JP5334141B2 - Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water - Google Patents

Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water Download PDF

Info

Publication number
JP5334141B2
JP5334141B2 JP2011239798A JP2011239798A JP5334141B2 JP 5334141 B2 JP5334141 B2 JP 5334141B2 JP 2011239798 A JP2011239798 A JP 2011239798A JP 2011239798 A JP2011239798 A JP 2011239798A JP 5334141 B2 JP5334141 B2 JP 5334141B2
Authority
JP
Japan
Prior art keywords
water
oxygen
bubbles
dissolved
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011239798A
Other languages
Japanese (ja)
Other versions
JP2012081467A (en
Inventor
由和 小林
悦男 石井
政秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Tekkou KK
Original Assignee
Miike Tekkou KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Tekkou KK filed Critical Miike Tekkou KK
Priority to JP2011239798A priority Critical patent/JP5334141B2/en
Publication of JP2012081467A publication Critical patent/JP2012081467A/en
Application granted granted Critical
Publication of JP5334141B2 publication Critical patent/JP5334141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing high-concentration gas dissolved water easily and at a low cost because various methods are conventionally used for manufacturing high-concentration oxygen dissolved water; however, all of such methods manufacture insufficient concentration and are infeasible in cost. <P>SOLUTION: Two or more water streams 34 with oxygen-containing bubbles are made collide with each other to miniaturize the bubbles more finely and to dissolve, in large quantity, oxygen contained in the bubbles, in the water streams. Both the water streams collide with each other at an equal velocity to a sum of flow rates thereof. The impact reaches a magnitude of several times to a dozen or so times as many as that when a single water stream collides with a stationary surface and a maximum impact is applied to each of the water streams, so that the bubbles in the water streams are destroyed into miniaturized ones to accelerate dissolution into the oxygen water streams in the bubbles. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、高濃度酸素溶解水等の高濃度ガス溶解水の製造方法及び製造装置に関し、より詳細には水流を衝突させる手法により簡単かつ確実に高濃度ガス溶解水を製造する方法及び装置、及び製造した溶解水の使用方法に関する。   The present invention relates to a method and an apparatus for producing high-concentration gas-dissolved water such as high-concentration oxygen-dissolved water. And a method of using the produced dissolved water.

従来から各種用途において酸素溶解水が使用され、あるいは用水の酸素や空気を吹き込んで殺菌等が行われている。
例えば従来下水、食品排水、厨房排水又は工業用水等の被処理対象水の処理方法として、活性汚泥法が知られていて、この活性汚泥法では、好気性微生物である活性汚泥の浮遊する処理槽内に排水を供給し、空気で曝気することにより、活性汚泥の生物学的酸化作用で原水中の有機物を酸化分解処理している。
Conventionally, oxygen-dissolved water has been used in various applications, or sterilization or the like has been performed by blowing oxygen or air into the service water.
For example, the activated sludge method is conventionally known as a method for treating water to be treated such as sewage, food waste water, kitchen waste water, or industrial water, and in this activated sludge method, a treatment tank in which activated sludge, which is an aerobic microorganism, floats. By supplying wastewater and aeration with air, organic matter in raw water is oxidatively decomposed by the biological oxidation of activated sludge.

この空気曝気の際には、空気中の酸素濃度が約20%と低く、かつ空気が気泡として存在し空気中の酸素が前記被処理対象水中の有機物や微生物と十分に接触できないため、満足できる殺菌効率が得られないことが多い。十分な殺菌効率を得るためには、装置を大型化する必要があり、コストと設置面積が増大するだけでなく、安定した運転を行うためには高度な技術と煩雑な管理が必要となる問題もある。
このような問題を解消するために、曝気対象水を衝突面に衝突させて空気を巻き込みやすくする方法が提案されている(特許文献1)。しかしこの方法では僅かな空気巻き込みしか起らず、曝気効果の上昇には十分寄与できない。
This air aeration is satisfactory because the oxygen concentration in the air is as low as about 20%, the air exists as bubbles, and the oxygen in the air cannot sufficiently contact the organic matter and microorganisms in the water to be treated. In many cases, sterilization efficiency cannot be obtained. In order to obtain sufficient sterilization efficiency, it is necessary to increase the size of the device, which not only increases the cost and installation area, but also requires advanced technology and complicated management for stable operation. There is also.
In order to solve such problems, a method has been proposed in which aeration target water collides with a collision surface to facilitate air entrainment (Patent Document 1). However, this method causes only a slight air entrainment and cannot sufficiently contribute to an increase in the aeration effect.

前記活性汚泥法では、装置の大型化以外に、酸素富化ガスを使用したり、強烈な攪拌を行って酸素と被処理対象水の接触を促進している。しかし通常の活性汚泥法では被処理対象水の水量が莫大であり前者の高価なガスを使用する方法は現実的でない。後者の攪拌法も余分な設備が必要になり、溶解効果の向上はさほどでもない。
このように現在の活性汚泥法では、空気曝気の際の酸素と被処理対象水中の微生物等の接触が不十分であり、この接触を十分行えるように改良できれば被処理対象水の処理効率が大幅に上昇する。
In the activated sludge method, in addition to increasing the size of the apparatus, an oxygen-enriched gas is used, or intense agitation is performed to promote contact between oxygen and the water to be treated. However, in the normal activated sludge method, the amount of water to be treated is enormous and the former method using expensive gas is not realistic. The latter stirring method also requires extra equipment, and the dissolution effect is not so much improved.
As described above, in the current activated sludge method, contact between oxygen during air aeration and microorganisms in the water to be treated is insufficient, and the treatment efficiency of the water to be treated can be greatly improved if the contact can be sufficiently performed. To rise.

更に前記活性汚泥法以外でも、高濃度酸素の溶解水は汎用されている。
例えば湖沼やダム等の閉鎖水域、あるいは流量の少ない河川では、水流が停滞して雑菌の繁殖による水質の悪化が大きな問題になっている。これらの水域に高濃度酸素の溶解水を供給すると、酸素の殺菌効果で前記雑菌が死滅して顕著な水質改善が達成できる。しかしこの顕著な水質改善のためには、莫大な量の高濃度酸素溶解水が必要になり、従来法で製造された高濃度酸素溶解水を使用する前記水流改善は実質的に不可能である。
つまりこのための従来法として、陸上に設置したポンプにより底層水を汲み上げ、酸素溶解装置により酸素を溶解し、生成する溶解水を底層に返送する手法がある。しかしこの方法でも酸素溶解が不十分で満足できる殺菌効果は得られないとともに、底層水汲み上げのためのコスト負担が大きくなる。
In addition to the activated sludge method, dissolved water with high-concentration oxygen is widely used.
For example, in closed water areas such as lakes and dams, or rivers with a low flow rate, the water flow is stagnant and deterioration of water quality due to the propagation of various germs has become a major problem. When dissolved water of high-concentration oxygen is supplied to these water areas, the bacteria are killed by the sterilizing effect of oxygen, and a remarkable water quality improvement can be achieved. However, this remarkable improvement in water quality requires an enormous amount of high-concentration oxygen-dissolved water, and the water flow improvement using the high-concentration oxygen-dissolved water produced by the conventional method is virtually impossible. .
That is, as a conventional method for this purpose, there is a method in which bottom water is pumped by a pump installed on land, oxygen is dissolved by an oxygen dissolving device, and the generated dissolved water is returned to the bottom. However, even with this method, the oxygen dissolution is insufficient and a satisfactory sterilizing effect cannot be obtained, and the cost burden for pumping the bottom layer water is increased.

魚類は水中に生息し、その生態は水中の溶存酸素量に大きく影響される。例えば金魚を高濃度酸素溶解水で飼育すると、常識では考えられないサイズまで成長することが知られている。これから類推して養殖場で高濃度酸素溶解水を使用すれば生育速度が速くなり、しかもサイズの大きい魚類や牡蠣などが養殖されると考えられる。しかし家庭におけるペットの飼育と異なり、養殖場では莫大な量の海水や淡水を必要とするため、高濃度酸素溶解水製造のコストに見合うだけの効果は現状では得られない。
更に酸素溶解水以外でも、高濃度ガス溶解水の用途は多い。例えば窒素ガス溶解水は魚介類の鮮度保持に使用でき、この場合も濃度が高いほど効果は顕著になる。高濃度溶解水が望ましいガスとしては、窒素の他、水素、アンモニア、オゾンなどがある。
Fish live in water, and their ecology is greatly influenced by the amount of dissolved oxygen in the water. For example, it is known that when goldfish is bred with high-concentration oxygen-dissolved water, it grows to a size that cannot be considered by common sense. By analogy, it is thought that if high-concentration oxygen-dissolved water is used in the farm, the growth rate will be faster, and large fish and oysters will be cultivated. However, unlike the breeding of pets at home, the aquaculture farm requires an enormous amount of seawater and fresh water, so that it is not possible to obtain an effect that is commensurate with the cost of producing high-concentration oxygen-dissolved water.
In addition to oxygen-dissolved water, there are many uses for high-concentration gas-dissolved water. For example, nitrogen gas-dissolved water can be used for maintaining the freshness of fish and shellfish, and in this case as well, the effect becomes more remarkable as the concentration increases. Gases for which high-concentration dissolved water is desirable include nitrogen, hydrogen, ammonia, ozone, and the like.

特開2003−94089号公報JP 2003-94089 A 特開2005−245817号公報JP 2005-245817 A

このように高濃度酸素溶解水を必要とする用途は多く存在し、その要請に応えるために種々の酸素溶解方法が提案されている。しかしいずれも満足できる濃度の酸素は溶解できず、できたとしてもコストが掛かり過ぎて現実的な手法として採用できないものであった。窒素等の他のガスの溶解についても同様である。
従って本発明は、比較的簡単に高濃度ガス溶解水を製造できる方法と装置、及びこれにより得られた高濃度ガス溶解水、特に高濃度酸素溶解水により被処理対象水を処理する方法を提供することを目的とする。
Thus, there are many uses that require high-concentration oxygen-dissolved water, and various oxygen-dissolving methods have been proposed to meet the demand. However, in any case, oxygen having a satisfactory concentration could not be dissolved, and even if it could be made, it was too costly to adopt as a practical method. The same applies to the dissolution of other gases such as nitrogen.
Accordingly, the present invention provides a method and apparatus that can produce high-concentration gas-dissolved water relatively easily, and a method for treating water to be treated with the high-concentration gas-dissolved water obtained by this, particularly high-concentration oxygen-dissolved water. The purpose is to do.

本発明方法は、気泡を有する2以上の水流を衝突させることにより前記気泡中のガスを前記水流中に溶解させることを特徴とする高濃度ガス溶解水の製造方法であり、本発明装置は、円筒体の先端側を半球状に成形しその中央に小孔を形成し、前記2個の小孔を対向させて直線状に配置した2本の供給管と、当該前記2本の供給管のそれぞれの基端側に形成された、接線方向から気泡を有する水流を供給する水流供給口、及び水流取出口を含んで成ることを特徴とする高濃度ガス溶解水の製造装置、及びこれにより得られる高濃度ガス溶解水による被処理対象水の処理方法である。得られた高濃度ガス溶解水、特に高濃度酸素溶解水は、高温高圧のタンクレスラインを通過させると、更に効率良く微生物の殺菌等の目的を達成できる。
更に本発明は、水だけではなく、液体燃料に酸素及び/又はオゾン含有ガスを溶解するために使用することができ、酸素及び/又はオゾン含有ガスを有する2以上の燃料流を衝突させることにより前記酸素及び/又はオゾン含有ガスを前記燃料流中に微細気泡として溶解させ、その後、気化させ内燃機関に供給し燃焼させることを特徴とする燃料の供給及び燃焼方法も提供する。
The method of the present invention is a method for producing high-concentration gas-dissolved water, wherein the gas in the bubbles is dissolved in the water flow by colliding two or more water streams having bubbles, and the apparatus of the present invention comprises: The cylindrical body has a hemispherical shape, a small hole is formed in the center thereof, two supply pipes arranged in a straight line with the two small holes facing each other, and the two supply pipes An apparatus for producing high-concentration gas-dissolved water, comprising a water flow supply port for supplying a water flow having bubbles from the tangential direction, and a water flow outlet, formed on each base end side, and obtained thereby It is a processing method of the to-be-processed target water by the high concentration gas dissolution water produced. When the obtained high-concentration gas-dissolved water, particularly high-concentration oxygen-dissolved water, is passed through a high-temperature and high-pressure tankless line, the purpose of sterilizing microorganisms can be achieved more efficiently.
Furthermore, the present invention can be used to dissolve oxygen and / or ozone-containing gases in liquid fuels as well as water, by impinging two or more fuel streams having oxygen and / or ozone-containing gases. There is also provided a fuel supply and combustion method characterized in that the oxygen and / or ozone-containing gas is dissolved as fine bubbles in the fuel flow and then vaporized and supplied to an internal combustion engine for combustion.

以下本発明を詳細に説明する。
本発明では、酸素などのガス含有気泡を有する2以上の水流(又は燃料流)を衝突させる。これによりこ前記気泡が破壊されて微細(細分)化されるとともに、気泡中のガスの前記水流(又は燃料流)への溶解が促進される。
なお以降、本発明を水流へのガス溶解に関する第1発明と燃料流への酸素含有ガス溶解に関する第2発明に分けて説明する。
従来の曝気処理等において処理対象水を衝突面に衝突させて空気溶解を促進させる手法は、従来の特許文献では「空気を巻き込む」と表現され、気泡の破壊や空気や酸素の溶解が促進されるという記載はない。この処理対象水が衝突面に衝突することにより前記処理対象水中の気泡が微細化されるとしても、衝突面は大気と接触しているため、気泡が前記処理対象水から周囲に飛散してしまう可能性もあり、効果的な溶解方法とは言い難い。
The present invention will be described in detail below.
In the present invention, two or more water streams (or fuel streams) having gas-containing bubbles such as oxygen are collided. As a result, the bubbles are broken and made fine (subdivided), and the dissolution of the gas in the bubbles into the water flow (or fuel flow) is promoted.
Hereinafter, the present invention will be described by dividing it into a first invention relating to gas dissolution in a water stream and a second invention relating to oxygen-containing gas dissolution in a fuel stream.
In a conventional aeration process, the method of promoting the dissolution of air by causing the water to be treated to collide with the collision surface is expressed as “entraining air” in the conventional patent document, which promotes the destruction of bubbles and the dissolution of air and oxygen. There is no description that. Even if the bubbles in the water to be treated are made fine by the collision of the treatment target water with the collision surface, the bubbles are scattered from the treatment target water to the surroundings because the collision surface is in contact with the atmosphere. There is a possibility that it is difficult to say that it is an effective dissolution method.

これに対し第1発明では、酸素含有気泡を有する2以上の水流を衝突させ、その衝撃により前記水流中の気泡が微細化されそのまま当該水流中に残存する。これにより気泡の表面積が増加して気泡中の酸素の水流への溶解が促進される。
第1発明の水流は、通常はポンプで原水(例えば水道水)を送水することにより、酸素含有気泡、通常は空気泡を含む水として得られるが、用途によっては、前もって空気を吹き込んで空気濃度を増加させたり、水道水を浄化して不純物濃度を更に減少させておいても良い。
On the other hand, in the first invention, two or more water streams having oxygen-containing bubbles are caused to collide, and the bubbles in the water stream are refined by the impact and remain in the water stream as they are. This increases the surface area of the bubbles and promotes the dissolution of oxygen in the bubbles into the water flow.
The water flow of the first invention is usually obtained as water containing oxygen-containing bubbles, usually air bubbles, by feeding raw water (for example, tap water) with a pump. However, depending on the application, the air concentration is obtained by blowing air in advance. The impurity concentration may be further decreased by purifying tap water or purifying tap water.

第1発明では、このような酸素含有気泡を有する複数の水流を衝突させる。水流の数は2本として、互いに180°で衝突させること、つまり正面衝突させることが望ましい。これにより両水流が両水流の流速の和に等しい速度で衝突し、その衝撃は単独の水流が静止面に衝突する際の数倍から十数倍に達し、各水流に最大限の衝撃が与えられ、水流中の気泡が破壊されて微細化し、気泡中の酸素の水流中への溶解が促進される。
前記水流の本数や衝突角度はこれに限定されず、3本の水流を120°で衝突させたり、4本の水流を90°で衝突させたりすることも可能であり、更に2本の水流を180°以外の角度で衝突させることも可能である。いずれの場合でも、気泡を有する水流が静止面に衝突する場合よりかなり大きな衝撃が各水流に与えられ、気泡の破壊と酸素の水流への溶解が促進される。
In the first invention, a plurality of water streams having such oxygen-containing bubbles are caused to collide. It is desirable that the number of water streams be two and that they collide with each other at 180 °, that is, frontal collision. As a result, both water streams collide at a speed equal to the sum of the flow velocities of both water streams, and the impact reaches several to ten times that when a single water stream collides with a stationary surface, giving each water stream the maximum impact. The bubbles in the water stream are broken and refined, and the dissolution of oxygen in the bubbles into the water stream is promoted.
The number of water streams and the collision angle are not limited to this, and three water streams can collide with each other at 120 °, or four water streams can collide with each other at 90 °. It is also possible to collide at an angle other than 180 °. In either case, each water stream is given a significantly greater impact than when a water stream having bubbles impinges on a stationary surface, facilitating the destruction of bubbles and the dissolution of oxygen into the water stream.

常温常圧における酸素の水への溶解度は約数ppmであるが、第1発明方法によると酸素の溶解度はより上昇する。
第1発明における2本以上の水流は可能な限り速い速度で衝突することが望ましい。そのためには、衝突直前に小径の孔やスリットを通過させることが望ましい。
しかし単に速度を最大限に増加させるのではなく、2本の水流の場合、両水流の性質に僅かに差異を生じさせても良く、例えば一方の流速を他方より遅くしたり、両水流中の気泡径を異ならせたりすることができる。大径の気泡と小径の気泡が衝突すると、小径の気泡が大径の気泡に衝突して大径の気泡の破壊速度を速めると推測できる。
Although the solubility of oxygen in water at room temperature and normal pressure is about several ppm, according to the first invention method, the solubility of oxygen is further increased.
It is desirable that two or more water streams in the first invention collide at the highest possible speed. For this purpose, it is desirable to pass a small-diameter hole or slit immediately before the collision.
However, rather than simply increasing the speed to the maximum, in the case of two water streams, the characteristics of both water streams may be slightly different, for example, one flow rate may be slower than the other, The bubble diameter can be varied. It can be inferred that when a large-diameter bubble and a small-diameter bubble collide, the small-diameter bubble collides with the large-diameter bubble to increase the breaking speed of the large-diameter bubble.

前記水流は、2本の直線状の円筒体の各一方端を対向させて直線状に配置し、前記2本の管の他端側からポンプで水流を送り込み、前記対向端側で衝突させても良いが、この方法では高速な水流を得にくい。従って第1発明の高濃度酸素溶解水の製造装置は次の形態を有することが望ましい。
つまり比較的大径の円筒体の先端側を半球状に成形しその中央に小孔を形成した供給管2本を、前記2個の小孔を対向させて直線状に配置し、前記2本の供給管のそれぞれの基端側に接線方向から、酸素含有気泡を有する水流を供給することが望ましい。これらの水流は旋回しながら供給管の内壁に接触し先端側に向けて加速しながら移動して前記小孔から高速で噴出し、対向する小孔から噴出した2本の水流が両小孔間の空間で衝突して、互いに激しい衝撃を与え合う。
The water flow is arranged in a straight line with one end of two linear cylinders facing each other, the water flow is sent from the other end side of the two pipes by a pump, and collided on the opposite end side. However, it is difficult to obtain a high-speed water flow with this method. Therefore, it is desirable that the apparatus for producing high-concentration oxygen-dissolved water of the first invention has the following form.
That is, two supply pipes in which the distal end side of a relatively large diameter cylindrical body is formed in a hemispherical shape and a small hole is formed in the center thereof are arranged in a straight line with the two small holes facing each other, and the two It is desirable to supply a water flow having oxygen-containing bubbles from the tangential direction to the respective proximal ends of the supply pipes. These water flows swirl while contacting the inner wall of the supply pipe, move while accelerating toward the tip side, and are ejected from the small holes at high speed, and the two water streams ejected from the opposing small holes are between the small holes. Colliding in each other's space and giving each other a violent impact.

前記円筒体はその内壁を先端以外が等径になるよう成形しても良いが、基端側から先端側に向けて内向き傾斜させておくと、加速が促進され、より高速で水流同士の衝突が実現する。
この衝撃により前述した通り、水流中の気泡が破壊されて更に小径の多数の気泡に微細化される。これにより気泡の表面積が増加して水流中への酸素溶解が促進されて高濃度酸素溶解水が得られる。
The cylindrical body may be formed so that the inner wall of the cylindrical body has the same diameter except for the tip, but if it is inclined inward from the base end side toward the tip end, acceleration is promoted, and the water flows at a higher speed. A collision is realized.
As described above, this shock destroys the bubbles in the water flow and further refines them into a large number of bubbles having a smaller diameter. As a result, the surface area of the bubbles is increased and oxygen dissolution into the water stream is promoted to obtain high-concentration oxygen-dissolved water.

このように得られる高濃度酸素溶解水は水流取出口から装置外に取り出されるが、この水流取出口に1又は2以上の通孔を有する邪魔板を設置しても良い。この邪魔板は、水流取出しの抵抗となり、水流を前記小孔間の空間に長時間滞留させて酸素の溶解を促進させることができる。
これとは逆に、邪魔板を設置した前記水流取出口からポンプ等で吸引して高濃度酸素溶解水を取出しても良い。
このような構成の装置を使用すると、前述した通りの濃度の酸素が溶解した溶解水が得られ、第1発明における高濃度酸素溶解水とは、この範囲の酸素が溶解した溶解水を意味する。
The thus obtained high-concentration oxygen-dissolved water is taken out of the apparatus from the water outlet, but a baffle plate having one or more through holes may be installed at the water outlet. This baffle plate provides resistance to water flow extraction, and the water flow can be retained in the space between the small holes for a long time to promote the dissolution of oxygen.
On the contrary, the high-concentration oxygen-dissolved water may be taken out by sucking with a pump or the like from the water flow outlet provided with the baffle plate.
When the apparatus having such a configuration is used, dissolved water in which oxygen having a concentration as described above is dissolved is obtained. The high concentration oxygen-dissolved water in the first invention means dissolved water in which oxygen in this range is dissolved. .

第1発明装置の操業に必要なエネルギーは、基本的には水流を生成させて装置本体に供給するエネルギーのみであり、非常に経済的である。
このような好ましい構成を有する第1発明の高濃度酸素溶解水の製造装置は大別して3種類の使用形態がある。第1は、装置全体を被処理対象水中に浸漬する形態であり、第2は、装置を大気中で使用し、生成する高濃度酸素溶解水を装置外に取り出し、取り出した溶解水を必要な用途に使用する形態であり、第3は、被処理対象水を本装置を使用して高濃度酸素溶解水とした後に当該装置から取り出して、この溶解水を必要な用途に使用後、前記装置に循環して再使用する形態である。但し第1発明の用途はこれらに限定されない。
The energy required for the operation of the first invention apparatus is basically only the energy that generates a water flow and supplies it to the apparatus main body, which is very economical.
The apparatus for producing high-concentration oxygen-dissolved water according to the first invention having such a preferred configuration is roughly divided into three types of usage. 1st is the form which immerses the whole apparatus in to-be-processed water, 2nd uses apparatus in air | atmosphere, takes out the high concentration oxygen dissolved water to produce | generate out of an apparatus, and the taken out dissolved water is required. It is a form used for a use, and the 3rd is taken out from the apparatus after making water to be treated into high concentration oxygen dissolved water using this apparatus, and after using this dissolved water for a required use, the apparatus It is a form that is recycled and reused. However, the application of the first invention is not limited to these.

第1の形態として、活性汚泥法等による排水処理、湖沼や河川などの停滞する水の水質改善、養魚場水の酸素富化、海水を使用する設備(例えば火力発電所や原子力発電所)の配管中の貝類や藻類等の生育や付着防止、生簀や遠洋漁業の漁船の水槽内又は魚介類輸送トラックの水槽内の酸素富化、プール水の浄化、浄水場での貯留水の浄化、バラスト水の浄化などが挙げられる。
この形態、例えば活性汚泥法による排水処理では、処理ライン中の曝気槽に前記高濃度酸素溶解水製造装置本体を沈めておき、水流供給のためのポンプは槽外に設置しておくことが望ましい。前記曝気槽に供給される排水(廃水)には、雑菌、カビ、廃薬品などが含まれているが、装置本体で製造される高濃度酸素溶解水は、水流取出口から曝気槽内に噴出し、被処理対象水である前記排水に、前記雑菌等と接触しやすい形態の十分な酸素を供給して雑菌等を酸化し死滅させる。なおこの形態では雑菌を含む排水が水流として前記装置内に供給され、2本の水流が激しく衝突することになるが、当該衝突は水流中の前記雑菌にも大きな衝撃を与え、この衝撃によって一部の雑菌は損傷しあるいは場合によっては死滅すると推測できる。
As the first form of wastewater treatment by the activated sludge method, improvement of the water quality of stagnant water such as lakes and rivers, oxygen enrichment of fish farm water, facilities using seawater (for example, thermal power plants and nuclear power plants) Prevention of growth and adhesion of shellfish and algae in pipes, enrichment of oxygen in fish tanks of ginger and ocean fisheries or fish tanks of seafood transport trucks, purification of pool water, purification of stored water at water treatment plants, ballast For example, water purification.
In this form, for example, wastewater treatment by the activated sludge method, it is desirable that the high-concentration oxygen-dissolved water production apparatus main body is submerged in an aeration tank in a treatment line, and a pump for supplying water flow is installed outside the tank. . Waste water (waste water) supplied to the aeration tank contains bacteria, fungi, waste chemicals, etc., but high-concentration oxygen-dissolved water produced by the main body of the device is ejected from the water outlet into the aeration tank. And sufficient oxygen of the form which is easy to contact with the said various germs etc. is supplied to the said waste_water | drain which is to-be-processed water, and a various germs etc. are oxidized and killed. In this embodiment, wastewater containing various germs is supplied into the apparatus as a water stream, and the two water streams collide violently. However, the impact also has a great impact on the germs in the water stream. It can be inferred that some bacteria are damaged or in some cases killed.

更に例えば現在プール水は、次亜塩素酸やオゾンなどで消毒殺菌を行っているが、これらは劇薬であり、人体に接触すると、炎症を起こすなどの欠点があり、しかも前述薬剤は多大な製造コストを要する。
第1発明の高濃度酸素溶解水製造装置をプール中に沈めておけば、僅かなエネルギーで高濃度酸素溶解水によりプール水の消毒殺菌ができ、しかも使用する酸素は無害であるため、プールの使用者に対する安全性が万全である。
Furthermore, for example, currently pooled water is disinfected and sterilized with hypochlorous acid, ozone, etc., but these are powerful drugs and have the disadvantage of causing inflammation when they come into contact with the human body. Cost is required.
If the apparatus for producing high-concentration oxygen-dissolved water of the first invention is submerged in the pool, the pool water can be sterilized with high-concentration oxygen-dissolved water with a small amount of energy, and the oxygen used is harmless. The safety for the user is perfect.

更に湖沼や河川などで水が滞留すると、雑菌などが繁殖して水質を汚染する。又工場排水が流入して湖沼などの汚染が生じることもある。このような場合に、第1発明装置を使用すると、湖沼水や河川水の酸素溶解量を増大させ、更に滞留水を攪拌して滞留による欠点を解消できる。
湖沼や河川ではエネルギー供給が通常より困難であるため、水流を太陽エネルギー及び/又は風力エネルギーを利用して生成させても良い。
生簀や遠洋漁業の漁船の水槽内又は魚介類輸送トラックの水槽内に第1発明装置を沈めておくと、得られる高濃度酸素溶解水が獲った生簀や水槽内の魚介類に十分な酸素を供給して長距離の場合でも新鮮な魚介類を消費地まで輸送できる。海水魚の場合には海水を原料に高濃度酸素溶解水を製造することが好ましい。
下水やし尿の浄化も大きな課題であるが、従来の曝気では下水などの中の汚染物が十分の空気中の酸素と接触できず、満足できる殺菌効率が得られない。これに対し、下水やし尿を第1発明により得られる高濃度酸素溶解水と混合すると、溶存酸素やナノバブル(マイクロバブル)が高い接触効率で前記汚染物と接触して当該汚染物を殺菌や分解などで消失させる。
In addition, if water accumulates in lakes and rivers, various germs propagate and pollute the water quality. In addition, factory wastewater may flow in and cause pollution of lakes and marshes. In such a case, when the first invention apparatus is used, the amount of dissolved oxygen in lake water and river water can be increased, and the stagnant water can be further stirred to eliminate the deficiency due to the stay.
Since energy supply in lakes and rivers is more difficult than usual, the water flow may be generated using solar energy and / or wind energy.
If the apparatus of the first invention is submerged in a fish tank of a ginger or a pelagic fishing boat or a fish tank of a seafood transport truck, oxygen sufficient for the ginger and seafood in the tank obtained by the high-concentration oxygen-dissolved water obtained. Can supply fresh seafood to the consumption area even in the case of long distance. In the case of seawater fish, it is preferable to produce high-concentration oxygen-dissolved water from seawater.
Purification of sewage and human urine is also a major issue. However, in conventional aeration, contaminants in sewage and the like cannot contact with sufficient oxygen in the air, and satisfactory sterilization efficiency cannot be obtained. On the other hand, when sewage and human waste are mixed with high-concentration oxygen-dissolved water obtained by the first invention, dissolved oxygen and nanobubbles (microbubbles) come into contact with the contaminants with high contact efficiency to sterilize and decompose the contaminants. It disappears with etc.

原油タンカーは中東などの産油国で原油を船体のタンクに積み込んで国内まで輸送し、原油を陸揚げした後、再度産油国へ向かう。この際、船体のバランスを維持するため、空になったタンク内に海水を注入する。この海水をバラスト水と称するが、このバラスト水に海水中の微生物が含まれ、タンク内壁を腐食させる。このタンク内壁の腐食が原油タンカーの大きな問題であり、未だ解決法が提示されていない。
第1の形態の一例として、第1発明装置をバラスト水を注入したタンク内に沈めておくと、得られる高濃度酸素溶解水がバラスト水中に噴出し、バラスト水中の微生物を死滅させ、長期間の航海における原油タンカーのタンク内壁を保護できる。
Crude oil tankers go to oil producing countries after loading crude oil in the tanks of the hull in the oil producing countries such as the Middle East and transporting them to the country. At this time, seawater is injected into the emptied tank in order to maintain the balance of the hull. Although this seawater is called ballast water, microorganisms in the seawater are contained in the ballast water, and the tank inner wall is corroded. This corrosion of the inner wall of the tank is a major problem for crude oil tankers, and no solution has yet been proposed.
As an example of the first embodiment, when the first invention apparatus is submerged in a tank into which ballast water has been injected, the resulting high-concentration oxygen-dissolved water jets into the ballast water, killing microorganisms in the ballast water, The tank inner wall of the crude oil tanker can be protected during the voyage.

前記第2の形態として、水耕栽培水、農業用水、水産業用水、カップ式自動販売機用貯水、薬剤希釈水、染料やインクや塗料の希釈水、各種飲料の希釈水、医薬品用水、磁気記録用ハードディスク洗浄用水及び洗濯用水の製造、氷の製造、ジェットバス用水の製造及び半導体洗浄用水の前処理等がある。
例えば水耕栽培水の前処理を行うと、水耕栽培水に含まれる雑菌類を死滅させるとともに水に酸素を溶解させ、処理後の水耕栽培水を培地へ供給することにより、栽培対象に適度の酸素を付与できる。
同様に、高濃度酸素溶解水を、トマトやきゅうりなどの野菜、あるいは蜜柑や林檎などの果物の生育のための農業用水として使用することができる。更に前記高濃度酸素溶解水は家庭用菜園や花壇に散水して使用し、又籾殻等の洗浄に使用しても良い。
第1発明の高濃度酸素溶解水は前述の第1の形態ではなく、第2の形態の水産業用水としても使用することができる。例えば高濃度酸素溶解水でタコや牡蠣を洗浄すると、高濃度酸素により「ぬめり」が取れて扱い易くなる。更に魚介類のトラック輸送の場合、氷を詰めた発泡プラスチックの箱に詰められることが多いが、この氷を高濃度酸素溶解水から作製すると、殺菌力の強い氷が得られ、長距離輸送に好適になる。このゆにして得られる氷は魚介類輸送に限らず、他の冷却用は食用に使用できる。
又カップ式自動販売機は使用頻度が少ないと原料水が長く自動販売機内に留まり、しかも缶入り飲料と異なり、密封されていないため、汚染が起こりやすい。第1発明装置で製造された高濃度酸素溶解水をそのまま原料水として使用すると汚染のない飲料を提供できる。第1発明を本形態の他の用途に関しても、殺菌と酸素富化による水質改善が達成できる。
なお浸漬型として説明した前記第1の形態の各用途の場合も、装置を浸漬せずに大気中で使用し、生成する高濃度酸素溶解水を装置外に取り出し、取り出した溶解水を各用途で使用するようにしても良い。
As said 2nd form, hydroponics water, agricultural water, water for fisheries industry, water for cup-type vending machines, drug dilution water, dilution water for dyes, inks and paints, dilution water for various beverages, pharmaceutical water, magnetic There are recording hard disk washing water and washing water production, ice production, jet bath water production, and semiconductor washing water pretreatment.
For example, when pretreatment of hydroponics water is performed, the germs contained in hydroponics water are killed and oxygen is dissolved in the water. Appropriate oxygen can be given.
Similarly, high-concentration oxygen-dissolved water can be used as agricultural water for growing vegetables such as tomatoes and cucumbers, or fruits such as tangerines and apples. Further, the high-concentration oxygen-dissolved water may be used by sprinkling water on a domestic vegetable garden or flower bed, or may be used for washing rice husks and the like.
The high-concentration oxygen-dissolved water of the first invention can be used not only as the first form described above but also as water for the fishery industry according to the second form. For example, when octopus and oysters are washed with high-concentration oxygen-dissolved water, “slimy” is removed by the high-concentration oxygen and it becomes easy to handle. Furthermore, when transporting seafood by truck, it is often packed in a foamed plastic box filled with ice, but if this ice is made from highly concentrated oxygen-dissolved water, ice with strong sterilization power can be obtained and transported over long distances. Be preferred. The ice obtained in this way is not limited to seafood transportation, and other cooling can be used for food.
Also, when the cup-type vending machine is used less frequently, the raw material water stays in the vending machine for a long time, and unlike the canned beverage, it is not sealed, so contamination is likely to occur. When the high-concentration oxygen-dissolved water produced by the first invention apparatus is used as raw material water as it is, a beverage free from contamination can be provided. The water quality improvement by sterilization and oxygen enrichment can also be achieved with respect to other uses of the first aspect of the present invention.
In the case of each application of the first embodiment described as the immersion type, the apparatus is used in the atmosphere without being immersed, and the generated high-concentration oxygen-dissolved water is taken out of the apparatus. You may make it use in.

第3の形態としては、浴場水(温泉水、風呂水)、熱交換器冷却水、ボイラー水、製紙洗浄水などの循環浄化がある。これらの被処理対象水の場合、第1の形態の浸漬型も可能であるが、入浴客の存在や、設置スペースや周囲状況からの制約等から第3の形態とすることが望ましい。
浴場水の場合は、浴槽から抜き出した浴場水を浴槽から離れた処理槽に導き、この処理槽で第1発明装置により浄化し、浄化した浴場水を前記浴槽に循環させて浴槽内の水を清浄な状態に維持できる。
As a third form, there is circulation purification such as bath water (hot spring water, bath water), heat exchanger cooling water, boiler water, and papermaking washing water. In the case of these waters to be treated, the immersion type of the first form is possible, but it is desirable to adopt the third form from the presence of bathing customers, restrictions on installation space and surrounding conditions, and the like.
In the case of bath water, the bath water extracted from the bathtub is led to a treatment tank separated from the bathtub, purified by the first invention apparatus in this treatment tank, and the purified bath water is circulated to the bathtub to drain the water in the bathtub. It can be kept clean.

第1発明では、ガス溶解装置による水流へのガス溶解に加えて、前記装置の前後いずれかに、タンクレスラインを設置してガス溶解、ガスによる水流の処理、ガス溶解前の水流の前処理などを促進しても良く、前記タンクレスライン内は高温高圧に維持することが望ましい。第1発明における高温とは、一般に50℃以上、高圧とは、1MPa以上を意味する。
特に臨界状態(水の場合、375℃以上、22MPa以上)では、液体でも気体でもない超臨界流体となり、その優れた特性を利用して抽出、精製、洗浄、調製、加工、機能化、反応の促進などを実行できる。例えば排水の場合、対象とする排水を第1発明装置を通してナノバブルと接触させるだけでも、ナノバブルの有する殺菌力で排水の清浄化は進行するが、ナノバブルと接触している排水をそのまま高温高圧のタンクレスラインに導入すると、排水とナノバブルの接触が更に十分に進行して処理効率が上昇する。
前記タンクレスラインの長さは、1mから300mの範囲とし、内径は5mmから100mmとすることが好ましいが、これらに限定されない。長さが例えば10mを超える場合は、タンクレスラインを折り返して設置スペースの減少を図ることが望ましい。前述の通り、タンクレスラインはガス溶解装置の前後いずれに設置しても良いが、下流側に設置して、ガス溶解した水流を高温高圧下で引き続き処理することが望ましい。
In the first invention, in addition to the gas dissolution into the water flow by the gas dissolving device, a tankless line is installed either before or after the device to dissolve the gas, to treat the water flow with the gas, to pre-treat the water flow before the gas dissolution. It is desirable to maintain the inside of the tankless line at high temperature and high pressure. The high temperature in the first invention generally means 50 ° C. or higher, and the high pressure means 1 MPa or higher.
Especially in the critical state (in the case of water, 375 ° C. or higher, 22 MPa or higher), it becomes a supercritical fluid that is neither a liquid nor a gas, and its superior properties are used for extraction, purification, washing, preparation, processing, functionalization, and reaction. Promotion etc. can be executed. For example, in the case of wastewater, even if the target wastewater is simply brought into contact with the nanobubbles through the first invention apparatus, the wastewater is purified by the sterilizing power of the nanobubbles. When it is introduced into the wrestline, the contact between the waste water and the nanobubbles further proceeds and the treatment efficiency increases.
The length of the tankless line is preferably in the range of 1 m to 300 m, and the inner diameter is preferably 5 mm to 100 mm, but is not limited thereto. If the length exceeds, for example, 10 m, it is desirable to reduce the installation space by folding the tankless line. As described above, the tankless line may be installed either before or after the gas dissolving apparatus. However, it is desirable to install the tankless line downstream and to continuously process the gas-dissolved water stream at high temperature and high pressure.

他方、本発明は、第2発明である、酸素を有する2以上の燃料流を衝突させることにより前記酸素含有ガスを前記燃料流中に微細気泡として溶解させ、その後燃焼させる燃料の燃焼方法も対象とする。
この方法では、基本的には第1発明に関連して説明した装置や条件をそのまま適用できるが、水流ではなく燃料流を使用し、この中に酸素含有ガスを溶解させる。酸素含有ガスが溶解しにくい場合には、燃料に界面活性剤を添加しても良い。更に酸素含有ガスに換えてあるいは酸素含有ガスと共にオゾンガスを溶解させると、燃焼がより促進される。
第2発明の燃料は燃料全般、つまり家庭用、工業用燃料、更に車両用あるいは航空用燃料等を含む。
On the other hand, the present invention is also a fuel combustion method according to the second invention, in which the oxygen-containing gas is dissolved as fine bubbles in the fuel stream by colliding two or more fuel streams having oxygen and then burned. And
In this method, the apparatus and conditions described in relation to the first invention can be basically applied as they are, but a fuel stream is used instead of a water stream, and an oxygen-containing gas is dissolved therein. If the oxygen-containing gas is difficult to dissolve, a surfactant may be added to the fuel. Furthermore, if ozone gas is dissolved instead of oxygen-containing gas or together with oxygen-containing gas, combustion is further promoted.
The fuel of the second invention includes all fuels, that is, household and industrial fuels, and further vehicle and aviation fuels.

第2発明でも、第1発明と同様に、燃料にナノバブルが溶解する。ナノバブルは非常に大きな面積で燃料と接触するため、このまま燃焼させると、酸素との結合、つまり燃焼が高効率で進行する。従って家庭用でも工業用でも燃料が円滑に燃焼して最大限のエネルギーを取り出すことができる。
車両用、航空用燃料は一旦気化しその後燃焼されるが、この燃料であるガソリン、重油、経由などに酸素含有ガスのナノバブルを溶解させた後に、通常通り空気と共に内燃機関に供給し、気化させた後に燃焼させると、酸素含有率が高い状態で燃焼が生じるため、燃費の大幅な向上が期待できる。
Also in the second invention, as in the first invention, nanobubbles are dissolved in the fuel. Since the nanobubbles come into contact with the fuel in a very large area, if they are burned as they are, bonding with oxygen, that is, combustion proceeds with high efficiency. Therefore, the fuel can be burned smoothly and the maximum energy can be taken out for both home use and industrial use.
Vehicular and aviation fuels are once vaporized and then burned. After the nanobubbles of oxygen-containing gas are dissolved via gasoline, heavy oil, etc., this fuel is supplied to the internal combustion engine with air as usual and vaporized. Combustion after combustion causes combustion with a high oxygen content, which can be expected to significantly improve fuel consumption.

第1発明は、気泡を有する2以上の水流を衝突させることにより前記気泡中のガスを前記水流中に溶解させるという簡単な操作により、高濃度ガス溶解水、特に高濃度酸素溶解水の製造を可能にしている。
このような酸素含有気泡を有する複数の水流を衝突させると、衝突角度にもよるが、各水流が最大で各水流の流速の和に等しい速度で衝突する。その際の衝撃は、単に1本の水流が衝撃面に衝突する際の2倍になるのではなく、衝突速度の増加に応じて指数級数的に増大して各水流に最大限の衝撃が与えられる。これにより水流中の気泡が破壊され、気泡中の酸素の水流中への溶解が促進され、水流中の気泡もナノバブルやマイクロバブル)などの超微細径の気泡になる。
第2発明は、酸素含有ガスを有する2以上の燃料流を衝突させることにより前記酸素含有ガスを前記燃料流中に微細気泡として溶解させ、その後燃焼させる方法である。燃料流中にナノバブルを溶解させることにより、燃料と酸素との接触面積を増大させ、効率的な燃焼を可能にする。
The first invention is to produce high-concentration gas-dissolved water, particularly high-concentration oxygen-dissolved water, by a simple operation of dissolving the gas in the bubbles into the water flow by colliding two or more water flows having bubbles. It is possible.
When a plurality of water streams having such oxygen-containing bubbles collide, depending on the collision angle, each water stream collides at a speed equal to the sum of the flow velocities of each water stream at the maximum. The impact at that time is not simply twice that of a single water stream colliding with the impact surface, but increases exponentially as the impact speed increases, giving each water stream the maximum impact. It is done. As a result, bubbles in the water stream are destroyed, dissolution of oxygen in the bubbles into the water stream is promoted, and the bubbles in the water stream also become ultrafine bubbles such as nanobubbles and microbubbles).
The second invention is a method in which two or more fuel streams having an oxygen-containing gas are collided to dissolve the oxygen-containing gas as fine bubbles in the fuel stream and then burn it. By dissolving the nanobubbles in the fuel stream, the contact area between the fuel and oxygen is increased, enabling efficient combustion.

本発明に係る高濃度酸素溶解水製造装置の一例を示す部分縦断面図。The fragmentary longitudinal cross-section which shows an example of the high concentration oxygen dissolution water manufacturing apparatus which concerns on this invention. 図1の装置の部分分解斜視図。FIG. 2 is a partially exploded perspective view of the apparatus of FIG. 1. 図1の装置の3枚の案内板と3枚のスペーサーの側面図。FIG. 2 is a side view of three guide plates and three spacers of the apparatus of FIG. 1. 図1〜3に例示した高濃度酸素溶解水製造装置を湖沼に設置した例を示す概略図。Schematic which shows the example which installed the high concentration oxygen dissolved water manufacturing apparatus illustrated in FIGS. 1-3 in the lake. 本発明に係る高濃度酸素溶解水製造装置の他の例を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other example of the high concentration oxygen dissolution water manufacturing apparatus which concerns on this invention. 図5の平面図。FIG. 6 is a plan view of FIG. 5. 図5のA−A線縦断側面図。FIG. 6 is a vertical side view taken along line AA in FIG. 5. 本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す分解斜視図。The disassembled perspective view which shows the further another example of the high concentration oxygen dissolved water manufacturing apparatus which concerns on this invention. 本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す縦断面図。The longitudinal cross-sectional view which shows another example of the high concentration oxygen dissolution water manufacturing apparatus which concerns on this invention. 図9の装置の分解斜視図。FIG. 10 is an exploded perspective view of the apparatus of FIG. 9. 図3a〜cは蓋体の他の例を示す概略図。3A to 3C are schematic views showing other examples of the lid. 本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す縦断面図。The longitudinal cross-sectional view which shows another example of the high concentration oxygen dissolution water manufacturing apparatus which concerns on this invention. 本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す縦断面図。The longitudinal cross-sectional view which shows another example of the high concentration oxygen dissolution water manufacturing apparatus which concerns on this invention. 本発明に係る高濃度酸素溶解水製造装置にタンクレスラインを接続した例を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the example which connected the tankless line to the high concentration oxygen dissolved water manufacturing apparatus which concerns on this invention.

次に本発明に係る高濃度酸素溶解水製造装置の一例を添付図面に基づいて説明するが、これは本発明を限定するものではない。
図1は、本発明に係る高濃度酸素溶解水製造装置の一例を示す部分縦断面図、図2は、図1の装置の部分分解斜視図、図3は図1の装置の3枚の案内板と3枚のスペーサーの側面図(ボルト孔は省略)である。
Next, although an example of the high concentration oxygen dissolved water manufacturing apparatus based on this invention is demonstrated based on an accompanying drawing, this does not limit this invention.
1 is a partial longitudinal sectional view showing an example of a high-concentration oxygen-dissolved water producing apparatus according to the present invention, FIG. 2 is a partially exploded perspective view of the apparatus of FIG. 1, and FIG. 3 is a guide for three sheets of the apparatus of FIG. It is a side view (a bolt hole is omitted) of a board and three spacers.

横向き円筒形の外筒1はその上面中央に上向きに折曲げられた高濃度酸素溶解水の案内管2を有し、その案内管2の上端縁には外向きに水平フランジ3が接合されている。
この水平フランジ3の上面にはやや小径で4個(1個のみを図示)の通孔4を有する邪魔板5が位置し、この邪魔板5上には水平フランジ6付きの高濃度酸素溶解水取出(噴出)口7が設置され、前記両水平フランジ3、6をボルト8で締め付けることにより、前記高濃度酸素溶解水取出口7を前記外筒1に固定している。
A laterally cylindrical outer cylinder 1 has a guide pipe 2 of high-concentration oxygen-dissolved water bent upward at the center of the upper surface, and a horizontal flange 3 is joined outwardly to the upper end edge of the guide pipe 2. Yes.
On the upper surface of the horizontal flange 3, a baffle plate 5 having a slightly small diameter and four through holes 4 (only one is shown) is located. On the baffle plate 5, high-concentration oxygen-dissolved water with a horizontal flange 6 is provided. A take-out (spout) port 7 is provided, and the high-concentration oxygen-dissolved water take-out port 7 is fixed to the outer cylinder 1 by tightening the horizontal flanges 3 and 6 with bolts 8.

前記外筒1の両端の外周側には、上部が半円状に湾曲する支持板9が接合され、この支持板9と前記外筒1との接合部の円孔10には内筒取付板(フランジ)11が嵌め込まれている。この内筒取付板11の中央の円孔12には、先端側が半球状の噴出部13として成形された円筒状の旋回内筒14の基端部外縁が接合され、更に前記噴出部13先端中央には小径の噴出孔15が形成されている。なお両噴出部13の両噴出孔15、15′のうち、図1の左方の噴出孔15の径は右方の噴出孔15′の径より小さくなるように成形されている。両噴出孔の孔径は同一でも構わない。   A support plate 9 whose upper part is curved in a semicircular shape is joined to the outer peripheral sides of both ends of the outer cylinder 1. (Flange) 11 is fitted. The outer edge of the base end portion of the cylindrical turning inner cylinder 14 whose tip side is formed as a hemispherical ejection portion 13 is joined to the circular hole 12 at the center of the inner cylinder mounting plate 11. Is formed with a small-diameter ejection hole 15. 1 is formed such that the diameter of the left-hand ejection hole 15 in FIG. 1 is smaller than the diameter of the right-hand ejection hole 15 '. The hole diameters of both the ejection holes may be the same.

前記支持板9及び内筒取付板11の外側面には、図3に示す3枚の案内板と3枚のスペーサーが積層されている。前記支持板9及び内筒取付板11に接触する第1スペーサー16は、前記内筒14に対応する円孔17が形成され、この第1スペーサー16に接触する第1案内板18には、前記第1スペーサー16の円孔17に対応しかつ上下の接線方向に切り込み19が形成された旋回流形成孔20が穿設されている。   Three guide plates and three spacers shown in FIG. 3 are laminated on the outer surfaces of the support plate 9 and the inner cylinder mounting plate 11. The first spacer 16 that contacts the support plate 9 and the inner cylinder mounting plate 11 is formed with a circular hole 17 corresponding to the inner cylinder 14, and the first guide plate 18 that contacts the first spacer 16 includes A swirl flow forming hole 20 corresponding to the circular hole 17 of the first spacer 16 and having a notch 19 formed in the vertical tangential direction is formed.

この第1案内板18の外側には、前記切り込み19の先端部に対応する個所に左右1対の縦方向の切り欠き21を有する第2スペーサー22が接している。この第2スペーサー22の外側には、両上端部が前記1対の切り欠き21と整合し、全体的に上向き「コ」字状に成形された通孔23が形成された第2案内板24が接触している。
この第2案内板24の外側には、前記通孔23の下部の水平孔の一部と重なるように円孔25が形成された第3スペーサー26が接触している。この第3スペーサー26の外側には、前記円孔25に対応する個所に、酸素含有気泡水流の供給口27を有する第3案内板28が接触している。
A second spacer 22 having a pair of left and right longitudinal notches 21 is in contact with the outside of the first guide plate 18 at a location corresponding to the tip of the notch 19. On the outside of the second spacer 22, a second guide plate 24 having upper end portions aligned with the pair of cutouts 21 and formed with a through hole 23 that is formed in a generally upward “U” shape. Are in contact.
A third spacer 26 formed with a circular hole 25 is in contact with the outside of the second guide plate 24 so as to overlap a part of the horizontal hole below the through hole 23. A third guide plate 28 having a supply port 27 for oxygen-containing bubbling water flow is in contact with the outside of the third spacer 26 at a location corresponding to the circular hole 25.

これらの3枚の案内板18、24、28と3枚のスペーサー16、22、26はそれぞれに穿設されたボルト孔29にボルト30を締着することにより互いに一体化され、かつ前記支持板9に固定されている。
なお31は旋回内筒14の周囲に接合され、かつその外縁が前記外筒1内壁に密着するよう構成した遮蔽板である。
The three guide plates 18, 24, and 28 and the three spacers 16, 22, and 26 are integrated with each other by fastening bolts 30 to bolt holes 29 that are respectively drilled. 9 is fixed.
Reference numeral 31 denotes a shielding plate that is joined to the periphery of the turning inner cylinder 14 and whose outer edge is in close contact with the inner wall of the outer cylinder 1.

このような構成を有する高濃度酸素溶解水製造装置による高濃度酸素溶解水製造の要領を説明する。
ポンプ等で生成させた酸素含有気泡、通常は空気含有気泡を有する2本の水流32、32′を図1の左右の第3案内板28のそれぞれの供給口27から供給する。これらの水流のうち左方の水流32は、第3スペーサー26の円孔25を通って第2案内板24の通孔23に達し、ここで図3に示したように左右に分かれてこの通孔23の両側の縦方向の溝に供給される。これらの水流は第2スペーサー22の切り欠き21を通って第1案内板18の両切り込み19の先端部に供給される。両水流はこの切り込み19の先端部から旋回流形成孔20にその接線方向から高速供給され、第1スペーサー16の円孔17から旋回内筒14内に達し、旋回内筒14の内壁に沿って気泡33を有する旋回流34を形成する。
The point of production of high-concentration oxygen-dissolved water by the high-concentration oxygen-dissolved water production apparatus having such a configuration will be described.
Two water streams 32 and 32 'having oxygen-containing bubbles, usually air-containing bubbles, generated by a pump or the like are supplied from the respective supply ports 27 of the left and right third guide plates 28 in FIG. Of these water flows, the left water flow 32 passes through the circular hole 25 of the third spacer 26 and reaches the through hole 23 of the second guide plate 24, where it is divided into left and right as shown in FIG. It is supplied to the longitudinal grooves on both sides of the hole 23. These water flows pass through the notches 21 of the second spacer 22 and are supplied to the leading ends of both notches 19 of the first guide plate 18. Both water flows are supplied at high speed from the tip of the notch 19 to the swirl flow forming hole 20 from the tangential direction, reach the swirl inner cylinder 14 from the circular hole 17 of the first spacer 16, and follow the inner wall of the swirl inner cylinder 14. A swirling flow 34 having bubbles 33 is formed.

この旋回流34は前記内筒14先端の噴出部13に達し、半球状内壁に接触しながら速度を速めながら、前記噴出孔15から他方の噴出孔15′に向けて噴出する。
右方の供給口27から供給された水流も同様にして旋回流として噴出孔15′に達し、噴出孔15′から他方の噴出孔15に向けて噴出する。
左右の旋回流34は直線状の水流として、内筒14内の両噴出孔15、15′の中間で衝突する。この衝突の衝撃は2本の旋回流34の速度の倍になるのではなく、指数級数的に増大する。従って両水流中に含まれる気泡33は水流衝突による衝撃で更に微細化し、微細気泡35となるとともに、気泡としての表面積が幾何級数的に増大し、水との接触機会が増加して空気中の酸素が水に溶解してその溶解度が最大になる。
The swirling flow 34 reaches the ejection portion 13 at the tip of the inner cylinder 14, and is ejected from the ejection hole 15 toward the other ejection hole 15 'while increasing the speed while contacting the hemispherical inner wall.
Similarly, the water flow supplied from the right supply port 27 reaches the ejection hole 15 ′ as a swirling flow, and is ejected from the ejection hole 15 ′ toward the other ejection hole 15.
The left and right swirling flows 34 collide in the middle of the two ejection holes 15 and 15 ′ in the inner cylinder 14 as a linear water flow. The impact of this collision does not double the speed of the two swirling flows 34, but increases exponentially. Accordingly, the bubbles 33 contained in both the water streams are further refined by impact due to the water stream collision to become fine bubbles 35, and the surface area as the bubbles increases geometrically, increasing the chance of contact with water and increasing the chance of contact with water. Oxygen dissolves in water and its solubility is maximized.

更に、例えば水流を衝撃面に衝突させて酸素溶解を行う場合には、大気中に酸素が放散しやすく、溶解度が十分上昇しないことがある。これに対し、図示の例では、水流の衝突地点では気泡が大気に開放されていないため、酸素の溶解効率は最大になる。
しかも内筒14から外筒1内空間に移行した水流が、邪魔板5及び遮蔽板31により狭い空間内に閉じ込められるため、気泡の微細化が促進される。
Furthermore, for example, when oxygen is dissolved by causing a water stream to collide with the impact surface, oxygen is easily diffused into the atmosphere, and the solubility may not be sufficiently increased. On the other hand, in the illustrated example, since the bubbles are not opened to the atmosphere at the collision point of the water flow, the oxygen dissolution efficiency is maximized.
Moreover, since the water flow transferred from the inner cylinder 14 to the inner space of the outer cylinder 1 is confined in a narrow space by the baffle plate 5 and the shielding plate 31, the miniaturization of the bubbles is promoted.

前述の通り、両噴出孔15、15′の孔径を異ならせてあり、小さい孔径の左方の噴出孔15から噴出する水流中の気泡は、右方の噴出孔15′から噴出する水流中の気泡より気泡径が小さくなる。気泡径の異なる気泡が衝突すると、衝突する気泡間に乱れが生じて気泡の破壊が促進されると推測できる。同様の理由で噴出孔15、15′から噴出する両水流の速度を異ならせても良い。
更に図示の例とは異なり、半球状の噴出部13以外の内筒14の内壁を噴出部13方向に向けて内向き傾斜させて噴出孔15、15′から噴出する水流の速度を増大させても良い。
なお前述の邪魔板5は使用しなくても良く、邪魔板により生成する高濃度酸素溶解水の装置内での滞留を促進するのとは逆に、高濃度酸素溶解水取出口7からポンプ等で吸引して高濃度酸素溶解水の取出しを促進しても良い。
As described above, the diameters of both the ejection holes 15 and 15 'are different from each other, and bubbles in the water stream ejected from the left ejection hole 15 having a small diameter are in the water stream ejected from the right ejection hole 15'. Bubble diameter is smaller than bubble. When bubbles having different bubble diameters collide with each other, it can be estimated that turbulence occurs between the colliding bubbles and the destruction of the bubbles is promoted. For the same reason, the speeds of the two water streams ejected from the ejection holes 15 and 15 'may be made different.
Further, unlike the illustrated example, the inner wall of the inner cylinder 14 other than the hemispherical jet portion 13 is inclined inward toward the jet portion 13 to increase the speed of the water flow jetted from the jet holes 15 and 15 '. Also good.
The baffle plate 5 described above does not have to be used. On the contrary to promoting the retention of the high-concentration oxygen-dissolved water generated by the baffle plate in the apparatus, the high-concentration oxygen-dissolved water outlet 7 is connected to a pump, It is also possible to promote the removal of the high-concentration oxygen-dissolved water by suctioning with a vacuum.

図4は、図1〜3に例示した高濃度酸素溶解水製造装置を湖沼に設置した例を示す概略図である。
図示の例では、図1に示した高濃度酸素溶解水製造装置41を湖沼42の底面43に設置してある。
湖沼の水面44には筏45を浮かべてあり、この筏45には水流生成ポンプ46が搭載されている。このポンプ46には湖沼水汲上げ管47と水流供給管48が接続され、当該水流供給管48の先端は分岐されて、前記装置41の左右1対の気泡水流の供給口27に接続されている。
FIG. 4 is a schematic diagram showing an example in which the high-concentration oxygen-dissolved water producing apparatus exemplified in FIGS.
In the illustrated example, the high-concentration oxygen-dissolved water production apparatus 41 shown in FIG. 1 is installed on the bottom surface 43 of a lake 42.
A waterfall 45 is floated on the water surface 44 of the lake, and a water flow generation pump 46 is mounted on this waterhole 45. The pump 46 is connected to a lake water pumping pipe 47 and a water flow supply pipe 48, and the tip of the water flow supply pipe 48 is branched and connected to a pair of bubbly water flow supply ports 27 of the device 41. .

前記ポンプ46を作動させると、湖沼水汲上げ管47から湖沼水を汲み上げて空気の気泡を含有する気液混合水とし、前記水流供給管48を通して前記装置41の気泡水流の供給口27に供給する。当該両供給口27に供給された2本の水流は、図1と同様にして互いに衝突して多数の微細気泡35を有する高濃度酸素溶解水を生成し、この溶解水を高濃度酸素溶解水噴出口49から湖沼42中に噴出させる。この高濃度酸素溶解水は湖沼水に富化酸素を供給して湖沼水の酸化殺菌を行うとともに、湖沼水全体を攪拌する。   When the pump 46 is operated, the lake water is pumped up from the lake water pumping pipe 47 to form gas-liquid mixed water containing air bubbles, and is supplied to the bubble water flow supply port 27 of the apparatus 41 through the water flow supply pipe 48. . The two water streams supplied to the two supply ports 27 collide with each other in the same manner as in FIG. 1 to generate high-concentration oxygen-dissolved water having a large number of fine bubbles 35. It is ejected from the spout 49 into the lake 42. This high-concentration oxygen-dissolved water supplies enriched oxygen to the lake water to oxidize and sterilize the lake water, and stir the entire lake water.

これにより湖沼水の浄化を実施できる。この浄化作業で必要中エネルギーはポンプ駆動のためのエネルギーのみであり、前記筏45にソーラーパネルや風力発電機を積んでおき、これらで発生するエネルギーをポンプ駆動エネルギーとして使用すると、人為的なエネルギーなしに湖沼水の浄化を達成できる。
本装置は常時作動させる必要はなく、間欠的に運転させても良い。特に得られる水力及び風力エネルギーが常時作動に不足する場合は、間欠運転とすることが好ましい。
又図示の例と異なり、ポンプを湖底に沈めずに筏45の上に設置し、このポンプに湖沼水を供給して高濃度酸素溶解水を生成し、この溶解水を筏の板の間から湖沼に噴出させても良い。
Thereby, purification of lake water can be carried out. The energy required for this purification work is only the energy for driving the pump. If the solar panel or wind power generator is loaded on the pit 45 and the energy generated by these is used as the pump driving energy, it is an artificial energy. Without the purification of lake water.
This apparatus does not need to be operated constantly, and may be operated intermittently. In particular, when the obtained hydropower and wind energy are insufficient for regular operation, intermittent operation is preferable.
Also, unlike the example shown in the figure, a pump is installed on the reed 45 without sinking to the bottom of the lake, and lake water is supplied to this pump to generate high-concentration oxygen-dissolved water. It may be ejected.

図5は、本発明に係る高濃度酸素溶解水製造装置の他の例を示す部分縦断面図、図6は、図5の平面図、図7は図5のA−A線縦断側面図である。   5 is a partial longitudinal sectional view showing another example of the apparatus for producing high-concentration oxygen-dissolved water according to the present invention, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is a longitudinal side view taken along line AA of FIG. is there.

外形が直方体状の高濃度酸素溶解水製造装置51は、中央部の装置本体52とその両側面に固定された1対の端面部材53から成っている。装置本体52の高さ方向の中央やや上部には当該装置本体52を横方向に貫通する旋回内筒取付孔54が、又前記装置本体52の下部近傍には当該装置本体52を横方向に貫通する水流供給用通孔55がそれぞれ形成されている。
前記旋回内筒取付孔54の中央上面には、高濃度酸素溶解水取出(噴出)口56が穿孔されている。前記水流供給孔55の中央には外側(図5の前後)に向けて1対の水流供給口57が穿孔されている。
The high-concentration oxygen-dissolved water producing device 51 having a rectangular parallelepiped shape includes a central device body 52 and a pair of end surface members 53 fixed to both side surfaces thereof. A turning inner cylinder mounting hole 54 penetrating the apparatus main body 52 in the lateral direction is formed in the middle and upper part of the apparatus main body 52 in the height direction, and penetrating through the apparatus main body 52 in the lateral direction in the vicinity of the lower portion of the apparatus main body 52. Water flow supply through holes 55 are formed.
A high-concentration oxygen-dissolved water take-out (spout) port 56 is bored in the upper center surface of the turning inner cylinder mounting hole 54. A pair of water flow supply ports 57 are formed in the center of the water flow supply hole 55 toward the outside (front and rear in FIG. 5).

前記装置本体52の左右両端の外周近傍には長円形の段部58が形成されている。
先端側が半球状の噴出部59として成形された円筒状の旋回内筒60基端部外縁に溶接されかつ前記段部58の内方形状と同じ外形を有するよう成形された内筒取付板(フランジ)61が接合され、更に前記噴出部59先端中央には小径の噴出孔62が形成されている。
前記内筒取付板61には、旋回内筒60の基端の開口と同じ径の円孔63を有するパッキン64が密着している。このパッキン64の外面には、前記旋回内筒取付孔54の空間と前記水流供給孔55の空間を連結する凹部65が内面に形成された前記端面部材53が密着し、前記装置本体52、前記内筒取付板61、前記パッキン63及び前記端面部材53が複数のボルト66で締着され一体化している。
In the vicinity of the outer periphery of the left and right ends of the apparatus main body 52, oval step portions 58 are formed.
An inner cylinder mounting plate (flange) which is welded to the outer edge of the base end portion of the cylindrical turning inner cylinder 60 formed as a hemispherical ejection portion 59 on the front end side and has the same outer shape as the inner shape of the stepped portion 58 61) is joined, and a small-diameter ejection hole 62 is formed at the center of the distal end of the ejection part 59.
A packing 64 having a circular hole 63 having the same diameter as the opening at the base end of the turning inner cylinder 60 is in close contact with the inner cylinder mounting plate 61. The outer surface of the packing 64 is in close contact with the end face member 53 having a concave portion 65 formed on the inner surface for connecting the space of the swivel inner cylinder mounting hole 54 and the space of the water flow supply hole 55. The inner cylinder mounting plate 61, the packing 63, and the end face member 53 are fastened and integrated with a plurality of bolts 66.

前記凹部65内の空間は、図7に示すように、前記水流供給孔55から前記水流供給孔55を経て供給される水流を、図7の左右に分流するように構成され、更に分流された水流を上方向に導く第1導管67を第2導管68を有している。第1導管67はその中の水流を前記旋回内筒60の上縁部に接線方向から供給できるよう成形され、第2導管68はその中の水流を前記旋回内筒60の下縁部に接線方向から供給できるよう成形されている。なお両導管67、68の前記旋回内筒60との接続部は先細状として旋回内筒60へ供給される水流が加速されるようにしている。
旋回内筒60に供給された水流は図1〜3の装置の場合と同様にして旋回内筒60の内壁に沿って気泡33を有する旋回流34を形成し、更に前記噴出孔62から他方の噴出孔に向けて噴出し、他方の水流と衝突し、水流衝突による衝撃で水流中の気泡は更に微細化し、気泡としての表面積が幾何級数的に増大し、水との接触機会が増加して空気中の酸素が水に溶解してその溶解度が最大になる。
As shown in FIG. 7, the space in the recess 65 is configured such that the water flow supplied from the water flow supply hole 55 via the water flow supply hole 55 is divided into right and left in FIG. 7 and further divided. A first conduit 67 for guiding the water flow upward has a second conduit 68. The first conduit 67 is shaped so that the water flow therein can be supplied tangentially to the upper edge of the swivel inner cylinder 60, and the second conduit 68 is tangent to the lower edge of the swirl inner cylinder 60. It is shaped so that it can be fed from the direction. In addition, the connection part with the said turning inner cylinder 60 of both the conduits 67 and 68 is made into a taper shape, and the water flow supplied to the turning inner cylinder 60 is accelerated.
The water flow supplied to the swirl inner cylinder 60 forms a swirl flow 34 having bubbles 33 along the inner wall of the swirl inner cylinder 60 in the same manner as in the apparatus of FIGS. It blows out toward the jet hole, collides with the other water flow, the bubbles in the water flow are further refined by the impact of the water flow collision, the surface area as a bubble increases geometrically, and the chance of contact with water increases. The oxygen in the air dissolves in water and its solubility is maximized.

図8は、本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す分解斜視図である。
外形が直方体状の高濃度酸素溶解水製造装置71は、中央部の装置本体72とその両側面に固定された左右各3対の第1案内板73、第2案内板74及び第3案内板75、及び第3案内板75に接触する左右1対の端面部材76から成っている。
FIG. 8 is an exploded perspective view showing still another example of the high-concentration dissolved oxygen water producing apparatus according to the present invention.
A high-concentration oxygen-dissolved water producing device 71 having a rectangular parallelepiped shape has a central device body 72 and three pairs of a first guide plate 73, a second guide plate 74, and a third guide plate fixed to the left and right sides. 75 and a pair of left and right end face members 76 that contact the third guide plate 75.

前記第1案内板73には、上部の第1補助孔77と下部の第1気液混合流供給孔78が形成されている。前記第2案内板74には、第2補助孔79と下部の第2気液混合流供給孔80が形成されている。前記第3案内板75には、第3補助孔81と下部の第3気液混合流供給孔82が形成されている。前記第2案内板74の第2補助孔78には、図5及び6と同じ構成の旋回内筒83の基端部が嵌合されている。左右両端の端面部材76には内側に面した気液混合流供給溝84が形成され、この溝84は、下端中央が前記第3気液混合流供給孔82に連結され、前後方向に延びた後、上向きに折り曲げられ、再度内向きに折り曲げられて、前記第3補助孔81に接線方向から連結されている。   The first guide plate 73 is formed with an upper first auxiliary hole 77 and a lower first gas-liquid mixed flow supply hole 78. The second guide plate 74 is formed with a second auxiliary hole 79 and a lower second gas-liquid mixed flow supply hole 80. The third guide plate 75 is formed with a third auxiliary hole 81 and a lower third gas-liquid mixed flow supply hole 82. The second auxiliary hole 78 of the second guide plate 74 is fitted with the base end portion of the turning inner cylinder 83 having the same configuration as that shown in FIGS. A gas-liquid mixed flow supply groove 84 facing inward is formed in the end surface members 76 at both left and right ends, and the lower end of the groove 84 is connected to the third gas-liquid mixed flow supply hole 82 and extends in the front-rear direction. Then, it is bent upward and bent inward again to be connected to the third auxiliary hole 81 from the tangential direction.

装置本体72の前面及び後面のそれぞれ中央下部には気液混合流供給口85が、それぞれ本体72の上面には、高濃度酸素溶解水取出(噴出)口86が設置されている。
前記第1〜第3気液混合流供給孔は、気液混合流供給路を形成し、前記気液混合流供給口85から供給される気液混合流を、前記気液混合流供給路から端面部材76へ供給する。ここで気液混合流は、前記溝84に沿って第3補助孔81に接線方向から供給されて、第3案内板81の第3補助孔81から前記旋回内筒83内壁に向けて旋回流を形成する。
この旋回流は前記旋回内筒83の先端の半球部の噴出孔から噴出し、両噴出孔から噴出する気液混合流が衝突して衝撃を生じさせ、前述した通り、高濃度酸素溶解水が得られ、この高濃度酸素溶解水が高濃度酸素溶解水取出(噴出)口86から取り出される。
A gas-liquid mixed flow supply port 85 is provided at the lower center of each of the front and rear surfaces of the apparatus main body 72, and a high-concentration oxygen-dissolved water outlet (spout) 86 is provided at the upper surface of the main body 72.
The first to third gas-liquid mixed flow supply holes form a gas-liquid mixed flow supply path, and the gas-liquid mixed flow supplied from the gas-liquid mixed flow supply port 85 is connected to the gas-liquid mixed flow supply path. Supply to the end face member 76. Here, the gas-liquid mixed flow is supplied from the third auxiliary hole 81 of the third guide plate 81 toward the inner wall of the turning inner cylinder 83 by being supplied from the tangential direction along the groove 84 to the third auxiliary hole 81. Form.
The swirling flow is ejected from the hemispherical ejection hole at the tip of the swirling inner cylinder 83, and the gas-liquid mixed flow ejected from both ejection holes collides to produce an impact. This high-concentration oxygen-dissolved water is taken out from the high-concentration oxygen-dissolved water take-out (spout) port 86.

図9は、本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す縦断面図、図10は、図9の装置の分解斜視図である。   FIG. 9 is a longitudinal sectional view showing still another example of the apparatus for producing high-concentration oxygen-dissolved water according to the present invention, and FIG. 10 is an exploded perspective view of the apparatus of FIG.

横向き円筒形の筒形本体91はその上面中央に円孔が形成され、高濃度酸素溶解水取出口92を構成している。この取出口92には図示を省略したが、例えば通孔を有する邪魔板を位置させても良い。   A cylindrical body 91 having a horizontally-oriented cylindrical shape has a circular hole formed in the center of the upper surface thereof, and constitutes a high-concentration oxygen-dissolved water outlet 92. Although not shown in the drawing, the baffle plate having a through hole may be positioned, for example.

前記筒形本体91の両端縁部には、中央の円孔93と周縁部の複数のボルト孔94と下部の水流供給孔95を有する2枚の第1円形パッキン96がそれぞれ当接している。この2枚の第1円形パッキン96のそれぞれには同じ位置に円孔93とボルト孔94と水流供給孔95を有する供給管設置用円盤97が当接し、各円盤97の円孔93には、先端側が半球状の噴出部98として成形された円筒状の供給管(旋回内筒)99のそれぞれの基端部外縁が接合され、更に前記噴出部8先端中央には小径の噴出孔100が形成されている。なお両噴出部98の両噴出孔100の孔径を同一にしたが、孔径を異ならせても良い。
この供給管設置用円盤97が前記第1円形パッキン96と当接することにより、前記供給管99が前記筒形本体91内の円筒形の空間101に位置するよう構成されている。
Two first circular packings 96 each having a circular hole 93 at the center, a plurality of bolt holes 94 at the peripheral part, and a water flow supply hole 95 at the lower part are in contact with both end edges of the cylindrical main body 91. Each of the two first circular packings 96 abuts a supply pipe installation disk 97 having a circular hole 93, a bolt hole 94, and a water flow supply hole 95 at the same position. The outer edges of the respective base end portions of a cylindrical supply pipe (turning inner cylinder) 99 formed as a hemispherical ejection portion 98 at the distal end side are joined, and a small-diameter ejection hole 100 is formed at the center of the distal end of the ejection portion 8. Has been. In addition, although the hole diameter of both the ejection holes 100 of both the ejection parts 98 was made the same, you may make a hole diameter different.
The supply pipe installation disk 97 is in contact with the first circular packing 96 so that the supply pipe 99 is positioned in the cylindrical space 101 in the cylindrical main body 91.

前記供給管設置用円盤97の外面側には、前記第1円形パッキン96と同一構成の第2円形パッキン102が当接している。
この第2円形パッキン102には、円盤状の蓋体103が当接し、前記ボルト孔94にボルト104を貫通させ締着することにより、前記筒形本体91と、両側の蓋体103を一体化している。当該蓋体103の内面側には、図10の例では3個の先端が細く成形された円弧状の案内片105が突出形成されている。
A second circular packing 102 having the same configuration as the first circular packing 96 is in contact with the outer surface side of the supply pipe installation disk 97.
A disc-shaped lid 103 abuts against the second circular packing 102, and the bolts 104 are passed through the bolt holes 94 and fastened, whereby the cylindrical main body 91 and the lids 103 on both sides are integrated. ing. On the inner surface side of the lid 103, in the example of FIG. 10, arcuate guide pieces 105 having three thin tips formed in a protruding manner are formed.

前記筒形本体91の中央下面には、上向きに水流供給口106が穿孔され、この水流供給口106は筒形本体91の内壁内で左右に分岐し、前記蓋体103に向かう水流供給路107を形成している。
前記蓋体103内の空間は前記供給管99内と連通している。
A water flow supply port 106 is perforated upward in the center lower surface of the cylindrical main body 91, and the water flow supply port 106 branches right and left within the inner wall of the cylindrical main body 91, and flows into the water flow supply path 107 toward the lid 103. Is forming.
The space in the lid 103 communicates with the supply pipe 99.

このような構成を有する高濃度酸素溶解水製造装置による高濃度酸素溶解水製造の要領を説明する。
ポンプ等で生成させた酸素含有気泡、通常は空気含有気泡を有する水流108を水流供給口106から筒形本体91の内壁内に供給する。この水流108は水流供給路107に達して左右に分岐し、この分岐流109はそれぞれ水流供給路107内を左右の蓋体103に向かって流れ、蓋体103内で前記案内片105の外形表面に案内されて螺旋状に流れながら、前記供給管99内に進入する。この水流は酸素含有ガスの気泡110を含み、供給管99内面に沿って高速の旋回流111として進行する。
The point of production of high-concentration oxygen-dissolved water by the high-concentration oxygen-dissolved water production apparatus having such a configuration will be described.
A water flow 108 having oxygen-containing bubbles, usually air-containing bubbles, generated by a pump or the like is supplied from the water flow supply port 106 into the inner wall of the cylindrical main body 91. The water flow 108 reaches the water flow supply path 107 and branches right and left. The branch flows 109 flow in the water flow supply path 107 toward the left and right lids 103, respectively, and the outer surface of the guide piece 105 in the lid 103. And enters the supply pipe 99 while flowing spirally. This water flow includes bubbles 110 of oxygen-containing gas, and proceeds as a high-speed swirl flow 111 along the inner surface of the supply pipe 99.

この旋回流111は前記供給管99先端の噴出部98に達し、半球状内壁に接触し速度を速めながら、前記噴出孔100から筒形本体91の空間101に向けて噴出する。噴出時の旋回流111には外向きの力が加わっており、噴出孔100もある程度の大きさを有するため、旋回流111は他方の噴出孔100に向かうだけでなく、外側にも向かって放射状に噴出する。
左右の旋回流111は直線状や放射状の水流として、筒形本体91の空間101内の両噴出孔100の中間で衝突する。この衝突の衝撃は2本の旋回流111の速度の倍になるのではなく、指数級数的に増大する。従って両水流中に含まれる気泡110は水流衝突による衝撃で更に微細化し、微細気泡112となるとともに、気泡としての表面積が幾何級数的に増大し、水との接触機会が増加して空気中の酸素が水に溶解してその溶解度が最大になる。
The swirl flow 111 reaches the ejection part 98 at the tip of the supply pipe 99 and is ejected from the ejection hole 100 toward the space 101 of the cylindrical main body 91 while contacting the hemispherical inner wall and increasing the speed. Since an outward force is applied to the swirling flow 111 at the time of ejection, and the ejection hole 100 has a certain size, the swirling flow 111 is not only directed toward the other ejection hole 100 but also radially outward. To erupt.
The left and right swirl flows 111 collide in the middle of both ejection holes 100 in the space 101 of the cylindrical main body 91 as a linear or radial water flow. The impact of this collision does not double the speed of the two swirling flows 111 but increases exponentially. Therefore, the bubbles 110 contained in both water streams are further refined by impact due to the water current collision to become fine bubbles 112, and the surface area as a bubble increases geometrically, increasing the chance of contact with water and increasing in the air. Oxygen dissolves in water and its solubility is maximized.

更に、例えば水流を衝撃面に衝突させて酸素溶解を行う場合には、大気中に酸素が放散しやすく、溶解度が十分上昇しないことがある。これに対し、図示の例では、水流の衝突地点では気泡が大気に開放されていないため、酸素の溶解効率は最大になる。   Furthermore, for example, when oxygen is dissolved by causing a water stream to collide with the impact surface, oxygen is easily diffused into the atmosphere, and the solubility may not be sufficiently increased. On the other hand, in the illustrated example, since the bubbles are not opened to the atmosphere at the collision point of the water flow, the oxygen dissolution efficiency is maximized.

両噴出孔100の孔径を異ならせると、小さい孔径の噴出孔100から噴出する水流中の気泡は、他方の噴出孔100から噴出する水流中の気泡より気泡径が小さくなる。気泡径の異なる気泡が衝突すると、衝突する気泡間に乱れが生じて気泡の破壊が促進されると推測できる。同様の理由で噴出孔100から噴出する両水流の速度を異ならせても良い。
更に図示の例とは異なり、半球状の噴出部98以外の供給管99の内壁を噴出部98方向に向けて内向き傾斜させて噴出孔100から噴出する水流の速度を増大させても良い。
If the hole diameters of the two ejection holes 100 are different, bubbles in the water stream ejected from the ejection hole 100 having a smaller hole diameter are smaller than those in the water stream ejected from the other ejection hole 100. When bubbles having different bubble diameters collide with each other, it can be estimated that turbulence occurs between the colliding bubbles and the destruction of the bubbles is promoted. For the same reason, the speeds of the two water streams ejected from the ejection hole 100 may be different.
Further, unlike the illustrated example, the inner wall of the supply pipe 99 other than the hemispherical jet part 98 may be inclined inward toward the jet part 98 to increase the speed of the water flow jetted from the jet hole 100.

図11a〜cは、図9及び10に例示した高濃度酸素溶解水製造装置の蓋体の他の例を示す概略図である。
図11aは蓋体103aの案内片105aの数を2とした例、図11bは蓋体103bの案内片105bの数を4とした例、図11cは蓋体103cの案内片105cの数を5として例である。
いずれの蓋体103a〜cを使用しても当該蓋体に供給された水流が案内片の外形表面に沿って螺旋状に進行して旋回流を生成させるが、案内片の数の多い図11cの蓋体103cで最も効率良く旋回流が生成する。
11a to 11c are schematic views showing other examples of the lid body of the high-concentration oxygen-dissolved water producing apparatus exemplified in FIGS.
11a shows an example in which the number of guide pieces 105a of the lid 103a is two, FIG. 11b shows an example in which the number of guide pieces 105b of the lid 103b is four, and FIG. 11c shows that the number of guide pieces 105c of the lid 103c is five. As an example.
Regardless of which lid 103a-c is used, the water flow supplied to the lid progresses spirally along the outer surface of the guide piece to generate a swirl flow. The swirl flow is most efficiently generated by the lid 103c.

図12は、本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す部分縦断面図であり、図9及び10と同じ部材には同一符号を付して説明を省略する。
図示の例では、両蓋体103dの中央に水平孔113が貫通し、この水平孔113に酸素含有ガス注入管114、115が挿入され、左方の酸素含有ガス注入管114の先端は供給管99内に達し、右方の酸素含有ガス注入管115の先端は供給管99の基部端に位置している。
この例の装置で両酸素含有ガス注入管114、115から空気を供給管99内に注入しながら、図9の例と同様の操作を行うと、各供給管99内の空気量(気泡の数及びサイズ)が増加し、従って噴出孔100から筒形本体91内の空間101に噴出する空気量が増加し、この空間101内で水流中に溶解する空気量も増えて、更に高濃度化した酸素溶解水が高濃度酸素溶解水取出口92から取り出される。
FIG. 12 is a partial longitudinal sectional view showing still another example of the high-concentration oxygen-dissolved water producing device according to the present invention. The same members as those in FIGS.
In the illustrated example, a horizontal hole 113 passes through the center of both lids 103d, oxygen-containing gas injection pipes 114 and 115 are inserted into the horizontal hole 113, and the distal end of the left oxygen-containing gas injection pipe 114 is a supply pipe. 99, the distal end of the oxygen-containing gas injection pipe 115 on the right side is located at the base end of the supply pipe 99.
When the same operation as in the example of FIG. 9 is performed while injecting air from both the oxygen-containing gas injection pipes 114 and 115 into the supply pipe 99 with the apparatus of this example, the amount of air in each supply pipe 99 (the number of bubbles) Therefore, the amount of air ejected from the ejection hole 100 into the space 101 in the cylindrical main body 91 is increased, and the amount of air dissolved in the water flow in the space 101 is also increased, thereby further increasing the concentration. The oxygen-dissolved water is taken out from the high-concentration oxygen-dissolved water outlet 92.

図13は、本発明に係る高濃度酸素溶解水製造装置の更に他の例を示す部分縦断面図であり、図12と同じ部材には同一符号を付して説明を省略する。
図示の例では、水流供給口を筒形本体の下部に設けるのではなく、水流供給口116を両蓋体103eの下部に設けている。この例でも、蓋体103e内に供給された水流が案内片の外形表面に接触して螺旋状に進行して旋回流が形成される。
FIG. 13 is a partial vertical cross-sectional view showing still another example of the high-concentration oxygen-dissolved water producing apparatus according to the present invention. The same members as those in FIG.
In the illustrated example, the water flow supply port 116 is not provided in the lower part of the cylindrical main body, but the water flow supply port 116 is provided in the lower part of the lids 103e. Also in this example, the water flow supplied into the lid 103e comes into contact with the outer surface of the guide piece and advances spirally to form a swirling flow.

図14は、本発明に係る高濃度酸素溶解水製造装置にタンクレスラインを接続した例を示す部分縦断面図である。
高濃度酸素溶解水製造装置121の高濃度酸素溶解水取出口122に接続された補助管123の他端側に、タンクレスライン124が接続されている。このタンクレスライン124は、オイルバス125内に収容され、図示の例では3回折り返されている。このオイルバス125内には、電熱線126が収容され、オイルバス125内のオイルを加熱している。
この高濃度酸素溶解水製造装置121に多量の汚染物質や微生物を含む排水を供給し、前述の通りノズルから噴出させ衝突させると、前記排水中に空気のナノバブルが溶解する。空気溶解によりナノバブルの酸素が排水に接触して汚染物質や微生物の一部を分解しあるいは殺菌する。次いでこの排水は高濃度酸素溶解水取出口122からタンクレスライン124に導かれる。
タンクレスライン124内は高温高圧に維持されているため、排水中のナノバブルが汚染物質や微生物と効率良く反応して汚染物質や微生物がほぼ完全に除去され、より以上の処理を行うことなく放流できる。
前記タンクレスライン124は折り返されているため、コンパクト化されていて、僅かな設置面積で排水処理を実施できる。
FIG. 14 is a partial longitudinal sectional view showing an example in which a tankless line is connected to the high-concentration oxygen-dissolved water producing apparatus according to the present invention.
A tankless line 124 is connected to the other end of the auxiliary pipe 123 connected to the high concentration oxygen dissolved water outlet 122 of the high concentration oxygen dissolved water production apparatus 121. The tankless line 124 is accommodated in the oil bath 125 and is folded three times in the illustrated example. A heating wire 126 is accommodated in the oil bath 125 to heat the oil in the oil bath 125.
When waste water containing a large amount of contaminants and microorganisms is supplied to the high-concentration oxygen-dissolved water production apparatus 121 and is ejected from the nozzle and collided as described above, air nanobubbles are dissolved in the waste water. When dissolved in the air, the oxygen in the nanobubbles comes into contact with the wastewater to decompose or sterilize some of the pollutants and microorganisms. Next, the waste water is led from the high concentration oxygen-dissolved water outlet 122 to the tankless line 124.
Since the inside of the tankless line 124 is maintained at a high temperature and high pressure, the nanobubbles in the waste water react with the pollutants and microorganisms efficiently, and the pollutants and microorganisms are almost completely removed and discharged without further processing. it can.
Since the tankless line 124 is folded back, the tankless line 124 is compact and can perform wastewater treatment with a small installation area.

次に本発明の高濃度酸素溶解水製造の実施例を記載するが、本発明はこれらに限定されるものではない。   Next, examples of the production of the high-concentration oxygen-dissolved water of the present invention will be described, but the present invention is not limited to these.

[実施例1]
図1〜3に示した高濃度酸素溶解水製造装置を使用した。
外筒の直径53mm、長さ130mm、案内管及び高濃度酸素溶解水取出口の内径23mm、邪魔板の通孔4個で通孔径は各3mm、内筒の内径32mm、内筒の基端から先端(噴出孔)までの長さ55mm、半球状の噴出部の長さ10mm、噴出孔径2mmとし、スペーサー以外はステンレス製とした(図1と異なり両噴出孔径は同一にした)。この装置を、縦2m、横1.5m、深さ0.7mで水道水を深さ0.5mまで満たした硬質プラスチック製の容器に沈めた。この水道水中の酸素濃度は0.1ppm以下であった。
[Example 1]
The apparatus for producing high-concentration oxygen-dissolved water shown in FIGS. 1 to 3 was used.
Diameter of outer cylinder 53mm, length 130mm, inner diameter of guide tube and high-concentration oxygen-dissolved water outlet 23mm, four baffle holes, each having a diameter of 3mm, inner diameter of inner cylinder 32mm, from the inner end of inner cylinder The length to the tip (ejection hole) was 55 mm, the length of the hemispherical ejection part was 10 mm, the ejection hole diameter was 2 mm, and the parts other than the spacers were made of stainless steel (unlike in FIG. 1, both ejection hole diameters were the same). This apparatus was submerged in a hard plastic container filled with tap water up to a depth of 0.5 m at a length of 2 m, a width of 1.5 m, and a depth of 0.7 m. The oxygen concentration in the tap water was 0.1 ppm or less.

市販のポンプの一方を水道水の蛇口に、他端を前記容器中の装置の2本の酸素含有気泡水流供給口に接続した。ポンプを作動させ、16.6リットル/分で空気気泡を発生させた水道水を、前記装置に供給した。これにより前記装置の高濃度酸素溶解水取出口から高濃度酸素溶解水が前記容器内に噴出した。
噴出水は外観上、白濁していて、これは超微細な空気気泡が懸濁しているからと推測できる。1分後の容器内の水道水の酸素濃度は12ppmに上昇し、更に上昇して3分後に、16ppm以上で飽和した。
One of the commercially available pumps was connected to a tap water tap, and the other end was connected to the two oxygen-containing bubbly water flow supply ports of the device in the container. The pump was turned on, and tap water that generated air bubbles at 16.6 liters / minute was supplied to the apparatus. As a result, high-concentration oxygen-dissolved water was ejected from the high-concentration oxygen-dissolved water outlet of the device into the container.
The erupted water is cloudy in appearance, and it can be assumed that this is because ultrafine air bubbles are suspended. The oxygen concentration of tap water in the container after 1 minute rose to 12 ppm, and further increased, and after 3 minutes, saturated with 16 ppm or more.

[比較例1]
縦2m、横1.5m、深さ0.7mで水道水を深さ0.5mまで満たした硬質プラスチック製の容器中の水を攪拌し、その中に空気を20リットル/分で吹き込んだ。
1分後の容器内の水の酸素濃度は3ppm、3分後は5ppm以下であった。
[Comparative Example 1]
Water in a hard plastic container filled with tap water up to a depth of 0.5 m at a length of 2 m, a width of 1.5 m and a depth of 0.7 m was stirred, and air was blown into the container at a rate of 20 liters / minute.
The oxygen concentration of the water in the container after 1 minute was 3 ppm or less after 3 minutes.

[実施例2]
図8〜9に示した高濃度酸素溶解水製造装置を使用した。
筒形本体の外径53mm、長さ130mm、高濃度酸素溶解水取出口の内径23mm、供給管の内径32mm、供給管の基端から先端(噴出孔)までの長さ55mm、半球状の噴出部の長さ10mm、噴出孔径2mmとした。蓋体は外径53mmとし、案内片の数は3個とした。パッキンは外径53mmとした。材料は、パッキンを樹脂製、それ以外はステンレス製とした。
この装置を、縦2m、横1.5m、深さ0.7mで水道水を深さ0.5mまで満たした硬質プラスチック製の容器に沈めた。この水道水中の酸素濃度は0.1ppm以下であった。
[Example 2]
The apparatus for producing high-concentration oxygen-dissolved water shown in FIGS. 8 to 9 was used.
The outer diameter of the cylindrical body is 53 mm, the length is 130 mm, the inner diameter of the high-concentration oxygen-dissolved water outlet is 23 mm, the inner diameter of the supply pipe is 32 mm, the length from the proximal end to the tip (ejection hole) of the supply pipe is 55 mm, hemispherical ejection The length of the part was 10 mm, and the ejection hole diameter was 2 mm. The lid body had an outer diameter of 53 mm, and the number of guide pieces was three. The packing had an outer diameter of 53 mm. As for the material, the packing was made of resin, and the others were made of stainless steel.
This apparatus was submerged in a hard plastic container filled with tap water up to a depth of 0.5 m at a length of 2 m, a width of 1.5 m, and a depth of 0.7 m. The oxygen concentration in the tap water was 0.1 ppm or less.

市販のポンプの一方を水道水の蛇口に、他端を前記容器中の装置の水流供給口に接続した。ポンプを作動させ、16.6リットル/分で空気気泡を発生させた水道水を、前記装置に供給した。これにより前記装置の高濃度酸素溶解水取出口から高濃度酸素溶解水が前記容器内に噴出した。
噴出水は外観上、白濁していて、これは超微細な空気気泡が懸濁しているからと推測できる。1分後の容器内の水道水の酸素濃度は14ppmに上昇し、更に上昇して3分後に、16ppm以上で飽和した。
One of the commercially available pumps was connected to a tap water tap, and the other end was connected to the water flow supply port of the device in the container. The pump was turned on, and tap water that generated air bubbles at 16.6 liters / minute was supplied to the apparatus. As a result, high-concentration oxygen-dissolved water was ejected from the high-concentration oxygen-dissolved water outlet of the device into the container.
The erupted water is cloudy in appearance, and it can be assumed that this is because ultrafine air bubbles are suspended. The oxygen concentration of tap water in the container after 1 minute rose to 14 ppm, and further increased, and after 3 minutes, saturated with 16 ppm or more.

1……外筒 5……邪魔板 7……高濃度酸素溶解水取出口 9……支持板 11……内筒取付板 13……噴出部 14……旋回内筒 15、15′……噴出孔 16、22、26……スペーサー 18、24、28……案内板 20……旋回流形成孔 27……酸素含有気泡水流供給口 32、32′……水流 33……気泡 34……旋回流 35……微視気泡 41……高濃度酸素溶解水製造装置 42……湖沼 45……筏 46……水流生成ポンプ 51……高濃度酸素溶解水製造装置 52……装置本体 53……端面部材 54……旋回内筒取付孔 56……高濃度酸素溶解水取出口 57……水流供給口 59……噴出部 60……旋回内筒 61……内筒取付板 62……噴出孔 71……高濃度酸素溶解水製造装置 72……装置本体 76……端面部材 83……旋回内筒 86……高濃度酸素溶解水取出口 91……筒形本体 92……高濃度酸素溶解水取出口 96……第1円形パッキン 97……供給管設置用円盤 98……噴出部 99……供給管(旋回内筒) 100……噴出孔 102……第2円形パッキン 103……蓋体 105……案内片 106……水流供給口 107……水流供給路 108……水流 109……分岐流 110……気泡 111……旋回流 112……微細気泡 114、115……酸素含有ガス注入管 116……水流供給口 121……高濃度酸素溶解水製造装置 124……タンクレスライン 125……オイルバス   1 ... Outer cylinder 5 ... Baffle plate 7 ... High concentration oxygen-dissolved water outlet 9 ... Support plate 11 ... Inner cylinder mounting plate 13 ... Ejection part 14 ... Swirling inner cylinder 15, 15 '... Ejection Holes 16, 22, 26 ... Spacers 18, 24, 28 ... Guide plate 20 ... Swirling flow forming holes 27 ... Oxygen-containing bubble water flow supply ports 32, 32 '... Water flow 33 ... Bubbles 34 ... Swirling flow 35 …… Microscopic bubbles 41 …… High-concentration oxygen-dissolved water production device 42 …… Lake 45 …… 筏 46 …… Water flow generation pump 51 …… High-concentration oxygen-dissolved water production device 52 …… Device main body 53 …… End face member 54 …… Swivel inner cylinder mounting hole 56 …… High-concentration oxygen-dissolved water outlet 57 …… Water flow supply port 59 …… Squirting part 60 …… Swivel inner cylinder 61 …… Inner cylinder mounting plate 62 …… Eject hole 71 …… High-concentration oxygen-dissolved water production device 72 …… Device body 76 …… End face member 83 …… Swivel inner cylinder 86 …… High-concentration oxygen-dissolved water outlet 91 …… Cylinder main body 92 …… High-concentration oxygen-dissolved water outlet 96 …… First circular packing 97 …… For supply pipe installation Disc 98 …… Squirting part 99 …… Supply pipe (swivel inner cylinder) 100 …… Squirt hole 102 …… Second circular packing 103 …… Cover body 105 …… Guide piece 106 …… Water flow supply port 107 …… Water flow supply path 108 …… Water flow 109 …… Branch flow 110 …… Bubble 111 …… Swirl flow 112 …… Fine bubble 114, 115 …… Oxygen-containing gas injection pipe 116 …… Water flow supply port 121 …… High-concentration oxygen-dissolved water production device 124 …… Tankless line 125 …… Oil bath

Claims (14)

気泡を有する2以上の水流を、円筒状の旋回内筒の内面を螺旋状に旋回させ、前記気泡を前記水流中に巻き込んだ後、前記旋回内筒の先端に形成した小孔から噴出させた直後に直線状の水流にして互いに衝突させ、衝突した上記2以上の水流に含まれる気泡を衝突の衝撃で微細化し、更に、衝突した水流を狭い空間内に閉じ込めることにより気泡の微細化を促進して前記気泡を水流中に溶解させることを特徴とする高濃度ガス溶解水の製造方法。 Two or more water flows having bubbles were spirally swirled on the inner surface of a cylindrical swirling inner cylinder, and the bubbles were entrained in the water flow and then ejected from a small hole formed at the tip of the swirling inner cylinder . Immediately after, they are made to collide with each other in a straight stream, and the bubbles contained in the two or more collided streams are refined by the impact of the collision, and further, the refinement of the bubbles is promoted by confining the collided stream in a narrow space. high concentration method for producing a gas dissolved water, characterized in that dissolving the bubbles in the water flow by. 2つの水流を180°の角度で衝突させる請求項1記載の高濃度ガス溶解水の製造方法。   The method for producing high-concentration gas-dissolved water according to claim 1, wherein the two water streams collide at an angle of 180 °. 気泡中のガスが、酸素含有ガス、酸素ガス、水素ガス、窒素ガス及びオゾンガスから選択される請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the gas in the bubbles is selected from oxygen-containing gas, oxygen gas, hydrogen gas, nitrogen gas and ozone gas. 太陽エネルギー及び/又は風力エネルギーを利用して生成させた水流を使用する請求項1から3までのいずれか1項に記載の製造方法。   The manufacturing method of any one of Claim 1 to 3 using the water flow produced | generated using solar energy and / or wind energy. ガスを溶解させた水流を、高温高圧のタンクレスラインを通過させるようにした請求項1から3までのいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the water stream in which the gas is dissolved is allowed to pass through a high-temperature and high-pressure tankless line. 水流供給口及び高濃度ガス溶解水の取出口を有する筒形本体内に、先端側を半球状に成形しその中央に小孔を形成した円筒形の2本の供給管を、前記2個の小孔を対向させて配置し、当該2本の供給管のそれぞれの基端側の筒形本体縁部に、2個の蓋体を設置し、前記水流供給口からの気泡を溶解した水流を前記2個の蓋体を介して前記2本の供給管内に供給し旋回流を形成させた後、前記2個の小孔から噴出させた直後に直線状の水流にして互いに衝突させ、衝突した上記2個の水流に含まれる気泡を衝突の衝撃で微細化し、更に、衝突した水流を、前記取出口に設置されて通孔を有する邪魔板で区画された狭い空間内に閉じ込めることにより気泡の微細化を促進して前記気泡を溶解させ、生成した高濃度ガス溶解水を前記取出口から取り出すことを特徴とする高濃度ガス溶解水の製造装置。 In the cylindrical main body having the water flow supply port and the high concentration gas dissolved water outlet, the two cylindrical supply pipes having the tip side formed into a hemispherical shape and a small hole formed in the center thereof, The small holes are arranged to face each other, two lids are installed at the edge of the cylindrical main body on the base end side of each of the two supply pipes, and the water flow in which bubbles from the water flow supply port are dissolved After being supplied into the two supply pipes through the two lids to form a swirling flow, immediately after being ejected from the two small holes , they are made to collide with each other as a linear water flow, and collide with each other. The bubbles contained in the two water streams are refined by the impact of the collision, and further, the impinging water stream is confined in a narrow space defined by a baffle plate installed at the outlet and having a through hole. to promote miniaturization dissolving the bubbles, the generated high-concentration gas dissolved water taken from the outlet High concentration gas dissolved water production apparatus according to claim Succoth. 高濃度ガス溶解水の取出口を有する筒形本体内に、先端側を半球状に成形しその中央に小孔を形成した円筒形の2本の供給管を、前記2個の小孔を対向させて配置し、当該2本の供給管のそれぞれの基端側の筒形本体縁部に、水流供給口を有する2個の蓋体を設置し、前記水流供給口からの気泡溶解水流を前記2個の蓋体を介して前記2本の供給管内に供給し旋回流を形成させた後、前記2個の小孔から噴出させた直後に直線状の水流にして互いに衝突させ、衝突した上記2個の水流に含まれる気泡を衝突の衝撃で微細化し、更に、衝突した水流を、前記取出口に設置されて通孔を有する邪魔板で区画された狭い空間内に閉じ込めることにより気泡の微細化を促進して前記気泡を溶解させ、生成した高濃度ガス溶解水を前記取出口から取り出すことを特徴とする高濃度ガス溶解水の製造装置。 In the cylindrical main body having a high concentration gas dissolved water outlet, two cylindrical supply pipes that are formed in a hemispherical shape at the tip side and formed with a small hole in the center are opposed to the two small holes. Two lids having water flow supply ports are installed on the cylindrical main body edges on the base end sides of the two supply pipes, and the bubble dissolved water flow from the water flow supply port is After supplying the two supply pipes through the two lids to form a swirling flow, immediately after being ejected from the two small holes , they are made to collide with each other and collide with each other. The bubbles contained in the two water streams are refined by the impact of the collision, and further, the impacted water stream is confined in a narrow space defined by the baffle plate installed at the outlet and having a through hole. by being promoted to dissolve the bubbles, exits the generated high concentration gas dissolved water taken from the outlet High concentration gas dissolved water production apparatus, characterized in that. 円筒体の内壁が基端側から先端側に向けて内向き傾斜した請求項6又は7に記載の高濃度ガス溶解水の製造装置。 The apparatus for producing high-concentration gas-dissolved water according to claim 6 or 7 , wherein the inner wall of the cylindrical body is inclined inward from the proximal end side toward the distal end side. 前記蓋体の外端面から前記供給管内に向けて、ガス注入管を設置した請求項6から8までのいずれか1項に記載の高濃度ガス溶解水の製造装置。   The apparatus for producing high-concentration gas-dissolved water according to any one of claims 6 to 8, wherein a gas injection pipe is installed from the outer end surface of the lid body into the supply pipe. 請求項6からまでのいずれか1項に記載の高濃度ガス溶解水の製造装置により、酸素含有気泡を有する2以上の水流を衝突させることにより前記気泡中の酸素を前記水流中に溶解させて製造した高濃度酸素溶解水を、活性汚泥法による排水処理、湖沼水の水質改善、河川水の水質改善、養魚場水の酸素富化、海水を使用する設備の配管中の海洋生物の生育及び付着防止、水槽内の酸素富化、プール水の浄化、浄水場貯留水の浄化、下水の浄化及びし尿の浄化から選択される1又は2以上の用途に使用することを特徴とする高濃度酸素溶解水による被処理対象水の処理方法。 The high concentration gas-dissolved water producing apparatus according to any one of claims 6 to 9, wherein two or more water streams having oxygen-containing bubbles are collided to dissolve oxygen in the bubbles in the water stream. The high-concentration oxygen-dissolved water produced in this way is treated by the activated sludge process, lake water quality improvement, river water quality improvement, oxygen enrichment of fish farm water, and growth of marine organisms in the piping of facilities using seawater. And high concentration, characterized in that it is used for one or more applications selected from prevention of adhesion, oxygen enrichment in water tank, purification of pool water, purification of water stored in water purification plant, purification of sewage and purification of human waste A method for treating water to be treated with oxygen-dissolved water. 請求項6からまでのいずれか1項に記載の高濃度ガス溶解水の製造装置により、酸素含有気泡を有する2以上の水流を衝突させることにより前記気泡中の酸素を前記水流中に溶解させて製造した高濃度酸素溶解水を、水耕栽培水、カップ式自動販売機用貯水、薬剤希釈水、染料やインクや塗料の希釈水、飲料希釈水、医薬品用水、磁気記録用ハードディスク洗浄用水及び半導体洗浄用水から選択される1又は2以上の前処理に使用することを特徴とする高濃度酸素溶解水による被処理対象水の処理方法。 The high concentration gas-dissolved water producing apparatus according to any one of claims 6 to 9, wherein two or more water streams having oxygen-containing bubbles are collided to dissolve oxygen in the bubbles in the water stream. High-concentration oxygen-dissolved water produced in this way is used for hydroponics, cup-type vending machine storage, chemical dilution water, dye / ink and paint dilution water, beverage dilution water, pharmaceutical water, magnetic recording hard disk cleaning water and A method for treating water to be treated with high-concentration oxygen-dissolved water, which is used for one or more pretreatments selected from semiconductor cleaning water. 請求項6からまでのいずれか1項に記載の高濃度ガス溶解水の製造装置により、酸素含有気泡を有する2以上の水流を衝突させることにより前記気泡中の酸素を前記水流中に溶解させることにより製造した高濃度酸素溶解水を、浴場水、熱交換器冷却水、ボイラー水及び製紙洗浄水から選択される1又は2以上の循環水の浄化に使用することを特徴とする高濃度酸素溶解水による被処理対象水の処理方法。 The high concentration gas-dissolved water producing apparatus according to any one of claims 6 to 9, wherein two or more water streams having oxygen-containing bubbles are collided to dissolve oxygen in the bubbles in the water stream. The high concentration oxygen dissolved water produced by the above is used for purification of one or more circulating water selected from bath water, heat exchanger cooling water, boiler water and paper washing water A method for treating water to be treated with dissolved water. 請求項6からまでのいずれか1項に記載の高濃度ガス溶解水の製造装置により、酸素及び/又はオゾン含有ガスを有する2以上の燃料流を衝突させることにより前記酸素含有ガスを前記燃料流中に微細気泡として溶解させ、その後燃焼させることを特徴とする燃料の燃焼方法。 The apparatus for producing high-concentration gas-dissolved water according to any one of claims 6 to 9, wherein the oxygen-containing gas is made into the fuel by colliding two or more fuel streams having oxygen and / or ozone-containing gas. A fuel combustion method comprising dissolving as fine bubbles in a flow and then burning. 請求項6からまでのいずれか1項に記載の高濃度ガス溶解水の製造装置により、酸素及び/又はオゾン含有ガスを有する2以上の燃料流を衝突させることにより前記酸素含有ガスを前記燃料流中に微細気泡として溶解させ、その後、気化させ内燃機関に供給し燃焼させることを特徴とする車両用燃料の燃焼方法。 The apparatus for producing high-concentration gas-dissolved water according to any one of claims 6 to 9, wherein the oxygen-containing gas is made into the fuel by colliding two or more fuel streams having oxygen and / or ozone-containing gas. A vehicle fuel combustion method comprising dissolving as fine bubbles in a flow, then vaporizing and supplying the gas to an internal combustion engine for combustion.
JP2011239798A 2011-10-31 2011-10-31 Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water Active JP5334141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239798A JP5334141B2 (en) 2011-10-31 2011-10-31 Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239798A JP5334141B2 (en) 2011-10-31 2011-10-31 Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007141037A Division JP2008272722A (en) 2007-04-26 2007-04-26 Manufacturing method and manufacturing apparatus of high concentration gas-dissolved water, and application method of manufactured high concentration gas-dissolved water

Publications (2)

Publication Number Publication Date
JP2012081467A JP2012081467A (en) 2012-04-26
JP5334141B2 true JP5334141B2 (en) 2013-11-06

Family

ID=46240904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239798A Active JP5334141B2 (en) 2011-10-31 2011-10-31 Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water

Country Status (1)

Country Link
JP (1) JP5334141B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218948B1 (en) * 2012-05-16 2013-06-26 重昭 安達 Gas dissolver
CN112978841B (en) * 2021-03-05 2023-10-17 郑州大学 Modularized multistage area mineralization metallurgy pressurization mineralization system
KR102587567B1 (en) * 2022-02-16 2023-10-13 헤브론테크(주) Gas emulsion reactor
CN116143214B (en) * 2023-04-21 2023-07-04 湖南尚上市政建设开发有限公司 Device and method for municipal wastewater treatment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269371A (en) * 1993-03-22 1994-09-27 Osaka Gas Co Ltd Gas bath with carbonated fountain function
JP3775708B2 (en) * 1998-04-16 2006-05-17 株式会社前川製作所 Gas-liquid dispersion gas absorber
CN100382878C (en) * 2000-06-23 2008-04-23 池田好明 Fine air bubble generator and fine air bubble generating device with generator
JP4124956B2 (en) * 2000-11-30 2008-07-23 株式会社 多自然テクノワークス Fine bubble supply method and fine bubble supply device
JP3878831B2 (en) * 2001-10-19 2007-02-07 株式会社ミゾタ Water purification device
JP4305178B2 (en) * 2003-12-26 2009-07-29 パナソニック株式会社 Oxygen enriched bathtub equipment
JP4807968B2 (en) * 2004-09-28 2011-11-02 株式会社 多自然テクノワークス Foot bath equipment
US7832028B2 (en) * 2004-09-28 2010-11-16 Tashizen Techno Works Co., Ltd. Fine-bubble generator, and foot-bathing apparatus and bathing device with the same
JP4807967B2 (en) * 2004-10-26 2011-11-02 株式会社 多自然テクノワークス Bathing equipment
JP4581884B2 (en) * 2005-07-21 2010-11-17 トヨタ自動車株式会社 Fuel supply device
JP2007127345A (en) * 2005-11-04 2007-05-24 Osaka Gas Co Ltd Bath facility, and operating method for bath facility

Also Published As

Publication number Publication date
JP2012081467A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP2008272722A (en) Manufacturing method and manufacturing apparatus of high concentration gas-dissolved water, and application method of manufactured high concentration gas-dissolved water
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
JP4525890B2 (en) Swivel type micro bubble generator
CN102665885B (en) Micro-bubble generator and micro-bubble generation device
JP2009082903A (en) Microbubble generator
JP5334141B2 (en) Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water
WO1999033553A1 (en) Swirling fine-bubble generator
US4313827A (en) Enhanced disinfection system
JP5182837B2 (en) Method and apparatus for producing high-concentration oxygen-dissolved water, method for using produced high-concentration oxygen-dissolved water
JP2003225546A (en) Fine foam generation apparatus
JP5042585B2 (en) Water purification device and water purification method
JP2012239938A (en) Water-quality improvement apparatus, water-quality improving method and metal ion water generator
CA2430154A1 (en) Purifying device
JP2009101329A (en) Liquid treatment apparatus
JP5331238B1 (en) Pressurized ozone dissolution treatment equipment
JP2006272147A (en) Ballast water treatment apparatus
CN108941041A (en) A kind of ultrasonic cleaning method for disinfection based on micro-nano oxidisability gas core
JP5127702B2 (en) System and method for dissolving a gas into a liquid and supplying the same dissolved gas
JP3326500B2 (en) Processing equipment for processing objects containing microorganisms
JP5250758B2 (en) Miscellaneous wastewater treatment equipment, miscellaneous wastewater treatment system and miscellaneous wastewater treatment method using a cavitation effect.
JP2001009315A (en) Pulverizer for microbe in liquid
JP5202683B2 (en) High concentration oxygen-dissolved water production equipment
JP5840277B2 (en) Activated sludge treatment method and wastewater treatment method
JP2019072707A (en) Ultrafine bubble-containing liquid generated by quick gas filling device using ultrafine bubble nozzle
JP3749156B2 (en) Liquid quality reformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5334141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250