JP4773211B2 - Waste liquid treatment equipment - Google Patents

Waste liquid treatment equipment Download PDF

Info

Publication number
JP4773211B2
JP4773211B2 JP2006005319A JP2006005319A JP4773211B2 JP 4773211 B2 JP4773211 B2 JP 4773211B2 JP 2006005319 A JP2006005319 A JP 2006005319A JP 2006005319 A JP2006005319 A JP 2006005319A JP 4773211 B2 JP4773211 B2 JP 4773211B2
Authority
JP
Japan
Prior art keywords
liquid
waste liquid
storage tank
gas
swirl chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006005319A
Other languages
Japanese (ja)
Other versions
JP2007185594A (en
Inventor
和教 矢裂
久恒 梨子木
辰彦 高瀬
一郎 手柴
博徳 田中
隆明 岩崎
淳一 梨子木
Original Assignee
株式会社 多自然テクノワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 多自然テクノワークス filed Critical 株式会社 多自然テクノワークス
Priority to JP2006005319A priority Critical patent/JP4773211B2/en
Publication of JP2007185594A publication Critical patent/JP2007185594A/en
Application granted granted Critical
Publication of JP4773211B2 publication Critical patent/JP4773211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、家畜が排泄する糞尿を固液分離処理したときに発生する畜産廃液の浄化処理技術に関する。   The present invention relates to a purification treatment technique for livestock waste liquid generated when a solid-liquid separation process is performed on excreta excreted by livestock.

畜産場で飼育されている家畜が排泄する糞尿は、高濃度の肥料成分と有機物を含んでいるため、古くは、農産物などの肥料あるいは土壌改良資材として活用されてきた。しかしながら、近年、畜産場の経営形態は大規模化しており、規模の大きい畜産場からは多量の糞尿が集中的に発生するため、これらの糞尿を固液分離処理すると、大量の畜産廃液が発生する。このような畜産廃液の処理技術に関しては、従来、様々な提案が行われている。   Since manure excreted by livestock raised in livestock farms contains high concentrations of fertilizer components and organic matter, it has long been used as fertilizer for agricultural products or soil improvement materials. However, in recent years, the management system of livestock farms has become large-scale, and a large amount of manure is intensively generated from large-scale livestock farms. To do. Conventionally, various proposals have been made regarding the processing technology for such livestock waste liquid.

従来の畜産廃液処理技術としては、処理対象である畜産廃液に酸性溶液を添加して有機物を凝集沈殿させて除去した後、アルカリ性溶液を添加してアンモニウムイオンやリン酸イオンなどを沈殿除去するもの(例えば、特許文献1参照)、あるいは、畜産廃液中に気泡を供給し、廃液中の酸素濃度を高めて微生物を活性化させることにより、有機物などを分解させるもの(例えば、特許文献2,3参照。)などがある。   As a conventional livestock waste liquid treatment technology, an acidic solution is added to the livestock waste liquid to be treated to coagulate and remove organic matter, and then an alkaline solution is added to precipitate and remove ammonium ions, phosphate ions, etc. (For example, refer to Patent Document 1) Or, by supplying bubbles into livestock waste liquid and increasing the oxygen concentration in the waste liquid and activating microorganisms to decompose organic matter (for example, Patent Documents 2 and 3) See).

特開2003−334567号公報JP 2003-334567 A 特開2002−301493号公報JP 2002-301493 A 特開平10−43797号公報JP 10-43797 A

特許文献1に記載の「排水処理方法および排水処理装置」の場合、酸溶液タンク、アルカリ溶液タンクに加え、少なくとも2つの沈殿タンクを必要とするため、配管などを含めた処理設備全体が複雑化、大型化しがちであり、敷地に余裕のない畜産場などは簡単に採用できないことがある。また、廃液処理量が増加すると、それに伴って酸性溶液およびアルカリ性溶液の使用量も増加するので、大規模畜産場などにおいては、大量の酸性溶液およびアルカリ性溶液を消費することとなる。さらに、沈殿タンクから回収される、薬剤混じりの沈殿物の処分にも別の手間がかかる。   In the case of the “wastewater treatment method and wastewater treatment device” described in Patent Document 1, in addition to the acid solution tank and the alkali solution tank, at least two precipitation tanks are required, so that the entire treatment equipment including piping is complicated. However, it is apt to increase in size, and livestock farms where there is not enough room may not be easily adopted. Moreover, since the usage amount of an acidic solution and an alkaline solution increases with an increase in the amount of waste liquid treated, a large amount of an acidic solution and an alkaline solution are consumed in a large-scale livestock farm or the like. Furthermore, it takes another time to dispose of the chemical-mixed precipitate collected from the precipitation tank.

特許文献2に記載の「汚水処理法」および特許文献3に記載の「畜産糞尿の曝気・撹拌装置」の場合、畜産廃液中に送り込まれる気泡によって廃液全体が撹拌されるため、廃液中に存在する固形成分が粉砕され、固形成分の浮上が2〜3日連続し、処理時間の遅延を生ずることがある。   In the case of the “sewage treatment method” described in Patent Document 2 and the “animal aeration / stirring device for livestock manure” described in Patent Document 3, the entire waste liquid is agitated by the air bubbles fed into the livestock waste liquid. The solid component is pulverized, and the floating of the solid component may continue for 2 to 3 days, resulting in a delay in processing time.

本発明が解決しようとする課題は、複雑な設備や薬剤の添加を必要とせず、浄化処理時間の短縮を図ることのできる廃液処理技術を提供することにある。   The problem to be solved by the present invention is to provide a waste liquid treatment technique that does not require the addition of complicated equipment or chemicals and can shorten the purification treatment time.

本発明の廃液処理装置は、廃液を収容可能な第一貯留槽および第二貯留槽と、前記第一貯留槽内の廃液中に浸漬された微生物担体と、前記第二貯留槽内の廃液中に浸漬された微細気泡発生器と、前記第一貯留槽内内の廃液を前記微細気泡発生器へ送給するポンプと、前記微細気泡発生器へ空気を供給する気体経路と、前記第二貯留槽内の廃液を前記第一貯留槽内へ送り込む送液経路と、を備え、前記第二貯留槽内と連通する前記送液経路の基端側に前記第二貯留槽の底部を貫通して起立した垂直部を設け、前記垂直部の上端開口を廃液導入口とすることにより、前記送液経路の廃液導入口を前記第二貯留槽の底面より高い位置に配置したことを特徴とする。
The waste liquid treatment apparatus of the present invention includes a first storage tank and a second storage tank that can store a waste liquid, a microbial carrier immersed in the waste liquid in the first storage tank, and a waste liquid in the second storage tank. A microbubble generator immersed in the microbubble generator, a pump for feeding the waste liquid in the first storage tank to the microbubble generator, a gas path for supplying air to the microbubble generator, and the second reservoir A liquid supply path for sending waste liquid in the tank into the first storage tank, and penetrating the bottom of the second storage tank on the base end side of the liquid supply path communicating with the second storage tank By providing an upright vertical portion and using the upper end opening of the vertical portion as a waste liquid introduction port, the waste liquid introduction port of the liquid feeding path is arranged at a position higher than the bottom surface of the second storage tank. .

このような構成において、第一貯留槽内の廃液をポンプで吸引して、第二貯留槽内の廃液中に浸漬された微細気泡発生器へ送給するとともに、気体経路を経由して微細気泡発生器へ空気を供給すると、微細気泡発生器から第二貯留槽内の廃液中へ微細気泡混じりの廃液が供給されるため、第二貯留槽内の廃液の溶存酸素量が増加する。第二貯留槽内で溶存酸素量が増加した廃液は送液経路を経由して第一貯留槽内の廃液中へ送り込まれるため、第一貯留槽内の廃液の溶存酸素量も高まる。これにより、第一貯留槽内の廃液中に浸漬された微生物担体に生息する微生物は充分な酸素を得て活性化され、有機物分解作用が高まるため、廃液中に含まれる有機物が速やかに分解され、廃液を浄化することができる。この工程は、第一貯留槽と第二貯留槽との間で廃液を循環させながら行われるので、第一貯留槽に貯留されている廃液は、時間の経過とともに速やかに浄化される。なお、微生物担体に生息する微生物については、処理対象である廃液中に存在しているものが処理開始とともに自然に住み着いていくので、外部から添加する必要はない。   In such a configuration, the waste liquid in the first storage tank is sucked with a pump and is supplied to the fine bubble generator immersed in the waste liquid in the second storage tank, and the fine bubbles are passed through the gas path. When air is supplied to the generator, the waste liquid mixed with fine bubbles is supplied from the fine bubble generator into the waste liquid in the second storage tank, so that the amount of dissolved oxygen in the waste liquid in the second storage tank increases. Since the waste liquid in which the amount of dissolved oxygen is increased in the second storage tank is sent into the waste liquid in the first storage tank via the liquid feeding path, the amount of dissolved oxygen in the waste liquid in the first storage tank is also increased. As a result, the microorganisms that inhabit the microorganism carrier immersed in the waste liquid in the first storage tank are activated by obtaining sufficient oxygen, and the organic matter decomposition action is enhanced, so that the organic matter contained in the waste liquid is rapidly decomposed. The waste liquid can be purified. Since this process is performed while circulating the waste liquid between the first storage tank and the second storage tank, the waste liquid stored in the first storage tank is quickly purified over time. In addition, about the microorganisms which inhabit a microorganisms carrier, what exists in the waste liquid which is a process target settles naturally with the start of a process, Therefore It is not necessary to add from the outside.

微生物担体が収容された第一貯留槽と、気体経路を有する微細気泡発生器が収容された第二貯留槽と、ポンプと、送液経路とからなる簡素な構造であるため、複雑な設備を必要としない。また、微生物担体に自然生息している微生物の作用によって廃液中の有機物を分解するため、薬剤の添加を必要としない。有機物などを沈殿除去するための沈殿槽を設ける必要がないので、浄化処理時間の短縮を図ることができる。   Since it has a simple structure consisting of a first storage tank containing a microbial carrier, a second storage tank containing a fine bubble generator having a gas path, a pump, and a liquid supply path, complicated equipment do not need. Moreover, since the organic matter in the waste liquid is decomposed by the action of microorganisms that naturally live on the microorganism carrier, no addition of chemicals is required. Since it is not necessary to provide a settling tank for removing organic matter and the like, the purification treatment time can be shortened.

ここで、前記微細気泡発生器として、気液が旋回可能な筒状の気液旋回室と、前記気体経路から前記気液旋回室内へ空気を導入するための空気導入口と、前記ポンプから送給される廃液を前記気液旋回室内へ流入させて前記気液旋回室内に気液旋回流を発生させるための液体導入口と、前記気液旋回室内に発生した微細気泡混じりの液体を吐出するため前記気液旋回室の中心軸方向の端部に開設された吐出口と、を備えたものが望ましい。   Here, as the fine bubble generator, a cylindrical gas-liquid swirl chamber capable of swirling gas-liquid, an air inlet for introducing air from the gas path into the gas-liquid swirl chamber, and a pump A liquid introduction port for causing the waste liquid to be supplied to flow into the gas-liquid swirl chamber and generating a gas-liquid swirl flow in the gas-liquid swirl chamber, and discharging a mixture of fine bubbles generated in the gas-liquid swirl chamber Therefore, it is desirable to have a discharge opening provided at the end in the central axis direction of the gas-liquid swirl chamber.

第一貯留槽に貯留された廃液をポンプで吸引して、第二貯留槽内の廃液中に浸漬された微細気泡発生器の液体導入口へ送給しながら、気体経路を経由して微細気泡発生器の空気導入口へ空気を供給すると、気液旋回室内に気液旋回流が発生するとともに、その中心軸付近に負圧の空洞部分が形成される。この負圧空洞部は渦キャビテーションとも呼ばれ、その先端部において気体は液体に瞬時に溶解し、未溶解の気体は、前記気液旋回流によって引き千切られて大量の微細気泡が発生し、これらの微細気泡が混じった廃液が、吐出口から第二貯留槽内の廃液中へ吐出される。このようにして供給された微細気泡には、第二貯留槽内の廃液中のアンモニアなどの気体が、気液平衡の法則により、濃度の高い液体中から気体中へ移動することとなるため、液体中のアンモニアを捕集した微細気泡となる。   While sucking the waste liquid stored in the first storage tank with a pump and feeding it to the liquid inlet of the fine bubble generator immersed in the waste liquid in the second storage tank, the fine bubbles via the gas path When air is supplied to the air inlet of the generator, a gas-liquid swirl flow is generated in the gas-liquid swirl chamber, and a negative pressure cavity is formed near the central axis. This negative pressure cavity is also called vortex cavitation, and gas is instantly dissolved in the liquid at the tip, and undissolved gas is shredded by the gas-liquid swirl flow to generate a large amount of fine bubbles. The waste liquid mixed with the fine bubbles is discharged from the discharge port into the waste liquid in the second storage tank. In the fine bubbles supplied in this way, a gas such as ammonia in the waste liquid in the second storage tank moves from the high-concentration liquid into the gas according to the law of gas-liquid equilibrium. It becomes the fine bubble which collected ammonia in the liquid.

また、本発明の廃液処理装置においては、前記第二貯留槽内と連通する前記送液経路の基端側に前記第二貯留槽の底部を貫通して起立した垂直部を設け、前記垂直部の上端開口を廃液導入口とすることにより、前記送液経路の廃液導入口を前記第二貯留槽の底面より高い位置に配置している。このような構成としたことにより、第一貯留槽からポンプを介して微細気泡発生器へ供給され、第二貯留槽内に貯留される廃液の液面高さは一定に保たれるため、微細気泡発生器の微細気泡供給機能を一定に保つことができる。また、前述した、アンモニアを捕集した微細気泡は廃液導入口を越流落下する際に破泡して内部の気体が液体外へ放出されるため、廃液中のアンモニアなどの気体を除去しながら、第一貯留槽内へ送り込むことが可能となる。
Further, in the waste liquid treatment apparatus of the present invention, a vertical portion that stands up through the bottom of the second storage tank is provided on the proximal end side of the liquid supply path that communicates with the inside of the second storage tank, and the vertical portion By using the upper end opening as a waste liquid introduction port, the waste liquid introduction port of the liquid feeding path is arranged at a position higher than the bottom surface of the second storage tank. By such a configuration, it is supplied to the micro-bubble generator via a pump from a first reservoir, since the liquid surface height of the waste liquid stored in the second storage tank is kept constant, fine The bubble generating function of the bubble generator can be kept constant. In addition, the above-described fine air bubbles that have collected ammonia break up when the waste liquid introduction port overflows and the internal gas is released to the outside of the liquid, so that while removing gases such as ammonia in the waste liquid It becomes possible to feed into the first storage tank.

この場合、前記第一貯留槽内と連通する前記送液経路の廃液排出口を前記微生物担体の収容領域内に配置することが望ましい。このような構成とすれば、第二貯留槽内において溶存酸素量が高められた廃液を、微生物担体に近接した領域に送り込むことが可能となるため、微生物担体に生息する有機物分解能を有する微生物に豊富な酸素を供給することができ、有機物分解作用をさらに高めることができる。   In this case, it is desirable to dispose the waste liquid discharge port of the liquid supply path communicating with the inside of the first storage tank in the storage area of the microbial carrier. With such a configuration, since it becomes possible to send waste liquid with an increased amount of dissolved oxygen in the second storage tank to an area close to the microorganism carrier, Abundant oxygen can be supplied, and the organic matter decomposition action can be further enhanced.

本発明により、畜産糞尿を固液分離処理したときに発生する畜産廃液を、複雑な設備や薬剤の添加を必要とせず、比較的短時間で浄化処理することができる。   According to the present invention, the livestock waste liquid generated when the livestock manure is subjected to the solid-liquid separation process can be purified in a relatively short time without the need for complicated equipment or chemical addition.

以下、図面に基づいて、本発明の実施の形態である廃液処理装置について説明する。図1は本発明の実施の形態である廃液処理装置を示す垂直断面図、図2は図1に示す廃液処理装置の一部拡大図である。   Hereinafter, a waste liquid treatment apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a vertical sectional view showing a waste liquid treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a partially enlarged view of the waste liquid treatment apparatus shown in FIG.

図1に示すように、本実施形態の廃液処理装置10は畜産糞尿を固液分離処理したときに発生する畜産廃液を清浄化処理する際に用いる装置であり、廃液L1,L2をそれぞれ収容可能な第一貯留槽1および第二貯留槽2と、第一貯留槽1内に収容された廃液L1中に浸漬された多数の微生物担体3と、第二貯留槽2内に収容された廃液L2中に浸漬された複数の微細気泡発生器4と、第一貯留槽1内に収容された廃液L1を吸引して微細気泡発生器4へ送給するポンプ5と、微細気泡発生器4へ空気を供給する気体経路6と、第二貯留槽2内の廃液L2を第一貯留槽1内へ送り込む略L字形状の送液経路7と、を備えている。   As shown in FIG. 1, the waste liquid treatment apparatus 10 of this embodiment is an apparatus used for cleaning livestock waste liquid generated when livestock manure is subjected to solid-liquid separation treatment, and can accommodate waste liquids L1 and L2, respectively. 1st storage tank 1 and 2nd storage tank 2, many microbial carriers 3 immersed in the waste liquid L1 accommodated in the 1st storage tank 1, and waste liquid L2 accommodated in the 2nd storage tank 2 A plurality of fine bubble generators 4 immersed therein, a pump 5 for sucking the waste liquid L1 accommodated in the first storage tank 1 and feeding it to the fine bubble generator 4, and air to the fine bubble generator 4 And a substantially L-shaped liquid feeding path 7 for feeding the waste liquid L2 in the second storage tank 2 into the first storage tank 1.

第二貯留槽2は第一貯留槽1の上縁部の一部に載置され、第一貯留槽1の周壁内面の一部の底部1bより高い位置に突設された有底箱体形状の集液部8内にポンプ5が配置されている。ポンプ5は、電源コード5bを介して供給される商用電源によって作動する電動式であり、スイッチ5aによりON/OFFすることができ、ポンプ5と微細気泡発生器4との間には、主送液管11と、切替弁12と、切替弁12から分岐した複数の副送液管13とが配管されている。第一貯留槽1内の底部1b直上には、送液経路7の水平部7hが配置され、水平部7hの先端部は蓋体7cで閉塞され、基端側には起立した垂直部7vが形成され、この垂直部7vの上端が第二貯留槽2の底部2bを貫通して第二貯留槽2内に連通している。   The second storage tank 2 is placed on a part of the upper edge of the first storage tank 1, and has a bottomed box shape protruding at a position higher than a part of the bottom 1 b of the inner surface of the peripheral wall of the first storage tank 1. The pump 5 is disposed in the liquid collection part 8. The pump 5 is electrically operated by a commercial power source supplied via a power cord 5b and can be turned on / off by a switch 5a. Between the pump 5 and the fine bubble generator 4, the main transmission is performed. A liquid pipe 11, a switching valve 12, and a plurality of sub liquid feeding pipes 13 branched from the switching valve 12 are piped. A horizontal portion 7h of the liquid supply path 7 is disposed immediately above the bottom portion 1b in the first storage tank 1, and a distal end portion of the horizontal portion 7h is closed by a lid body 7c, and a vertical portion 7v that stands up is provided on the proximal end side. The upper end of the vertical portion 7 v is formed so as to penetrate the bottom portion 2 b of the second storage tank 2 and communicate with the second storage tank 2.

第一貯留槽1内に配置された送液経路7の水平部7hの上面側には、複数の貫通孔7bが、水平部7hの上面全体に均等分布するように開設され、この水平部7hを埋設するように微生物担体3が収容されている。本実施形態において、第一貯留槽1内に収容されている微生物担体3は外径10mm〜20mm程度の単粒度砕石であり、岩石の種類は特に限定しない。これらの微生物担体3は集液部8の下半分が埋没する程度の深さまで収容されている。また、第一貯留槽1内の廃液L1を排出したり、清掃の際に利用したりするため、第一貯留槽1の周壁1aの下部に、開閉弁9a付きの排液管9が配管されている。   A plurality of through holes 7b are formed on the upper surface side of the horizontal portion 7h of the liquid supply path 7 disposed in the first storage tank 1 so as to be evenly distributed over the entire upper surface of the horizontal portion 7h. The microbial carrier 3 is accommodated so as to be embedded. In this embodiment, the microorganism carrier 3 accommodated in the first storage tank 1 is a single-grain crushed stone having an outer diameter of about 10 mm to 20 mm, and the type of rock is not particularly limited. These microbial carriers 3 are accommodated to such a depth that the lower half of the liquid collection part 8 is buried. Further, in order to discharge the waste liquid L1 in the first storage tank 1 or to use it for cleaning, a drain pipe 9 with an on-off valve 9a is provided at the lower part of the peripheral wall 1a of the first storage tank 1. ing.

図2に示すように、第二貯留槽2内と連通する送液経路7の垂直部7vは、底部2bを貫通して立設され、その上端開口を廃液導入口7aとすることにより、廃液導入口7aは第二貯留槽2の底部2bより高い位置に配置している。第二貯留槽2内に配置された複数の微細気泡発生器4は、底部2bと廃液導入口7aとの間の領域内において、送液経路7の垂直部7vを挟んで対称をなすように配置され、第二貯留槽2の底部2bに向かって微細気泡NB混じりの廃液L2を吐出する姿勢で係止されている。複数の微細気泡発生器4からそれぞれほぼ垂直に立設された気体経路6上端の開口部6aは、第二貯留槽2の上縁部2aより高い位置に配置されている。   As shown in FIG. 2, the vertical portion 7v of the liquid feeding path 7 communicating with the inside of the second storage tank 2 is erected through the bottom portion 2b, and the upper end opening thereof is used as a waste liquid introduction port 7a. The introduction port 7 a is arranged at a position higher than the bottom 2 b of the second storage tank 2. The plurality of fine bubble generators 4 arranged in the second storage tank 2 are symmetric with respect to the vertical portion 7v of the liquid feeding path 7 in the region between the bottom 2b and the waste liquid introduction port 7a. It arrange | positions and is latched in the attitude | position which discharges the waste liquid L2 mixed with the fine bubble NB toward the bottom part 2b of the 2nd storage tank 2. FIG. An opening 6 a at the upper end of the gas path 6 erected almost vertically from each of the plurality of fine bubble generators 4 is disposed at a position higher than the upper edge 2 a of the second storage tank 2.

また、ポンプ5で吸引した第一貯留槽1内の廃液L1を送給するための主送液管11は、切替弁12において、複数の副送液管13に分岐され、それぞれの副送液管13が各微細気泡発生器4に接続されている。切替弁12を切り替えることにより、複数の微細気泡発生器4の全てに廃液L1を送給したり、いずれかの微細気泡発生器4に選択的に廃液L1を送給したりすることができる。   Moreover, the main liquid supply pipe | tube 11 for supplying the waste liquid L1 in the 1st storage tank 1 attracted | sucked with the pump 5 is branched into the some sub liquid supply pipe | tube 13 in the switching valve 12, and each sub liquid supply is carried out. A tube 13 is connected to each microbubble generator 4. By switching the switching valve 12, the waste liquid L <b> 1 can be supplied to all of the plurality of fine bubble generators 4, or the waste liquid L <b> 1 can be selectively supplied to any one of the fine bubble generators 4.

次に、図3〜図7を参照し、微細気泡発生器4の構造、機能などについて説明する。図3は図1に示す廃液処理装置を構成する微細気泡発生器を示す斜視図、図4は図3におけるA−A線断面図、図5は図3におけるB−B線断面図、図6は図3に示す微細気泡発生器の中心軸方向の断面図、図7は図6に示す微細気泡発生器内において発生する気液旋回流を示す図である。   Next, the structure and function of the fine bubble generator 4 will be described with reference to FIGS. 3 is a perspective view showing a fine bubble generator constituting the waste liquid treatment apparatus shown in FIG. 1, FIG. 4 is a cross-sectional view taken along line AA in FIG. 3, FIG. 5 is a cross-sectional view taken along line BB in FIG. FIG. 7 is a cross-sectional view in the central axis direction of the fine bubble generator shown in FIG. 3, and FIG. 7 is a view showing a gas-liquid swirl flow generated in the fine bubble generator shown in FIG.

図3〜図6に示すように、微細気泡発生器4は、気液が旋回可能な略円筒状の気液旋回室14と、気体経路6から気液旋回室14内へ空気を導入するために気液旋回室14の中心軸C方向の一方の隔壁14aに開設された空気導入口15と、ポンプ5から送給される廃液L1を気液旋回室14内へ流入させて気液旋回室14内に気液旋回流R(図7参照)を発生させるため気液旋回室14の周壁14cに形成された液体導入口16と、気液旋回室14内に発生した微細気泡NB混じりの液体を吐出するため気液旋回室14の中心軸C方向の他方の隔壁14bに開設された吐出口17と、を備えている。液体導入口16は気液旋回室14の接線方向に形成され、気液旋回室14内に向かって、その中心軸Cとねじれの位置をなす方向に沿って液体を送り込むことができる。   As shown in FIGS. 3 to 6, the fine bubble generator 4 introduces air from the gas path 6 into the gas-liquid swirl chamber 14 and the substantially cylindrical gas-liquid swirl chamber 14 in which the gas-liquid can swirl. The gas-liquid swirl chamber is made to flow into the gas-liquid swirl chamber 14 with the air introduction port 15 opened in one partition wall 14a in the central axis C direction of the gas-liquid swirl chamber 14 and the waste liquid L1 fed from the pump 5. In order to generate the gas-liquid swirl flow R (see FIG. 7) in the liquid 14, the liquid inlet 16 formed in the peripheral wall 14c of the gas-liquid swirl chamber 14 and the liquid mixed with the fine bubbles NB generated in the gas-liquid swirl chamber 14 And a discharge port 17 provided in the other partition wall 14b in the direction of the central axis C of the gas-liquid swirl chamber 14. The liquid introduction port 16 is formed in the tangential direction of the gas-liquid swirl chamber 14 and can feed liquid into the gas-liquid swirl chamber 14 along a direction that forms a twisted position with the central axis C.

図1に示す状態にセッティングした後、スイッチ5aをONしてポンプ5を作動させると、第一貯留槽1内に設けられた集液部8内の廃液L1が吸引され、主送液管11、切替弁12および各副送液管13を経由してそれぞれ微細気泡発生器4へ送給される。微細気泡発生器4へ送給された廃液L1は液体導入口16から気液旋回室14内へ流入し、これによって、図4,図5,図7に示すように、気液旋回室14内に中心軸Cを中心とする気液旋回流Rが発生すると同時に、ほぼ中心軸Cに沿って筒状の負圧空洞部Vが出現する。この負圧空洞部Vの一方の端部は気液旋回室14の空気導入口15付近に位置するとともに、他端部は気液旋回室14の吐出口17付近に位置し、吐出口17付近においては、負圧空洞部Vの端部が括れた状態となる。   After setting to the state shown in FIG. 1, when the switch 5 a is turned on to operate the pump 5, the waste liquid L <b> 1 in the liquid collection unit 8 provided in the first storage tank 1 is sucked and the main liquid supply pipe 11. The fine bubble generator 4 is fed through the switching valve 12 and the auxiliary liquid feeding pipes 13. The waste liquid L1 fed to the fine bubble generator 4 flows into the gas-liquid swirl chamber 14 from the liquid inlet 16, and as a result, as shown in FIGS. At the same time, a gas-liquid swirl flow R centered on the central axis C is generated, and at the same time, a cylindrical negative pressure cavity V appears along the central axis C. One end of the negative pressure cavity V is located near the air inlet 15 of the gas-liquid swirl chamber 14, and the other end is located near the discharge port 17 of the gas-liquid swirl chamber 14. In, the end of the negative pressure cavity V is constricted.

気液旋回室14内に気液旋回流Rとともに出現する負圧空洞部Vの負圧によって空気導入口15付近にも負圧が生じるため、この負圧に起因する吸引力により、気体経路6の開口部6aを経由して大気中の空気が気体経路6へ吸い込まれ、この空気が空気導入口15気液旋回室14内の負圧空洞部V内へ連続的に流入し、気液旋回室14内へ流入する液体(廃液L1)とともに気液旋回流Rを形成する。   A negative pressure is also generated in the vicinity of the air inlet 15 due to the negative pressure of the negative pressure cavity V appearing in the gas-liquid swirl chamber 14 together with the gas-liquid swirl flow R. Therefore, due to the suction force caused by this negative pressure, the gas path 6 The air in the atmosphere is sucked into the gas path 6 through the opening 6a, and this air continuously flows into the negative pressure cavity V in the gas / liquid swirl chamber 14 to rotate the gas / liquid. A gas-liquid swirl flow R is formed together with the liquid flowing into the chamber 14 (waste liquid L1).

一方、空気導入口15から負圧空洞部V内へ流入した空気は、気液旋回室14内に発生している気液旋回流Rに連行されながら吐出口17から廃液L1とともに放出されるが、このとき、負圧空洞部Vの吐出口17側の端部において、気液旋回流Rによってねじ切られて微細気泡NBとなり、気液旋回流Rを形成する廃液L1に混入し、微細気泡NB混じりの流体となって吐出口17から第二貯留槽2内の廃液L2中へ吐出される。廃液L2中へ吐出された微細気泡NB混じりの廃液L1は、その中を拡散していくが、微細気泡NBによって持ち込まれた空気により、第二貯留槽2内の廃液L2の溶存酸素量が増加する。   On the other hand, the air flowing into the negative pressure cavity V from the air introduction port 15 is discharged together with the waste liquid L1 from the discharge port 17 while being entrained in the gas-liquid swirl flow R generated in the gas-liquid swirl chamber 14. At this time, at the end of the negative pressure cavity V on the discharge port 17 side, it is threaded by the gas-liquid swirl flow R to become fine bubbles NB, mixed into the waste liquid L1 forming the gas-liquid swirl flow R, and fine bubbles NB It becomes a mixed fluid and is discharged from the discharge port 17 into the waste liquid L2 in the second storage tank 2. The waste liquid L1 mixed with the fine bubbles NB discharged into the waste liquid L2 diffuses therein, but the dissolved oxygen amount of the waste liquid L2 in the second storage tank 2 increases due to the air brought in by the fine bubbles NB. To do.

第二貯留槽2内で溶存酸素量が増加した廃液L2は、送液経路7の上端周縁部を越流して廃液導入口7a内へ流れ込み、その垂直部7v内を流下した後、水平部7hに到達し、複数の貫通孔7bから第一貯留槽1内の廃液L1中へ送り込まれる。このように、第二貯留槽2内において溶存酸素量が高められた廃液L2が、第一貯留槽1内の廃液L1に供給されることにより、第一貯留槽1内の廃液L1の溶存酸素量も高められる。また、廃液導入口7a内へ流れ込み、垂直部7v内を流下する廃液L2は、流下中に大気と触れることによって大気中の酸素が廃液L2へ溶け込むため、これによっても溶存酸素が高まる。   The waste liquid L2 whose dissolved oxygen amount has increased in the second storage tank 2 overflows the upper peripheral edge of the liquid supply path 7 and flows into the waste liquid introduction port 7a, flows down in the vertical part 7v, and then flows into the horizontal part 7h. And is fed into the waste liquid L1 in the first storage tank 1 from the plurality of through holes 7b. Thus, the waste liquid L2 whose dissolved oxygen amount is increased in the second storage tank 2 is supplied to the waste liquid L1 in the first storage tank 1, whereby the dissolved oxygen of the waste liquid L1 in the first storage tank 1 is dissolved. The amount can also be increased. Further, the waste liquid L2 flowing into the waste liquid introduction port 7a and flowing down in the vertical portion 7v comes into contact with the atmosphere during the flow, so that oxygen in the atmosphere dissolves into the waste liquid L2, so that the dissolved oxygen also increases.

第一貯留槽1内の廃液L1の溶存酸素量が増加することにより、第一貯留槽1内の廃液L1中に浸漬された微生物担体3に生息する微生物は充分な酸素を得ることができ、これによって活性化され、有機物分解作用が高まるため、廃液L1中に含まれる有機物が速やかに分解され、廃液L1を浄化することができる。この工程を継続すると、第一貯留槽1と第二貯留槽2との間を廃液L1,L2が循環しながら浄化されていくこととなるため、第一貯留槽1に収容されている廃液L1は、時間の経過に伴い速やかに浄化される。そして、第一貯留槽1内の廃液L1が所定レベルまで浄化されたことが確認されたら、スイッチ5aを操作してポンプ5を止めた後、開閉弁9aを開いて、排液管9から処理液を排出することができる。   By increasing the amount of dissolved oxygen in the waste liquid L1 in the first storage tank 1, microorganisms living in the microorganism carrier 3 immersed in the waste liquid L1 in the first storage tank 1 can obtain sufficient oxygen, This activates the organic matter decomposition action, so that the organic matter contained in the waste liquid L1 is quickly decomposed and the waste liquid L1 can be purified. If this process is continued, the waste liquids L1 and L2 will be purified while circulating between the first storage tank 1 and the second storage tank 2, so that the waste liquid L1 stored in the first storage tank 1 Is quickly purified over time. Then, when it is confirmed that the waste liquid L1 in the first storage tank 1 has been purified to a predetermined level, the switch 5a is operated to stop the pump 5, and then the on-off valve 9a is opened to treat from the drain pipe 9. The liquid can be discharged.

廃液処理装置10は、微生物担体3が収容された第一貯留槽1と、気体経路6を有する微細気泡発生器4が収容された第二貯留槽2と、ポンプ5と、送液経路7とからなる簡素な構造であるため、複雑な設備を必要としない。また、微生物担体3に生息する微生物の作用によって廃液L1中の有機物を分解するため、薬剤の添加を必要としない。さらに、有機物などを沈殿除去するための沈殿槽を設ける必要がないので、浄化処理時間の短縮を図ることができる。なお、微生物担体3に生息する、有機物分解機能を有する微生物は、畜産糞尿を固液分離処理したときに発生する畜産廃液(廃液L1)中に存在するものが、廃液L1に伴って第一貯留槽1内へ持ち込まれ、そのまま微生物担体3に住み着くため、外部から添加する必要はない。   The waste liquid treatment apparatus 10 includes a first storage tank 1 in which a microbial carrier 3 is stored, a second storage tank 2 in which a fine bubble generator 4 having a gas path 6 is stored, a pump 5, and a liquid supply path 7. Because it has a simple structure, it does not require complicated equipment. In addition, since the organic matter in the waste liquid L1 is decomposed by the action of microorganisms that inhabit the microorganism carrier 3, it is not necessary to add a drug. Furthermore, since it is not necessary to provide a sedimentation tank for removing organic substances and the like, the purification processing time can be shortened. In addition, the microorganisms which have an organic matter decomposition function inhabiting the microorganism carrier 3 are those present in the livestock waste liquid (waste liquid L1) generated when the livestock manure is subjected to the solid-liquid separation treatment, and the first storage with the waste liquid L1. Since it is brought into the tank 1 and settles in the microorganism carrier 3 as it is, it is not necessary to add from the outside.

前述したように、第一貯留槽1に収容された廃液L1をポンプ5で吸引して、第二貯留槽2内の廃液L2中に浸漬された微細気泡発生器4の液体導入口16へ送給しながら、気体経路6を経由して微細気泡発生器4の空気導入口15へ空気を供給すると、気液旋回室14内に気液旋回流Rが発生するとともに、その中心軸C付近に負圧空洞部Vが形成される。この負圧空洞部Vは渦キャビテーションとも呼ばれ、その先端部が気液旋回流Rによって引き千切られて大量の微細気泡NBが発生し、これらの微細気泡NBが混じった廃液L2が、吐出口17から第二貯留槽2内の廃液L2中へ吐出される。このようにして供給され続ける微細気泡NBは第二貯留槽2内の廃液L2中で上昇することなく、長時間に渡って滞留し続けるため、第二貯留槽2内の廃液L2の溶存酸素量を大幅に高めることができる。   As described above, the waste liquid L1 stored in the first storage tank 1 is sucked by the pump 5 and sent to the liquid inlet 16 of the fine bubble generator 4 immersed in the waste liquid L2 in the second storage tank 2. If air is supplied to the air inlet 15 of the fine bubble generator 4 through the gas path 6 while being supplied, a gas-liquid swirl flow R is generated in the gas-liquid swirl chamber 14 and is near the central axis C. A negative pressure cavity V is formed. This negative pressure cavity V is also called vortex cavitation, and its tip is shredded by the gas-liquid swirl flow R to generate a large amount of fine bubbles NB, and the waste liquid L2 mixed with these fine bubbles NB is discharged to the discharge port. 17 is discharged into the waste liquid L2 in the second storage tank 2. Since the fine bubbles NB that continue to be supplied in this way do not rise in the waste liquid L2 in the second storage tank 2 and remain for a long time, the dissolved oxygen amount of the waste liquid L2 in the second storage tank 2 Can be greatly increased.

また、廃液処理装置10においては、図2に示すように、第二貯留槽2内と連通する送液経路7の廃液導入口7aを第二貯留槽2の底部2bより高い位置に配置している。このような構成とすれば、第二貯留槽2内に貯留される廃液L2の液面高さが一定に保たれるため、微細気泡発生器4の微細気泡供給機能を一定に保つことができる。このため、第二貯留槽2内において溶存酸素量が高められた廃液L2を安定的に第一貯留槽1内の廃液L1中へ送り込むことができる。   Further, in the waste liquid treatment apparatus 10, as shown in FIG. 2, the waste liquid introduction port 7 a of the liquid supply path 7 communicating with the inside of the second storage tank 2 is arranged at a position higher than the bottom 2 b of the second storage tank 2. Yes. With such a configuration, the liquid level height of the waste liquid L2 stored in the second storage tank 2 is kept constant, so that the fine bubble supply function of the fine bubble generator 4 can be kept constant. . For this reason, the waste liquid L2 in which the amount of dissolved oxygen is increased in the second storage tank 2 can be stably fed into the waste liquid L1 in the first storage tank 1.

また、第一貯留槽1内と連通する送液経路7の廃液排出口として、その水平部7hの上面に多数の貫通孔7bが開設されており、これらの貫通孔7bは全て微生物担体3の収容領域内に配置されている。従って、第二貯留槽2内において溶存酸素量が高められた廃液L2を、微生物担体3に近接した領域に送り込むことが可能であり、微生物担体3に生息する有機物分解能を有する微生物に豊富な酸素を供給することができ、これによって、優れた有機物分解作用を得ることができる。   In addition, as a waste liquid discharge port of the liquid supply path 7 communicating with the inside of the first storage tank 1, a large number of through holes 7b are formed on the upper surface of the horizontal portion 7h. Arranged in the receiving area. Accordingly, the waste liquid L2 having an increased dissolved oxygen amount in the second storage tank 2 can be sent to an area close to the microbial carrier 3, and oxygen abundant in microorganisms having an organic matter resolving ability living in the microbial carrier 3. As a result, an excellent organic substance decomposing action can be obtained.

また、貫通孔7bが開設された部分は多数の微生物担体3によって埋設された状態にあるため、貫通孔7bから噴き出す廃液L2によって第一貯留槽1内の廃液L1が撹拌されたり、波立ったりすることがない。このため、処理作業の開始直後に、第一貯留槽1内の廃液L1中に比較的多く存在する固形物が、廃液L1中で舞い上がったり、廃液L1を濁らせたりすることがない。従って、微生物担体3による有機物分解処理が速やかに進行する。   In addition, since the portion where the through hole 7b is opened is in a state where it is buried by a large number of microorganism carriers 3, the waste liquid L1 in the first storage tank 1 is agitated or waved by the waste liquid L2 ejected from the through hole 7b. There is nothing to do. For this reason, immediately after the start of the processing operation, solids present in a relatively large amount in the waste liquid L1 in the first storage tank 1 do not rise in the waste liquid L1 or make the waste liquid L1 cloudy. Therefore, the organic substance decomposition treatment by the microbial carrier 3 proceeds promptly.

さらに、図1に示すように、ポンプ5は、第一貯留槽1内に設けられた集液部8内に配置され、第一貯留槽1内に収容された廃液L1のうち、その液面付近に在って、集液部8の上縁部8aを越流して集液部8内へ流入した廃液L1を汲み上げて微細気泡発生器4に向かって送給するようにしている。このような配置とすれば、微生物担体3上部付近に存在する固形物などが廃液L1とともに集液部8内へ流入するのを防止することができる。このため、比較的清澄な上澄み部分の廃液L1のみが循環することとなり、処理開始後1日程度で約90%のSS(懸濁物質)を除去することができる。   Furthermore, as shown in FIG. 1, the pump 5 is disposed in a liquid collection unit 8 provided in the first storage tank 1, and the liquid level of the waste liquid L <b> 1 accommodated in the first storage tank 1. In the vicinity, the waste liquid L1 flowing over the upper edge 8a of the liquid collecting part 8 and flowing into the liquid collecting part 8 is pumped up and fed toward the fine bubble generator 4. With such an arrangement, it is possible to prevent solids or the like existing near the upper part of the microorganism carrier 3 from flowing into the liquid collection part 8 together with the waste liquid L1. For this reason, only the waste liquid L1 in a relatively clear supernatant portion circulates, and about 90% of SS (suspended substance) can be removed in about one day after the start of the treatment.

一方、図7で示したように、微細気泡発生器4内においては、気液旋回室14内に出現する負圧空洞部Vの一方の端部から空気を導入しながら、他方の端部の延長方向に向かって微細気泡NBを混じりの廃液L2を吐出する。このため、負圧空洞部Vは、気液旋回室14の中心軸C付近に安定的に存在し続け、その両端部もそれぞれ空気導入口15付近、吐出口17付近に安定的に位置する。従って、負圧空洞部Vが気液旋回室14の内面に接触することがなく、キャビテーション・エロージョンの発生を回避することができる。また、微細気泡発生器4自体も、気液旋回室14に、空気導入口15、液体導入口16および吐出口17を設けた簡素な構造であるため、取り扱いは容易であり、廃液L1や空気に伴って流入した異物が詰まり易い狭隘な流路がないので、定期的なメンテナンスも不要である。   On the other hand, as shown in FIG. 7, in the fine bubble generator 4, while introducing air from one end of the negative pressure cavity V appearing in the gas-liquid swirl chamber 14, The waste liquid L2 mixed with the fine bubbles NB is discharged in the extending direction. For this reason, the negative pressure cavity V continues to exist stably in the vicinity of the central axis C of the gas-liquid swirl chamber 14, and both end portions thereof are stably positioned in the vicinity of the air inlet 15 and the outlet 17, respectively. Therefore, the negative pressure cavity V does not contact the inner surface of the gas-liquid swirl chamber 14, and the occurrence of cavitation erosion can be avoided. Further, since the fine bubble generator 4 itself has a simple structure in which the air-inlet port 15, the liquid-inlet port 16, and the discharge port 17 are provided in the gas-liquid swirl chamber 14, the handling is easy, and the waste liquid L1 and air Since there is no narrow flow path in which foreign matter that flows in is easily clogged, regular maintenance is also unnecessary.

また、図6に示すように、気液旋回室14の隔壁14aに開設された空気導入口15を、気液旋回室14の中心軸Cに沿って内側へ突出させて配置するとともに、気液旋回室14の内周面14dと空気導入口15との間に、滑らかに連続した凹曲面14eを設けている。このような形状とすることにより、負圧空洞部Vの空気導入口15側の端部が不規則に移動するのを防止することができるため、負圧空洞部Vは中心軸C付近に安定的に存在し続けることができる。   In addition, as shown in FIG. 6, the air introduction port 15 opened in the partition wall 14 a of the gas-liquid swirl chamber 14 is disposed so as to protrude inward along the central axis C of the gas-liquid swirl chamber 14. A smoothly continuous concave curved surface 14e is provided between the inner peripheral surface 14d of the swirl chamber 14 and the air introduction port 15. By adopting such a shape, it is possible to prevent the end of the negative pressure cavity V on the air inlet 15 side from moving irregularly, so that the negative pressure cavity V is stable near the central axis C. Can continue to exist.

さらに、図6に示すように、気液旋回室14の隔壁14b寄りの領域には、他の領域より内径の大きな予備旋回部18を設けているため、液体導入口16から流入する廃液L1を予備旋回部18において一旦整流した後、気液旋回室14全体へ流入させることができる。これにより、液体導入口16から流入する廃液L1の圧力変動が緩和されるため、圧力変動に起因する負圧空洞部Vの移動を防止することができ、キャビテーション・エロージョンの防止に有効である。   Further, as shown in FIG. 6, in the region near the partition wall 14 b of the gas-liquid swirl chamber 14, the preliminary swirl unit 18 having a larger inner diameter than other regions is provided. After rectifying once in the preliminary swirl unit 18, the preliminary swirl unit 18 can flow into the entire gas-liquid swirl chamber 14. As a result, the pressure fluctuation of the waste liquid L1 flowing from the liquid inlet 16 is alleviated. Therefore, the movement of the negative pressure cavity V caused by the pressure fluctuation can be prevented, which is effective in preventing cavitation erosion.

図6,図7に示すように、微細気泡発生器4においては、液体導入口16の開口面積を吐出口17の開口面積より大としているため、ポンプ5によって気液旋回室14内へ送給される廃液L1の圧力により気液旋回室14内の圧力が高まり、吐出口17から吐出される微細気泡NB混じりの流体(廃液L1)の吐出速度も高まる。このため、第二貯留槽2内の廃液L2に対する撹拌作用も得ることができる。また、図2に示すように、複数の微細気泡発生器4は、それぞれの吐出口17を第二貯留槽2の底部2bに向けて配置し、微細気泡NB混じりの流体を底部2bに向けて吐出しているため、これによる撹拌作用も得ることができる。   As shown in FIGS. 6 and 7, in the fine bubble generator 4, since the opening area of the liquid introduction port 16 is larger than the opening area of the discharge port 17, the liquid is supplied into the gas-liquid swirl chamber 14 by the pump 5. The pressure in the gas-liquid swirl chamber 14 increases due to the pressure of the waste liquid L1, and the discharge speed of the fluid (waste liquid L1) mixed with the fine bubbles NB discharged from the discharge port 17 also increases. For this reason, the stirring action with respect to the waste liquid L2 in the 2nd storage tank 2 can also be obtained. Further, as shown in FIG. 2, the plurality of fine bubble generators 4 are arranged with the discharge ports 17 facing the bottom 2b of the second storage tank 2, and the fluid containing the fine bubbles NB is directed toward the bottom 2b. Since it is discharged, a stirring action can be obtained.

一方、前述とは逆に、吐出口17の開口面積を液体導入口16の開口面積より大とすれば、液体導入口16を経由して気液旋回室14内へ入った固形物などは吐出口17から速やかに排出されるようになるため、気液旋回室14内の異物貯留を防ぐことができる。また、吐出口17の開口面積を液体導入口16の開口面積より大とした場合、気液旋回室14内に入った異物などの清掃除去も容易となる。   On the other hand, if the opening area of the discharge port 17 is larger than the opening area of the liquid inlet port 16, the solid matter that has entered the gas-liquid swirl chamber 14 via the liquid inlet port 16 is discharged. Since the liquid is quickly discharged from the outlet 17, foreign matter storage in the gas-liquid swirl chamber 14 can be prevented. Further, when the opening area of the discharge port 17 is made larger than the opening area of the liquid introduction port 16, it is easy to remove and remove foreign matters and the like that have entered the gas-liquid swirl chamber 14.

本発明に係る廃液処理技術は、家畜が排泄する糞尿を固液分離処理したときに発生する畜産廃液の浄化処理を行う産業分野において広く利用することができる。   The waste liquid treatment technology according to the present invention can be widely used in the industrial field for purifying livestock waste liquid generated when solid waste is separated from excreta excreted by livestock.

本発明の実施の形態である廃液処理装置を示す垂直断面図である。It is a vertical sectional view showing a waste liquid treatment apparatus which is an embodiment of the present invention. 図1に示す廃液処理装置の一部拡大図である。FIG. 2 is a partially enlarged view of the waste liquid treatment apparatus shown in FIG. 1. 図1に示す廃液処理装置を構成する微細気泡発生器を示す斜視図である。It is a perspective view which shows the fine bubble generator which comprises the waste liquid processing apparatus shown in FIG. 図3におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図3におけるB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図3に示す微細気泡発生器の中心軸方向の断面図である。It is sectional drawing of the center axis direction of the fine bubble generator shown in FIG. 図6に示す微細気泡発生器内において発生する気液旋回流を示す図である。It is a figure which shows the gas-liquid swirl flow which generate | occur | produces in the microbubble generator shown in FIG.

符号の説明Explanation of symbols

1 第一貯留槽
1a 周壁
1b,2b 底部
2 第二貯留槽
2a,8a 上縁部
3 微生物担体
4 微細気泡発生器
5 ポンプ
5a スイッチ
5b 電源コード
6 気体経路
6a 開口部
7 送液経路
7a 廃液導入口
7b 貫通孔
7c 蓋体
7h 水平部
7v 垂直部
8 集液部
9 排液管
9a 開閉弁
10 廃液処理装置
11 主送液管
12 切替弁
13 副送液管
14 気液旋回室
14a,14b 隔壁
14c 周壁
14d 内周面
14e 凹曲面
15 空気導入口
16 液体導入口
17 吐出口
18 予備旋回部
C 中心軸
L1,L2 廃液
NB 微細気泡
R 気液旋回流
DESCRIPTION OF SYMBOLS 1 1st storage tank 1a Peripheral wall 1b, 2b Bottom 2 2nd storage tank 2a, 8a Upper edge 3 Microorganism carrier 4 Microbubble generator 5 Pump 5a Switch 5b Power cord 6 Gas path 6a Opening 7 Liquid feed path 7a Waste liquid introduction Port 7b Through-hole 7c Lid 7h Horizontal part 7v Vertical part 8 Liquid collecting part 9 Drain pipe 9a Open / close valve 10 Waste liquid treatment device 11 Main liquid feed pipe 12 Switching valve 13 Sub liquid feed pipe 14 Gas-liquid swirl chamber 14a, 14b Partition wall 14c peripheral wall 14d inner peripheral surface 14e concave curved surface 15 air introduction port 16 liquid introduction port 17 discharge port 18 preliminary swirl part C central axis L1, L2 waste liquid NB fine bubble R gas-liquid swirl flow

Claims (3)

廃液を収容可能な第一貯留槽および第二貯留槽と、前記第一貯留槽内に収容された廃液中に浸漬された微生物担体と、前記第二貯留槽内の廃液中に浸漬された微細気泡発生器と、前記第一貯留槽内の廃液を前記微細気泡発生器へ送給するポンプと、前記微細気泡発生器へ空気を供給する気体経路と、前記第二貯留槽内の廃液を前記第一貯留槽内へ送り込む送液経路と、を備え、前記第二貯留槽内と連通する前記送液経路の基端側に前記第二貯留槽の底部を貫通して起立した垂直部を設け、前記垂直部の上端開口を廃液導入口とすることにより、前記送液経路の廃液導入口を前記第二貯留槽の底面より高い位置に配置したことを特徴とする廃液処理装置。 A first storage tank and a second storage tank that can store waste liquid, a microbial carrier immersed in the waste liquid stored in the first storage tank, and a fine immersion immersed in the waste liquid in the second storage tank A bubble generator, a pump for feeding waste liquid in the first storage tank to the fine bubble generator, a gas path for supplying air to the fine bubble generator, and a waste liquid in the second storage tank A liquid feed path for feeding into the first storage tank, and a vertical portion standing through the bottom of the second storage tank is provided on the base end side of the liquid feed path communicating with the inside of the second storage tank The waste liquid treatment apparatus is characterized in that the upper end opening of the vertical portion is used as a waste liquid introduction port, whereby the waste liquid introduction port of the liquid feeding path is disposed at a position higher than the bottom surface of the second storage tank . 前記微細気泡発生器が、気液が旋回可能な筒状の気液旋回室と、前記気体経路から前記気液旋回室内へ空気を導入するための空気導入口と、前記ポンプから送給される廃液を前記気液旋回室内へ流入させて前記気液旋回室内に気液旋回流を発生させるための液体導入口と、前記気液旋回室内に発生した微細気泡混じりの液体を吐出するため前記気液旋回室の中心軸方向の端部に開設された吐出口と、を備えたものである請求項1記載の廃液処理装置。   The fine bubble generator is fed from a cylindrical gas-liquid swirl chamber capable of swirling gas-liquid, an air inlet for introducing air from the gas path into the gas-liquid swirl chamber, and the pump. A liquid inlet for causing the waste liquid to flow into the gas-liquid swirl chamber and generating a gas-liquid swirl flow in the gas-liquid swirl chamber, and the gas for discharging the liquid containing fine bubbles generated in the gas-liquid swirl chamber. The waste liquid treatment apparatus according to claim 1, further comprising: a discharge port opened at an end of the liquid swirl chamber in the central axis direction. 前記第一貯留槽内と連通する前記送液経路の廃液排出口を前記微生物担体の収容領域内に配置した請求項1または2記載の廃液処理装置。 3. The waste liquid treatment apparatus according to claim 1, wherein a waste liquid discharge port of the liquid feeding path communicating with the inside of the first storage tank is disposed in the storage area of the microorganism carrier.
JP2006005319A 2006-01-12 2006-01-12 Waste liquid treatment equipment Expired - Fee Related JP4773211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005319A JP4773211B2 (en) 2006-01-12 2006-01-12 Waste liquid treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005319A JP4773211B2 (en) 2006-01-12 2006-01-12 Waste liquid treatment equipment

Publications (2)

Publication Number Publication Date
JP2007185594A JP2007185594A (en) 2007-07-26
JP4773211B2 true JP4773211B2 (en) 2011-09-14

Family

ID=38341129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005319A Expired - Fee Related JP4773211B2 (en) 2006-01-12 2006-01-12 Waste liquid treatment equipment

Country Status (1)

Country Link
JP (1) JP4773211B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193855B2 (en) * 2006-04-26 2013-05-08 哲彦 藤里 Water quality improvement device and water quality improvement device
JP5572969B2 (en) * 2009-03-09 2014-08-20 株式会社ノーリツ Rotating bubble generator
JP5377010B2 (en) * 2009-03-13 2013-12-25 株式会社 多自然テクノワークス Liquid processing equipment
JP5569721B2 (en) * 2009-10-22 2014-08-13 株式会社大林組 Function maintenance method and system for masonry purification bank
JP7442846B2 (en) * 2022-01-28 2024-03-05 穂栄株式会社 Gas solution generation device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548023B2 (en) * 1973-02-02 1979-04-12
JPS51120051A (en) * 1975-04-14 1976-10-21 Kuraray Co Ltd Method of and apparatus for treating organic waste liquid
JPS5220659A (en) * 1975-08-08 1977-02-16 Dainippon Toryo Co Ltd Treatment method of waste water by upward flow filtration
JPS54135048A (en) * 1978-04-05 1979-10-19 Sutanree Ruisu Slot machine and index mechanism therefor
JPS57115692A (en) * 1981-01-09 1982-07-19 Toshiba Corp Heat exchanger
JPS60212292A (en) * 1984-04-06 1985-10-24 Shinko Fuaudoraa Kk Apparatus for high degree treatment of sewage
JPS63291693A (en) * 1987-05-25 1988-11-29 Takuma Co Ltd Mobile bed waste water treatment device
JPH01123697A (en) * 1987-11-05 1989-05-16 Ebara Infilco Co Ltd Aerobic biological treatment device for organic waste water
JP2820707B2 (en) * 1989-03-06 1998-11-05 株式会社間組 Fixed bed deep wastewater treatment equipment
JPH0760273A (en) * 1993-08-30 1995-03-07 Kurita Water Ind Ltd Fluidized bed type biological treatment apparatus
JP2000084578A (en) * 1998-09-17 2000-03-28 Kopurosu:Kk Contact aeration tank
JP3763521B2 (en) * 2001-10-26 2006-04-05 株式会社オ−ラテック Micro bubble generator
JP3794952B2 (en) * 2001-12-13 2006-07-12 株式会社 多自然テクノワークス Swivel type micro bubble generator
JP2005034814A (en) * 2003-07-18 2005-02-10 Tashizen Techno Works:Kk Fine bubble generator

Also Published As

Publication number Publication date
JP2007185594A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
KR101150740B1 (en) Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method
US11339068B2 (en) Eductor-based membrane bioreactor
JP3765759B2 (en) Microbubble generator
JP4773211B2 (en) Waste liquid treatment equipment
KR101045124B1 (en) Treatment method and treatment unit for organic waste water
CN103359875A (en) Waste water treatment method and waste water treatment system
JP2008272722A (en) Manufacturing method and manufacturing apparatus of high concentration gas-dissolved water, and application method of manufactured high concentration gas-dissolved water
JP4682116B2 (en) Organic wastewater treatment method and organic wastewater treatment equipment
JP2003220398A (en) Aerobic sludge digester
KR101171854B1 (en) Apparatus for generating micro bubble
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
JP4515868B2 (en) Water treatment system
US20100108615A1 (en) Method and an apparatus for treatment of a substance having organic content
JP2005118664A (en) Method and apparatus for purifying ground water
KR102102437B1 (en) High speed oxidation device for the high concentration wastewater treatment
KR102329274B1 (en) Distributed disposal apparatus of fish farm cyclic water
JP2007301460A (en) Method and device for producing high-concentration oxygen dissolved water, and method for using produced high-concentration oxygen dissolved water
JP2007083108A (en) Method and apparatus for treating liquid
JP5334141B2 (en) Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water
JP2006297239A (en) Pressure floatation separation apparatus in waste water treatment, sludge concentration system and pressure floatation separation method
ES2227435T3 (en) METHOD AND DEVICE FOR ANEROBIAL PURIFICATION OF A SUSPENSION CONTAINING ORGANIC CONSTITUENTS.
KR20210062512A (en) Water treatment device using plasma and ozone microbubbles and water treatment method using the same
KR20210062492A (en) Wastewater treatment method using micro bubbles
JP2013240727A (en) Biological wastewater treatment apparatus
JP2007144302A (en) Apparatus for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees