JPH0586279B2 - - Google Patents

Info

Publication number
JPH0586279B2
JPH0586279B2 JP27827087A JP27827087A JPH0586279B2 JP H0586279 B2 JPH0586279 B2 JP H0586279B2 JP 27827087 A JP27827087 A JP 27827087A JP 27827087 A JP27827087 A JP 27827087A JP H0586279 B2 JPH0586279 B2 JP H0586279B2
Authority
JP
Japan
Prior art keywords
oxygen
water
activated sludge
organic wastewater
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27827087A
Other languages
Japanese (ja)
Other versions
JPH01123696A (en
Inventor
Koji Mishima
Eiji Tochikubo
Kazuaki Sato
Masahiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP62278270A priority Critical patent/JPH01123696A/en
Publication of JPH01123696A publication Critical patent/JPH01123696A/en
Publication of JPH0586279B2 publication Critical patent/JPH0586279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は下水・産業排水・し尿などの有機性排
水を好気的条件下で生物学的に処理する方法に関
する。 〔従来の技術及びその問題点〕 代表的な好気性生物処理法である活性汚泥法
は、排水と活性汚泥からなる混合液を曝気槽で曝
気したのち沈殿池で固液分離し、活性汚泥を沈降
分離して上澄水を処理水として得る方法である。
活性汚泥法における微生物の形態は不安形で、密
度の疎なフロツク状であるために、その固液分離
のためには広大な面積を有する沈殿池を必要とす
るという欠点を有しているが、一方、沈殿の際に
フロツクが水中の微細なSS分を吸着除去するた
めに、処理水の清澄度が高いという特長を有して
いる。 上原義昭編「新しい汚水処理技術−上向流式酸
素活性汚泥法−」(産業用水調査会発行、1980年)
に記載されている上向流式酸素活性汚泥法は、生
物反応槽と沈殿池を一体化するとともに、酸素源
として酸素ガスを用いることにより設備の縮水化
を狙つた技術であるが、活性汚泥と排水からなる
混合液を酸素ガスにより直接曝気するため活性汚
泥の形態は上記活性汚泥法と同一のフロツク体で
あり、固液分離に要する面積は従来の活性汚泥法
と同等である。 一方、生物膜法においては、微生物が付着担体
上に生物膜として存在するため、固液分離のため
に広大な沈殿池を必要としないが、(i)フロツク状
の活性汚泥の存在量が少ないため活性汚泥法ほど
処理水の清澄度が高くない、(ii)付着担体の価格が
高く、設備コストの増大につながる、などの問題
点を有している。 〔発明の目的〕 本発明の目的は、微生物の有する自己凝集力を
有効に活用することにより、何らの付着担体を用
いることなく沈降性・処理水の清澄化作用のすぐ
れた粒状の混合微生物床を形成させ、それを有効
に活用した好気性生物処理法を提供することにあ
る。 〔発明の構成〕 本発明の極立つた特徴は、従来では常識手段と
考えられていた酸素供給方法である微生物含有排
水に対する直接的な曝気を除外したところにあ
る。これにより微生物の自己凝集にとつて主要な
阻害要因であつた曝気にともなう微生物塊の破壊
がなくなり、その結果微生物は沈降性のすぐれた
密な粒状体を形成し、固液分離を従来法に対し飛
躍的に容易なものとした。 また、酸素を溶解させた被処理水を自己凝集力
により粒状化した混合微生物汚泥床に上向流で通
水接触させることにより、被処理水中の微細な
SSは通常の活性汚泥法と同等の吸着され清澄化
作用も高い方法を提供するものである。 粒状混合微生物床は生物反応槽に所要量の活性
汚泥を入れ、これに酸素を溶解させた有機性排水
を上向きに通水することにより生成することがで
きる。 なお、はじめは汚泥の流出を防止するため液上
昇流速を小とし、粒状化するにつれて流速を大と
すれば良い。 また、この際ゆるやかに撹拌すると粒状体が形
成されやすい。通常2週間もすると完全に粒状化
が達成され、1〜8mmの粒径の粒状体が形成され
る。 すなわち本発明は、有機性排水にあらかじめ必
要量の酸素を溶解させたのち、自己凝集力により
粒状となつた混合微生物床に上向きに通水し、微
生物塊を壊すことなく該混合微生物床を撹拌しな
がら処理することを特徴とする有機性排水の好気
性生物処理法である。 本発明においては、粒状体の形成の促進と、粒
状体同志の付着による汚泥のブロツク化、それに
ともなうデツドゾーンの形成を防止するために、
粒状混合微生物床をゆるやかに撹拌する必要あ
る。 また本発明においては液上昇流速が80m/日以
下の場合、粒状混合微生物床の流動が不活発であ
り排水との接触効率が低下するため、液上昇流速
を80m/日以上に保つ必要がある。 また、液上昇流速が高すぎると粒状混合微生物
床が空隙率の大きな流動床を形成するため微生物
床の汚泥濃度が低下し、処理速度の低下をきた
す。 液上昇流速としては80〜250m/日が好ましく、
より好ましくは100〜210m/日である。 また、本発明における酸素溶解は加圧状態で行
なう方が溶存酸素濃度を高くできて好気性処理に
有利である。しかし、3Kg/cm2以上に加圧する場
合は実用的な水深の生物反応槽において過飽和の
気体が気泡化し、粒状混合微生物床を曝気するの
と同様な結果になり粒状体の形成が阻害されるの
で、被処理水への酸素の溶解は3Kg/cm2以下の加
圧下で行なうのが好ましい。 また、溶存酸素濃度を高く維持するために酸素
富化ガス、あるいは純酸素を用いるのが好まし
い。 また、有機性排水の濃度によつては、供給酸素
量の不足を解消するために、処理水を循環し酸素
を溶解させたのち生物反応槽へ送水する必要があ
る。 また、粒状混合微生物の量が増加した場合は生
物反応槽から逐時抜きとればよい。 実施例にもとずき、本発明を詳しく説明する。 実施例 1 第1図に基ずき説明する。 E団地生活排水を対象に本発明を実施した。使
用した装置は以下のとおりであつた。生物反応槽 内径 300mm 高さ 4200mm 有効容積 0.25m3 撹拌棒 高さ方向に200mm間隔
で丸棒を取付けた。回転数1〜5rpm(可変型)と
した。酸素溶解槽 内径 300mm 高さ 4000mm 有効容積 0.2m3 あらかじめ夾雑物を微細目スクリーンにより除
去したE団地生活排水を原水ポンプ4により原水
供給ライン8を経て、酸素溶解槽1に流入させ
る。また処理水の一部を循環ポンプ6により循環
ライン10を経て酸素溶解槽1に流入させる。一
方、酸素発生機3で製造された酸素(有効酸素濃
度91%V/V)は酸素溶解槽1に散気装置7を介
して供給される。 この方法で得られる溶存酸素濃度は20〜40mg/
であり原水に酸素を供給するだけでは酸素不足
であるため、処理水を循環し酸素を供給する。 酸素が溶解した原水と処理水の混合液は送水ポ
ンプ5により送水ライン9を経て生物反応槽2の
下部から上向流で通水される。 生物反応槽2の内部には撹拌棒13が配備され
ており、流入水による上向流と撹拌棒13による
ゆるやかな施回流との相互作用により粒状混合微
生物12は流動しながら排水と接触し、好気的に
排水を浄化する。 粒状混合微生物12は生物反応槽2の上部で処
理水と分離され、分離水は処理水として生物反応
槽2上部から処理水流出ライン11を経て流出す
るとともに、一部は循環ポンプ6により循環ライ
ン10を経て酸素溶解槽1に循環される。 余剰となつた粒状混合微生物12は、粒状混合
微生物排出ライン14から排出される。 次に運転結果を説明する。通常の活性汚泥法の
返送汚泥50を生物反応槽に投入し、原水流量
0.5m3/d、循環水量1.6m3/d、液上昇流速
30m/dで馴養運転を開始したところ、徐々に汚
泥が粒状化し沈降速度が増大した。沈降速度の増
加にあわせて原水流量および循環水量を増加した
ところ、約2調間で汚泥は直径1〜5mmの粒状体
となつたので定常運転に移行した。 表−1に定常時の運転結果を示す。
[Industrial Application Field] The present invention relates to a method for biologically treating organic wastewater such as sewage, industrial wastewater, and human waste under aerobic conditions. [Conventional technology and its problems] The activated sludge method, which is a typical aerobic biological treatment method, aerates a mixed liquid consisting of wastewater and activated sludge in an aeration tank, and then separates the solid and liquid in a settling tank to produce activated sludge. This method involves sedimentation separation to obtain supernatant water as treated water.
The microorganisms in the activated sludge method have an unstable shape and are floc-like with a low density, so their solid-liquid separation requires a settling tank with a large area. On the other hand, since the floc adsorbs and removes fine SS components in the water during precipitation, the treated water has a high degree of clarity. Edited by Yoshiaki Uehara, “New Sewage Treatment Technology - Upflow Oxygen Activated Sludge Method” (Published by Industrial Water Research Association, 1980)
The upflow oxygen activated sludge method described in Since the mixed liquid consisting of water and wastewater is directly aerated with oxygen gas, the form of the activated sludge is the same floc as in the activated sludge method described above, and the area required for solid-liquid separation is the same as in the conventional activated sludge method. On the other hand, in the biofilm method, since microorganisms exist as a biofilm on an attached carrier, a vast settling tank is not required for solid-liquid separation, but (i) the amount of activated sludge in the form of flocs is small; Therefore, it has problems such as the clarity of the treated water is not as high as the activated sludge method, and (ii) the cost of the adhesion carrier is high, leading to an increase in equipment costs. [Object of the Invention] The object of the present invention is to create a granular mixed microbial bed with excellent settling properties and clarification of treated water without using any adhesion carrier by effectively utilizing the self-cohesive power of microorganisms. The object of the present invention is to provide an aerobic biological treatment method that effectively utilizes the formation of . [Structure of the Invention] The most distinctive feature of the present invention is that it excludes direct aeration of the microorganism-containing wastewater, which is an oxygen supply method that was conventionally considered to be a common-sense means. This eliminates the destruction of microbial clumps caused by aeration, which was a major inhibiting factor for microbial self-agglomeration, and as a result, microorganisms form dense granules with excellent sedimentation properties, making solid-liquid separation difficult to achieve with conventional methods. It has become dramatically easier. In addition, by making the water to be treated in which oxygen has been dissolved come into contact with the mixed microbial sludge bed that has been granulated by self-cohesive force in an upward flow, fine particles in the water to be treated can be removed.
SS provides a method that has the same adsorption and clarification effect as the normal activated sludge method. A granular mixed microbial bed can be produced by placing a required amount of activated sludge in a biological reaction tank and passing organic wastewater with dissolved oxygen upward through the activated sludge. In addition, initially, the rising flow rate of the liquid may be set low to prevent the sludge from flowing out, and the flow speed may be increased as the sludge becomes granular. In addition, if the mixture is stirred gently at this time, granules are likely to be formed. Usually, complete granulation is achieved within two weeks, and granules with a particle size of 1 to 8 mm are formed. That is, the present invention dissolves a required amount of oxygen in organic wastewater in advance, and then passes water upward through a mixed microbial bed that has become granular due to self-cohesive force, and agitates the mixed microbial bed without breaking the microbial mass. This is an aerobic biological treatment method for organic wastewater that is characterized by the treatment of organic wastewater. In the present invention, in order to promote the formation of granules, to prevent sludge from becoming blocked due to adhesion of granules to each other, and to prevent the formation of a dead zone due to this,
It is necessary to gently stir the granular mixed microorganism bed. In addition, in the present invention, if the liquid upward flow rate is 80 m/day or less, the flow of the granular mixed microorganism bed becomes inactive and the contact efficiency with wastewater decreases, so it is necessary to maintain the liquid upward flow rate at 80 m/day or more. . Furthermore, if the rising flow rate of the liquid is too high, the granular mixed microbial bed forms a fluidized bed with a large porosity, resulting in a decrease in the sludge concentration in the microbial bed and a decrease in the processing speed. The liquid rising flow rate is preferably 80 to 250 m/day,
More preferably 100 to 210 m/day. Further, in the present invention, dissolving oxygen under pressure can increase the dissolved oxygen concentration, which is advantageous for aerobic treatment. However, if the pressure is increased to 3 kg/cm 2 or more, the supersaturated gas will become bubbles in a biological reaction tank at a practical depth, resulting in the same result as aerating a granular mixed microbial bed and inhibiting the formation of granules. Therefore, it is preferable to dissolve oxygen into the water to be treated under a pressure of 3 kg/cm 2 or less. Further, in order to maintain a high dissolved oxygen concentration, it is preferable to use an oxygen-enriched gas or pure oxygen. Furthermore, depending on the concentration of organic wastewater, in order to resolve the shortage of oxygen supply, it is necessary to circulate the treated water to dissolve oxygen and then send the water to the biological reaction tank. Furthermore, if the amount of particulate mixed microorganisms increases, they can be removed from the biological reaction tank from time to time. The present invention will be explained in detail based on examples. Example 1 This will be explained based on FIG. The present invention was applied to domestic wastewater in housing complex E. The equipment used was as follows. Biological reaction tank inner diameter 300mm height 4200mm effective volume 0.25m 3 Stirring rods Round rods were installed at 200mm intervals in the height direction. The rotation speed was 1 to 5 rpm (variable type). Oxygen dissolution tank Inner diameter 300mm Height 4000mm Effective volume 0.2m 3 Residential wastewater from housing complex E, from which impurities have been removed using a fine screen, is made to flow into the oxygen dissolution tank 1 via a raw water supply line 8 using a raw water pump 4. Further, a part of the treated water is caused to flow into the oxygen dissolving tank 1 via the circulation line 10 by the circulation pump 6. On the other hand, oxygen produced by the oxygen generator 3 (effective oxygen concentration 91% V/V) is supplied to the oxygen dissolving tank 1 via the aeration device 7. The dissolved oxygen concentration obtained with this method is 20 to 40 mg/
Therefore, simply supplying oxygen to raw water results in insufficient oxygen, so treated water is circulated to supply oxygen. A mixed solution of raw water and treated water in which oxygen has been dissolved is passed through a water supply line 9 by a water supply pump 5 in an upward flow from the lower part of the biological reaction tank 2 . A stirring rod 13 is provided inside the biological reaction tank 2, and the granular mixed microorganisms 12 come into contact with the wastewater while flowing due to the interaction between the upward flow of the inflow water and the gentle circulation flow of the stirring rod 13. Purify wastewater aerobically. The granular mixed microorganisms 12 are separated from the treated water in the upper part of the biological reaction tank 2, and the separated water flows out from the upper part of the biological reaction tank 2 as treated water through the treated water outflow line 11, and a part of it is sent to the circulation line by the circulation pump 6. It is circulated to the oxygen dissolution tank 1 via 10. The surplus particulate mixed microorganisms 12 are discharged from the particulate mixed microorganism discharge line 14. Next, the driving results will be explained. 50% of the returned sludge from the normal activated sludge method is put into a biological reaction tank, and the raw water flow rate is
0.5m 3 /d, circulating water volume 1.6m 3 /d, liquid rising flow rate
When acclimation operation was started at 30 m/d, the sludge gradually became granular and the sedimentation rate increased. When the flow rate of raw water and the amount of circulating water were increased in accordance with the increase in sedimentation rate, the sludge became granular bodies with a diameter of 1 to 5 mm in about 2 cycles, and steady operation was started. Table 1 shows the results of steady-state operation.

【表】【table】

【表】 微生物が通常の活性汚泥法のフロツクと異なる
粒状体として存在するため、表−1に示すように
大きな液流速のもとでも固液分離が可能であり、
また処理水質も良好であつた。 余剰となり排水された粒状混合微生物は排出の
際の排出管内でのせん断力によりもはや粒状体は
崩壊しているが、その濃縮性は通常の活性汚泥法
の余剰汚泥よりやや良好であり、24時間静置後の
濃度は3.5〜4%であつた。 以上のように、本発明により微生物の凝集力を
有効に活用してコンパクトかつ高性能な生物処理
法が提供できる。本発明は今後の排水処理に有効
に活用されると考えられる。
[Table] Because the microorganisms exist in granular form, which is different from flocs in the normal activated sludge process, solid-liquid separation is possible even at high liquid flow rates, as shown in Table 1.
The quality of the treated water was also good. The granular mixed microorganisms that were drained as surplus have already collapsed due to the shearing force in the discharge pipe during discharge, but their concentration is slightly better than the surplus sludge of the normal activated sludge method, and it can be used for 24 hours. The concentration after standing was 3.5-4%. As described above, the present invention can provide a compact and high-performance biological treatment method by effectively utilizing the cohesive power of microorganisms. It is believed that the present invention will be effectively utilized in future wastewater treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を説明するためのフロ
ー図である。 1……酸素溶解槽、2……生物反応槽、3……
酸素発生機、4……原水ポンプ、7……散気装
置、10……循環ライン、11……処理水流出ラ
イン、12……粒状混合微生物、13……撹拌
棒、14……餘剰粒状混合微生物排出ライン。
FIG. 1 is a flow diagram for explaining an embodiment of the present invention. 1... Oxygen dissolution tank, 2... Biological reaction tank, 3...
Oxygen generator, 4... Raw water pump, 7... Aeration device, 10... Circulation line, 11... Treated water outflow line, 12... Granular mixed microorganisms, 13... Stirring rod, 14... Excess granular Mixed microbial discharge line.

Claims (1)

【特許請求の範囲】 1 有機性排水に予め必要量の酸素を溶解させた
後、自己凝集力により粒状となつた混合微生物床
に上向きに通水し、微生物塊を壊すことなく該混
合微生物床を撹拌しながら処理することを特徴と
する有機性排水の好気性生物処理法。 2 加圧がゲージ圧3Kg/cm2以下である特許請求
の範囲第1項記載の方法。 3 液上昇流速が80〜250m/日である特許請求
の範囲第1項又は第2項記載の方法。 4 酸素富化ガス又は純酸素を使用する特許請求
の範囲第1項、第2項又は第3項記載の方法。
[Claims] 1. After dissolving a required amount of oxygen in organic wastewater in advance, water is passed upward through a mixed microbial bed that has become granular due to self-cohesive force, and the mixed microbial bed is formed without breaking the microbial mass. An aerobic biological treatment method for organic wastewater, which is characterized by treating organic wastewater while stirring. 2. The method according to claim 1, wherein the pressurization is a gauge pressure of 3 Kg/cm 2 or less. 3. The method according to claim 1 or 2, wherein the rising flow rate of the liquid is 80 to 250 m/day. 4. The method according to claim 1, 2 or 3, which uses oxygen-enriched gas or pure oxygen.
JP62278270A 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water Granted JPH01123696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278270A JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278270A JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPH01123696A JPH01123696A (en) 1989-05-16
JPH0586279B2 true JPH0586279B2 (en) 1993-12-10

Family

ID=17595006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278270A Granted JPH01123696A (en) 1987-11-05 1987-11-05 Aerobic biological treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPH01123696A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651201B2 (en) * 2001-01-09 2011-03-16 株式会社クボタ Air diffuser and air diffuser
JP4571065B2 (en) * 2005-11-18 2010-10-27 住友重機械工業株式会社 Granular microbial sludge generation method and granular microbial sludge generation apparatus
JP2007253106A (en) * 2006-03-24 2007-10-04 Sumitomo Heavy Ind Ltd Granular sludge producing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Also Published As

Publication number Publication date
JPH01123696A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
CN101519265B (en) Sewage treatment process and system
US8409440B2 (en) Method and unit for the purification of wastewater with aerobic granular sludge
US3152982A (en) Method and apparatus for sewage treatment
JPH02245297A (en) Two-stage treating method of waste water
JP2004528163A (en) Method and apparatus for biological treatment of wastewater
JPH01135592A (en) Biological purification of waste water
CN106904796A (en) A kind of multilevel deflector-type SSMBBR sewage disposal systems and processing method
JP2007136365A (en) Method for producing granular microbe sludge
JPH02214597A (en) Device for nitrifying sewage
CN101693576B (en) Technology for rapidly treating domestic sewage discharged without residual mud by second-stage adsorption
US2713028A (en) Sewage treatment
JP6474301B2 (en) Dehydration method, wastewater treatment method, and wastewater treatment device
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
WO1993016962A1 (en) Apparatus for the purification of cyanide-containing waste water
JP3244365B2 (en) Fluid bed carrier recovery method
JPH0586280B2 (en)
JPH0586279B2 (en)
JP2698310B2 (en) Anaerobic wastewater treatment system and its operation method
JP2001058102A (en) Fluidized bed crystallization reactor
JP3776763B2 (en) Waste water treatment equipment
CN1048005C (en) Fe-C flocculation bed device and use for treating kitchen waste water
CN1669946A (en) Sewage treatment device with biological granulating fluidized bed
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JPH10211499A (en) Apparatus for treating wastewater
JPS62237998A (en) Reactor for biofilter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term