from the lower portion of the raw water and the reaction vessel containing 0.1 mg-Fe / L or more in contact with the microorganisms in the reaction vessel was granulated said microorganism granulated And forming the aerobic granule by separating the microorganism, the treated water and the air by a gas-solid separation device provided at the top of the reaction tank , wherein the C / N ratio of the raw water is determined. A method for forming an aerobic granule, characterized in that the granule is adjusted to 7 or less and introduced into the reaction vessel, and the granule is formed in the reaction vessel in the presence of nitrifying bacteria under aerobic conditions. . 請求項1に記載の好気性グラニュールの形成方法であって、
前記反応槽内で硝化により生じた硝酸性窒素が5mg/L〜2000mg/Lの範囲となるように調整することを特徴とする好気性グラニュールの形成方法。
A method for forming an aerobic granule according to claim 1,
A method for forming an aerobic granule, comprising adjusting the nitrate nitrogen generated by nitrification in the reaction tank to be in a range of 5 mg / L to 2000 mg / L.
請求項1または2に記載の好気性グラニュールの形成方法であって、
前記原水中の有機物を嫌気性条件下で発酵させ、少なくとも一部を有機酸に変換した後、前記反応槽に導入することを特徴とする好気性グラニュールの形成方法。
A method for forming an aerobic granule according to claim 1 or 2,
A method for forming an aerobic granule, wherein the organic matter in the raw water is fermented under anaerobic conditions, and at least a part thereof is converted into an organic acid, and then introduced into the reaction vessel.
機物および鉄イオンを0.1mg−Fe/L以上含有する原水のC/N比を7以下となるように調整する工程と、
前記C/N比を7以下に調整した原水を反応槽の下部から空気とともに連続的に導入して前記反応槽中の微生物と接触させ、好気性条件下、硝化菌の共存下で、前記微生物を造粒させたグラニュールを形成して、前記有機物を生物処理する生物処理工程と、
前記反応槽の上部に設けられた気固分離装置により前記生物処理した処理水、空気と前記微生物とを分離する分離工程と、
を含むことを特徴とする水処理方法。
Organic matter and iron ions and adjusting the C / N ratio of the raw water containing 0.1 mg-Fe / L or more so that the 7 or less,
The C / N ratio 7 introduced continuously the raw water is adjusted to together with air from the lower portion of the reaction vessel below is contacted with microorganisms in the reactor, under aerobic conditions, in the presence of nitrifying bacteria, A biological treatment step of forming a granulated granule and biologically treating the organic matter;
A separation step of separating the biologically treated treated water , air and the microorganisms by a gas-solid separation device provided in an upper part of the reaction tank ;
A water treatment method comprising:
機物および鉄イオンを0.1mg−Fe/L以上含有する原水のC/N比を7以下となるように調整する手段と、
前記C/N比を7以下に調整した原水を微生物と接触させ、前記有機物を生物処理するための反応槽と、
前記反応槽の下部からに前記原水を連続的に導入するための原水導入手段と、
前記反応槽に酸素を供給するための酸素供給手段と、
前記反応槽の上部に設けられ、前記生物処理した処理水、前記酸素と前記微生物とを分離する分離手段と、
を備え、
前記反応槽において、好気性条件下、硝化菌の共存下で、前記微生物を造粒させたグラニュールを形成することを特徴とする水処理装置。
And organic matter and means for adjusting the iron ions to the C / N ratio of the raw water containing 0.1 mg-Fe / L or more is 7 or less,
A reaction tank for biologically treating the organic matter by bringing the raw water whose C / N ratio is adjusted to 7 or less into contact with microorganisms;
Raw water introduction means for continuously introducing the raw water from the lower part of the reaction tank;
Oxygen supply means for supplying oxygen to the reaction vessel;
A separation means for separating the biologically treated treated water , the oxygen and the microorganisms, which is provided in an upper part of the reaction tank ;
With
In the reaction tank, a granule obtained by granulating the microorganism is formed under aerobic conditions in the presence of nitrifying bacteria.
JP2007236683A 2007-09-12 2007-09-12 Aerobic granule formation method, water treatment method and water treatment apparatus Active JP4925208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236683A JP4925208B2 (en) 2007-09-12 2007-09-12 Aerobic granule formation method, water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236683A JP4925208B2 (en) 2007-09-12 2007-09-12 Aerobic granule formation method, water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2009066505A JP2009066505A (en) 2009-04-02
JP4925208B2 true JP4925208B2 (en) 2012-04-25

Family

ID=40603334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236683A Active JP4925208B2 (en) 2007-09-12 2007-09-12 Aerobic granule formation method, water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP4925208B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205585B2 (en) * 2009-02-04 2013-06-05 エコ・アース・エンジニアリング株式会社 Pollutant purification method and purification facility
WO2010150784A1 (en) 2009-06-22 2010-12-29 住友重機械工業株式会社 Microbial activity improvement agent, microbial activity improvement method, and biological waste treatment method
JP5914964B2 (en) 2010-10-18 2016-05-11 栗田工業株式会社 Ultrapure water production method
JP5746853B2 (en) * 2010-12-10 2015-07-08 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP5856749B2 (en) * 2011-04-01 2016-02-10 旭化成ケミカルズ株式会社 Biofilm remover
JP6442856B2 (en) * 2014-04-10 2018-12-26 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP2017077523A (en) * 2015-10-20 2017-04-27 株式会社神鋼環境ソリューション Biological waste water treatment method
JP6839047B2 (en) * 2017-07-31 2021-03-03 株式会社神鋼環境ソリューション Digestive sludge desorbed liquid treatment method, its treatment equipment, wastewater treatment method and wastewater treatment equipment
JP7037297B2 (en) * 2017-08-03 2022-03-16 オルガノ株式会社 Biological treatment method and biological treatment equipment

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123244A (en) * 1978-03-16 1979-09-25 Agency Of Ind Science & Technol Methane fermentation treatment device
JPS60241998A (en) * 1984-05-16 1985-11-30 Hitachi Plant Eng & Constr Co Ltd Treatment of sewage and other waste water
JPH0634993B2 (en) * 1984-09-17 1994-05-11 学校法人早稲田大学 Three-phase fluidized bed water purification method
JPS61268396A (en) * 1985-05-22 1986-11-27 Waseda Univ Fluidized bed reaction apparatus
JPS61268395A (en) * 1985-05-22 1986-11-27 Waseda Univ Fluidized bed biological treatment apparatus
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor
JPS63291694A (en) * 1987-05-21 1988-11-29 Hitachi Chem Co Ltd Fluidized bed septic tank and sewage treatment
JPS63291695A (en) * 1987-05-21 1988-11-29 Hitachi Chem Co Ltd Fluidized bed septic tank and sewage treatment
JP2672109B2 (en) * 1988-04-13 1997-11-05 オルガノ株式会社 Method and apparatus for aerobic treatment of organic wastewater
JPH0738993B2 (en) * 1991-07-31 1995-05-01 株式会社西原環境衛生研究所 Sewage treatment method and device
JPH05261385A (en) * 1992-01-22 1993-10-12 Sankyo Co Ltd Granulation method by aerobic biological treatment of organic waste water and aerobic biological treatment of organic waste water
JPH06142670A (en) * 1992-11-10 1994-05-24 Nippon Oil Co Ltd Method and device for purifying treatment for waste water
NL1005345C2 (en) * 1997-02-21 1998-08-24 Univ Delft Tech Method for obtaining granular growth of a microorganism in a reactor.
JP2001038389A (en) * 1999-07-30 2001-02-13 Kawasaki City Method for removing nitrogen of waste water
JP2002001389A (en) * 2000-06-19 2002-01-08 Univ Waseda Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
JP4899253B2 (en) * 2001-05-21 2012-03-21 栗田工業株式会社 Wastewater aerobic treatment method
JP5292659B2 (en) * 2001-07-16 2013-09-18 栗田工業株式会社 A method for nitrification of ammonia nitrogen-containing water
JP2003266095A (en) * 2002-03-14 2003-09-24 Univ Waseda Method for forming nitrification granules
JP4632135B2 (en) * 2005-02-28 2011-02-16 株式会社日立プラントテクノロジー Method and apparatus for treating ammonia-containing liquid
JP2006289311A (en) * 2005-04-14 2006-10-26 Japan Organo Co Ltd Method for treating drainage
JP4596533B2 (en) * 2005-04-14 2010-12-08 オルガノ株式会社 Wastewater treatment method
JP2006320793A (en) * 2005-05-17 2006-11-30 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2006346536A (en) * 2005-06-14 2006-12-28 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2007136366A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007136364A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular microbe sludge
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water

Also Published As

Publication number Publication date
JP2009066505A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
CN108483655B (en) Method for deep denitrification by coupling shortcut nitrification and denitrification with anaerobic ammonia oxidation and sulfur autotrophic denitrification
US5833856A (en) Process for biologically removing phosphorus and nitrogen from wastewater by controlling carbohydrate content therein
US6712970B1 (en) Sewage treatment process with phosphorus removal
US8894857B2 (en) Methods and systems for treating wastewater
AU731280B2 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
JP4224951B2 (en) Denitrification method
CN101626983A (en) Processing contains the method and apparatus of the waste water of sulfide and ammonium
JP4872171B2 (en) Biological denitrification equipment
JPH05169091A (en) Substrate of biomass for nitration, reactor for performing aerobic nitration of refuse by using said substrate and biological method for it, and method for removing nitrogen compound
Cydzik-Kwiatkowska et al. Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes
CN112573652B (en) Sulfur autotrophic denitrification treatment process
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP4267860B2 (en) Nitrogen and phosphorus simultaneous removal type wastewater treatment method
WO2005014485A2 (en) Chemically enhanced primary sludge fermentation method
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP3358348B2 (en) Anaerobic treatment method
JP2003266095A (en) Method for forming nitrification granules
JP5746853B2 (en) Waste water treatment apparatus and waste water treatment method
JP3387244B2 (en) Anaerobic treatment method
JP2001252686A (en) Anaerobic treatment method for organic waste water
JP2003305493A (en) Method for starting activated sludge treating apparatus
JP4596533B2 (en) Wastewater treatment method
JP6461408B1 (en) Water treatment method and water treatment apparatus
JPH08155486A (en) Anaerobic treatment method for organic drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250