JPH05337492A - Biological treatment of sewage - Google Patents

Biological treatment of sewage

Info

Publication number
JPH05337492A
JPH05337492A JP16990892A JP16990892A JPH05337492A JP H05337492 A JPH05337492 A JP H05337492A JP 16990892 A JP16990892 A JP 16990892A JP 16990892 A JP16990892 A JP 16990892A JP H05337492 A JPH05337492 A JP H05337492A
Authority
JP
Japan
Prior art keywords
sewage
sludge
self
oxygen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16990892A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakazawa
俊明 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP16990892A priority Critical patent/JPH05337492A/en
Publication of JPH05337492A publication Critical patent/JPH05337492A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the equipment cost and installation area and to biologically and efficiently treat sewage under high loading by nitrifying and denitrifying the sewage in a single tank. CONSTITUTION:When sewage is biologically treated, a self-granulating sludge bed 7 is formed at the lower part of the ascent passage of the biological reaction vessel 1 provided with a descent passage 4 and the ascent passage 5, an oxygen-enriched gas 8 is intermittently supplied to the descent passage 4 to alternately generate aerobic and anaerobic conditions, and the sewage is treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水などの有機性汚水
を、単一の生物反応槽内に好気、嫌気の状態を交互に生
じさせるとともに、自己汚泥床を形成して処理する汚水
の生物学的な処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic wastewater such as sewage, which alternately produces aerobic and anaerobic states in a single biological reaction tank and forms a self-sludge bed for treatment. Biological treatment method of.

【0002】[0002]

【従来の技術】従来の生物学的処理方法としては、浮遊
式の活性汚泥法、回転円板法、接触酸化法等の生物膜法
が主流となっているが、近年は微生物の自己造粒汚泥床
を形成した生物反応槽内に、汚水を上向流で供給し、前
記汚泥床を反応槽下部で流動させ、嫌気または好気の状
態で処理する上向流スラッジブランケット法も用いられ
てきており、特に嫌気処理においては活発に実施化され
ている。
2. Description of the Related Art As a conventional biological treatment method, a biofilm method such as a floating activated sludge method, a rotating disk method, or a catalytic oxidation method has been mainly used, but in recent years, self-granulation of microorganisms An upflow sludge blanket method has also been used in which sewage is supplied in an upward flow into a biological reaction tank in which a sludge bed has been formed, and the sludge bed is made to flow in the lower part of the reaction tank and treated in an anaerobic or aerobic state. In particular, anaerobic treatment is actively implemented.

【0003】前記上向流スラッジブランケット法は、被
処理成分を生物学的に分解処理する微生物が粒子化さ
れ、高密度に保持されるため、高容積負荷での運転が可
能となり、効率的に汚水を処理することができる利点が
ある。
In the above-mentioned upflow sludge blanket method, since the microorganisms that biologically decompose the components to be treated are made into particles and retained at a high density, it is possible to operate at a high volume load and efficiently. There is an advantage that sewage can be treated.

【0004】一方、反応槽内での曝気を間欠的に行い、
槽内に好気、嫌気の状態を交互に生じさせて硝化脱窒作
用を促進し、また固液分離も槽内で行って単一槽内で処
理する、活性汚泥法の変法である回分式処理法も用いら
れている。本方法は沈澱槽などが不要なため設備の設置
面積も少なく、また運転操作も容易であるため、特に小
規模処理方法として適用されている。
On the other hand, aeration in the reaction tank is performed intermittently,
A batch process, which is a modified version of the activated sludge process, in which aerobic and anaerobic conditions are alternately generated in the tank to promote nitrification and denitrification, and solid-liquid separation is also performed in the tank and treated in a single tank. Formula processing methods are also used. Since this method does not require a settling tank or the like, the installation area of the equipment is small, and the operation is easy, so it is particularly applied as a small-scale treatment method.

【0005】[0005]

【発明が解決しようとする課題】前記従来の処理方法に
おいて、上向流スラッジブランケット法にあっては、硝
化または脱窒処理を別工程として設けており、また汚泥
と処理水とを分離する沈澱槽も別に必要となるため、設
備費や設置面積も過大となる欠点がある。
In the above-mentioned conventional treatment method, the upward flow sludge blanket method is provided with nitrification or denitrification treatment as a separate step, and the sedimentation for separating sludge and treated water. Since a separate tank is required, there is a drawback that the equipment cost and the installation area are too large.

【0006】また回分式処理法にあっては、通常の活性
汚泥法と同様に、微生物濃度を高く保持することができ
ないため、汚水を高容積負荷で処理することができず、
処理効率が低くなる欠点がある。
Further, in the batch treatment method, as in the case of the ordinary activated sludge method, the microbial concentration cannot be kept high, so that the wastewater cannot be treated with a high volume load,
There is a drawback that processing efficiency is low.

【0007】従って本発明は、前記上向流スラッジブラ
ンケット法や回分式処理法等の利点を生かし、汚水を高
負荷で処理でき、且つ単一槽内で硝化、脱窒処理するこ
とにより、効率的な処理と低廉な設備費、設置面積の節
減を可能とした汚水の生物学的処理方法を提供すること
を目的として成されたものである。
Therefore, the present invention makes use of the advantages of the above-mentioned upflow sludge blanket method, batch type treatment method, etc., can treat sewage with a high load, and can perform nitrification and denitrification treatment in a single tank to improve efficiency. The purpose of the present invention is to provide a biological treatment method for sewage that enables efficient treatment, inexpensive equipment cost, and reduction of installation area.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、汚水が
流通する下降流路と上昇流路とを有する生物反応槽で汚
水を生物学的に処理する方法において、前記上昇流路の
下部に自己造粒汚泥床を形成し、前記下降流路に酸素富
有ガスを間欠的に供給して好気、嫌気の状態を交互に生
じさせて処理することを特徴とする汚水の生物学的処理
方法であり、また前記生物反応槽に凝集剤を添加して、
自己造粒汚泥床の形成促進を図ったことを特徴とする汚
水の生物学的処理方法である。
The gist of the present invention is to provide a method for biologically treating sewage in a biological reaction tank having a descending channel and an ascending channel through which sewage flows, the lower part of the ascending channel. Biological treatment of sewage, characterized in that a self-granulating sludge bed is formed in and the oxygen-rich gas is intermittently supplied to the descending channel to alternately generate aerobic and anaerobic states. And adding a flocculant to the bioreactor,
This is a biological treatment method for wastewater, which is characterized by promoting the formation of a self-granulating sludge bed.

【0009】[0009]

【作用】運転開始の初期においては、汚水と下水汚泥を
生物反応槽に充填し、汚水を下降流路から供給し、一定
期間上昇流路を所定の上昇速度で流通させることによ
り、軽い汚泥が流出され、重い微生物汚泥のみが残留さ
れて増殖し、ついには粒子化して上昇流路下部で自己造
粒汚泥床が形成される。
In the initial stage of operation, light sludge is produced by filling the biological reaction tank with sewage and sewage sludge, supplying the sewage from the descending channel, and circulating the ascending channel at a predetermined rate for a certain period of time. Only the heavy microbial sludge is discharged and proliferates, and finally it is made into particles and a self-granulating sludge bed is formed in the lower part of the ascending channel.

【0010】前記において、生物反応槽内に凝集剤を適
宜に添加することにより、微生物の凝集が促進され、粒
子化期間を短縮することができる。また更に期間を短縮
するために、最初から他の装置で生成された造粒汚泥を
充填することも適宜におこなわれる。
In the above, by appropriately adding an aggregating agent into the biological reaction tank, the agglomeration of microorganisms is promoted and the particle formation period can be shortened. Further, in order to further shorten the period, it is also possible to appropriately fill the granulated sludge generated by another device from the beginning.

【0011】尚、下降流路から供給される汚水に、酸素
富有ガスを一定の時間間隔で間欠的に供給することによ
り、生物反応槽の上昇流路内に好気、嫌気の状態を交互
に生じさせる。
By supplying oxygen-rich gas intermittently to the sewage supplied from the descending flow path at regular time intervals, the aerobic and anaerobic states are alternately changed in the ascending flow path of the biological reaction tank. Give rise to.

【0012】定常の運転時には汚水は、自己造粒汚泥床
の粒子化微生物の生物学的作用により、汚水中のBOD
成分が消化分解され、また窒素分は好気状態での硝化と
嫌気状態での脱窒反応により分解され、更に燐分も嫌気
状態での放出と好気状態での過剰な摂取により、微生物
内に取り込まれ除去される。
[0012] During steady operation, the sewage is produced by the BOD in the sewage due to the biological action of the particulate microorganisms in the self-granulating sludge bed.
The components are digested and decomposed, nitrogen is decomposed by nitrification in aerobic conditions and denitrification in anaerobic conditions, and phosphorus is released in anaerobic conditions and excessive intake in aerobic conditions. Taken in and removed.

【0013】[0013]

【実施例】以下本発明の実施例を説明する。図1は本発
明の一実施例の方法を適用した装置の系統図である。1
は生物反応槽であり、供給汚水の下降流路4を形成し酸
素を溶解させる内筒2と、上昇流路5を形成し自己造粒
汚泥床7で生物学的処理を行う外筒3の二重筒構造とな
っている。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a system diagram of an apparatus to which the method of one embodiment of the present invention is applied. 1
Is a bioreaction tank, which is composed of an inner cylinder 2 that forms a descending flow path 4 of the supplied wastewater and dissolves oxygen, and an outer cylinder 3 that forms an ascending flow path 5 and performs biological treatment in a self-granulating sludge bed 7. It has a double cylinder structure.

【0014】また前記内筒2の下端には、酸素富有ガス
供給装置8から供給される酸素富有ガスの供給管15に
接続された散気器6が配設されている。更に内筒2の上
部には汚水の供給管12と、ポリ塩化アルミニウム(P
AC)や水酸化カルシュウムなどの凝集剤槽9、10か
らの凝集剤供給管16、17が接続されている。
At the lower end of the inner cylinder 2, an air diffuser 6 connected to a supply pipe 15 for oxygen-rich gas supplied from an oxygen-rich gas supply device 8 is arranged. Further, at the upper part of the inner cylinder 2, a wastewater supply pipe 12 and a polyaluminum chloride (P
AC) and coagulant supply pipes 16 and 17 from coagulant tanks 9 and 10 for calcium hydroxide and the like are connected.

【0015】尚、図示していないが、汚水の性状や供給
量などによって凝集剤の添加量を調整する制御装置が付
設されている。また前記酸素富有ガス供給装置8として
は、酸素ボンベ、PSA装置、膜分離装置などを用いる
ことができる。
Although not shown, a control device for adjusting the addition amount of the coagulant depending on the property of the sewage and the supply amount is attached. Further, as the oxygen-rich gas supply device 8, an oxygen cylinder, a PSA device, a membrane separation device or the like can be used.

【0016】外筒3の上端には、処理水のオ−バ−フロ
−溜まり11が環状に設けられ、処理水排出管13が接
続されており、また外筒3の中間部及び下部には、余剰
な汚泥を排出する余剰汚泥排出管14a、14bが接続
されている。
An overflow reservoir 11 of treated water is provided in an annular shape on the upper end of the outer cylinder 3, and a treated water discharge pipe 13 is connected to the outer cylinder 3, and an intermediate portion and a lower portion of the outer cylinder 3 are connected. Excess sludge discharge pipes 14a and 14b for discharging excess sludge are connected.

【0017】また内筒2と外筒3とで形成された上昇流
路5の下部には、微生物の自己造粒汚泥床7が形成され
ており、本汚泥床7は汚水の上昇流速により、一定の高
さで流動しながらバランスして保持されている。
A microbial self-granulating sludge bed 7 is formed in the lower part of the ascending flow path 5 formed by the inner cylinder 2 and the outer cylinder 3, and this sludge bed 7 is It is kept balanced while flowing at a certain height.

【0018】尚、図示していないが必要に応じ、自己造
粒汚泥と被処理水との接触をよくするとともに、生物処
理で生じた炭酸ガスや窒素ガス等の気体を脱離させるた
めに、緩やかな攪拌を行う攪拌装置を設けるのが好まし
い。
Although not shown, if necessary, in order to improve the contact between the self-granulating sludge and the water to be treated, and to desorb carbon dioxide, nitrogen gas and the like generated in the biological treatment, It is preferable to provide a stirring device for performing gentle stirring.

【0019】前記構成の装置により下水の一次処理水を
原水として、本発明の方法で処理した一実施例について
以下述べる。生物反応槽1に下水汚泥を充填し、原水
を、上昇流路5での上昇速度が1〜2m/Hrとなるよ
うに、下降流路4の上部から供給した。
An example in which the primary treated water of the sewage is treated as raw water by the apparatus of the above construction and treated by the method of the present invention will be described below. The biological reaction tank 1 was filled with sewage sludge, and raw water was supplied from the upper part of the descending flow path 4 so that the ascending speed in the ascending flow path 5 was 1 to 2 m / Hr.

【0020】同時に酸素富有ガス供給装置8からの酸素
富有ガスを、供給時間/停止時間:30分/30分とし
て間欠的に供給し、また凝集剤としてポリ塩化アルミニ
ュ−ム(PAC)を40mg/l添加した。
At the same time, the oxygen-rich gas from the oxygen-rich gas supply device 8 is intermittently supplied at a supply time / stop time of 30 minutes / 30 minutes, and polyaluminum chloride (PAC) as a coagulant is 40 mg / 1 was added.

【0021】その結果、約4週間後には自己造粒汚泥が
確認され、1.5か月後には自己造粒汚泥床7が形成さ
れ、定常運転が可能となった。定常運転時の運転条件と
しては、液滞留時間:6Hr、造粒汚泥床での平均汚泥
濃度:58400mg/l、液温度:22℃で行った。
また酸素富有ガスの間欠供給により、生物反応槽1内の
溶存酸素濃度は0.5〜1.5ppmの好気状態及び溶
存酸素の無い嫌気状態を交互に繰り返し生じた。
As a result, the self-granulating sludge was confirmed after about 4 weeks, and the self-granulating sludge bed 7 was formed after 1.5 months, and the steady operation became possible. Operating conditions during steady operation were liquid retention time: 6 hours, average sludge concentration in the granulated sludge bed: 58400 mg / l, and liquid temperature: 22 ° C.
Further, the intermittent supply of the oxygen-rich gas caused the dissolved oxygen concentration in the biological reaction tank 1 to alternate between an aerobic state of 0.5 to 1.5 ppm and an anaerobic state without dissolved oxygen.

【0022】前記の条件によって処理した結果、原水
は、PH:7.8、BOD:140ppm、SS:16
2ppm、T−N:36ppm、T−P:4.5ppm
の水質が、処理後には、PH6.6ppm、BOD:
8.5ppm、SS:12ppm、T−N:3.3pp
m、、T−P:0.3ppmとなった。
As a result of treatment under the above conditions, the raw water had a pH of 7.8, a BOD of 140 ppm, and an SS of 16
2 ppm, TN: 36 ppm, TP: 4.5 ppm
After the treatment, the water quality was pH 6.6 ppm, BOD:
8.5 ppm, SS: 12 ppm, TN: 3.3 pp
m ,, and T-P: 0.3 ppm.

【0023】前記実施例で示した通り、凝集剤を添加し
ない場合には、約3か月かかる自己造粒汚泥床の形成も
約1.5か月となり、極めて短期間に短縮された。また
脱窒、脱燐処理においても90%以上除去処理されるこ
とが判明した。
As shown in the above example, the formation of the self-granulating sludge bed, which takes about 3 months without the addition of the coagulant, was about 1.5 months, which was shortened in an extremely short period of time. It was also found that 90% or more of the denitrification and dephosphorization treatments were performed.

【0024】[0024]

【発明の効果】本発明の方法によれば下記の効果が得ら
れる。 イ)好気、嫌気を交互に繰り返すことによりBOD成
分、窒素分、燐分除去を単一槽で処理でき、また処理水
と汚泥とを分離する沈澱槽が不要なため、装置の設置面
積も少なくできる。 ロ)自己造粒汚泥床を形成することにより、微生物を高
密度に保持でき、効率的な処理が可能である。 ハ)汚泥を返送する必要がなく装置が簡略化され運転操
作も容易である。
According to the method of the present invention, the following effects can be obtained. B) By alternately repeating aerobic and anaerobic treatments, BOD components, nitrogen and phosphorus can be removed in a single tank, and a settling tank for separating treated water and sludge is not required. Can be reduced. B) By forming a self-granulating sludge bed, microorganisms can be retained at a high density and efficient treatment is possible. C) There is no need to return sludge, and the equipment is simplified and the operation is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した一実施例の系統図FIG. 1 is a system diagram of an embodiment to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1:生物反応槽、2:内筒、3:外筒、4:下降流路、
5:上昇流路、6:散気器、7:自己造粒汚泥床、8:
酸素富有ガス供給装置、9、10:凝集剤槽、11:オ
−バ−フロ−溜まり、12:汚水供給管、13:処理水
排出管、14a、14b:余剰汚泥排出管、15:酸素
富有ガス供給管、16、17:凝集剤供給管。
1: biological reaction tank, 2: inner cylinder, 3: outer cylinder, 4: downflow passage,
5: Ascending channel, 6: Air diffuser, 7: Self-granulating sludge bed, 8:
Oxygen-rich gas supply device, 9, 10: Flocculant tank, 11: Overflow reservoir, 12: Waste water supply pipe, 13: Treated water discharge pipe, 14a, 14b: Excess sludge discharge pipe, 15: Oxygen rich Gas supply pipes 16, 17: Coagulant supply pipes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】汚水が流通する下降流路と上昇流路とを有
する生物反応槽で汚水を生物学的に処理する方法におい
て、前記上昇流路の下部に自己造粒汚泥床を形成し、前
記下降流路に酸素富有ガスを間欠的に供給して好気、嫌
気の状態を交互に生じさせて処理することを特徴とする
汚水の生物学的処理方法
1. A method for biologically treating sewage in a biological reaction tank having a descending flow path through which sewage flows and an ascending flow path, wherein a self-granulating sludge bed is formed below the ascending flow path, A biological treatment method for sewage, characterized in that an oxygen-rich gas is intermittently supplied to the descending passage to alternately generate aerobic and anaerobic states for treatment.
【請求項2】前記生物反応槽に凝集剤を添加して自己造
粒汚泥床の形成促進を図ることを特徴とする請求項1記
載の汚水の生物学的処理方法。
2. The biological treatment method for sewage according to claim 1, wherein a coagulant is added to the biological reaction tank to promote formation of a self-granulating sludge bed.
JP16990892A 1992-06-05 1992-06-05 Biological treatment of sewage Pending JPH05337492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16990892A JPH05337492A (en) 1992-06-05 1992-06-05 Biological treatment of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16990892A JPH05337492A (en) 1992-06-05 1992-06-05 Biological treatment of sewage

Publications (1)

Publication Number Publication Date
JPH05337492A true JPH05337492A (en) 1993-12-21

Family

ID=15895200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16990892A Pending JPH05337492A (en) 1992-06-05 1992-06-05 Biological treatment of sewage

Country Status (1)

Country Link
JP (1) JPH05337492A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1005345C2 (en) * 1997-02-21 1998-08-24 Univ Delft Tech Method for obtaining granular growth of a microorganism in a reactor.
WO2004024638A1 (en) * 2002-09-16 2004-03-25 Dhv Water Bv Method for the treatment of waste water with sludge granules
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement
US7459076B2 (en) 2005-12-22 2008-12-02 Zenon Technology Partnership Flow-through aerobic granulator
US7547394B2 (en) * 2005-12-21 2009-06-16 Zenon Technology Partnership Wastewater treatment with aerobic granules
KR101269845B1 (en) * 2010-05-12 2013-06-07 엄재수 Wastewater treatment systems using strain
CN103936153A (en) * 2014-04-15 2014-07-23 同济大学 Rapid screening method of phosphorus-accumulating particle sludge dominant bacteria

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1005345C2 (en) * 1997-02-21 1998-08-24 Univ Delft Tech Method for obtaining granular growth of a microorganism in a reactor.
WO1998037027A1 (en) * 1997-02-21 1998-08-27 Technische Universiteit Delft Method for acquiring grain-shaped growth of a microorganism in a reactor
WO2004024638A1 (en) * 2002-09-16 2004-03-25 Dhv Water Bv Method for the treatment of waste water with sludge granules
US7273553B2 (en) * 2002-09-16 2007-09-25 Dhv Water Bv Method for the treatment of waste water with sludge granules
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
US7547394B2 (en) * 2005-12-21 2009-06-16 Zenon Technology Partnership Wastewater treatment with aerobic granules
US7459076B2 (en) 2005-12-22 2008-12-02 Zenon Technology Partnership Flow-through aerobic granulator
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement
KR101269845B1 (en) * 2010-05-12 2013-06-07 엄재수 Wastewater treatment systems using strain
CN103936153A (en) * 2014-04-15 2014-07-23 同济大学 Rapid screening method of phosphorus-accumulating particle sludge dominant bacteria
CN103936153B (en) * 2014-04-15 2015-10-28 同济大学 The rapid screening method of polyphosphate particle mud dominant bacteria

Similar Documents

Publication Publication Date Title
JPH01135592A (en) Biological purification of waste water
KR890012891A (en) Two-stage batch wastewater treatment
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
JP3483917B2 (en) Sewage treatment method
JPH05337492A (en) Biological treatment of sewage
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP2661093B2 (en) Wastewater treatment method by activated sludge method
JPH0592197A (en) Method for biological purification of water by nitrification and denitrification
JP3799557B2 (en) Wastewater treatment method
JPS6317513B2 (en)
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP2000024687A (en) Treatment of waste nitric acid
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JPH04244297A (en) Treatment of sewage
RU2170710C1 (en) Method for biological cleaning of domestic and compositionally analogous industrial waste waters from organic and suspended substances
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
JPH0576897A (en) Water purifying treatment method and apparatus
KR20020091723A (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor and its apparatus
JPH05123696A (en) Biological nitrification and denitrification treatment equipment
JP3919455B2 (en) Advanced denitrification method for waste water
JPH0731996A (en) Waste water treating method
JPH029495A (en) Suspension type activated sludge treating equipment
JPH05154491A (en) Treatment of waste water containing high-concentration nitrogen
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically