JPH01123696A - Aerobic biological treatment of organic waste water - Google Patents

Aerobic biological treatment of organic waste water

Info

Publication number
JPH01123696A
JPH01123696A JP62278270A JP27827087A JPH01123696A JP H01123696 A JPH01123696 A JP H01123696A JP 62278270 A JP62278270 A JP 62278270A JP 27827087 A JP27827087 A JP 27827087A JP H01123696 A JPH01123696 A JP H01123696A
Authority
JP
Japan
Prior art keywords
oxygen
water
waste water
microorganisms
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62278270A
Other languages
Japanese (ja)
Other versions
JPH0586279B2 (en
Inventor
Koji Mishima
浩二 三島
Eiji Tochikubo
栃久保 英二
Kazuaki Sato
和明 佐藤
Masahiro Takahashi
正宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Ebara Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Ebara Infilco Co Ltd
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Ebara Infilco Co Ltd, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP62278270A priority Critical patent/JPH01123696A/en
Publication of JPH01123696A publication Critical patent/JPH01123696A/en
Publication of JPH0586279B2 publication Critical patent/JPH0586279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To avert the destruction of microorganism mass and to effectively utilize the self-flocculating power of the microorganisms so that org. waste water is efficiently and aerobically cleaned by previously dissolving a required quantity of oxygen into the org. waste water, then passing the water upward through a mixed microorganism bed in which the microorganism are grained by the self-flocculating power. CONSTITUTION:The living waste water is admitted through a raw water supplying line 8 by a raw water pump 4 into an oxygen dissolution tank 1. Part of the treated water is admitted through a circulation line 10 by a circulation pump 6 into the tank 1. On the other hand, the oxygen produced in an oxygen generator 3 is supplied via an air diffuser 7 into the tank 1. The liquid mixture composed of the living waste water dissolved therein with the required quantity of the oxygen and the treated water is passed through a water feed line 9 in upward flow into a biological reaction vessel 2 from the lower part thereof. The granular mixed microorganisms 12 and the waste water flowing in this vessel 2 are brought into contact with each other aerobically clean the living waste water. The cleaned and treated water separated from the microorganisms 12 in the upper part of the vessel 2 is discharged through an outflow line 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は下水・産業排水・し尿などの有機注排水金好気
的条件下で生物学的に処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for biologically treating organic wastewater such as sewage, industrial wastewater, human waste, etc. under aerobic conditions.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

代表的な好気性生物処理法である活性汚泥法は、排水と
活性汚泥からなる混合液を曝気槽で曝気したのち沈殿池
で固液分離し、活性汚泥全沈降分離して上澄水を処理水
として得る方法である。活性汚泥法における微生物の形
態は不定形で、密度の疎なフロック状であるために、そ
の固液分離のためには広大な面積を有する沈殿池を必要
とするという欠点を有しているが、−方、沈殿の際にフ
ロックが水中の微細な88分を吸着除去するために、処
理水の清澄度が高いという特長を有している。
In the activated sludge method, which is a typical aerobic biological treatment method, a mixed liquid consisting of wastewater and activated sludge is aerated in an aeration tank, and then solid-liquid is separated in a settling tank.The activated sludge is completely settled and separated, and the supernatant water is used as treated water. This is the way to obtain it. The microorganisms in the activated sludge method have an irregular shape and are floc-like with a sparse density, so their solid-liquid separation requires a settling tank with a large area. On the other hand, since the floc adsorbs and removes fine particles in the water during precipitation, the treated water has a high degree of clarity.

上原義昭編「新しい汚水処理技術−上向流式酸素活性汚
泥法一」(産業用水調査会発行。
"New Sewage Treatment Technology - Upflow Oxygen Activated Sludge Method" edited by Yoshiaki Uehara (published by Industrial Water Research Association).

1980年)に記載されている上向流式酸素活性汚泥法
は、生物反応槽と沈殿池を一体化するとともに、酸素源
として酸素ガスを用いることにより設備の縮小化を狙っ
た技術であるが、活性汚泥と排水からなる混合液t−酸
素ガスにより直接曝気するため活性汚泥の形態は上記活
性汚泥法と同一のフロック体であり、固液分離に要する
面積は従来の活性汚泥法と同等でるる〇一方、生物膜法
においては、微生物が付着担体上に生物膜として存在す
るため、固液分離のために広大な沈殿池全必要としない
が、(I)フロック状の活性汚泥の存在量が少ないため
活性汚泥法はど処理水の清澄度が高くない、 (ID付
着担体の価格が高く、設備コストの増大につながる、な
どの問題点を有している。
The upflow oxygen activated sludge method described in 1980) is a technology that aims to reduce the size of equipment by integrating a biological reaction tank and a settling tank and using oxygen gas as an oxygen source. Since the mixed liquid consisting of activated sludge and wastewater is directly aerated with oxygen gas, the form of the activated sludge is the same floc as in the above activated sludge method, and the area required for solid-liquid separation is the same as that of the conventional activated sludge method. Ruru〇On the other hand, in the biofilm method, since microorganisms exist as a biofilm on an attached carrier, a vast sedimentation tank is not required for solid-liquid separation, but (I) the presence of activated sludge in the form of flocs is Because the amount is small, the activated sludge method has problems such as the purity of the treated water is not high (the ID-attached carrier is expensive, leading to an increase in equipment costs).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微生物の有する自己凝集力を有効に活
用することによシ、何らの付着担体を用いることなく沈
降性・処理水の清澄化作用のすぐれた粒状の混合微生物
床全形成させ、それ’kW効に活用した好気性生物処理
法を提供することにある。
The purpose of the present invention is to form a granular mixed microbial bed with excellent sedimentation properties and clarification of treated water without using any adhesion carrier by effectively utilizing the self-cohesive power of microorganisms. The purpose of the present invention is to provide an aerobic biological treatment method that utilizes kW efficiency.

〔発明の構成〕 本発明の極立った特徴は、従来では常識手段と考えられ
ていたrRX供給方法である微生物含有排水に対する直
接的な曝気を除外したところにめる0これによル微生物
の自己凝集にとって主要な阻害要因でめった曝気にとも
なう微生物塊の破壊がなくなり、その結果微生物は沈降
性のすぐれ丸缶な粒状体を形成し、固液分離を従来法に
対し飛躍的に容易なものとした。
[Structure of the Invention] The outstanding feature of the present invention is that it excludes the direct aeration of wastewater containing microorganisms, which is the rRX supply method that was conventionally considered to be a common-sense means. The destruction of microbial clusters caused by frequent aeration, which is a major inhibiting factor for self-agglomeration, is eliminated, and as a result, microorganisms form round granules with excellent sedimentation properties, making solid-liquid separation much easier than conventional methods. And so.

また、酸素を溶解させた被処理水を自己凝集力により粒
状化した混合微生物汚泥床に上向流で通水接触させるこ
とによシ、被処理水中の微細なSSは通常の活性汚泥法
と同等に吸着され清澄化作用も高い方法を提供するもの
である。
In addition, by bringing the treated water in which oxygen has been dissolved into contact with the mixed microbial sludge bed that has been granulated by self-cohesive force in an upward flow, fine SS in the treated water can be removed compared to the normal activated sludge method. The present invention provides a method that is equally adsorbed and has a high clarification effect.

粒状混合微生物床は生物反応槽に所要量の活性汚泥を入
れ、これに酸素を溶解させた有機性排水を上向きに通水
することによフ生成することができる。
A granular mixed microbial bed can be produced by placing a required amount of activated sludge in a biological reaction tank and passing organic wastewater with dissolved oxygen upward through the activated sludge.

なお、はじめは汚泥の流出を防止するため液上外流速を
小とし、粒状化するにつれて流速を大とすれは良い。
In addition, it is better to initially lower the flow rate above and below the liquid to prevent the sludge from flowing out, and increase the flow rate as the sludge becomes granular.

また、この際ゆるやかに撹拌すると粒状体が形成されや
すい。通常2週間もすると完全に粒状化が達成され、1
〜8雪の粒径の粒状体が形成される。
In addition, if the mixture is stirred gently at this time, granules are likely to be formed. Usually, complete granulation is achieved within two weeks, and 1
Granules of ~8 snow grain size are formed.

す逢わち本発明は、有機性排水にろらかしめ必要量の酸
素を溶解させたのち、自己凝集力により粒状となった混
合微生物床に上向きに通水し、微生物塊を壊すことなく
処理することを特徴とする有機性排水の好気性生物処理
法でるる。
According to the present invention, after agitating organic wastewater and dissolving the necessary amount of oxygen, water is passed upward through a mixed microbial bed that has become granular due to self-cohesive force, and is treated without breaking the microbial mass. This is an aerobic biological treatment method for organic wastewater.

本発明においては、粒状体の形成の促進と、粒状体同志
の付着による汚泥のブロック化、それにともなうデッド
ゾーンの形成?防止するために、粒状混合微生物床をゆ
るやかに撹拌するのが好ましい。
In the present invention, the formation of granules is promoted, the sludge becomes blocked by adhesion of the granules to each other, and a dead zone is formed due to this. To prevent this, it is preferable to gently agitate the granular mixed microbial bed.

また本発明においては液上外流速が80 m7日以下の
場合、粒状混合微生物床の流動が不活発でめ夛排水との
接触効率が低下するため、液上外流速を80m7日以上
に保つ必要がある。
In addition, in the present invention, when the above-liquid flow rate is less than 80 m7 days, the flow of the granular mixed microorganism bed becomes inactive and the contact efficiency with the wastewater decreases, so it is necessary to maintain the above-liquid flow rate at 80 m7 days or more. There is.

また、液上外流速が高すぎると粒状混合微生物床が98
軍の大きな流動床を形成するため微生物床の汚泥fjk
度が低下し、処理速度の低下をきたす。
In addition, if the flow rate above and below the liquid is too high, the granular mixed microorganism bed will be 98%
Microbial bed sludge fjk to form a large fluidized bed in the military
This results in a decrease in processing speed.

液上外流速としては80〜250m/日が好ましく、よ
り好ましくは100〜210m/日である。
The flow rate above and below the liquid is preferably 80 to 250 m/day, more preferably 100 to 210 m/day.

また、本発明における酸素溶解は加圧状態で行なう方が
溶存酸素濃度金高くできて好気性処理に有利である。し
かし、’ 5 kg7cm”以上に加圧する場合は実用
的な水深の生物反応槽において過飽和の気体が気泡化し
、粒状混合微生物床を曝気するのと同様な結果にな9粒
状体の形成が阻害されるので、被処理水への酸素の溶解
は3ゆ7個2以下の加圧下で行なうのが好ましい。
Further, in the present invention, dissolving oxygen under pressure can increase the dissolved oxygen concentration, which is advantageous for aerobic treatment. However, when pressurizing to more than 5 kg 7 cm, supersaturated gas becomes bubbles in a biological reaction tank at a practical depth, resulting in the same result as aerating a granular mixed microbial bed, and the formation of granular bodies is inhibited. Therefore, it is preferable to dissolve oxygen into the water to be treated under pressure of 3 to 7 or less than 2.

また、溶存酸素濃度を高く維持するために酸素富化ガス
、あるいは純酸素を用いるのが好ましいO また、有機性排水の濃度によっては、供給酸素量の不足
を解消するために、処理水を循環し酸素を溶解させたの
ち生物反応槽へ送水する必要がある。
In addition, it is preferable to use oxygen-enriched gas or pure oxygen in order to maintain a high dissolved oxygen concentration. Also, depending on the concentration of organic wastewater, the treated water may be circulated to eliminate the lack of oxygen supply. After dissolving the oxygen, it is necessary to send the water to the biological reaction tank.

また、粒状混合微生物の量が増加した場合は生物反応槽
から逐時抜きとればよいO 実施例にもとすき、本発明の詳細な説明する。
Further, when the amount of mixed granular microorganisms increases, it is sufficient to remove them from the biological reaction tank from time to time.

実施例1 第1図に基ずき説明するO E団地生活排水を対象に本発明t″実施た0使用した装
置は以下のとおりであった。
Example 1 The present invention was carried out on the domestic wastewater of an OE housing complex as explained based on FIG. 1. The equipment used was as follows.

生物反応槽  内径   500m+ 高さ   4200m 有効容積  α25− 1撹拌棒  高さ方向に200−間隔 で丸IIを喉付けた0回転 数1〜5rpm(可変型) とした0 酸素溶解槽  内径   30〇− 高さ  4000m 有効容積   12− あらかじめ夾雑物を微細目スクリーンにより除去したE
団地生活排水t−原水ボイズ4により原水供給ライン8
を経て、酸素溶解槽1に流入させる。また処理水の一部
を循環ポンプ6により循環ライン10を経て酸素溶解槽
1に流入させる。一方、酸素発生機3で製造された酸素
(有効酸素濃度91%V/V )は酸素溶解槽1に散気
装置7を介して供給される。
Biological reaction tank Inner diameter 500m + Height 4200m Effective volume α25- 1 Stirring rod 0 rotation speed 1-5 rpm (variable type) with round II attached at 200- intervals in the height direction Oxygen dissolution tank Inner diameter 300- High 4000 m Effective volume 12- E with impurities removed in advance using a fine mesh screen
Raw water supply line 8 by housing complex domestic wastewater t-raw water Boise 4
After that, it flows into the oxygen dissolution tank 1. Further, a part of the treated water is caused to flow into the oxygen dissolving tank 1 via the circulation line 10 by the circulation pump 6. On the other hand, oxygen produced by the oxygen generator 3 (effective oxygen concentration 91% V/V) is supplied to the oxygen dissolving tank 1 via the aeration device 7.

この方法で得られる溶存酸素濃度は20〜40ダ/lで
めり原水に酸素を供給するだけでは酸素不足であるため
、処理水を循環し酸素を供給する。
The dissolved oxygen concentration obtained by this method is 20 to 40 da/l, and since it is insufficient to simply supply oxygen to the raw water, treated water is circulated to supply oxygen.

酸素が溶解した原水と処理水の混合液は送水ポンプ5に
よシ送水ライン9を経て生物反応槽2の下部から上向流
で通水される。
A mixed solution of raw water and treated water in which oxygen has been dissolved is passed through a water supply line 9 by a water supply pump 5 in an upward flow from the lower part of the biological reaction tank 2.

生物反応槽2の内部には撹拌棒13が配備されており、
流入水による上向流と撹拌棒13によるゆるやかな旅回
流との相互作用によシ粒状混合微生物12は流動しなが
ら排水と接触し、好気的に排水を浄化する。
A stirring rod 13 is provided inside the biological reaction tank 2.
Due to the interaction between the upward flow caused by the inflow water and the gentle traveling flow caused by the stirring rod 13, the particulate mixed microorganisms 12 come into contact with the wastewater while flowing, and purify the wastewater aerobically.

粒状混合微生物12は生物反応槽2の上部で処理水と分
離され、分離水は処理水として生物反応槽2上部から処
理水流出ライン11t−経て流出するとともに、一部は
循環ポンプ6により循環ライン10を経て酸素溶解槽1
に循環されるO 余剰となった粒状混合微生物12は、粒状混合微生物排
出ライン14から排出される0次に運転結果金説明する
。通常の活性汚泥法の返送汚泥s o tw生物反応槽
に投入し、原水流t CL 5 m”/ eL %循環
水t 1.6 m”/ d 、 液上外流速50 m 
/ dで馴養運転t−開始したところ、徐々に汚泥が粒
状化し沈降速度が増大したO沈降速度の増加にめわせで
原水流量および循環水°  量を増加したところ、約2
週間で汚泥は直径1〜5wmの粒状体となったので定常
運転に移行した。
The granular mixed microorganisms 12 are separated from the treated water in the upper part of the biological reaction tank 2, and the separated water flows out from the upper part of the biological reaction tank 2 as treated water through the treated water outflow line 11t, and a part of it is sent to the circulation line by the circulation pump 6. 10 to oxygen dissolution tank 1
The surplus particulate mixed microorganisms 12 are discharged from the particulate mixed microorganism discharge line 14 as a result of the zero-order operation. The returned sludge of the normal activated sludge method is charged into the so tw biological reaction tank, raw water flow t CL 5 m"/eL % Circulating water t 1.6 m"/d, flow rate above and below the liquid 50 m
When the acclimatization operation was started at /d, the sludge gradually became granular and the sedimentation rate increased.The raw water flow rate and circulating water amount were increased in response to the increase in the O sedimentation rate, which resulted in approximately 2°C.
After a week, the sludge became granular with a diameter of 1 to 5 wm, so steady operation was started.

表−1に定常時の運転結果を示す。Table 1 shows the results of steady-state operation.

表−1運転結果 微生物が通常の活性汚泥法のフロックと異なる粒状体と
して存在するため、表−1に示すように大きな液流速の
もとでも固液分離が可能でメジ、また処理水質も良好で
めった。
Table 1 Operation Results Since microorganisms exist in granular form different from flocs in the normal activated sludge process, solid-liquid separation is possible even at high liquid flow rates as shown in Table 1, and the quality of the treated water is also good. I failed.

余剰となり排出された粒状混合微生物は排出の際の排出
管内でのせん断力によりもはや粒状体は崩壊しているが
、その濃縮性は通常の活性汚泥法の余剰汚泥よシやや良
好であり、24時間静置後の濃度は五5〜4%であった
Although the granular mixed microorganisms discharged as surplus have already disintegrated due to the shearing force within the discharge pipe during discharge, their concentration is somewhat better than that of surplus sludge from the normal activated sludge method. The concentration after standing for an hour was 55-4%.

以上のように、本発明により微生物の凝集力を有効に活
用してコンパクトかつ高性能な生物処理法が提供できる
。本発明は今後の排水処理に有効に活用されると考えら
れる。
As described above, the present invention can provide a compact and high-performance biological treatment method by effectively utilizing the cohesive power of microorganisms. It is believed that the present invention will be effectively utilized in future wastewater treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する九めのフロー図である
。 1・・・酸素溶解槽、2・・・生物反応槽、3・・・#
1.累発生機、4・・・原水ポンプ、7−・散気装置、
10・−・循環ライン、11・・・処理水流出ライン、
12・・・粒状混合微生物、13・・・撹拌捧、14−
・・餘剰粒状混合微生物排出ライン
FIG. 1 is the ninth flow diagram illustrating the present invention in detail. 1...Oxygen dissolution tank, 2...Biological reaction tank, 3...#
1. Accumulator generator, 4... raw water pump, 7-- air diffuser,
10... Circulation line, 11... Treated water outflow line,
12... Particulate mixed microorganisms, 13... Stirring offering, 14-
・・Excess granular mixed microorganism discharge line

Claims (1)

【特許請求の範囲】 1、有機性排水に予め必要量の酸素を溶解させた後、自
己凝集力により粒状となつた混合微生物床に上向きに通
水し、微生物塊を壊すことなく処理することを特徴とす
る有機性排水の好気性生物処理法。 2、混合微生物床を撹拌する特許請求の範囲第1項記載
の方法。 3、液上昇流速が80〜250m/日である特許請求の
範囲第1項又は第2項記載の方法。 4、有機性排水に、ゲージ圧3kg/cm^2以下の加
圧下で酸素を溶解する特許請求の範囲第1項、第2項又
は第3項記載の方法。 5、酸素富化ガス又は純酸素を使用する特許請求の範囲
第1項、第2項、第3項又は第4項記載の方法。
[Claims] 1. After dissolving a required amount of oxygen in organic wastewater in advance, the water is passed upward through a mixed microbial bed that has become granular due to self-cohesive force, and is treated without breaking the microbial mass. An aerobic biological treatment method for organic wastewater characterized by 2. The method according to claim 1, wherein the mixed microorganism bed is stirred. 3. The method according to claim 1 or 2, wherein the rising flow rate of the liquid is 80 to 250 m/day. 4. The method according to claim 1, 2 or 3, wherein oxygen is dissolved in organic wastewater under pressure of 3 kg/cm^2 or less gauge pressure. 5. The method according to claim 1, 2, 3 or 4, which uses oxygen-enriched gas or pure oxygen.
JP62278270A 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water Granted JPH01123696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278270A JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278270A JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPH01123696A true JPH01123696A (en) 1989-05-16
JPH0586279B2 JPH0586279B2 (en) 1993-12-10

Family

ID=17595006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278270A Granted JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPH01123696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136360A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method and apparatus
JP2007253106A (en) * 2006-03-24 2007-10-04 Sumitomo Heavy Ind Ltd Granular sludge producing method
JP4651201B2 (en) * 2001-01-09 2011-03-16 株式会社クボタ Air diffuser and air diffuser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651201B2 (en) * 2001-01-09 2011-03-16 株式会社クボタ Air diffuser and air diffuser
JP2007136360A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method and apparatus
JP4571065B2 (en) * 2005-11-18 2010-10-27 住友重機械工業株式会社 Granular microbial sludge generation method and granular microbial sludge generation apparatus
JP2007253106A (en) * 2006-03-24 2007-10-04 Sumitomo Heavy Ind Ltd Granular sludge producing method

Also Published As

Publication number Publication date
JPH0586279B2 (en) 1993-12-10

Similar Documents

Publication Publication Date Title
JPH02245297A (en) Two-stage treating method of waste water
JP2009513328A (en) Water treatment methods and mechanisms that integrate fixed bacterial biological treatment and aggregation gradients
JP2007136365A (en) Method for producing granular microbe sludge
JP3483917B2 (en) Sewage treatment method
JPH02214597A (en) Device for nitrifying sewage
WO1993016962A1 (en) Apparatus for the purification of cyanide-containing waste water
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
JP3244365B2 (en) Fluid bed carrier recovery method
JP3841394B2 (en) High concentration organic wastewater treatment method and equipment
WO1993015025A1 (en) Granulating method by aerobic biological treatment of organic waste water and aerobic biological treatment method for organic waste water
JP2576679B2 (en) Dephosphorization device
JPH01123696A (en) Aerobic biological treatment of organic waste water
JPH0586280B2 (en)
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JPH05337492A (en) Biological treatment of sewage
JP2698310B2 (en) Anaerobic wastewater treatment system and its operation method
JP2004041981A (en) Organic waste water treatment method and its system
JPH0636917B2 (en) Wastewater treatment method
JP3776763B2 (en) Waste water treatment equipment
JP2590474B2 (en) Wastewater treatment method
JPH0576897A (en) Water purifying treatment method and apparatus
JPS62237998A (en) Reactor for biofilter
JPH10211499A (en) Apparatus for treating wastewater
JPS621498A (en) Utilization of anaerobic bacteria
JPH09155382A (en) Device and process for biological treatment of drain

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term