JPH0586280B2 - - Google Patents

Info

Publication number
JPH0586280B2
JPH0586280B2 JP27827187A JP27827187A JPH0586280B2 JP H0586280 B2 JPH0586280 B2 JP H0586280B2 JP 27827187 A JP27827187 A JP 27827187A JP 27827187 A JP27827187 A JP 27827187A JP H0586280 B2 JPH0586280 B2 JP H0586280B2
Authority
JP
Japan
Prior art keywords
oxygen
mixed
reaction tank
tank
biological reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27827187A
Other languages
Japanese (ja)
Other versions
JPH01123697A (en
Inventor
Koji Mishima
Eiji Tochikubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP62278271A priority Critical patent/JPH01123697A/en
Publication of JPH01123697A publication Critical patent/JPH01123697A/en
Publication of JPH0586280B2 publication Critical patent/JPH0586280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は下水、産業廃水、し尿などの有機性廃
水を好気的条件下で生物処理するための装置に関
する。 〔従来の技術及びその問題点〕 代表的な好気性生物処理法である活性汚泥法
は、廃水と活性汚泥からなる混合液を曝気槽で曝
気したのち沈殿池で固液分離し、活性汚泥を沈降
分離した上澄水を処理水として得る方法である。 活性汚泥法における微生物の形態は、不定形で
密度の疎なフロツク状であるために、その固液分
離のためには広大な面積を有する沈殿池を必要と
するという欠点をもつているが、一方、沈殿の際
にフロツクが水中の微細なSS分を吸着除去する
ために、処理水の清澄度が高いという特長を有し
ている。 上原義昭編「新しい汚水処理技術−上向流式酸
素活性汚泥法−」(産業用水調査会発行、1980年)
に記載された上向流式酸素活性汚泥法並びにその
装置は、生物反応槽と沈殿池を一体化するととも
に、酸素源として酸素ガスを用いることにより設
備の縮小化を狙つた技術であるが、活性汚泥と廃
水からなる混合液を酸素ガスにより直接曝気する
ため活性汚泥の形態は上記活性汚泥法と同一のフ
ロツク体であり、固液分離に要する面積は従来の
活性汚泥法と同等である。 一方、生物膜法においては微生物が付着担体上
に生物膜として存在するため、固液分離のために
広大な沈殿池を必要としないが、(i)フロツク状の
活性汚泥の存在量が少ないため活性汚泥法ほど処
理水の清澄度が高くない、(ii)付着担体の価格が高
く設備コストの増大につながる、などの問題点を
有している。 〔発明の目的〕 本発明の目的は、微生物の有する自己凝集力を
有効に活用することにより、何らの付着担体を用
いることなく沈殿性、処理水の清澄化作用のすぐ
れた粒状の混合微生物床を形成させ、それを有効
に活用した好気性生物処理装置を提供することに
ある。 〔発明の構成〕 本発明の特徴は、微生物を含む液に対する直接
的な曝気を行なうことなしに酸素を供給すること
により微生物の有する自己凝集力を有効に活用し
沈降性のすぐれた粒状微生物床を形成し、その固
液分離を従来の活性汚泥法に比して飛躍的に容易
にした点、凝集した粒状混合微生物からなる汚泥
床に有機性廃水を上向流で接触させることにより
生物膜法に対して清澄度の高い処理水を得ること
を可能にした点、生物反応槽上部の断面積を拡大
し処理水からの粒状混合微生物の分離を容易にす
るとともに、生物反応槽外に排出すべき余剰粒状
混合微生物を濃縮し汚泥処理工程への負荷を軽減
する機能を生物反応槽自体に付与した点にあり、
更に生物反応槽内に撹拌機を設備し汚泥床をゆる
やかに撹拌することによりり、粒状体の形成を促
進するとともに、汚泥床内のデツドゾーン形成を
防止しつつ有機性廃水と粒状混合微生物との円滑
な接触を可能とした点である。 粒状混合微生物床は生物反応槽に所要量の活性
汚泥を入れ、これに酸素を溶解させた有機性廃水
を上向きに通水することにより生成することがで
きる。 なお、はじめは汚泥の流出を防止するため液上
昇流速を小とし、粒状化するにつれて流速を大と
すれば良い。 また、この際ゆるやかに撹拌すると粒状体が形
成されやすい。 通常2週間もすると完全に粒状化が達成され、
1〜8mmの粒径の粒状体が得られる。 すなわち本発明は、酸素吸収装置により活性汚
泥を含まない有機性廃水にあらかじめ必要量の酸
素を溶解させたのち、自己凝集力により粒状とな
つた混合微生物床に上向きに通水し微生物塊をこ
わすことなく有機性廃水を好気的に生物処理する
装置において、生物反応槽が下部に原水流入部、
上部に処理水流出部を有し、生物反応槽の上部断
面積を大とし、断面積の小さい部分の上部に粒状
混合微生物排出口を配備すると共に、槽内に混合
微生物床を撹拌する撹拌機を設けたことを特徴と
するる有機性廃水の好気性生物処理装置である。 本発明においては、粒状体の形成の促進と、粒
状体同志の付着による汚泥のブロツク化、それに
ともなうデツドゾーンの形成を防止するために、
粒状混合微生物床をゆるやかに撹拌するため、撹
拌装置を設ける必要がある。 また、本発明装置を使用する際には、液上昇流
速が80m/日以下の場合、粒状混合微生物床の流
動が不活発であり廃水との接触効率が低下するた
め、液上昇流速を80m/日以上に保つ必要があ
る。 また液上昇流速が高すぎると粒状混合微生物床
が空隙率の大きな流動床を形成するため微生物床
の汚泥濃度が低下し、処理速度の低下をきたす。
従つて液上昇流速としては80〜250m/日が好ま
しく、より好ましくは100〜210m/日である。 また、本発明における酸素溶解は加圧状態で行
なう方が溶存酸素濃度を高くできて好気性処理に
有利である。しかし、3Kg/cm2以上に加圧する場
合は実用的な水深の生物反応槽において過飽和の
気体が気泡化し、粒状混合微生物床を曝気するの
と同等になり粒状体の形成が阻害されるので、加
圧は3Kg/cm2以下で行なわれるのが好ましい。 また、溶存酸素濃度を高く維持するために酸素
富化ガス、あるいは純酸素を用いるのが好まし
い。 また、有機性廃水の濃度によつては、供給酸素
量の不足を解消するために、処理水を循環し酸素
を溶解させたのち生物反応槽へ送水する必要があ
る。 本発明において生物反応槽内の粒状混合微生物
が増加した場合は、粒状混合微生物排出口から逐
時排出すればよい。 実施例 第1図に基ずき本発明の装置並びにその使用例
を説明する。 E団地生活廃水を対象に本発明を実施した。装
置の寸法等は以下のとおりであつた。 生物反応槽 内径 テーパー部より下部 300mm テーパー部より上部 500mm 高さ 装置高 4500mm 水 深 4400mm テーパー部 位置 槽底から3000mm テーパーの傾斜角 30゜ 撹拌機 回転数 1〜5rpm(可変型) 撹拌棒 高さ方向に200mm間隔で
丸棒を取付けた。 酸素溶解槽 内 径 300mm 高 さ 700mm スプレーノズル 孔径3mm(原水・循環水を天
板に噴射) 圧 力 ゲージ圧力0.5〜2Kg/cm2 酸素発生機 PSA型酸素発生装置(有効酸素濃度91%V/
V)微細目スクリーンにより夾雑物を除去したE
団地生活廃水を原水ンプ4、および原水供給ライ
ン10を経て、酸素溶解槽1に流入させる。また
処理水の一部を循環ポンプ5により循環ライン1
2をへて酸素溶解槽1に流入させる。一方酸素発
生機3で製造された酸素ガスは酸素供給ライン1
4をへて酸素溶解槽1に供給する。原水および循
環水は酸素溶解槽1内部のスプレーノズル17,
17′を介して天板にむけ噴霧され、その過程で
酸素が原水及び循環水中に溶解する。 酸素溶解槽1の天板には圧力調整器8が取り付
けてあり、酸素溶解槽1の圧力は0.5〜2Kgの任
意値に設定可能である。 なお、この酸素溶解方法で供給できる溶存酸素
濃度は30〜70mg/であるため原水のみに酸素を
溶解させただけでは好気性処理のための酸素が不
足する。そこで処理水を循環することにより酸素
不足を解消した。 酸素が溶解した原水と処理水の混合液は送水ラ
イン11をへて生物反応槽2の下部から上向流で
通水される。 生物反応槽2の内部には撹拌機6が配備されて
いるが、流入水による上向流と撹拌機6によるゆ
るやかな旋回流との相互作用により粒状混合微生
物15は流動しながら廃水と接触し好気的に廃水
を浄化する。 粒状混合微生物15はテーパー部16で固液分
離され、上澄水は処理水として生物反応槽2上部
から処理水流出ライン13をへて流出する。 一部の処理水は循環ポンプ5、循環ライン12
をへて酸素溶解槽1に返流される。 余剰な粒状混合微生物15は粒状混合微生物排
出口9を経て排出される。 運転結果を表−1に示す。
[Industrial Application Field] The present invention relates to an apparatus for biologically treating organic wastewater such as sewage, industrial wastewater, and human waste under aerobic conditions. [Conventional technology and its problems] The activated sludge method, which is a typical aerobic biological treatment method, aerates a mixed liquid of wastewater and activated sludge in an aeration tank, and then separates the solid and liquid in a settling tank to produce activated sludge. In this method, supernatant water obtained by sedimentation and separation is obtained as treated water. The form of microorganisms in the activated sludge method is amorphous and sparsely packed, so it has the disadvantage of requiring a settling tank with a vast area for solid-liquid separation. On the other hand, since the floc adsorbs and removes fine SS components in the water during precipitation, the treated water has a high degree of clarity. Edited by Yoshiaki Uehara, “New Sewage Treatment Technology - Upflow Oxygen Activated Sludge Method” (Published by Industrial Water Research Association, 1980)
The upflow oxygen activated sludge method and its equipment described in 2012 are technologies that aim to reduce the size of equipment by integrating a biological reaction tank and a settling tank and using oxygen gas as an oxygen source. Since the mixed liquid consisting of activated sludge and wastewater is directly aerated with oxygen gas, the form of the activated sludge is the same floc as in the above activated sludge method, and the area required for solid-liquid separation is the same as in the conventional activated sludge method. On the other hand, in the biofilm method, microorganisms exist as a biofilm on an attached carrier, so a vast settling tank is not required for solid-liquid separation; however, (i) the amount of activated sludge in the form of flocs is small; It has problems such as the clarity of the treated water is not as high as the activated sludge method, and (ii) the cost of the adhesion carrier is high, leading to an increase in equipment costs. [Object of the Invention] The object of the present invention is to create a granular mixed microbial bed with excellent sedimentation properties and clarification of treated water without using any adhesion carrier by effectively utilizing the self-cohesive power of microorganisms. An object of the present invention is to provide an aerobic biological treatment device that forms and makes effective use of this. [Structure of the Invention] The feature of the present invention is to provide a granular microorganism bed with excellent sedimentation properties by effectively utilizing the self-cohesive power of microorganisms by supplying oxygen without directly aerating the liquid containing microorganisms. The solid-liquid separation is dramatically easier than in the conventional activated sludge method, and by bringing organic wastewater into contact with the sludge bed consisting of flocculated granular mixed microorganisms in an upward flow, a biofilm is formed. It is possible to obtain treated water with a high degree of clarity compared to the conventional method, and the cross-sectional area of the upper part of the biological reaction tank has been expanded to facilitate the separation of particulate mixed microorganisms from the treated water, as well as to be discharged outside the biological reaction tank. The biological reaction tank itself has the function of concentrating the excess particulate mixed microorganisms that should be removed and reducing the load on the sludge treatment process.
Furthermore, by installing an agitator in the biological reaction tank and gently stirring the sludge bed, it is possible to promote the formation of granules and prevent the formation of a dead zone within the sludge bed, while also preventing the formation of organic wastewater and granular mixed microorganisms. This allows for smooth contact. A granular mixed microbial bed can be produced by placing a required amount of activated sludge in a biological reaction tank and passing organic wastewater in which oxygen has been dissolved upward through the activated sludge. In addition, initially, the rising flow rate of the liquid may be set low to prevent the sludge from flowing out, and the flow speed may be increased as the sludge becomes granular. In addition, if the mixture is stirred gently at this time, granules are likely to be formed. Usually, complete granulation is achieved within two weeks,
Granules with a particle size of 1 to 8 mm are obtained. That is, the present invention dissolves the required amount of oxygen in advance in organic wastewater that does not contain activated sludge using an oxygen absorption device, and then passes water upward through a mixed microbial bed that has become granular due to self-cohesive force to break up microbial clumps. In a device that biologically treats organic wastewater aerobically, the biological reaction tank has a raw water inlet and a raw water inlet at the bottom.
The biological reaction tank has a treated water outflow part at the top, a large cross-sectional area at the top of the biological reaction tank, a granular mixed microorganism outlet at the top of the part with a small cross-sectional area, and an agitator that stirs the mixed microorganism bed in the tank. This is an aerobic biological treatment device for organic wastewater, which is characterized by being provided with. In the present invention, in order to promote the formation of granules, to prevent sludge from becoming blocked due to adhesion of granules to each other, and to prevent the formation of a dead zone due to this,
A stirring device must be provided to gently stir the granular mixed microorganism bed. In addition, when using the device of the present invention, if the liquid rising flow rate is 80 m/day or less, the flow of the granular mixed microorganism bed will be inactive and the contact efficiency with wastewater will decrease. Must be kept for more than a day. Furthermore, if the rising flow rate of the liquid is too high, the granular mixed microbial bed forms a fluidized bed with a large porosity, resulting in a decrease in the sludge concentration in the microbial bed and a decrease in the processing speed.
Therefore, the rising flow rate of the liquid is preferably 80 to 250 m/day, more preferably 100 to 210 m/day. Further, in the present invention, dissolving oxygen under pressure can increase the dissolved oxygen concentration, which is advantageous for aerobic treatment. However, if the pressure is increased to 3 kg/cm 2 or more, supersaturated gas will become bubbles in a biological reaction tank at a practical depth, which is equivalent to aerating a granular mixed microbial bed, and the formation of granular bodies will be inhibited. The pressurization is preferably carried out at 3 kg/cm 2 or less. Further, in order to maintain a high dissolved oxygen concentration, it is preferable to use an oxygen-enriched gas or pure oxygen. Furthermore, depending on the concentration of organic wastewater, in order to resolve the shortage of oxygen supply, it is necessary to circulate the treated water to dissolve oxygen and then send the water to the biological reaction tank. In the present invention, when the number of mixed granular microorganisms in the biological reaction tank increases, it is sufficient to discharge the mixed granular microorganisms from the outlet. Embodiment An apparatus of the present invention and an example of its use will be explained based on FIG. The present invention was carried out targeting the domestic wastewater of housing complex E. The dimensions of the device were as follows. Biological reaction tank Inner diameter Below the taper part 300mm Above the taper part 500mm Height Equipment height 4500mm Water depth 4400mm Taper part position 3000mm from the bottom of the tank Taper angle of inclination 30° Stirrer Speed 1 to 5 rpm (variable type) Stirring rod height Round bars were installed at 200mm intervals in the direction. Oxygen dissolution tank Inner diameter 300mm Height 700mm Spray nozzle Hole diameter 3mm (raw water/circulated water is sprayed onto the top plate) Pressure Gauge pressure 0.5-2Kg/ cm2 Oxygen generator PSA type oxygen generator (effective oxygen concentration 91%V/
V) E with impurities removed by a fine mesh screen
Residential housing wastewater is made to flow into the oxygen dissolution tank 1 via a raw water pump 4 and a raw water supply line 10. In addition, a part of the treated water is transferred to the circulation line 1 by the circulation pump 5.
2 and flows into the oxygen dissolving tank 1. On the other hand, the oxygen gas produced by the oxygen generator 3 is supplied to the oxygen supply line 1
4 and is supplied to the oxygen dissolving tank 1. Raw water and circulating water are supplied to the spray nozzle 17 inside the oxygen dissolution tank 1,
17' toward the top plate, and in the process oxygen is dissolved in the raw water and circulating water. A pressure regulator 8 is attached to the top plate of the oxygen dissolving tank 1, and the pressure of the oxygen dissolving tank 1 can be set to any value between 0.5 and 2 kg. In addition, since the dissolved oxygen concentration that can be supplied by this oxygen dissolution method is 30 to 70 mg/, there will be a shortage of oxygen for aerobic treatment if oxygen is dissolved only in raw water. Therefore, the oxygen shortage was resolved by circulating the treated water. A mixed solution of raw water and treated water in which oxygen has been dissolved passes through the water supply line 11 and flows upward from the lower part of the biological reaction tank 2 . A stirrer 6 is installed inside the biological reaction tank 2, but due to the interaction between the upward flow of the inflow water and the gentle swirling flow of the stirrer 6, the particulate mixed microorganisms 15 flow and come into contact with the wastewater. Purify wastewater aerobically. The granular mixed microorganisms 15 are separated into solid and liquid at the tapered portion 16, and the supernatant water flows out as treated water from the upper part of the biological reaction tank 2 through the treated water outflow line 13. Some of the treated water is circulated by circulation pump 5 and circulation line 12.
It is returned to the oxygen dissolution tank 1 through the flow. Excess granular mixed microorganisms 15 are discharged through the granular mixed microorganism outlet 9. The operation results are shown in Table-1.

【表】 表−1に示すように、酸素溶解槽の加圧程度を
変えた2つの実験区ともに良好な処理水が得られ
た。 粒状混合微生物の粒径は第1区が1〜5mm、第
2区が3〜8mmであり、圧力が高い方が大であつ
た。 余剰となつた粒状混合微生物の排出濃度は、第
1区で9000〜13000mg/、第2区で12000〜
20000mg/であり、テーパー部での濃縮効果が
認められた。 排出された粒状混合微生物は排出管を流れる時
のせん断力によりもはや粒状体は崩壊している
が、濃縮性は通常の活性汚泥法の余剰汚泥よりや
や良好であり、24時間静置濃縮後の到達濃度は
3.5〜4%であつた。 以上のように本発明により微生物の凝集力を有
効に活用でき、従来法にくらべコンパクトで高性
能な有機性廃水の好気性処理装置が提供できる。
この技術は今後の廃水処理に有効に活用されてい
くと考えられる。
[Table] As shown in Table 1, good treated water was obtained in both experimental sections in which the degree of pressurization of the oxygen dissolution tank was changed. The particle size of the granular mixed microorganisms was 1 to 5 mm in the first section and 3 to 8 mm in the second section, and was larger when the pressure was higher. The discharge concentration of surplus particulate mixed microorganisms is 9,000 to 13,000 mg/in the first ward, and 12,000 to 12,000 mg/in the second ward.
20,000mg/, and a concentration effect was observed at the tapered part. Although the discharged granular mixed microorganisms have already disintegrated due to the shear force when flowing through the discharge pipe, the thickening properties are slightly better than the surplus sludge of the normal activated sludge method. The concentration reached is
It was 3.5-4%. As described above, the present invention makes it possible to effectively utilize the cohesive power of microorganisms, and provides an aerobic treatment device for organic wastewater that is more compact and has higher performance than conventional methods.
It is believed that this technology will be effectively utilized in wastewater treatment in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の好気性生物処理装置を示す概
略図である。 1……酸素溶解槽、2……生物反応槽、3……
酸素発生機、4……原水ポンプ、5……循環ポン
プ、6……撹拌機、9……粒状混合微生物排出
口、13……処理水流出ライン、17……スプレ
ーノズル。
FIG. 1 is a schematic diagram showing an aerobic biological treatment apparatus of the present invention. 1... Oxygen dissolution tank, 2... Biological reaction tank, 3...
Oxygen generator, 4... Raw water pump, 5... Circulation pump, 6... Stirrer, 9... Particulate mixed microorganism outlet, 13... Treated water outflow line, 17... Spray nozzle.

Claims (1)

【特許請求の範囲】 1 酸素溶解装置により有機性廃水にあらかじめ
必要量の酸素を溶解させたのち、自己凝集力によ
り粒状となつた混合微生物床に上向きに通水し微
生物塊を壊すことなく有機性廃水を好気的に生物
処理する装置において、生物反応槽が下部に原水
流入部、上部に処理水流出部を有し、生物反応槽
の上部断面積を大とし、断面積の小さい部分の上
部に粒状混合微生物排出口を配備すると共に、槽
内に混合微生物床を撹拌する撹拌機を設けたこと
を特徴とする有機性廃水の好気性生物処理装置。 2 酸素溶解装置の圧力が、ゲージ圧3Kg/cm2
下である特許請求の範囲第1項記載の装置。 3 生物反応槽下部の液上昇流速を80〜250m/
日に制御するようにしてなる特許請求の範囲第1
項又は第2項記載の装置。
[Claims] 1. After dissolving the required amount of oxygen in organic wastewater in advance using an oxygen dissolving device, water is passed upward through a mixed microbial bed that has become granular due to self-cohesive force to dissolve organic wastewater without breaking the microbial mass. In a device for aerobically biologically treating wastewater, the biological reaction tank has a raw water inlet at the bottom and a treated water outflow at the top. An aerobic biological treatment device for organic wastewater, characterized in that a granular mixed microorganism discharge port is provided in the upper part, and a stirrer for stirring the mixed microorganism bed is provided in the tank. 2. The device according to claim 1, wherein the pressure of the oxygen dissolving device is a gauge pressure of 3 Kg/cm 2 or less. 3 Increase the rising flow rate of the liquid at the bottom of the biological reaction tank from 80 to 250 m/
Claim 1:
The device according to paragraph 2 or paragraph 2.
JP62278271A 1987-11-05 1987-11-05 Aerobic biological treatment device for organic waste water Granted JPH01123697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278271A JPH01123697A (en) 1987-11-05 1987-11-05 Aerobic biological treatment device for organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278271A JPH01123697A (en) 1987-11-05 1987-11-05 Aerobic biological treatment device for organic waste water

Publications (2)

Publication Number Publication Date
JPH01123697A JPH01123697A (en) 1989-05-16
JPH0586280B2 true JPH0586280B2 (en) 1993-12-10

Family

ID=17595021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278271A Granted JPH01123697A (en) 1987-11-05 1987-11-05 Aerobic biological treatment device for organic waste water

Country Status (1)

Country Link
JP (1) JPH01123697A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008535B1 (en) * 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP4773211B2 (en) * 2006-01-12 2011-09-14 株式会社 多自然テクノワークス Waste liquid treatment equipment
JP2008237997A (en) * 2007-03-26 2008-10-09 Sumitomo Heavy Ind Ltd Waste water treatment apparatus
US8142550B2 (en) * 2008-12-16 2012-03-27 Oxy Solutions As Oxygenation of a fluid
JP4838872B2 (en) * 2009-07-16 2011-12-14 株式会社カナイワ Water treatment apparatus and water treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS56100699A (en) * 1980-01-14 1981-08-12 Hitachi Plant Eng & Constr Co Ltd Treatment and device for waste water containing nitrogen
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997459A (en) * 1973-01-24 1974-09-14
JPS56100699A (en) * 1980-01-14 1981-08-12 Hitachi Plant Eng & Constr Co Ltd Treatment and device for waste water containing nitrogen
JPS63242394A (en) * 1987-03-31 1988-10-07 Kensetsusho Doboku Kenkyu Shocho Treatment of drainage and equipment therefor

Also Published As

Publication number Publication date
JPH01123697A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JP3350364B2 (en) Wastewater treatment method and wastewater treatment device
CN102976526B (en) Forced external circulating type efficient precipitation method and equipment based on addition of lime
JPH02245297A (en) Two-stage treating method of waste water
JP2005279447A (en) Water treatment method and apparatus
JP2004528163A (en) Method and apparatus for biological treatment of wastewater
CN103214141A (en) Sewage advanced treatment and recycling method capable of substantially raising economy
CN106904796A (en) A kind of multilevel deflector-type SSMBBR sewage disposal systems and processing method
KR20210009111A (en) Wastewater treatment facility with granule sludge acceleration reactor and recovery device and method using the same
JPH0546279B2 (en)
JPH0751686A (en) Treatment of sewage
JP2017516658A (en) Clarification method of waste water
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
JPH0586280B2 (en)
JP3244365B2 (en) Fluid bed carrier recovery method
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JPH05337492A (en) Biological treatment of sewage
JPH0586279B2 (en)
US6325933B1 (en) Process for biological purification of waste water under sludge retention
KR100244329B1 (en) Sludge counterflow type water treatment system
JPH04326995A (en) Anaerobic water treatment apparatus
CN111470737A (en) Sewage treatment equipment
CN105541053A (en) Soy protein waste water treatment device
JP3776763B2 (en) Waste water treatment equipment
CN201301265Y (en) Highly effective biological treatment coked wastewater device
CN205710085U (en) A kind of water is processed with oxygen dense media activated sludge reactor of holding concurrently