JPH0367756B2 - - Google Patents

Info

Publication number
JPH0367756B2
JPH0367756B2 JP7891287A JP7891287A JPH0367756B2 JP H0367756 B2 JPH0367756 B2 JP H0367756B2 JP 7891287 A JP7891287 A JP 7891287A JP 7891287 A JP7891287 A JP 7891287A JP H0367756 B2 JPH0367756 B2 JP H0367756B2
Authority
JP
Japan
Prior art keywords
reaction section
microorganisms
flow type
aerobic
type reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7891287A
Other languages
Japanese (ja)
Other versions
JPS63242394A (en
Inventor
Toshinori Kyosai
Kazuaki Sato
Masahiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO DOBOKU KENKYU SHOCHO
Original Assignee
KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO DOBOKU KENKYU SHOCHO filed Critical KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority to JP62078912A priority Critical patent/JPS63242394A/en
Publication of JPS63242394A publication Critical patent/JPS63242394A/en
Publication of JPH0367756B2 publication Critical patent/JPH0367756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、都市下水、工場排水、家庭排水等
の排水より固形物、有機性汚濁物質、栄養塩類等
を除去する排水処理方法およびその装置に関す
る。 (従来の技術) 都市下水等の排水処理施設は、多くの場合生物
学的処理法を用いており、これは基本的には各種
の汚濁物質を摂取して生育する微生物を利用して
処理を行うものである。この生物処理法は用いる
微生物が酸素を必要とする好気性生物処理法と、
酸素を嫌気性生物処理法とに分類される。さらに
好気性生物処理法および嫌気性生物処理法のいず
れも、水中に浮遊している微生物を用いる浮遊生
物処理法と、砕石、プラスチツク等の表面に付着
させた微生物を用いる付着生物法とに大別され
る。 (発明が解決しようとする問題点) 活性汚泥法等の好気性浮遊生物法は、酸素を必
要とする微生物を生育させるため、一般的に空気
中の酸素等を供給する必要があり、このためのブ
ロアー等の運転にかなりの動力を必要とする。ま
た浮遊している微生物は、沈澱池等で処理水と分
離しなくてはならないが、種々の条件によつて浮
遊微生物の沈降性が悪化し、分離が困難となる場
合が多い。さらに微生物を高密度に生育し、施設
容量が減少させようとしても、水中に溶解する酸
素濃度に制限があるため、一定の限界を有してい
る。好気性付着生物法は酸素を必要とする点で、
同浮遊生物法と同じくかなりの動力を必要とし、
また付着した生物が、次第に増加して目詰りを起
すという欠点がある。 次に一般に嫌気性生物処理法は、好気性生物処
理法に比べ数倍以上の大きさの反応槽を必要とす
るという欠点がある。そのうち嫌気性浮遊生物処
理法は、主に化学的酸素要求量(Chemical
Oxygen Demand,COD)5000mg/以上の比
較的高濃度の排水に用いられ、これよりも低濃度
の排水に対しては、嫌気性微生物が水中に分散り
易い性質を有しているため、これらを施設内に抑
留することが困難である。また処理水質は生物学
的酸素要求量(Biological Oxygen Demand,
BOD)で50mg/以上と、好気性処理に比較し
て劣る。嫌気性付着生物法も処理水質は同浮遊生
物処理法と同様であり、流入水中の同型物等によ
り目詰りが生じる。 この発明は上記の4方式の微生物の生育条件に
くらべ、全く異なつた生育条件を与えることによ
り、新しい微生物群を生育させ、上記の次点を解
決することを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するためのこの発明の第1は排
水処理方法にあり、下向流式反応部において排水
に酸素を溶存させながら該排水を下降させ、引き
続き上向流式反応部において前記排水を緩やかに
上昇させ、この上向流式反応部で形成された好気
性微生物群、嫌気性生物群および固形物を含む自
己造粒汚泥を同反応部に抑留することを特徴とす
るものである。 この発明の第2は上記方法を実施する装置にあ
り、散気装置が設けられた下向流式反応部と、こ
の反応部の下部に連通された上向流式反応部とが
交互に多段に連結されていることを特徴とするも
のである。 (実施例) この発明を図面に示す一実施例に基づいて以下
に説明する。 図面は装置の一例を示し、下向流式反応部1
a,1b,……1eと上向流式反応部2a,2
b,……2eとがそれらの下部の反転部3におい
て連通され、このような2つの反応部1a,1
b,……1eおよび2a,2b,……2eが交互
に多数段連結されている。流入ポンプ槽4の排水
はポンプ5により前処理用上向流式反応部2′の
下部に流入して緩やかに上昇した後、オーバーフ
ローして第1段目の下向流式反応部1aに流入
し、この反応部1aを下降し反転部3において反
転して、第1段目の上向流式反応部2aに流入
し、この反応部2aを緩やかに上昇しオーバーフ
ローして第2段目の下向流式反応部1bに流入
し、以下このような上昇および下降を繰り返して
最終段の上向流式反応部2eから排出される。 上向流式反応部2a,2b,……2eおよび
2′はいずれも上部へ向う程、断面積が大きくな
つており、したがつて水の上昇速度が徐々に減少
し、このため前処理用上向流式反応部2′におい
て流入水中に含まれる固形物のうち、水の上昇速
度より速い沈降速度を持つものは、同反応部2′
内に抑留される。但し、流入水中に固型物が存在
しないか存在しても微量である場合には、前処理
用上向流式反応部2′を省略し、第1段目の下向
流式反応部1aの上部に排水を直接流入させるこ
ともできる。 各段の下向流式反応部1a,1b,……1eの
下部には散気装置6が設置してあり、空気又は酸
素による曝気が行なわれ、水中に酸素を溶解させ
ている。第1段目の下向流式反応部1aに流入し
た固型物は同反応部に抑留されず、そのまま、第
1段目の上向流式反応部2aへ流入する。同反応
部2aに流入する水は酸素を含むため、ここでは
好気性微生物群が増殖することが可能である。し
かし同段の下向流式反応部1aで供給される酸素
濃度は、酸素の水中での飽和溶解濃度(空気で曝
気した場合約8〜10mg/)が限界であり、一
方、通常の排水の生物学的酸素要求量は、100〜
数千mg/の間(都市下水で100〜200mg/)で
あるため、酸素供給量は明らかに不足する。この
ため、第1段目の上向流式反応部2aでは、好気
性微生物群と嫌気性微生物とが共存することにな
る。また同反応部では上向流による緩やかな撹拌
が常時生じており、排水中の固型物と上記微生物
群は絶えず緩やかな接触を繰り返している。 このような環境下で、固型物と微生物群は自己
造粒化現象を起すことが確認された。つまり固型
物と微生物群が集塊を作り、直径2〜20mm程度の
球状となる。この球状物質を以下、自己造粒汚泥
と呼ぶ。自己造粒汚泥の内部は、真黒い嫌気状の
汚泥でありこの部分に多数の嫌気性微生物が生育
している。自己造粒汚泥の表面は白く薄い膜に被
われており、顕微鏡観察によつて、この被膜は硫
黄粒子を細胞内に含有する好気性糸状細菌である
ことが確認された。 自己造粒汚泥は、指先でつまむことができる程
度の強度を持ち、その沈降速度は極めて速いた
め、一度造粒が行なわれると、上向流式反応部2
a,2b,……2eより流出することがなく、同
反応部に浮遊した状態で蓄積していく。同反応部
ではこれらの好気性および嫌気性微生物により、
排水中の有機性汚濁物質および栄養塩類の一部が
摂取される。一部の固型物および微生物群は前処
理用反応部2′で自己造粒汚泥とならずに第1段
目の下向流式反応部1aへ流出するが、第2段目
以降の上向流式反応部2b……2eでも自己造粒
汚泥が前記と同様の機構により生育する。以上の
ような過程を経て、排水中の有機性汚濁物質は減
少を続け、最終段目で目的の処理水質を得ること
ができる。 自己造粒汚泥は、好気性微生物と嫌気性微生物
の長所を兼ね揃え、問題点を補完し合う特性を有
している。すなわち、嫌気性微生物が自己造粒汚
泥のかなりの部分を占め、好気性微生物と共存し
て有機性汚濁物質を除去しているため、好気性微
生物のみを用いる場合に比べ酸素の消費量が少な
くて済み、動力費の低減がはかれること。嫌気性
微生物が主体であるため、溶解する酸素濃度に制
限されずに、微生物を高密度に生育させることが
可能であり、施設容量を削減できること。嫌気性
微生物を低濃度排水に対して用いるときに問題と
なつた、微生物が水中に分散し易い性質は、好気
性糸状細菌の働きによる自己造粒汚泥で解決され
ること。また嫌気性微生物のみでは処理後の水質
に問題があつたが、この発明においては、施設の
最終段では十分好気的な状態を保つことができ、
処理後の水質は、好気性微生物を用いた処理と同
等のものとなること。さらに、浮遊生物法一般で
は、処理水と浮遊している微生物の分離が困難と
なることがあつたが、自己造粒汚泥はその速い沈
降速度のため、何ら問題を生じないこと。加え
て、付着生物法一般で問題となる目詰りも、自己
造粒汚泥は上向流式反応部内で上向流によつて反
応部の中間部で流動化しているため、通常は問題
とはならないこと。 なお、下向流式反応部1a,1b,……1eか
ら上向流反応部2a,2b,……2eへ連絡する
反転部3においては装置を簡易な構造としたい都
合上、死水域が生じることは避けられず、この部
分に、自己造粒汚泥の一部が堆積する傾向にあ
る。これを放置すると、やがて目詰りの原因とな
るため、流入ポンプ5の停止持に連動して、上向
流式反応部2a,2b,……2eの底部より、撹
拌のため曝気孔7を設置している。このため流入
ポンプ槽4の容量を若干大きくすることにより、
流入ポンプの運転を断続的に行うことができる。
流入ポンプ停止時に上向流式反応部を曝気撹拌す
ることで、堆積した自己造粒汚泥を再び流動化さ
せ、目詰りを防ぐことができる。この時、流入ポ
ンプは停止しているため、流動化した自己造粒汚
泥が同反応部より流出することはない。 (実験例) この発明方法により都市下水(沈澱処理後)を
処理した例を以下に示す。 (1) 装置仕様 5段の下向流式反応部と上向流式反応部とを
有する総容量213のアクリル製実験装置。水
理学的全滞留時間4.5時間。 (2) 運転条件 処理水量1136/日。上向流式反応部の平均
浮遊性固形物濃度7000mg/。 (3) 処理性能(単位mg/)
(Field of Industrial Application) The present invention relates to a wastewater treatment method and apparatus for removing solid matter, organic pollutants, nutrient salts, etc. from wastewater such as urban sewage, industrial wastewater, and domestic wastewater. (Prior technology) Wastewater treatment facilities such as urban sewage often use biological treatment methods, which basically use microorganisms that ingest and grow various pollutants to perform treatment. It is something to do. This biological treatment method is an aerobic biological treatment method in which the microorganisms used require oxygen,
Oxygen is classified as anaerobic biological treatment method. Furthermore, both aerobic and anaerobic biological treatment methods are significantly different from the suspended biological treatment method, which uses microorganisms suspended in water, and the sessile biological method, which uses microorganisms attached to the surfaces of crushed stones, plastics, etc. Separated. (Problems to be solved by the invention) Aerobic suspended organism methods such as activated sludge methods generally require supply of oxygen, etc. in the air in order to grow microorganisms that require oxygen. A considerable amount of power is required to operate the blower, etc. In addition, floating microorganisms must be separated from treated water in a settling pond or the like, but various conditions often deteriorate the sedimentation properties of floating microorganisms, making separation difficult. Furthermore, even if we attempt to grow microorganisms at high density and reduce facility capacity, there is a certain limit because there is a limit to the concentration of oxygen that can be dissolved in water. The aerobic sessile method requires oxygen;
Like the planktonic method, it requires a considerable amount of power,
Another disadvantage is that the attached organisms gradually increase and cause clogging. Next, anaerobic biological treatment methods generally have the disadvantage of requiring a reaction tank several times larger than that of aerobic biological treatment methods. Of these, anaerobic planktonic treatment methods mainly deal with chemical oxygen demand (Chemical oxygen demand).
Oxygen Demand (COD) is used for wastewater with a relatively high concentration of 5000mg/ or more, and for wastewater with a lower concentration than this, anaerobic microorganisms have a tendency to disperse in the water, so they are used. It is difficult to detain them within the facility. In addition, the quality of treated water is determined by biological oxygen demand (Biological Oxygen Demand).
BOD) is 50mg/or more, which is inferior to aerobic treatment. The treated water quality of the anaerobic sessile organism method is similar to that of the planktonic organism treatment method, and clogging occurs due to the same type of substances in the inflow water. The purpose of this invention is to grow a new group of microorganisms by providing completely different growth conditions to those of the four methods described above, and to solve the above-mentioned runner-up problem. (Means for Solving the Problems) The first aspect of the present invention to achieve the above object is a wastewater treatment method, in which the wastewater is lowered while dissolving oxygen in the wastewater in a downward flow reaction section, and then The wastewater is slowly raised in the upflow reaction section, and the self-granulated sludge containing aerobic microorganisms, anaerobic organisms, and solids formed in the upflow reaction section is retained in the same reaction section. It is characterized by: The second aspect of this invention is an apparatus for carrying out the above method, in which a downward flow reaction section provided with an aeration device and an upward flow reaction section connected to the lower part of this reaction section are alternately arranged in multiple stages. It is characterized by being connected to. (Example) This invention will be described below based on an example shown in the drawings. The drawing shows an example of the device, with a downward flow reaction section 1
a, 1b, ... 1e and upflow reaction sections 2a, 2
b, .
b, . . . 1e and 2a, 2b, . . . 2e are alternately connected in multiple stages. The waste water from the inflow pump tank 4 flows into the lower part of the pre-treatment upflow reaction section 2' by the pump 5 and rises gently, then overflows and flows into the first stage downward flow reaction section 1a. It descends through this reaction section 1a, is reversed at the reversing section 3, flows into the first stage upward flow type reaction section 2a, slowly rises through this reaction section 2a, overflows, and enters the second stage downward flow type reaction section 2a. It flows into the reaction section 1b, repeats such rise and fall, and is discharged from the final stage, the upward flow type reaction section 2e. The cross-sectional area of each of the upflow reaction sections 2a, 2b, . Among the solids contained in the inflow water in the upflow type reaction section 2', solids that have a settling speed faster than the rising speed of water are
be detained within. However, if there are no solids in the inflow water, or if there is only a small amount of solid matter, the upstream reaction section 2' for pretreatment may be omitted, and the upper part of the first stage downward flow reaction section 1a may be used. It is also possible to allow wastewater to flow directly into the tank. An aeration device 6 is installed at the bottom of each stage of the downward flow type reaction sections 1a, 1b, . . . 1e, and aeration with air or oxygen is performed to dissolve oxygen in the water. The solid material that has flowed into the first-stage downward flow type reaction section 1a is not retained in the same reaction section, but directly flows into the first-stage upward flow type reaction section 2a. Since the water flowing into the reaction section 2a contains oxygen, aerobic microorganisms can grow here. However, the concentration of oxygen supplied in the downward flow reaction section 1a of the same stage is limited to the saturated dissolved concentration of oxygen in water (approximately 8 to 10 mg/when aerated with air); Biological oxygen demand is 100~
Since the amount is between several thousand mg/(100-200 mg/in urban sewage), the amount of oxygen supplied is clearly insufficient. Therefore, aerobic microorganisms and anaerobic microorganisms coexist in the first stage upflow reaction section 2a. In addition, in the reaction section, gentle agitation is constantly occurring due to the upward flow, and the solid matter in the wastewater and the microorganisms mentioned above are constantly in repeated gentle contact with each other. It was confirmed that under such an environment, solid matter and microorganisms self-granulate. In other words, solid matter and microorganisms form agglomerates, forming a spherical shape with a diameter of about 2 to 20 mm. This spherical material is hereinafter referred to as self-granulating sludge. The inside of self-granulated sludge is pitch black anaerobic sludge, and a large number of anaerobic microorganisms grow in this part. The surface of the self-granulating sludge was covered with a thin white film, and microscopic observation confirmed that this film was aerobic filamentous bacteria containing sulfur particles within its cells. Self-granulated sludge is strong enough to be pinched with your fingertips, and its sedimentation speed is extremely fast.
They do not flow out from a, 2b, . . . 2e, and accumulate in the reaction area in a floating state. In the reaction section, these aerobic and anaerobic microorganisms
Some of the organic pollutants and nutrient salts in the wastewater are ingested. Some solid substances and microorganisms flow into the first stage downward flow type reaction part 1a without becoming self-granulated sludge in the pretreatment reaction part 2', but in the second stage and subsequent stages the upward flow Self-granulating sludge also grows in the reaction sections 2b...2e by the same mechanism as described above. Through the process described above, organic pollutants in the wastewater continue to decrease, and the desired quality of treated water can be obtained in the final stage. Self-granulating sludge has characteristics that combine the advantages of aerobic microorganisms and anaerobic microorganisms, and complement each other's problems. In other words, anaerobic microorganisms make up a large portion of self-granulating sludge and coexist with aerobic microorganisms to remove organic pollutants, so the amount of oxygen consumed is lower than when only aerobic microorganisms are used. It is possible to reduce power costs. Since it is mainly composed of anaerobic microorganisms, it is possible to grow microorganisms at high density without being limited by dissolved oxygen concentration, and the capacity of the facility can be reduced. The problem when using anaerobic microorganisms for low-concentration wastewater, which is the tendency for microorganisms to disperse into water, can be solved by self-granulating sludge through the action of aerobic filamentous bacteria. In addition, with only anaerobic microorganisms, there was a problem with the water quality after treatment, but with this invention, it is possible to maintain a sufficiently aerobic condition at the final stage of the facility.
The water quality after treatment shall be equivalent to treatment using aerobic microorganisms. Furthermore, with the floating organism method in general, it has sometimes been difficult to separate suspended microorganisms from treated water, but self-granulating sludge does not cause any problems due to its high settling speed. In addition, clogging, which is a common problem with the sessile method, is usually not a problem because self-granulated sludge is fluidized in the middle of the reaction section by the upward flow in the upflow reaction section. Things that must not happen. Note that in the reversing section 3 that connects the downward flow reaction sections 1a, 1b, . . . 1e to the upward flow reaction sections 2a, 2b, . This is unavoidable, and some of the self-granulating sludge tends to accumulate in this area. If this is left unattended, it will eventually cause clogging, so when the inflow pump 5 is stopped, aeration holes 7 are installed from the bottoms of the upward flow reaction sections 2a, 2b, . . . 2e for stirring. are doing. Therefore, by slightly increasing the capacity of the inflow pump tank 4,
Operation of the inflow pump can be performed intermittently.
By aerating and stirring the upflow reaction section when the inflow pump is stopped, the accumulated self-granulating sludge can be fluidized again and clogging can be prevented. At this time, since the inflow pump is stopped, the fluidized self-granulated sludge does not flow out from the reaction section. (Experimental Example) An example in which urban sewage (after sedimentation treatment) was treated by the method of this invention is shown below. (1) Equipment specifications: An acrylic experimental equipment with a total capacity of 213 cm, including a 5-stage downward flow reaction section and an upflow reaction section. Total hydraulic residence time 4.5 hours. (2) Operating conditions: Processed water volume: 1136/day. Average suspended solids concentration in the upflow reaction section is 7000mg/. (3) Processing performance (unit: mg/)

【表】 (発明の効果) 以上のように、この発明によれば、嫌気性・好
気性の微生物の長所を生かし、両微生物を含む自
己造粒汚泥が生成されるので、処理に要する動力
量、施設容量を削減し、微生物と処理水の分離が
簡易で確実なものとなり、良好な処理水質を得る
ことができ、目詰り等の問題も生じない。また装
置には沈澱池等の特別の固液分離装置や分離され
た微生物を返送する装置が不要であり、非常に簡
易な構造であるため、維持管理に要する人員を削
減することができる。
[Table] (Effects of the invention) As described above, according to the present invention, self-granulating sludge containing both anaerobic and aerobic microorganisms is generated by taking advantage of the advantages of both anaerobic and aerobic microorganisms, so the amount of power required for treatment is , the capacity of the facility is reduced, the separation of microorganisms and treated water becomes simple and reliable, good quality of treated water can be obtained, and problems such as clogging do not occur. Furthermore, the device does not require a special solid-liquid separation device such as a sedimentation tank or a device for returning separated microorganisms, and has a very simple structure, so the number of personnel required for maintenance and management can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示す概略図。 1a,1b,……1e:下向流式反応部、2
a,2b,……2e:上向流式反応部、3:反転
部、4:流入ポンプ槽、5:流入ポンプ、6:散
気装置、7:曝気装置。
The drawing is a schematic diagram showing an embodiment of the present invention. 1a, 1b,...1e: Downward flow reaction section, 2
a, 2b,...2e: Upflow reaction section, 3: Inversion section, 4: Inflow pump tank, 5: Inflow pump, 6: Aeration device, 7: Aeration device.

Claims (1)

【特許請求の範囲】 1 下向流式反応部において排水に酸素を溶存さ
せながら該排水を下降させ、引き続き上向流式反
応部において前記排水を緩やかに上昇させ、この
上向流式反応部で形成された好気性微生物群、嫌
気性微生物群および固形物を含む自己造粒汚泥を
同反応部に抑留することを特徴とする排水処理方
法。 2 散気装置が設けられた下向流式反応部と、こ
の反応部の下部に連通された上向流式反応部とが
交互に多段に連結されていることを特徴とする排
水処理装置。
[Scope of Claims] 1. In a downward flow type reaction section, the waste water is lowered while dissolving oxygen in the waste water, and then in an upward flow type reaction section, the waste water is gently raised, and this up flow type reaction section is performed. A wastewater treatment method characterized by retaining self-granulated sludge containing an aerobic microorganism group, an anaerobic microorganism group, and solid matter formed in the same reaction section. 2. A wastewater treatment device characterized in that a downward flow type reaction section provided with an air diffuser and an upward flow type reaction section connected to the lower part of the reaction section are alternately connected in multiple stages.
JP62078912A 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor Granted JPS63242394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078912A JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078912A JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Publications (2)

Publication Number Publication Date
JPS63242394A JPS63242394A (en) 1988-10-07
JPH0367756B2 true JPH0367756B2 (en) 1991-10-24

Family

ID=13675055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078912A Granted JPS63242394A (en) 1987-03-31 1987-03-31 Treatment of drainage and equipment therefor

Country Status (1)

Country Link
JP (1) JPS63242394A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123697A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment device for organic waste water
JPH01123696A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment of organic waste water
JPH0636920B2 (en) * 1990-02-13 1994-05-18 建設省土木研究所長 Wastewater treatment equipment
JPH03238093A (en) * 1990-02-13 1991-10-23 Pub Works Res Inst Ministry Of Constr Waste liquor treatment
JP4899253B2 (en) * 2001-05-21 2012-03-21 栗田工業株式会社 Wastewater aerobic treatment method
JP4925208B2 (en) * 2007-09-12 2012-04-25 学校法人早稲田大学 Aerobic granule formation method, water treatment method and water treatment apparatus
JP5205585B2 (en) * 2009-02-04 2013-06-05 エコ・アース・エンジニアリング株式会社 Pollutant purification method and purification facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122941A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5753158A (en) * 1980-09-16 1982-03-30 Taiyo Musen Kk Automatic frequency setting device for voltage control variable frequency oscillator
JPS5952597A (en) * 1982-09-18 1984-03-27 Kankyo Gijutsu Kaihatsu:Kk Biological treatment of waste water containing organic substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122941A (en) * 1975-04-18 1976-10-27 Ebara Infilco Co Ltd Process for treating sewage water
JPS5753158A (en) * 1980-09-16 1982-03-30 Taiyo Musen Kk Automatic frequency setting device for voltage control variable frequency oscillator
JPS5952597A (en) * 1982-09-18 1984-03-27 Kankyo Gijutsu Kaihatsu:Kk Biological treatment of waste water containing organic substance

Also Published As

Publication number Publication date
JPS63242394A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
US6605220B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
JP6545717B2 (en) Biofilm material, processing system, and method of processing
JP5994253B2 (en) Biological treatment apparatus and method for organic wastewater
JP2007136367A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
US7452469B1 (en) Apparatus having rotary activated Baccillus contractor for purifying sewage and wastewater and method using the same
US8092678B2 (en) Systems and methods for wastewater treatment
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JP2007136365A (en) Method for producing granular microbe sludge
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
JP2006255514A (en) Apparatus and method for treating organic waste water
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
KR100937482B1 (en) Method and device for sewage disposal using the submersible hollow media
JPH0367756B2 (en)
JP4644215B2 (en) Waste water treatment apparatus and waste water treatment method
NZ525027A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
JP5270247B2 (en) Wastewater treatment facility at food processing plant
KR20150016775A (en) Advanced water treatment system with improved treatment efficiency for concentrated sludge
WO2021165980A1 (en) A multi-zone attached growth batch bio-reactor & method of biological treatment of domestic wastewater
JP2006136783A (en) Apparatus and method for treating waste water
JPH07136678A (en) Wastewater treatment method and tank
KR100330732B1 (en) Wall type Particles Trap and Waste Waster Treatment System with using this Trap
JP3131658B2 (en) Wastewater biological treatment method
JP3652473B2 (en) Wastewater treatment system
JPS63252591A (en) Treatment of sewage
JPH0852486A (en) Sludge returning method for anaerobic waste water treatment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term