JPS63242394A - Treatment of drainage and equipment therefor - Google Patents

Treatment of drainage and equipment therefor

Info

Publication number
JPS63242394A
JPS63242394A JP62078912A JP7891287A JPS63242394A JP S63242394 A JPS63242394 A JP S63242394A JP 62078912 A JP62078912 A JP 62078912A JP 7891287 A JP7891287 A JP 7891287A JP S63242394 A JPS63242394 A JP S63242394A
Authority
JP
Japan
Prior art keywords
reaction section
type reaction
microorganisms
flow type
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078912A
Other languages
Japanese (ja)
Other versions
JPH0367756B2 (en
Inventor
Toshinori Kiyousai
俊則 京才
Kazuaki Sato
和明 佐藤
Masahiro Takahashi
正宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO DOBOKU KENKYU SHOCHO
Original Assignee
KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO DOBOKU KENKYU SHOCHO filed Critical KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority to JP62078912A priority Critical patent/JPS63242394A/en
Publication of JPS63242394A publication Critical patent/JPS63242394A/en
Publication of JPH0367756B2 publication Critical patent/JPH0367756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To prevent clogging by lowering drainage while solubilizing oxygen in drainage and furthermore bringing it into contact with aerobic microorganisms in an up flow type reaction part. CONSTITUTION:Both downflow type reaction parts 1a-1e and up flow type reaction parts 2a-2e are communicated in the reverse parts 3 of the lower parts thereof and alternately joined in many steps. Drainage is introduced into the lower part of the up flow type reaction part 2' with a pump 5, raised and thereafter overflowed and introduced into the downflow type reaction part 1a and lowered therethrough. Then it is reversed in the reverse part 3 and introduced into the up flow type reaction part 2a and raised therethrough, overflowed and introduced into the downflow type reaction part 1b in a second step. It is discharged from the up flow type reaction part 2e in the final step by repeating this raising and lowering. Thereby treated water having good quality is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、都市下水、工場排水、家庭排水等の排水よ
り固型物、有機性汚濁物質、栄養塩類等を除去する排水
処理方法およびその装置に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a wastewater treatment method for removing solid matter, organic pollutants, nutrient salts, etc. from wastewater such as urban sewage, industrial wastewater, and domestic wastewater. Regarding equipment.

(従来の技術) 都市下水等の排水処理施設は、多くの場合生物学的処理
法を用いており、これは基本的には各種の汚濁物質を摂
取して生育する微生物を利用して処理を行うものである
。この生物処理法は用いる微生物が酸素を必要とする好
気性生物処理法と、酸素を嫌う嫌気性生物処理法とに分
類される。さらに好気性生物処理法および嫌気性生物処
理法のいずれも、水中に浮遊している微生物を用いる浮
遊生物処理法と、砕石、プラスチック等の表面に付着さ
せた微生物を用いる付着生物法とに大別される。
(Prior technology) Wastewater treatment facilities such as urban sewage often use biological treatment methods, which basically use microorganisms that ingest and grow various pollutants to perform treatment. It is something to do. This biological treatment method is classified into an aerobic biological treatment method in which the microorganisms used require oxygen, and an anaerobic biological treatment method in which the microorganisms used do not like oxygen. Furthermore, both aerobic and anaerobic biological treatment methods are significantly different from the suspended biological treatment method, which uses microorganisms suspended in water, and the sessile biological method, which uses microorganisms attached to the surfaces of crushed stones, plastic, etc. Separated.

(発明が解決しようとする問題点) 活性汚泥法等の好気性浮遊生物法は、酸素を必要とする
微生物を生育させるため、一般的に空気中の酸素等を供
給する必要があり、このためのブロアー等の運転にかな
りの動力を必要とする。また浮遊している微生物は、沈
殿池等で処理水と分離しなくてはならないが、種々の条
件によって浮遊微生物の沈降性が悪化し、分離が困難と
なる場合が多い。さらに微生物を高密度に生育し、施設
容量を減少させようとしても、水中に溶解する酸素濃度
に制限があるため、一定の限界を有している。好気性付
着生物法は酸素を必要とする点で、同浮遊生物法と同じ
くかなりの動力を必要とし、また付着した生物が、次第
に増加して目詰りを起すという欠点がある。
(Problems to be solved by the invention) Aerobic suspended organism methods such as activated sludge methods generally require supply of oxygen, etc. in the air in order to grow microorganisms that require oxygen. A considerable amount of power is required to operate the blower, etc. Furthermore, floating microorganisms must be separated from treated water in a settling tank or the like, but various conditions often deteriorate the sedimentation properties of floating microorganisms, making separation difficult. Furthermore, even if we attempt to grow microorganisms at high density and reduce facility capacity, there is a certain limit because there is a limit to the concentration of oxygen dissolved in water. The aerobic sessile organism method requires oxygen and, like the floating organism method, requires a considerable amount of power, and also has the disadvantage that the sessile organisms gradually increase and cause clogging.

次に一般に嫌気性生物処理法は、好気性生物処理法に比
べ数倍以上の大きさの反応槽を必要とするという欠点が
ある。そのうち嫌気性浮遊生物処理法は、主に化学的酸
素要求量 (Chemical Oxygen Demand、 
C0D) 5000mg#1以上の比較的高濃度の排水
に用いられ、これよりも低濃度の排水に対しては、嫌気
性微生物が水中に分散し易い性質を有しているため、こ
れらを施設内に抑留することが困難である。また処理水
質は生物学的酸素要求量(Biological Ox
ygenDemand、 BOD)で50mg/Q以上
と、好気性処理に比較して劣る。嫌気性付着生物法も処
理水質は同浮遊生物処理法と同様であり、流入水中の固
型物等により目詰りが生じる。
Next, anaerobic biological treatment methods generally have the disadvantage of requiring a reaction tank several times larger than that of aerobic biological treatment methods. Among them, anaerobic planktonic treatment method mainly deals with chemical oxygen demand (Chemical Oxygen Demand,
C0D) It is used for wastewater with a relatively high concentration of 5000 mg #1 or more, and for wastewater with a lower concentration than this, anaerobic microorganisms have a tendency to disperse in the water, so these should not be used within the facility. It is difficult to detain them. In addition, the quality of treated water is determined by biological oxygen demand (Biological Oxygen Demand).
ygenDemand, BOD) of 50 mg/Q or more, which is inferior to aerobic treatment. The treated water quality of the anaerobic sessile organism method is similar to that of the planktonic organism treatment method, and clogging occurs due to solid matter in the inflowing water.

この発明は上記の4方式の微生物の生育条件にくらべ、
全く異なった生育条件を与えることにより、新しい微生
物群を生育させ、上記の欠点を解決することを目的とす
るものである。
Compared to the above four methods of microbial growth conditions, this invention
The purpose is to grow a new group of microorganisms by providing completely different growth conditions and to solve the above-mentioned drawbacks.

(問題点を解決するための手段) 上記目的を達成するためのこの発明の第1は排水処理方
法にあり、下向流式反応部において排水に酸素を溶存さ
せながら該排水を下降させ、引き続き上向流式反応部に
おいて前記排水を緩やかに上昇させ、この上向流式反応
部で形成された好気性微生物群、嫌気性微生物群および
固形物を含む自己造粒汚泥を同反応部に抑留することを
特徴とするものである。
(Means for Solving the Problems) The first aspect of the present invention to achieve the above object is a wastewater treatment method, in which the wastewater is lowered while dissolving oxygen in the wastewater in a downward flow reaction section, and then The wastewater is slowly raised in the upflow reaction section, and the self-granulated sludge containing aerobic microorganisms, anaerobic microorganisms, and solids formed in the upflow reaction section is retained in the reaction section. It is characterized by:

この発明の第2は上記方法を実施する装置にあり、散気
装置が設けられた下向流式反応部と、この反応部の下部
に連通された上向流式反応部とが交互に多段に連結され
ていることを特徴とするものである。
The second aspect of this invention is an apparatus for carrying out the above method, in which a downward flow reaction section provided with an aeration device and an upward flow reaction section connected to the lower part of this reaction section are alternately arranged in multiple stages. It is characterized by being connected to.

(実施例) この発明を図面に示す一実施例に基づいて以下に説明す
る。
(Example) This invention will be described below based on an example shown in the drawings.

図面は装置の一例を示し、下向流式反応部la、 lb
、・・・1eと上向流式反応部2a、 2b、・・・2
eとがそれらの下部の反転部3において連通され、この
ような2つの反応部1a、 lb、・・・1eおよび2
a、 2b、・・・2eが交互に多数段連結されている
。流入ポンプ槽4の排水はポンプ5により前処理用上向
流式反応部2′の下部に流入して緩やかに上昇した後、
オーバーフローして第1段目の下向流式反応部1aに流
入し、この反応部1aを下降し反転部3において反転し
て、第1段目の上向流式反応部2aに流入し、この反応
部2aを緩やかに上昇しオーバーフローして第2段目の
下向流式反応部1bに流入し、以下このような上昇およ
び下降を繰り返して最終段の上向流式反応部2eから排
出される。
The drawing shows an example of the device, with downward flow reaction sections la and lb.
,...1e and upflow reaction sections 2a, 2b,...2
e are communicated with each other at the inverted part 3 at the bottom thereof, and these two reaction parts 1a, lb, ... 1e and 2
A, 2b, . . . 2e are alternately connected in multiple stages. The waste water from the inflow pump tank 4 flows into the lower part of the pre-treatment upflow type reaction section 2' by the pump 5 and gradually rises.
It overflows and flows into the first stage downward flow type reaction section 1a, descends through this reaction section 1a, is reversed at the reversing section 3, flows into the first stage upward flow type reaction section 2a, and this reaction It gradually rises through the section 2a, overflows, and flows into the second stage downward flow reaction section 1b, and thereafter repeats such rising and falling and is discharged from the final stage upward flow reaction section 2e.

上向流式反応部2a、 2b、・・・2eおよび2′は
いずれも上部へ向う程、断面積が大きくなっており、し
たがって水の上昇速度が徐々に減少し、このため前処理
用上向流式反応部2′において流入水中に含まれる固型
物のうち、水の上昇速度より速い沈降速度を持つものは
、同反応部2′内に抑留される。但し、流入水中に固型
物が存在しないか存在しても微量である場合には、前処
理用上向流式反応部2′を省略し、第1段目の下向流式
反応部1aの上部に排水を直接流入させることもできる
The cross-sectional area of each of the upflow reaction sections 2a, 2b, . Among the solid substances contained in the inflow water in the countercurrent reaction section 2', those having a settling velocity faster than the rising velocity of the water are retained in the reaction section 2'. However, if there are no solids in the inflow water, or if there is only a small amount of solid matter, the upstream reaction section 2' for pretreatment may be omitted, and the upper part of the first stage downward flow reaction section 1a may be used. It is also possible to allow wastewater to flow directly into the tank.

各段の下向流式反応部1a、 lb、・・・1eの下部
には散気装置6が設置してあり、空気又は酸素による曝
気が行なわれ、水中に酸素を溶解させている。第1段目
の下向流式反応部1aに流入した固型物は同反応部に抑
留されず、そのまま、第1段目の上向流式反応部2aへ
流入する。同反応部2aに流入する水は酸素を含むため
、ここでは好気性微生物群が増殖することが可能である
。しかし同段の下向流式反応部1aで供給される酸素濃
度は、酸素の水中での飽和溶解1度(空気で曝気した場
合約8〜1.0mg#l)が限界であり、一方、通常の
排水の生物学的酸素要求量は、100〜数千mgIQの
間(都市下水で100〜200mgIQ)であるため、
酸素供給量は明らかに不足する。このため、第1段目の
上向流式反応部2aでは、好気性微生物群と嫌気性微生
物群とが共存することになる。また同反応部では下向流
による緩やかな撹拌が常時生じており、排水中の固型物
と上記微生物群は絶えず緩やかな接触を繰り返している
An aeration device 6 is installed at the bottom of each stage of the downward flow type reaction sections 1a, lb, . . . 1e, and aeration with air or oxygen is performed to dissolve oxygen in the water. The solid material that has flowed into the first-stage downward flow type reaction section 1a is not retained in the same reaction section, but directly flows into the first-stage upward flow type reaction section 2a. Since the water flowing into the reaction section 2a contains oxygen, it is possible for aerobic microorganisms to proliferate here. However, the oxygen concentration supplied in the downward flow reaction section 1a of the same stage has a limit of 1 degree of saturated dissolution of oxygen in water (approximately 8 to 1.0 mg#l when aerated with air); Since the biological oxygen demand of normal wastewater is between 100 and several thousand mgIQ (100-200mgIQ in urban sewage),
Oxygen supply is clearly insufficient. Therefore, in the first stage upflow reaction section 2a, an aerobic microorganism group and an anaerobic microorganism group coexist. In addition, in the reaction section, gentle agitation is constantly occurring due to the downward flow, and the solid matter in the wastewater and the microorganisms mentioned above are constantly in repeated gentle contact with each other.

このような環境下で、固型物と微生物群は自己造粒化現
象を起すことが確認された。つまり固型物と微生物群が
集塊を作り、直径2〜20mm程度の球状となる。この
球状物質を以下、自己造粒汚泥と呼ぶ。自己造粒汚泥の
内部は、真黒い嫌気状の汚泥でありこの部分に多数の嫌
気性微生物が生育している。自己造粒汚泥の表面は白く
薄い膜に被われており、顕微鏡1i1’!察によって、
この被膜は硫黄粒子を細胞内に含有する好気性糸状細菌
であることが確認された。
It was confirmed that under such an environment, solid matter and microorganisms self-granulate. In other words, the solid matter and microorganisms form an agglomerate, forming a spherical shape with a diameter of about 2 to 20 mm. This spherical material is hereinafter referred to as self-granulating sludge. The inside of self-granulated sludge is pitch black anaerobic sludge, and a large number of anaerobic microorganisms grow in this part. The surface of self-granulating sludge is covered with a thin white film, which can be seen under a microscope 1i1'! By inspection,
This coating was confirmed to be aerobic filamentous bacteria containing sulfur particles within the cells.

自己造粒汚泥は、指先でつまむことができる程度の強度
を持ち、その沈降速度は極めて速いため、一度造粒が行
なわれると、上向流式反応部2a、 2b、・・・2e
より流出することがなく、同反応部に浮遊した状態で蓄
積していく。同反応部ではこれらの好気性および嫌気性
微生物により、排水中の有機性汚濁物質および栄養塩類
の一部が摂取される。一部の固型物および微生物群は前
処理用反応部2′で自己造粒汚泥とならずに第1段目の
下向流式反応部1aへ流出するが、第2段目以降の上向
流式反応部2b・・・2eでも自己造粒汚泥が前記と同
様の機構により生育する。以上のような過程を経て、排
水中の有機性汚濁物質は減少を続け、最終段目で目的の
処理水質を得ることができる。
Self-granulated sludge has such strength that it can be pinched with fingertips, and its sedimentation speed is extremely fast.
It does not flow out and accumulates in a suspended state in the reaction area. In the reaction section, these aerobic and anaerobic microorganisms ingest some of the organic pollutants and nutrient salts in the wastewater. Some solid substances and microorganisms flow into the first stage downward flow type reaction part 1a without becoming self-granulated sludge in the pretreatment reaction part 2', but in the second stage and subsequent stages the upward flow Self-granulating sludge also grows in the reaction sections 2b...2e by the same mechanism as described above. Through the process described above, organic pollutants in the wastewater continue to decrease, and the desired quality of treated water can be obtained in the final stage.

自己造粒汚泥は、好気性微生物と嫌気性微生物の長所を
兼ね備え1問題点を補完し合う特性を有している。すな
わち、嫌気性微生物が自己造粒汚泥のかなりの部分を占
め、好気性微生物と共存して有機性汚濁物質を除去して
いるため、好気性微生物のみを用いる場合に比べ酸素の
消費量が少なくて済み、動力費の低減がはかれること。
Self-granulating sludge has the characteristics of combining the advantages of aerobic microorganisms and anaerobic microorganisms and complementing each other's problems. In other words, anaerobic microorganisms make up a large portion of self-granulating sludge and coexist with aerobic microorganisms to remove organic pollutants, so the amount of oxygen consumed is lower than when only aerobic microorganisms are used. It is possible to reduce power costs.

嫌気性微生物が主体であるため、溶解する酸素濃度に制
限されずに、微生物を高密度に生育させることが可能で
あり、施設容量を削減できること。嫌気性微生物を低濃
度排水に対して用いるときに問題となった、微生物が水
中に分散し易い性質は、好気性糸状細菌の働きによる自
己造粒汚泥で解決されること。また嫌気性微生物のみで
は処理後の水質に問題があったが、この発明においては
、施設の最終段では十分好気的な状態を保つことができ
、処理後の水質は、好気性微生物を用いた処理と同等の
ものとなること。さらに、浮遊生物法一般では、処理水
と浮遊している微生物の分離が困難となることがあった
が、自己造粒汚泥はその速い沈降速度のため、何ら問題
を生じないこと。加えて、付着生物法一般で問題となる
目詰りも、自己造粒汚泥は上向流式反応部内で上向流に
よって反応部の中間部で流動化しているため、通常は問
題とはならないこと。
Since it is mainly composed of anaerobic microorganisms, it is possible to grow microorganisms at high density without being limited by dissolved oxygen concentration, and the capacity of the facility can be reduced. The problem when using anaerobic microorganisms for low-concentration wastewater, which is the tendency for microorganisms to disperse into water, can be resolved by using self-granulating sludge through the action of aerobic filamentous bacteria. In addition, using only anaerobic microorganisms had problems with the water quality after treatment, but with this invention, a sufficiently aerobic condition can be maintained at the final stage of the facility, and the water quality after treatment can be improved by using aerobic microorganisms. The process will be equivalent to the one previously used. Furthermore, in general suspended organism methods, it sometimes becomes difficult to separate suspended microorganisms from treated water, but self-granulating sludge does not cause any problems due to its fast settling speed. In addition, clogging, which is a problem with the general sessile method, is not usually a problem because self-granulated sludge is fluidized in the middle of the reaction section by upward flow in the upflow reaction section. .

なお、下向流式反応部1a、 lb、・・・1eから上
向流反応部2a、 2b、・・・2eへ連絡する反転部
3においては装置を簡易な構造としたい都合上、死水域
が生じることは避けられず、この部分に、自己造粒汚泥
の一部が堆積する傾向にある。これを放置すると、やが
て目詰りの原因となるため、流入ポンプ5の停止時に連
動して、上向流式反応部2a、 2b、・・・2eの底
部より、撹拌のため曝気孔7を設置している。このため
流入ポンプ槽4の容量を若干大きくすることにより、流
入ポンプの運転を断続的に行うことができる。
In addition, in the reversing section 3 that connects the downward flow reaction sections 1a, lb, . . . 1e to the upflow reaction sections 2a, 2b, . This is unavoidable, and some of the self-granulating sludge tends to accumulate in this area. If this is left unattended, it will eventually cause clogging, so when the inflow pump 5 is stopped, aeration holes 7 are installed from the bottoms of the upward flow reaction sections 2a, 2b, ... 2e for stirring. are doing. Therefore, by slightly increasing the capacity of the inflow pump tank 4, the inflow pump can be operated intermittently.

流入ポンプ停止時に上向流式反応部を曝気撹拌すること
で、堆積した自己造粒汚泥を再び流動化させ、目詰りを
防ぐことができる。この時、流入ポンプは停止している
ため、流動化した自己造粒汚泥が同反応部より流出する
ことはない。
By aerating and stirring the upflow reaction section when the inflow pump is stopped, the accumulated self-granulating sludge can be fluidized again and clogging can be prevented. At this time, since the inflow pump is stopped, the fluidized self-granulated sludge does not flow out from the reaction section.

(実験例) この発明方法により都市下水(沈澱処理後)を処理した
例を以下に示す。
(Experimental Example) An example in which urban sewage (after sedimentation treatment) was treated by the method of this invention is shown below.

(1)装置仕様 5段の下向流式反応部と上向流式反応部とを有する総容
量213Qのアクリル製実験装置。
(1) Equipment Specifications Acrylic experimental equipment with a total capacity of 213Q, including a five-stage downward flow reaction section and an upflow reaction section.

水理学的全滞留時間4.5時間。Total hydraulic residence time 4.5 hours.

(2)運転条件 処理水量1,136fl/日。上向流式反応部の平均浮
遊性固形物濃度7,000■/Q。
(2) Operating conditions Processed water amount: 1,136 fl/day. The average suspended solids concentration in the upflow reaction section is 7,000 μ/Q.

(3)処理性能(単位■/Q) (発明の効果) 以上のように、この発明によれば、嫌気性・好気性の微
生物の長所を生かし1両微生物を含む自己造粒汚泥が生
成されるので、処理に要する動力量、施設容量を削減し
、微生物と処理水の分離が簡易で確実なものとなり、良
好な処理水質を得ることができ、目詰り等の問題も生じ
ない。また装置には沈殿池等の特別の固液分離装置や分
離された微生物を返送する装置が不要であり、非常に簡
易な構造であるため、維持管理に要する人員を削減する
ことができる。
(3) Treatment performance (unit ■/Q) (Effect of the invention) As described above, according to the present invention, self-granulating sludge containing both anaerobic and aerobic microorganisms is generated by taking advantage of the advantages of anaerobic and aerobic microorganisms. As a result, the amount of power and facility capacity required for treatment is reduced, the separation of microorganisms and treated water is simple and reliable, good quality of treated water can be obtained, and problems such as clogging do not occur. In addition, the device does not require a special solid-liquid separation device such as a settling tank or a device for returning separated microorganisms, and has a very simple structure, so the number of personnel required for maintenance and management can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示す概略図。 la、lb、・・・1e:  下向流式反応部2a 、
 2b 、・・・2e:  上向流式反応部3:反転部 4:流入ポンプ槽 5:流入ポンプ 6:散気装置 7:曝気装置
The drawing is a schematic diagram showing an embodiment of the present invention. la, lb,...1e: Downward flow reaction section 2a,
2b,...2e: Upflow reaction section 3: Inversion section 4: Inflow pump tank 5: Inflow pump 6: Aeration device 7: Aeration device

Claims (1)

【特許請求の範囲】 1、下向流式反応部において排水に酸素を溶存させなが
ら該排水を下降させ、引き続き上向流式反応部において
前記排水を緩やかに上昇させ、この上向流式反応部で形
成された好気性微生物群、嫌気性微生物群および固形物
を含む自己造粒汚泥を同反応部に抑留することを特徴と
する排水処理方法。 2、散気装置が設けられた下向流式反応部と、この反応
部の下部に連通された上向流式反応部とが交互に多段に
連結されていることを特徴とする排水処理装置。
[Claims] 1. In a downward flow type reaction section, the waste water is lowered while dissolving oxygen in the waste water, and then in an upward flow type reaction section, the waste water is slowly raised, and this up flow type reaction is performed. A wastewater treatment method characterized by retaining self-granulated sludge containing aerobic microorganisms, anaerobic microorganisms, and solid matter formed in the reaction section. 2. A wastewater treatment device characterized in that a downward flow reaction section provided with an aeration device and an upward flow reaction section connected to the lower part of this reaction section are alternately connected in multiple stages. .
JP62078912A 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor Granted JPS63242394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078912A JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078912A JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Publications (2)

Publication Number Publication Date
JPS63242394A true JPS63242394A (en) 1988-10-07
JPH0367756B2 JPH0367756B2 (en) 1991-10-24

Family

ID=13675055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078912A Granted JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Country Status (1)

Country Link
JP (1) JPS63242394A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123696A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment of organic waste water
JPH01123697A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment device for organic waste water
JPH03238092A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treating device
JPH03238093A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treatment
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122941A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5753158A (en) * 1980-09-16 1982-03-30 Taiyo Musen Kk Automatic frequency setting device for voltage control variable frequency oscillator
JPS5952597A (en) * 1982-09-18 1984-03-27 Kankyo Gijutsu Kaihatsu:Kk Biological treatment of waste water containing organic substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122941A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5753158A (en) * 1980-09-16 1982-03-30 Taiyo Musen Kk Automatic frequency setting device for voltage control variable frequency oscillator
JPS5952597A (en) * 1982-09-18 1984-03-27 Kankyo Gijutsu Kaihatsu:Kk Biological treatment of waste water containing organic substance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123696A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment of organic waste water
JPH01123697A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment device for organic waste water
JPH0586279B2 (en) * 1987-11-05 1993-12-10 Ebara Infilco
JPH0586280B2 (en) * 1987-11-05 1993-12-10 Ebara Infilco
JPH03238092A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treating device
JPH03238093A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treatment
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2009066505A (en) * 2007-09-12 2009-04-02 Univ Waseda Method of forming aerobic granule, water treatment method and water treatment apparatus
JP2010179213A (en) * 2009-02-04 2010-08-19 Eco Earth Engineering Kk Method and facility for purifying pollutant

Also Published As

Publication number Publication date
JPH0367756B2 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
US6793822B2 (en) Aerobic biomass granules for waste water treatment
KR100412330B1 (en) Membrane Coupled Activated Sludge Method Operating Anoxic/Anaerobic Zone alternatively for Removal of Nitrogen and Phosphorus
CN1810681B (en) Degradation treatment process and system for organics in organically-polluted water
JP2007136367A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP4899253B2 (en) Wastewater aerobic treatment method
US7452469B1 (en) Apparatus having rotary activated Baccillus contractor for purifying sewage and wastewater and method using the same
JP2008284427A (en) Apparatus and method for treating waste water
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JP2007136365A (en) Method for producing granular microbe sludge
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP2006255514A (en) Apparatus and method for treating organic waste water
JPS63242394A (en) Treatment of drainage and equipment therefor
KR100937482B1 (en) Method and device for sewage disposal using the submersible hollow media
JP2006239510A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP5743448B2 (en) Sewage treatment equipment
JP2007136368A (en) Apparatus and method for biologically treating drainage
JP2007136369A (en) Apparatus and method for biologically treating drainage
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
KR20040079111A (en) Device and method for continuous feeding and intermittent discharge in sewage and wastewater treatment plant
JP2007136364A (en) Method and apparatus for producing granular microbe sludge
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JP2006136783A (en) Apparatus and method for treating waste water
KR19990046806A (en) Multistep biological slime contact process by natural aeration
JPH07136678A (en) Wastewater treatment method and tank

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term