JPH03238092A - Waste liquor treating device - Google Patents

Waste liquor treating device

Info

Publication number
JPH03238092A
JPH03238092A JP2029552A JP2955290A JPH03238092A JP H03238092 A JPH03238092 A JP H03238092A JP 2029552 A JP2029552 A JP 2029552A JP 2955290 A JP2955290 A JP 2955290A JP H03238092 A JPH03238092 A JP H03238092A
Authority
JP
Japan
Prior art keywords
reaction
reaction tank
stage
tank
upflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029552A
Other languages
Japanese (ja)
Other versions
JPH0636920B2 (en
Inventor
Toshinori Kiyousai
俊則 京才
Kazuaki Sato
和明 佐藤
Masahiro Takahashi
正宏 高橋
Tadao Kawashima
川島 忠雄
Mineya Nakamura
中村 峯也
Yasuhiro Okubo
泰宏 大久保
Yoshihiro Nabeshima
鍋島 良宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDOU SHISETSUGIYOU KYOKAI
Minister for Public Works for State of New South Wales
National Research and Development Agency Public Works Research Institute
Original Assignee
NIPPON GESUIDOU SHISETSUGIYOU KYOKAI
Minister for Public Works for State of New South Wales
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDOU SHISETSUGIYOU KYOKAI, Minister for Public Works for State of New South Wales, Public Works Research Institute Ministry of Construction filed Critical NIPPON GESUIDOU SHISETSUGIYOU KYOKAI
Priority to JP2029552A priority Critical patent/JPH0636920B2/en
Publication of JPH03238092A publication Critical patent/JPH03238092A/en
Publication of JPH0636920B2 publication Critical patent/JPH0636920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To prevent the quality deterioration of the liquors being treated and oxidize sulfide in the waste liquors efficiently by a method wherein excessive sludge is sent from an upward flow reaction tank at the last stage of a first group of reacting part back into the upward flow reaction tank in the same group with the flow of at least a specific amt. of the liquors running into the first-mentioned reaction tank. CONSTITUTION:When waste liquor has reacted an upward flow reacting tank 6-4 at the last stage of a first group of reacting part 1, excessive sludge is removed therefrom with the flow of at least 5% of the amt. of the liquor running into the reacting tank 6-4 by the operation of a first sludge pump 22 provided on a pipe 21 and sent back into an upward flow reacting tank 6-2 in the same group, whereby the sludge consisting mainly of the anaerobic microorganisms produced in the first group of reacting part 1 is prevented from flowing into a second group of reacting part 2. In this way foul substances and sulfide are prevented from remaining in the liquor being treated, so that a good quality of treated water can be obtained.

Description

【発明の詳細な説明】 2− 産業上の利用分野 この発明は都市下水、工場排水、家庭排水などの排水よ
り、固形物、有機性汚濁物質などを除去する排水処理装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION 2-Field of Industrial Application This invention relates to a wastewater treatment device for removing solid matter, organic pollutants, etc. from wastewater such as urban sewage, industrial wastewater, and domestic wastewater.

従来の技術 従来微生物を利用する各種の排水処理方法があり、それ
らのもつ問題を解決することのできる排水処理方法とし
て、特開昭63−242394号に開示されたようなも
のが提案された。
BACKGROUND OF THE INVENTION Conventionally, there have been various wastewater treatment methods that utilize microorganisms, and a method disclosed in Japanese Patent Laid-Open No. 63-242394 has been proposed as a wastewater treatment method that can solve the problems associated with these methods.

これは排水に酸素を溶解させる反応槽に引き続き、上向
流式反応槽において、前記排水を緩やかに上昇させ、こ
の上向流式反応槽で形成された好気性微生物群、嫌気性
微生物群、および固形物を含む自己造粒汚泥を、同反応
槽に抑留する装置であって、同反応槽をもつ反応部が複
数段設けられ、さらにこれらの反応部が前段の固液分離
用として作用する反応部と、後段の生物反応部として作
用する反応部とに区分されている。ところでこのような
既提案の排水処理装置にあっては、各反応部において散
気装置が設3− けられた反応槽で空気または酸素を供給して、上向流式
反応槽で好気性の糸状性細菌を増殖させ、自己造粒汚泥
を形成することとなる。
Following the reaction tank in which oxygen is dissolved in the waste water, the waste water is slowly raised in an upflow reaction tank, and the aerobic microorganism group, anaerobic microorganism group, formed in this upflow reaction tank, A device for retaining self-granulated sludge containing solid matter in the same reaction tank, in which multiple stages of reaction sections each having the same reaction tank are provided, and these reaction sections act as solid-liquid separation in the previous stage. It is divided into a reaction section and a reaction section that acts as a subsequent biological reaction section. By the way, in such previously proposed wastewater treatment equipment, air or oxygen is supplied from a reaction tank equipped with an aeration device in each reaction section, and an aerobic process is carried out using an upflow type reaction tank. Filamentous bacteria will proliferate and self-granulating sludge will be formed.

そして前段反応部は酸素供給量が不足するため、自己造
粒汚泥の大部分を嫌気性微生物で占め、後段反応部は酸
素供給量と汚泥物質量が釣り合うため、好気性微生物が
主たる構成生物となるように運転することが重要であり
、この際、前段反応部の嫌気性微生物により、排水中に
この微生物の生産する硫化物が発生する。
Since the first stage reaction section lacks oxygen supply, most of the self-granulated sludge is made up of anaerobic microorganisms, while the second stage reaction section has aerobic microorganisms as the main constituent organisms because the amount of oxygen supplied and the amount of sludge material are balanced. It is important to operate the reactor in such a way that the anaerobic microorganisms in the front reaction section generate sulfides produced by these microorganisms in the waste water.

このような排水処理装置にあっては、散気装置が設けら
れた反応槽は、単に酸素を排水中に供給するだけのもの
であるから、上向流式反応槽に比べて容積はかなり小さ
なものとすることができる。
In such wastewater treatment equipment, the reaction tank equipped with an aeration device simply supplies oxygen to the wastewater, so its volume is much smaller than that of an upflow reaction tank. can be taken as a thing.

発明が解決しようとする課題 ところで実際の運転に際しては、前段反応部の自己造粒
汚泥の一部が後段反応部に流出して、後段反応部の自己
造粒汚泥のかなりの部分を嫌気性微生物が占めることが
ある。このように嫌4− 気性微生物が最終処理段階である後段反応部において優
占種となると、処理水中に汚濁物質が残留して、嫌気性
微生物の生産する硫化物も残留し、処理水の水質悪化の
原因となるという問題がある。また最終段で汚泥が増え
すぎると処理水中に紛れて流出し、これまた水質悪化の
原因となるという問題がある。
Problems to be Solved by the Invention During actual operation, a portion of the self-granulated sludge in the first reaction section flows into the second reaction section, and a considerable portion of the self-granulated sludge in the second reaction section is exposed to anaerobic microorganisms. may be occupied. In this way, when anaerobic microorganisms become the dominant species in the latter reaction section, which is the final treatment stage, pollutants remain in the treated water, and sulfides produced by the anaerobic microorganisms also remain, resulting in a decrease in the water quality of the treated water. There is a problem in that it causes deterioration. Moreover, if too much sludge increases in the final stage, it will be mixed with the treated water and flow out, causing another problem of deterioration of water quality.

さらに散気装置が設けられた反応槽は、前記のようにそ
の容積を小さいものとすることができて設置スペースを
節約することができるのであるが、そのために余り容積
を小さくすると、この反応槽内で硫化物が除去されずに
、そのまま上向流式反応槽に流入し、これに流入したさ
ぎの上向流式反応槽で生産される硫化物が加わって排水
中の硫化物濃度が上昇する。このようにして散気装置が
設けられた反応槽の流出水中の硫化物濃度が3.2mg
IQ以上になると、該反応槽で供給された酸素のすべて
が、排水中の硫化物の酸化に消費されることとなり、こ
の濃度の硫化物が最終段の反応部に流入すると、この反
応部を好気的に保つことができなくなり、処理水質が悪
化するという問題もある。
Furthermore, the volume of a reaction tank equipped with an air diffuser can be made small as mentioned above, saving installation space, but if the volume is too small for this purpose, the reaction tank The sulfide is not removed in the wastewater and flows directly into the upflow reaction tank, and the sulfide produced in the upflow reaction tank is added to this, increasing the sulfide concentration in the wastewater. do. The sulfide concentration in the outflow water from the reaction tank equipped with the aeration device in this way was 3.2 mg.
When the temperature exceeds IQ, all of the oxygen supplied in the reaction tank will be consumed to oxidize the sulfide in the waste water, and when this concentration of sulfide flows into the final stage reaction section, this reaction section will be oxidized. There is also the problem that it is no longer possible to maintain the water aerobically, and the quality of the treated water deteriorates.

そこでこの発明の目的は、前記のような既提案の排水処
理装置における問題を解決し、前段反応部の自己造粒汚
泥が後段反応部に流出することがなく・、また最終段反
応部からの処理水に汚泥を混入することがなく、さらに
排水中の硫化物を効率よく酸化することのできる排水処
理装置を提供することである。
Therefore, the purpose of this invention is to solve the above-mentioned problems in the previously proposed wastewater treatment equipment, so that the self-granulated sludge in the first stage reaction section will not flow out to the second stage reaction section, and the self-granulated sludge will not flow out from the last stage reaction section. To provide a wastewater treatment device that does not mix sludge into treated water and can efficiently oxidize sulfides in wastewater.

課題を解決するための手段 そこで請求項1に記載の装置は前記のような目的を達成
するために、前記のような既提案の排水処理装置におい
て、前段反応部に生成する汚泥が、後段反応部に生成す
る汚泥に混合しないよう、前段反応部の最終段の上向流
式反応槽の上部を、それより前段の上向流式反応槽と管
路で連通し、この管路に前記最終段の上向流式反応槽へ
の流入水量の5%以下の流量で余剰汚泥を、前記の前段
の上向流式反応槽へ返送するポンプを設けている。
Means for Solving the Problem Therefore, in order to achieve the above-mentioned object, the apparatus according to claim 1, in the already proposed wastewater treatment apparatus as described above, has the following features: In order to avoid mixing with the sludge produced in the sludge, the upper part of the upflow reaction tank in the final stage of the pre-stage reaction part is connected to the upflow reaction tank in the previous stage through a pipe line, and this pipe is connected to the final stage upflow type reaction tank. A pump is provided to return excess sludge to the upstream reaction tank of the previous stage at a flow rate of 5% or less of the amount of water flowing into the upflow reaction tank of the stage.

さらに請求項2に記載の装置は、同じく既提案の排水処
理装置において、後段反応部の最終段の上向流式反応槽
の汚泥が処理水中に流出しないように、該反応槽の上部
をそれより前段の上向流式反応槽と管路で連通し、この
管路に前記最終段の上向流式反応槽への流入水量の5%
以下の流量で余剰汚泥を、前記の前段の上向流式反応槽
へ返送するポンプを設けている。
Furthermore, in the previously proposed wastewater treatment apparatus, the apparatus according to claim 2 is arranged such that the upper part of the reaction tank is closed so that the sludge in the final stage upflow type reaction tank of the latter reaction section does not flow out into the treated water. It communicates with the upstream reaction tank in the previous stage through a pipe, and this pipe has 5% of the amount of water flowing into the upflow reaction tank in the final stage.
A pump is provided to return excess sludge to the upstream reaction tank at the above-mentioned upstream stage at the following flow rate.

また請求項3に記載の装置は、散気装置が設けられた各
反応部より流出し、上向流式反応部に流入する前の排水
中の溶存酸素濃度を測定する装置を具え、該溶存酸素濃
度が4mg/l以下とならないように散気量を制御する
ようになっている。
Further, the apparatus according to claim 3 is provided with a device for measuring the dissolved oxygen concentration in the waste water flowing out from each reaction section provided with an air diffuser and before flowing into the upward flow type reaction section, The amount of air diffused is controlled so that the oxygen concentration does not fall below 4 mg/l.

そして請求項4に記載の装置は前記の各装置において、
散気装置が設けられた反応槽に、プラスチック、不織布
、木材、セラミックなどで形成した担体を充填した。
In the device according to claim 4, in each of the above devices,
A reaction tank equipped with an air diffuser was filled with a carrier made of plastic, nonwoven fabric, wood, ceramic, or the like.

作   用 請求項1に記載の排水処理装置において、排7− 水が前段反応部の最終段の上向流式反応槽に達すると、
その上部に連結された管路を介し、該管路に設けられた
ポンプの作動によって、該反応槽に流入した水量の5%
以下の流量で余剰汚泥を引き抜いて、それより前段の上
向流式反応槽に返送し、これによって前段反応部で生成
した嫌気性微生物を主体とした汚泥が後段反応部に流入
するのが防止される。
Function: In the wastewater treatment device according to claim 1, when the waste water reaches the upstream reaction tank at the final stage of the front stage reaction section,
5% of the amount of water that has flowed into the reaction tank through a pipe connected to the upper part of the reactor by the operation of a pump installed in the pipe.
Excess sludge is pulled out at the following flow rate and returned to the upstream reaction tank, which prevents the sludge mainly composed of anaerobic microorganisms generated in the first reaction section from flowing into the second reaction section. be done.

また請求項3に記載の排水処理装置において、散気装置
が設けられた各反応部より流出し、上向流式反応部に流
入する前の排水中の溶存酸素濃度を測定装置で測定し、
その濃度が4mg/Q以下となったら散気装置からの散
気量を増大して、それ以上となるようにする。
Further, in the wastewater treatment apparatus according to claim 3, the dissolved oxygen concentration in the wastewater flowing out from each reaction section provided with the aeration device and before flowing into the upward flow type reaction section is measured by a measuring device,
When the concentration becomes 4 mg/Q or less, the amount of air diffused from the air diffuser is increased so that it becomes higher than that.

さらに請求項4に記載の排水処理装置において、散気装
置が設けられた反応槽の容積が小さくとも、その内部に
充填された担体上に増殖する硫化物酸化能力を有する細
菌群が、硫化物を短時間内に酸化して除去することとな
る。
Furthermore, in the wastewater treatment device according to claim 4, even if the volume of the reaction tank provided with the aeration device is small, the bacteria group having the ability to oxidize sulfide that grows on the carrier filled inside the reaction tank can oxidize sulfide. will be oxidized and removed within a short time.

実施例 8− 第1図はこの発明の実施例の概略図である。Example 8- FIG. 1 is a schematic diagram of an embodiment of the invention.

1は4段の反応部からなる前段反応部、2は2段の反応
部からなる後段反応部を示し、このようにこの実施例は
全部で6段の反応部を具有しているが、前後段ともこれ
以外の数となっていてもよい。
1 indicates a front reaction section consisting of four reaction sections, and 2 indicates a rear reaction section consisting of two reaction sections.In this way, this example has a total of six reaction sections, but the front and rear reaction sections are The number of stages may be other than this.

各反応部はそれぞれ散気装置3を有する反応槽4及び上
向流式反応槽6−1〜6を有する。
Each reaction section has a reaction tank 4 having an air diffuser 3 and an upflow reaction tank 6-1 to 6-6.

そして第1段の反応槽4の上部には排水流入用管路7が
設けられ、各反応槽4と上向流式反応槽6−1〜6との
下部は管路8で連結され、第1段ないし第5段の上向流
式反応槽6−1〜5の上部と、これの下流側において隣
接する反応槽4の上部は管路9で連結され、最終段の上
向流式反応槽6の上端には、処理水取出用管路11が連
結されている。
A waste water inflow pipe 7 is provided in the upper part of the first stage reaction tank 4, and the lower part of each reaction tank 4 and the upflow type reaction tanks 6-1 to 6-6 are connected by a pipe 8. The upper parts of the first to fifth stage upflow reaction tanks 6-1 to 6-5 and the upper parts of the adjacent reaction tanks 4 on the downstream side are connected by a pipe 9, and the final stage upflow reaction A treated water extraction pipe line 11 is connected to the upper end of the tank 6 .

各管路8には溶存酸素濃度測定装置12が設けられ、こ
の測定装置12によって散気装置3から散気される酸素
量が調節されるようになっている。
Each pipe line 8 is provided with a dissolved oxygen concentration measuring device 12, and the amount of oxygen diffused from the aeration device 3 is adjusted by this measuring device 12.

前段反応部1の最終段(この実施例では4段目)の上向
流式反応槽6−4の上部と、それより前段(この実施例
では2段目)の上向流式反応槽6−2の中部とを第1返
送管路21で連結し、この返送管路21には第1汚泥ポ
ンプ22が設すられている。この返送管路21にはその
終端近くにおいて、第2返送管路23の一端が連結され
、この管路23の他端は最終段の上向流式反応槽66の
上部に連結され、この管路z3には第2汚泥ポンプ24
が設けられている。管路23からの分岐管25が設けら
れ、その上端は第5段の上向流式反応槽6−5の中部に
連結されている。
The upper part of the upflow reaction tank 6-4 in the final stage (in this example, the 4th stage) of the pre-stage reaction section 1, and the upflow type reaction tank 6 in the previous stage (in this example, the 2nd stage) -2 is connected to the middle part by a first return pipe 21, and this return pipe 21 is provided with a first sludge pump 22. One end of a second return pipe 23 is connected to this return pipe 21 near its terminal end, and the other end of this pipe 23 is connected to the upper part of the final stage upward flow type reaction tank 66. A second sludge pump 24 is installed in route z3.
is provided. A branch pipe 25 from the pipe line 23 is provided, and its upper end is connected to the middle part of the fifth stage upflow type reaction tank 6-5.

前記のような排水処理装置において、第1段目の反応槽
4の上部から管路7を介して排水が流入され、該排水は
同種4の下部において散気装置3によって散気されて、
管路8を介して反応槽6−1に流入し、この反応槽6−
1内を上昇してオーバーフローした排水が、第2段目の
反応槽4の下部に管路9を介して流入する。
In the above-mentioned wastewater treatment equipment, wastewater is introduced from the upper part of the first stage reaction tank 4 through the pipe 7, and the wastewater is diffused by the aeration device 3 at the lower part of the same kind of reaction tank 4.
It flows into the reaction tank 6-1 via the pipe line 8, and this reaction tank 6-
The waste water that has risen and overflowed in the reaction tank 1 flows into the lower part of the second stage reaction tank 4 via the pipe line 9.

以下同様のことが各段において、前記既提案の装置と同
様にして繰返えされ、その間反応槽6−1〜6内に好気
性微生物群、嫌気性微生物群、および固形物を含む自己
造粒汚泥が抑留されて、これの作用によって生じた良質
の処理水が管路11を介して、最終の反応槽6−6から
外部に取出されることとなる。
The same process is repeated at each stage in the same way as in the previously proposed apparatus, during which the reaction vessels 6-1 to 6-6 contain aerobic microorganisms, anaerobic microorganisms, and self-organized microorganisms containing solid matter. The granular sludge is retained, and high-quality treated water produced by the action of the sludge is taken out from the final reaction tank 6-6 via the pipe 11.

前記のようにして排水の処理が行われる際、排水が前段
反応部1の最終段の上向流式反応槽6−4に達すると、
その上部に連結された第1返送管路21を介し、この管
路21に設けられた第1汚泥ポンプ22の作動によって
、この反応槽64に流入した水量の5%以下の流量で余
剰汚泥を引き抜いて、それより前段(この実施例では第
2段)の上向流式反応槽6−2に返送し、これによって
前段反応部1で生成した嫌気性微生物を主体とした汚泥
が後段反応部2に流入するのが防止される。
When the wastewater is treated as described above, when the wastewater reaches the final upstream reaction tank 6-4 of the pre-stage reaction section 1,
Through the first return pipe 21 connected to the upper part of the reaction tank 64, by operating the first sludge pump 22 provided in the pipe 21, excess sludge is removed at a flow rate of 5% or less of the amount of water flowing into the reaction tank 64. The sludge mainly composed of anaerobic microorganisms produced in the first stage reaction section 1 is transferred to the second stage reaction section 1. 2 is prevented.

このことにつき実験してみたところ、従来のようにこの
ような方式を採用しない場合には、処理水中の硫化物濃
度が5mg/12であったものが、前記のようにして処
理したところ、同濃度が1.5■/Qのものかえられた
When we conducted an experiment on this issue, we found that the sulfide concentration in the treated water was 5 mg/12 when this method was not used as in the past, but when treated as described above, the sulfide concentration was the same. The concentration was changed to 1.5 μ/Q.

このようにして排水が後段反応部2の最終段(この実施
例では第6段)の上向流式反応槽66に達すると、その
上部に連結された第2返送管路23を介し、この管路2
3に設けられた第2汚泥ポンプ24の作動によって、こ
の反応槽6−6に流入した水量の5%以下の流量で余剰
汚泥を引き抜いてそれより前段(この実施例では第2段
)の上向流式反応槽6−2に返送し、これによって上向
流式反応槽6−6の汚泥を一定高さ以上としないで、処
理水中に汚泥が混入するのが防止される。
In this way, when the waste water reaches the upstream reaction tank 66 of the final stage (the sixth stage in this embodiment) of the rear reaction section 2, it is passed through the second return pipe 23 connected to the upper part of the upstream reaction tank 66. Conduit 2
By the operation of the second sludge pump 24 installed in the reaction tank 6-6, excess sludge is extracted at a flow rate of 5% or less of the amount of water that has flowed into the reaction tank 6-6, and the excess sludge is pumped out to the upper stage of the previous stage (second stage in this embodiment). The sludge is returned to the counter-current reaction tank 6-2, thereby preventing the sludge in the up-flow reaction tank 6-6 from reaching a certain level or higher, thereby preventing the sludge from mixing into the treated water.

このことにつき実験してみたところ、この方式を採用し
ない場合には、処理水中の固形物濃度が3z■/Qであ
ったちのが、前記のようにして処理したところ、同濃度
が11■/Qのものかえられた。
When conducting an experiment on this matter, it was found that when this method was not adopted, the solids concentration in the treated water was 3z/Q, but when treated as described above, the same concentration was 11z/Q. Q's item was changed.

前記の際に各管路8に設けられた溶存酸素濃度測定装置
12によって、上向流式反応槽6に流入する前の排水の
溶存酸素の濃度を測定し、該濃度が4mg/l以下にな
ると測定装置12が信号を出して、散気装置3への給気
管13のバルブの開度を大きくし、または給気ブロワの
回転数を多くして、反応槽4内への酸気量を増大し、上
向流式反応槽6への排水の溶存酸素濃度が4mg/l以
下とならないように調整する。これにより上向流式反応
槽6内において、好気性糸状性細菌が安定して増殖する
ことが確かめられた。
At this time, the dissolved oxygen concentration measurement device 12 provided in each pipe line 8 measures the concentration of dissolved oxygen in the wastewater before it flows into the upflow reaction tank 6, and the concentration is determined to be 4 mg/l or less. When this happens, the measuring device 12 issues a signal to increase the opening of the valve of the air supply pipe 13 to the air diffuser 3 or increase the rotational speed of the air supply blower to reduce the amount of acid gas into the reaction tank 4. The concentration of dissolved oxygen in the waste water discharged to the upflow reaction tank 6 is adjusted so that it does not become less than 4 mg/l. As a result, it was confirmed that aerobic filamentous bacteria proliferated stably in the upflow reaction tank 6.

第2図は溶存酸素濃度が1■/Qと4mgIQとで運転
された場合の汚泥の粒径μと累積パーセントとの関係を
それぞれ線a、bで示し、これから溶存酸素濃度が4m
g/l未満の場合には、汚泥の粒径が小さい範囲に分布
し、それ以上の場合に比して自己造粒汚泥の生成状態が
悪いことがわかる。
Figure 2 shows the relationship between the sludge particle size μ and cumulative percentage when operating at dissolved oxygen concentrations of 1/Q and 4 mgIQ, respectively, as lines a and b.
When it is less than g/l, the particle size of the sludge is distributed in a small range, and it can be seen that the state of production of self-granulated sludge is worse than when it is more than that.

前記のようにして排水処理をするに際して、散気装置3
が設けられた反応槽4内に、プラスチック、不織布、木
材、セラミックなどで成形した担体を充填しておくと、
これらの担体上に排水中に残留する硫化物を酸化する能
力を有する細菌類が増殖し、この細菌類によって硫化物
が酸化されて除去される。
When treating wastewater as described above, the air diffuser 3
If a carrier made of plastic, nonwoven fabric, wood, ceramic, etc. is filled into the reaction tank 4 equipped with
Bacteria that have the ability to oxidize sulfides remaining in wastewater grow on these carriers, and the sulfides are oxidized and removed by these bacteria.

このことにつき実験してみたところ、この方式を採用し
ない場合には、後段反応部2の散気装置3が設けられた
反応槽4から流出する排水中の硫化物濃度が2.42+
ng/ Qであったものが、前記のようにして処理した
ところ、同濃度が0.96■/Qのものが見られた。
When we conducted an experiment on this issue, we found that if this method is not adopted, the sulfide concentration in the waste water flowing out from the reaction tank 4 in which the aeration device 3 of the latter stage reaction section 2 is installed will be 2.42+.
ng/Q, but when treated as described above, the same concentration was found to be 0.96 ng/Q.

発明の効果 この発明は前記のようであって、前段反応部の最終段の
上向流式反応槽の上部から該反応槽への流入水量の5%
以下の流量で引き抜いた余剰汚泥を、それより前段の上
向流式反応槽へ返送するので、前段反応部で生成した嫌
気性微生物を主体とした汚泥が後段反応部に流入するの
を防止し、その流入による処理水における汚濁物質及び
硫化物の残留を防止することができて、良質の処理水を
うろことができる効果がある。
Effects of the Invention The present invention is as described above, in which 5% of the amount of water flowing into the reaction tank from the upper part of the upflow reaction tank in the final stage of the pre-stage reaction section
The excess sludge extracted at the following flow rate is returned to the upstream reaction tank in the previous stage, thereby preventing the sludge mainly composed of anaerobic microorganisms generated in the first stage reaction section from flowing into the second stage reaction section. This has the effect of preventing pollutants and sulfides from remaining in the treated water due to their inflow, and allowing high-quality treated water to flow.

またこの発明は後段反応部の最終段の上向流式反応槽の
上部から該反応槽への流入水量の5%以下の流量で引き
抜いた余剰汚泥を、それより前段の上向流式反応槽に返
送するので、前記最終段の上向流式反応槽内の汚泥を一
定高さ以上とすることなく、これによって処理水中に汚
泥が混入するのを防止し、良質の処理水をうろことがで
きる効果がある。
In addition, the present invention provides for removing surplus sludge from the upper part of the final upflow reaction tank in the latter reaction section at a flow rate of 5% or less of the amount of water flowing into the reaction tank, from the upper part of the upflow reaction tank in the previous stage. Since the sludge in the up-flow reaction tank of the final stage is not raised above a certain height, this prevents sludge from getting mixed into the treated water and prevents high-quality treated water from flowing out. There is an effect that can be done.

またこの発明にあっては、上向流式反応槽へ流入する排
水の溶存酸素濃度が4mg/U以下にならないように、
散気装置からの給気量が常に調整されているので、上向
流式反応槽において常時安定して好気性糸状細菌が増殖
し、汚水処理が効率よく行われる効果がある。
In addition, in this invention, in order to prevent the dissolved oxygen concentration of the wastewater flowing into the upflow reaction tank from becoming less than 4 mg/U,
Since the amount of air supplied from the air diffuser is constantly adjusted, aerobic filamentous bacteria grow stably in the upflow reaction tank at all times, resulting in efficient sewage treatment.

さらにこの発明は散気装置が設けられた反応槽に担体を
充填することにより、この担体上に硫化物酸化能力を有
する細菌群が増殖して、硫化物を酸化除去するので、酸
化除去のために反応槽の容積を大きくする必要がなくて
小型化し、その設置スペースを節約するとともに、短時
間に効率よく硫化物を除去することができるという効果
がある。
Furthermore, in this invention, by filling a reaction tank equipped with an air diffuser with a carrier, a group of bacteria capable of oxidizing sulfide grows on the carrier and oxidizes and removes sulfide. In addition, there is no need to increase the volume of the reaction tank, making it more compact, saving installation space, and sulfides can be removed efficiently in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の概略説明図、第2図は溶接酸素濃度
による汚泥の粒径分布を示すグラフである。 1・・・前段反応部  2・・・後段反応部3・・・散
気装置   4・・・反応槽6・・・上向流式反応槽 13・・・溶存酸素濃度測定装置 7.8,9.11・・・管路  21・・・第1返送管
路z2・・・第1汚泥ポンプ
FIG. 1 is a schematic explanatory diagram of the present invention, and FIG. 2 is a graph showing the particle size distribution of sludge depending on the welding oxygen concentration. 1... Pre-stage reaction section 2... Post-stage reaction section 3... Diffusion device 4... Reaction tank 6... Upflow type reaction tank 13... Dissolved oxygen concentration measuring device 7.8, 9.11 Pipe line 21... First return pipe z2... First sludge pump

Claims (1)

【特許請求の範囲】 1、散気装置が設けられた反応槽と、該反応槽に連結さ
れた上向流式反応槽とからなる反応部が多段に連結され
、前記反応部を複数の前段反応部と、複数の後段反応部
に区別した排水処理装置において、前段反応部に生成す
る汚泥が、後段反応部に生成する汚泥に混合しないよう
、前段反応部の最終段の上向流式反応槽の上部を、それ
より前段の上向流式反応槽と管路で連通し、この管路に
前記最終段の上向流式反応槽への流入水量の5%以下の
流量で余剰汚泥を、前記の前段の上向流式反応槽へ返送
するポンプを設けたことを特徴とする排水処理装置。 2、散気装置が設けられた反応槽と、該反応槽に連結さ
れた上向流式反応槽とからなる反応部が多段に連結され
、前記反応部を複数の前段反応部と、複数の後段反応部
に区別した排水処理装置において、後段反応部の最終段
の上向流式反応槽の汚泥が処理水中に流出しないように
、該反応槽の上部をそれより前段の上向流式反応槽と管
路で連通し、この管路に前記最終段の上向流式反応槽へ
の流入水量の5%以下の流量で余剰汚泥を、前記の前段
の上向流式反応槽へ返送するポンプを設けたことを特徴
とする排水処理装置。 3、散気装置が設けられた各反応部より流出し、上向流
式反応部に流入する前の排水中の溶存酸素濃度を測定す
る装置を具え、該溶存酸素濃度が4mg/l以下となら
ないように散気量を制御するようになっている請求項1
または2に記載の排水処理装置。 4、散気装置が設けられた反応槽に、プラスチック、不
織布、木材、セラミックなどで成形した担体を充填した
請求項1または2に記載の排水処理装置。
[Claims] 1. A reaction section consisting of a reaction tank provided with an aeration device and an upflow reaction tank connected to the reaction tank is connected in multiple stages, and the reaction section is connected to a plurality of preceding stages. In a wastewater treatment system that is divided into a reaction section and a plurality of post-stage reaction sections, the upflow reaction system in the last stage of the pre-stage reaction section is designed to prevent the sludge produced in the first-stage reaction section from mixing with the sludge produced in the post-stage reaction section. The upper part of the tank is connected to the upstream reaction tank in the previous stage through a pipe, and excess sludge is poured into this pipe at a flow rate of 5% or less of the amount of water flowing into the final stage upflow reaction tank. , A wastewater treatment device characterized in that it is provided with a pump for returning the water to the upstream reaction tank. 2. A reaction section consisting of a reaction tank equipped with an aeration device and an upflow reaction tank connected to the reaction tank is connected in multiple stages, and the reaction section is connected to a plurality of pre-stage reaction sections and a plurality of upstream reaction sections. In a wastewater treatment equipment separated into a rear reaction section, in order to prevent the sludge from the final upflow reaction tank in the rear reaction section from flowing into the treated water, the upper part of the reaction tank is connected to the upflow reaction tank at the previous stage. The tank is connected to the tank through a pipe, and through this pipe, excess sludge is returned to the previous stage upflow reaction tank at a flow rate of 5% or less of the amount of water flowing into the final stage upflow reaction tank. A wastewater treatment device characterized by being equipped with a pump. 3. Equipped with a device to measure the dissolved oxygen concentration in the waste water flowing out from each reaction section equipped with an aeration device and before flowing into the upflow type reaction section, and ensuring that the dissolved oxygen concentration is 4 mg/l or less. Claim 1: The amount of air diffused is controlled to prevent
Or the wastewater treatment device according to 2. 4. The wastewater treatment device according to claim 1 or 2, wherein the reaction tank equipped with an aeration device is filled with a carrier made of plastic, nonwoven fabric, wood, ceramic, or the like.
JP2029552A 1990-02-13 1990-02-13 Wastewater treatment equipment Expired - Lifetime JPH0636920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029552A JPH0636920B2 (en) 1990-02-13 1990-02-13 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029552A JPH0636920B2 (en) 1990-02-13 1990-02-13 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH03238092A true JPH03238092A (en) 1991-10-23
JPH0636920B2 JPH0636920B2 (en) 1994-05-18

Family

ID=12279308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029552A Expired - Lifetime JPH0636920B2 (en) 1990-02-13 1990-02-13 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JPH0636920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024971A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Wastewater treatment method
JP2006231323A (en) * 2005-01-26 2006-09-07 Aqua Tec Kk Decomposition treatment method for organic matter in organic polluted water and apparatus therefor
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861894A (en) * 1981-10-06 1983-04-13 Kubota Ltd Treatment for waste water
JPS58137499U (en) * 1982-03-09 1983-09-16 株式会社クボタ Denitrification equipment for water treatment
JPS5955393A (en) * 1982-09-25 1984-03-30 Kubota Ltd Treatment of organic waste water having high concentration
JPS63209796A (en) * 1987-02-27 1988-08-31 Meidensha Electric Mfg Co Ltd Water treatment device
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861894A (en) * 1981-10-06 1983-04-13 Kubota Ltd Treatment for waste water
JPS58137499U (en) * 1982-03-09 1983-09-16 株式会社クボタ Denitrification equipment for water treatment
JPS5955393A (en) * 1982-09-25 1984-03-30 Kubota Ltd Treatment of organic waste water having high concentration
JPS63209796A (en) * 1987-02-27 1988-08-31 Meidensha Electric Mfg Co Ltd Water treatment device
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024971A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Wastewater treatment method
JP2006231323A (en) * 2005-01-26 2006-09-07 Aqua Tec Kk Decomposition treatment method for organic matter in organic polluted water and apparatus therefor
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated

Also Published As

Publication number Publication date
JPH0636920B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JP5217159B2 (en) Sewage treatment apparatus and method
US3152982A (en) Method and apparatus for sewage treatment
WO1996029290A1 (en) Apparatus and treatment for wastewater
US7285215B2 (en) Process for improving phosphorus removal in waste water treatment without chemical addition
CN106565017A (en) Bicirculating nitrogen and phosphorus removal wastewater treatment system and method
CN106927638B (en) Multistage diversion type MBBR sewage treatment system and treatment method
CN106830565A (en) A kind of waste water advanced removal of carbon and nitrogen processing unit and its technique
KR101292736B1 (en) Advanced wastewater treatment technology
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JPH0461998A (en) Discharged water treatment device
JP5743448B2 (en) Sewage treatment equipment
JPH03238092A (en) Waste liquor treating device
JP3095620B2 (en) Biological nitrogen removal equipment
CN211770554U (en) A processing apparatus for leachate short cut nitrification denitrification
JP2000093992A (en) Wastewater treatment system
CN208454620U (en) A kind of AOAO-MBBR two-stage water sewage-treatment plant
CN208414162U (en) Ozone-biofilter underload organic wastewater processing unit
JPH081193A (en) Method and apparatus for treating organic waste water
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JP2005254207A (en) Water treatment apparatus
JP2003033793A (en) Biological denitration equipment and biological denitration method
CN115504567B (en) Sewage biological treatment device
JP2003033795A (en) Biological denitration equipment and biological denitration method
JPS6019097A (en) Sewage treating apparatus
CN110697894B (en) AO total nitrogen removal device and total nitrogen removal process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term