JP4305178B2 - Oxygen enriched bathtub equipment - Google Patents

Oxygen enriched bathtub equipment Download PDF

Info

Publication number
JP4305178B2
JP4305178B2 JP2003433097A JP2003433097A JP4305178B2 JP 4305178 B2 JP4305178 B2 JP 4305178B2 JP 2003433097 A JP2003433097 A JP 2003433097A JP 2003433097 A JP2003433097 A JP 2003433097A JP 4305178 B2 JP4305178 B2 JP 4305178B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
bathtub
enriched
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003433097A
Other languages
Japanese (ja)
Other versions
JP2005185665A (en
Inventor
正満 近藤
龍太 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003433097A priority Critical patent/JP4305178B2/en
Publication of JP2005185665A publication Critical patent/JP2005185665A/en
Application granted granted Critical
Publication of JP4305178B2 publication Critical patent/JP4305178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Description

本発明は、浴槽の湯を循環させる回路に、高濃度の酸素を加圧混入し浴槽内の浴槽湯へ微細気泡として放出する酸素富化浴槽装置に関するものである。   The present invention relates to an oxygen-enriched bathtub apparatus that pressurizes and mixes high-concentration oxygen in a circuit that circulates hot water in a bathtub and discharges the hot water in the bathtub as fine bubbles.

従来の酸素富化浴槽装置は、浴槽湯循環回路の浴槽水に高濃度の酸素を供給するものがある(例えば特許文献1参照)。図9は、特許文献1に記載された従来の酸素富化浴槽装置を示すものである。図9に示すように、浴槽1の湯水を循環させるポンプ2と管路3に気体を供給する供給部4を設け、供給部4に酸素富化空気を供給する酸素富化装置5を設け、浴槽1には吸入口6と吹き出しノズル7を設けて構成される。通常の浴槽湯循環装置は浴室8内の浴槽1近傍へ設置される。
特開平4−2347号公報
Some conventional oxygen-enriched bathtub apparatuses supply high-concentration oxygen to bathtub water in a bathtub hot water circulation circuit (see, for example, Patent Document 1). FIG. 9 shows a conventional oxygen-enriched bathtub apparatus described in Patent Document 1. As shown in FIG. 9, a pump 2 that circulates hot water in the bathtub 1 and a supply unit 4 that supplies gas to the pipe line 3 are provided, and an oxygen enrichment device 5 that supplies oxygen-enriched air to the supply unit 4 is provided. The bathtub 1 is provided with a suction port 6 and a blowing nozzle 7. A normal bathtub hot water circulation device is installed near the bathtub 1 in the bathroom 8.
JP-A-4-2347

しかしながら上記特許文献1の従来の酸素供給装置では、浴槽湯循環回路と酸素富化装置を浴室8内に設置し、浴槽湯を循環させる回路へ高濃度の酸素を供給する構成である。浴室内の空気を使い酸素富化された空気は浴槽1内へ気泡径が数ミリメートル程度の大きな気泡として噴出されるため、浴槽湯水へ溶け込む酸素濃度は湯温40℃で約10PPM程度までであり酸素の効果があまり期待できず、浴室内の酸素濃度も濃度差が生じるだけで上昇しないという課題を有していた。   However, the conventional oxygen supply device of Patent Document 1 has a configuration in which a bath water circulation circuit and an oxygen enrichment device are installed in the bathroom 8 to supply high-concentration oxygen to a circuit that circulates the bath water. Since the oxygen-enriched air using the air in the bathroom is ejected into the bathtub 1 as large bubbles with a bubble diameter of about several millimeters, the oxygen concentration dissolved in the bath water is about 10 PPM at a hot water temperature of 40 ° C. The effect of oxygen could not be expected so much, and there was a problem that the oxygen concentration in the bathroom was not increased due to the concentration difference.

本発明は前記従来の課題を解決するもので、浴室内に設けた浴槽湯循環装置とは別に浴室外に酸素富化装置を設け、高濃度の酸素を浴槽湯循環回路へ供給した後、加圧溶解して浴槽まで循環させ、減圧することで微細気泡として浴槽内へ噴出させる構成とすることで、酸素富化装置の浴室内全体の酸素富化と浴槽湯が高濃度の酸素で過飽和な状態を同時に実現できる酸素富化浴槽装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems. In addition to the bath water circulation device provided in the bathroom, an oxygen enrichment device is provided outside the bathroom, and after supplying high-concentration oxygen to the bath water circulation circuit, Oxygen enrichment in the entire bathroom of the oxygen enricher and bath water is supersaturated with high-concentration oxygen. It aims at providing the oxygen enriched bathtub apparatus which can implement | achieve a state simultaneously.

前記従来の課題を解決するために、本発明の酸素富化浴槽装置は、浴槽の湯が循環する浴槽湯循環装置と循環回路と、高濃度の酸素を供給する酸素富化装置と、前記酸素富化装置と前記循環回路との間に設けた酸素配管と、高濃度酸素を前記浴槽へ吹き出す略回転対称に形成された中空部を有する器体と、前記器体の周壁部に接線方向に開口された流入口と、前記流入口に接続される加圧液導入管と、前記器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を前記流入口に導入して前記器体内で旋回流とし前記気液噴出孔より噴出させることで、減圧が生じて気泡を発生できるとともに、前記気液噴出孔は前記器体中空部の回転対称軸の両軸端の一方に開口し、前記器体の流入口を前記回転対称軸の軸長中心よりも前記気液噴出孔側に設けたものである。 In order to solve the conventional problems, an oxygen-enriched bathtub apparatus according to the present invention includes a bathtub hot water circulation apparatus and a circulation circuit through which hot water in a bathtub circulates, an oxygen enrichment apparatus that supplies high-concentration oxygen, and the oxygen An oxygen pipe provided between the enrichment device and the circulation circuit, a vessel body having a hollow portion formed in a substantially rotational symmetry for blowing out high-concentration oxygen to the bathtub, and a tangential direction to the peripheral wall portion of the vessel body An inflow port that is open, a pressurized liquid introduction pipe connected to the inflow port, and a gas-liquid ejection hole that is open in the body, and a liquid in which a gas is pressurized and dissolved is introduced into the inflow port. By making a swirl flow in the vessel body and ejecting from the gas-liquid jet holes, decompression occurs and bubbles can be generated , and the gas-liquid jet holes are formed at one of both ends of the rotational symmetry axis of the hollow body portion. The gas-liquid ejection hole is opened and the inflow port of the vessel body is located more than the axial length center of the rotational symmetry axis But on the.

これによって、浴室外部に設けた酸素富化装置で高濃度にした酸素が生成され、生成された高濃度の酸素は酸素配管を通過して気液噴出孔からより浴槽内へ噴出させる。   As a result, oxygen having a high concentration is generated by an oxygen enrichment device provided outside the bathroom, and the generated high concentration oxygen passes through the oxygen pipe and is ejected from the gas-liquid ejection hole into the bathtub.

本発明の酸素富化浴槽装置は、高濃度酸素空気の微細気泡入浴とリラックスする事の可能な浴室空間で入浴を楽しむことができる。   The oxygen-enriched bathtub apparatus of the present invention can enjoy bathing in a bath space where a fine bubble bath of high-concentration oxygen air can be relaxed.

第1の発明は、浴槽の湯が循環する浴槽湯循環装置と循環回路と、高濃度の酸素を供給
する酸素富化装置と、前記酸素富化装置と前記循環回路との間に設けた酸素配管と、高濃度酸素を前記浴槽へ吹き出す略回転対称に形成された中空部を有する器体と、前記器体の周壁部に接線方向に開口された流入口と、前記流入口に接続される加圧液導入管と、前記器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を前記流入口に導入して前記器体内で旋回流とし前記気液噴出孔より噴出させることで、減圧が生じて気泡を発生できるとともに、前記気液噴出孔は前記器体中空部の回転対称軸の両軸端の一方に開口し、前記器体の流入口を前記回転対称軸の軸長中心よりも前記気液噴出孔側に設けた構成とすることで、酸素富化装置の浴室内全体の酸素富化と浴槽湯が高濃度の酸素で過飽和な状態を同時に実現することができる。
1st invention supplies the hot water of the bathtub hot water circulation apparatus and circulation circuit through which hot water of a bathtub circulates, and high concentration oxygen
An oxygen enrichment device, an oxygen pipe provided between the oxygen enrichment device and the circulation circuit, a container having a hollow portion formed substantially symmetrically to blow out high-concentration oxygen to the bath, and An inflow opening opened in a tangential direction on the peripheral wall of the vessel body, a pressurized liquid introduction pipe connected to the inflow port, and a gas-liquid ejection hole opened in the vessel body, and the gas was dissolved under pressure By introducing the liquid into the inlet and turning it into the swirl to be swirled from the gas / liquid jet hole, pressure can be reduced and bubbles can be generated, and the gas / liquid jet hole can rotate the hollow part of the container. The bathroom of the oxygen enricher is configured to open to one of both axial ends of the symmetry axis and to provide the inlet of the vessel on the gas-liquid ejection hole side with respect to the axial center of the rotational symmetry axis. It is possible to realize oxygen enrichment of the entire interior and supersaturated bath water at a high concentration of oxygen at the same time. .

また、器体内に強い旋回流を生じさせることが可能になるので、旋回中心近傍の減圧による気体軸の形成と、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。 In addition, since it is possible to generate a strong swirling flow in the body, the formation of a gas shaft by depressurization in the vicinity of the swirling center and the generation of fine bubbles as a core are promoted, and there is no fine flow path that causes dust adhesion Thus, a large amount of fine bubbles can be generated by vacuum separation.

また、流入口から導入された液体が気液噴出孔へすぐに向かわず、他端の方へ旋回流を成長・促進することができるので旋回流が安定し、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。In addition, the liquid introduced from the inflow port does not immediately go to the gas-liquid ejection hole, and the swirl flow can be grown and promoted toward the other end, so that the swirl flow is stabilized and the liquid near the swirl center is reduced. The formation of the gas axis at the center of rotation by the dissolved gas separation can be ensured, and a large amount of fine bubbles can be generated more reliably.

第2の発明は、特に、第1の発明の器体の周壁部に接線方向に開口された流入口が、器体の周壁部の円周上に所定の間隔を置いて複数個備えることにより、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。 In the second invention, in particular, a plurality of inlets opened in a tangential direction to the peripheral wall portion of the container body of the first invention are provided at predetermined intervals on the circumference of the peripheral wall portion of the container body. , Because the swirl is promoted from a plurality of locations in the same rotation direction, a strong and stable swirl flow can be generated, and the formation of the swivel center gas axis by the decompression of the liquid in the vicinity of the swirl center and the dissolved gas separation is ensured, A large amount of fine bubbles can be generated more reliably.

第3の発明は、特に、第1の発明の器体を略中空円筒状に形成することにより、円筒状器体の内部中空部は、回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。 In the third invention, in particular, by forming the container body of the first invention in a substantially hollow cylindrical shape, the inner hollow part of the cylindrical container body is a substantially planar circle whose both ends of the rotational symmetry axis are perpendicular to the axis. It becomes a columnar space, and liquid flows in tangentially from the circumference of this cylindrical space, so there is almost no flow velocity component in the swirl axis direction disturbing swirl flow, and only the flow velocity component of swirl perpendicular to the swirl axis is left. Therefore, a strong and stable swirling flow can be generated, and the formation of a gas axis at the swirling center is ensured by depressurizing the liquid in the vicinity of the swirling center and separating dissolved gas, and a large amount of fine bubbles can be generated more reliably. can do.

第4の発明は、特に、第1の発明の器体の気液噴出孔と所定の間隔を有して器体外部に噴出流が衝突する衝突部を備えることにより、溶解気体を含む液体が気液噴出孔を出て急減圧による微細気泡を発生した後流で、この噴出流が勢いよく衝突部に衝突することにより、さらに多くの微細気泡が発生するので、ゴミの付着防止と微細気泡の多量発生の両立が実現できる。 In particular, the fourth aspect of the invention includes a collision portion that has a predetermined distance from the gas-liquid jet hole of the container of the first invention and collides with the jet flow outside the container. The wake of the gas-liquid jet hole that generates fine bubbles due to sudden decompression generates a larger number of fine bubbles by vigorously colliding with the collision part. Can be achieved at the same time.

第5の発明は、特に、第1の発明の器体中空部の周壁部近傍に羽根を有し、旋回流の旋回軸を回転軸とする羽根車を器体内に設けることにより、流入口から導入された液体の流れにより中空部周壁部にある羽根が接線方向に力を受けて羽根車が旋回流とともに回転し、旋回軸方向の流速成分に乱される等の影響を防止して旋回流を安定させることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。 In particular, the fifth aspect of the present invention provides an impeller having a blade in the vicinity of the peripheral wall of the hollow portion of the first aspect of the invention, and having an impeller with the swirling axis of the swirling flow as a rotation axis. The flow of the introduced liquid causes the blades on the peripheral wall of the hollow portion to receive a force in the tangential direction so that the impeller rotates together with the swirling flow, and the swirling flow is prevented from being affected by the flow velocity component in the swirling axis direction. It is possible to secure the formation of the gas axis at the swivel center by depressurizing the liquid in the vicinity of the swivel center and separating the dissolved gas, and more reliably generate a large amount of fine bubbles.

第6の発明は、特に、第1の発明の気液噴出孔は旋回流の旋回軸の両軸端の一方に開口し、器体は前記気液噴出孔にむかって断面積が縮小する先細り形状とすることにより、液体の旋回流の旋回半径が気液噴出孔に近づくにつれて小さくなり流路も狭くなるので、流速が早くなるとともに流路抵抗が増大して圧力が大きくなり、増速に伴う気体軸の剪断力
増大と気液噴出孔前後の圧力差の増大で、微細気泡の発生が促進される。また、器体内の流路抵抗の増大に抗して液体を流通させるために液体の導入圧力を増大させることになり、圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な微細気泡多量発生の両立が実現できる。
In the sixth invention, in particular, the gas-liquid ejection hole of the first invention opens at one of both shaft ends of the swirling shaft of the swirling flow, and the vessel body is tapered so that the cross-sectional area decreases toward the gas-liquid ejection hole. By adopting the shape, the swirl radius of the swirling flow of liquid becomes smaller and the flow path becomes narrower as it approaches the gas-liquid jet hole, so that the flow velocity becomes faster and the flow resistance increases, the pressure increases, and the speed increases. The accompanying increase in the shearing force of the gas shaft and the increase in the pressure difference before and after the gas-liquid jet hole promote the generation of fine bubbles. In addition, in order to circulate the liquid against the increase in the flow resistance in the body, the liquid introduction pressure is increased, and the amount of dissolved gas increases because the pressure increases. As a result, the generation of dust and the generation of a large amount of fine bubbles can be realized .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施例の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the form of this Example.

(実施の形態1)
図1は本発明実施例1の酸素富化浴槽装置のシステム全体構成図であり、図2は気泡発生装置の微細気泡発生部の斜視図、図3は同微細気泡発生部の断面図である。図1〜図3において、浴槽湯循環装置10は、浴室11内の浴槽12のエプロン13下部に設けられており、循環回路14に設けられたポンプ15により浴槽12内のお湯を循環する。浴室11の天井上部16に設けた酸素富化装置17は酸素富化膜18と、送風ファン19と、真空ポンプ20と、逆止弁21と、空気切り替弁22で構成され、浴室外の空気から高濃度にした酸素富化空気は酸素配管23を通過して空気吸込口24へ入り循環回路14へ混入する。浴槽12には浴槽湯が循環する吸込口25及び吐出口26が形成されている。吸込口25には循環回路14を介してポンプ15が連結されるとともに、このポンプ15には、高濃度酸素を吸い込む空気吸込口24が連結されている。また、ポンプ15の下流側には溶解タンク27が配置され、ポンプ15と溶解タンク27との間は循環回路14によって連通されている。そして、浴槽12の吐出口26には微細気泡発生部28が設けられ、溶解タンク27と微細気泡発生部28との間は、循環回路14により連通されている。
(Embodiment 1)
1 is an overall system configuration diagram of an oxygen-enriched bathtub apparatus according to Embodiment 1 of the present invention, FIG. 2 is a perspective view of a fine bubble generating portion of the bubble generating device, and FIG. 3 is a cross-sectional view of the fine bubble generating portion. . In FIG. 1 to FIG. 3, the bathtub hot water circulation device 10 is provided below the apron 13 of the bathtub 12 in the bathroom 11 and circulates hot water in the bathtub 12 by a pump 15 provided in the circulation circuit 14. The oxygen enrichment device 17 provided in the ceiling upper part 16 of the bathroom 11 includes an oxygen enrichment film 18, a blower fan 19, a vacuum pump 20, a check valve 21, and an air switching valve 22, and air outside the bathroom. The oxygen-enriched air having a high concentration passes through the oxygen pipe 23 and enters the air suction port 24 and enters the circulation circuit 14. The bathtub 12 is formed with a suction port 25 and a discharge port 26 through which bath water circulates. A pump 15 is connected to the suction port 25 via the circulation circuit 14, and an air suction port 24 for sucking high-concentration oxygen is connected to the pump 15. A dissolution tank 27 is disposed on the downstream side of the pump 15, and the pump 15 and the dissolution tank 27 are communicated with each other by the circulation circuit 14. The discharge port 26 of the bathtub 12 is provided with a fine bubble generation unit 28, and the dissolution tank 27 and the fine bubble generation unit 28 are communicated by the circulation circuit 14.

次に、図2および図3において微細気泡発生部28は、略長楕円球体状に形成された回転対称の中空部29を有する器体30と、器体30の周囲壁に設けられ回転対称軸に垂直な円形断面の接線方向に開口された流入口31と、循環回路14を連通する加圧液導入管32とで構成されるとともに、中空部29の回転対称軸の両端部には、それぞれ開口された気液噴出孔33が設けられ、この2つの気液噴出孔33の外側には衝突部である円形状のバッフル板34が配置されている。このバッフル板34は器体30から伸びた4本の支柱35によって2つの気液噴出孔33それぞれと所定の間隔を有して取り付けられている。   Next, in FIG. 2 and FIG. 3, the fine bubble generating portion 28 includes a vessel body 30 having a rotationally symmetric hollow portion 29 formed in a substantially elliptical sphere shape, and a rotationally symmetric axis provided on the peripheral wall of the vessel body 30. The inlet 31 is opened in a tangential direction with a circular cross section perpendicular to the pressure circuit, and the pressurized liquid introduction pipe 32 communicates with the circulation circuit 14. Opened gas-liquid ejection holes 33 are provided, and a circular baffle plate 34 which is a collision portion is disposed outside the two gas-liquid ejection holes 33. The baffle plate 34 is attached to each of the two gas-liquid ejection holes 33 with a predetermined interval by four support columns 35 extending from the vessel body 30.

以上のように構成された酸素富化浴槽湯循環装置について、以下その動作・作用を説明する。真空ポンプ24で減圧されることで浴室11外の空気が酸素富化膜22を通過し、高濃度の酸素(約30%)空気となり、酸素配管30を通過し、溶解タンク17内へ貯められ循環回路14に混入され、吐出口16から循環された浴槽湯と共に浴槽12へ噴出する。   The operation / action of the oxygen-enriched bathtub hot water circulation apparatus configured as described above will be described below. By reducing the pressure by the vacuum pump 24, the air outside the bathroom 11 passes through the oxygen-enriched membrane 22, becomes highly concentrated oxygen (about 30%) air, passes through the oxygen pipe 30, and is stored in the dissolution tank 17. It is mixed into the circulation circuit 14 and ejected to the bathtub 12 together with the bathtub hot water circulated from the discharge port 16.

ポンプ15を運転するとポンプの吸引力が生じて、浴槽12内の湯は吸込口25から、空気吸込口24からは酸素空気が、循環回路14を介してポンプ15内に吸い込まれ、ポンプ15内から循環回路14を経て溶解タンク27にかけての高圧部で酸素空気は湯に加圧溶解される。そして、溶解タンク27内では溶解しきれなかった酸素空気が余剰空気として分離され、溶解空気を含有する湯は混気水となり、循環回路14を通って微細気泡発生部28に搬送される。加圧液導入管32を経て流入口31を通り器体30の中空部29に入った混気水は、内周壁の接線方向から流入するので中空部29の周壁に沿って旋回する。   When the pump 15 is operated, a suction force of the pump is generated, and the hot water in the bathtub 12 is sucked into the pump 15 from the suction port 25 and from the air suction port 24 through the circulation circuit 14. Then, oxygen air is pressurized and dissolved in hot water at a high-pressure section from the first through the circulation circuit 14 to the dissolution tank 27. Then, the oxygen air that could not be dissolved in the dissolution tank 27 is separated as excess air, and the hot water containing the dissolved air becomes mixed water, which is conveyed to the fine bubble generating unit 28 through the circulation circuit 14. The mixed water that has entered the hollow portion 29 of the vessel body 30 through the inlet 31 through the pressurized liquid introduction pipe 32 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 29.

この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回速度が大きければ大きいほど外周部と中心部との圧力差は大きくなって、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分
離するとともに、旋回中心となる器体30の回転対称軸部に気体と液体の比重差によってこの分離した気体が収束して細紐状の気体軸36が形成される。
Due to the swirling motion of the water flow, a pressure difference is produced between the outer periphery and the center of the swirl, and the larger the swirl speed, the greater the pressure difference between the outer periphery and the center. Therefore, in the vicinity of the turning center, a part of the introduced mixed water is decompressed and the dissolved gas is separated, and at the rotationally symmetric axis portion of the vessel 30 serving as the turning center, this is caused by the difference in specific gravity between the gas and the liquid. The separated gas converges to form a thin string-like gas shaft 36.

中空部29内の混気水は、旋回しながら2つの気液噴出孔33に近づくにつれて断面積が縮小する先細り形状となっているので旋回半径が小さくなり流路も狭くなるので、気液噴出孔33付近でその旋回速度および圧力は最大となり、外部側の水と気液噴出孔33の出口で押し合う状態になる。気体軸36に集まった酸素空気は、この外部の水と旋回状態の混気水との境界面や境界域で圧縮、剪断され、微細気泡を含有した流体として2つの気液噴出孔33から外部の水中へ噴出される。噴出した流体は噴出抵抗により減圧され前述の微細気泡を核とすることができるので、溶解気体を分離し微細気泡を多量に発生させることができるようになる。このように、微細気泡発生部を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   The mixed water in the hollow portion 29 has a tapered shape in which the cross-sectional area decreases as it approaches the two gas-liquid jet holes 33 while turning, so the turning radius becomes smaller and the flow path becomes narrower. In the vicinity of the hole 33, the turning speed and pressure become maximum, and the water on the outside side and the outlet of the gas-liquid jet hole 33 are pressed against each other. Oxygen air collected on the gas shaft 36 is compressed and sheared at the boundary surface or boundary region between the external water and the swirling mixed water, and is externally discharged from the two gas-liquid ejection holes 33 as a fluid containing fine bubbles. Erupted into the water. Since the jetted fluid is decompressed by the jetting resistance and can use the aforementioned fine bubbles as a nucleus, the dissolved gas can be separated and a large amount of fine bubbles can be generated. As described above, since the fine bubble generating portion is not made of a fine orifice shape or a net, it is possible to achieve both the reliable generation of fine bubbles and the prevention of stagnation of dust.

また、器体中空部29の周壁部接線方向に加圧液体を導入することで、器体内に強い旋回流を生じさせることが可能になるので、旋回中心近傍の減圧による気体軸の形成と、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。   Further, by introducing a pressurized liquid in the tangential direction of the peripheral wall portion of the hollow body portion 29, it becomes possible to generate a strong swirling flow in the hollow body, so that formation of a gas shaft by decompression near the swirling center, The generation of microbubbles serving as nuclei is promoted, and a large amount of microbubbles can be reliably generated by vacuum separation without a microchannel that causes dust adhesion.

この結果、入浴者は浴室11外の空気から得られた高濃度の酸素を吸いながら入浴することが可能で、入浴と高濃度酸素吸入と静かな微細気泡入浴によるリラクゼーションの相乗効果を発揮できる。さらに、全身入浴となる水圧により胸部を多少圧迫した入浴状態であっても、高濃度酸素を吸入できることで酸素不足に陥りにくい為、長湯が可能で温浴効果を促進できる。また、酸素吸入による覚醒作用を発揮できる。   As a result, the bather can take a bath while sucking high-concentration oxygen obtained from the air outside the bathroom 11, and can exhibit a synergistic effect of relaxation by bathing, high-concentration oxygen inhalation, and quiet micro-bubble bathing. Furthermore, even in a bathing state in which the chest is slightly compressed by water pressure for whole body bathing, high concentration oxygen can be inhaled, so that it is difficult to fall short of oxygen. Moreover, the awakening effect by oxygen inhalation can be exhibited.

なお、本実施の形態では加圧液導入管32につながる流入口31を、器体30の周囲壁に接線方向に開口して設けているが、器体30の回転対称軸方向に速度成分を有するように流入口31を傾けて開口設置しても、混気水の流入流速が早ければ十分に、回転対称軸上に気体軸が生成されるので、気泡核の発生を促して同様の効果が得られる。   In the present embodiment, the inlet 31 connected to the pressurized liquid introduction pipe 32 is provided in a tangential direction on the peripheral wall of the container body 30, but the velocity component is applied in the rotational symmetry axis direction of the container body 30. Even if the inlet 31 is tilted so as to have an opening, a gas axis is generated on the rotationally symmetric axis as long as the inflow velocity of the mixed water is sufficiently high. Is obtained.

そして、器体30内の中空部29形状を気液噴出孔33にむかって先細り形状にしたことにより、流速が早くなるとともに流路抵抗が増大して圧力が大きくなり、増速に伴う気体軸の剪断力増大と気液噴出孔前後の圧力差の増大で、微細気泡の発生が促進される。また、器体30内の流路抵抗の増大に抗して液体を流通させるためにポンプ15の運転圧力を大きくして液体の導入圧力を増大させることになり、圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な微細気泡多量発生の両立が実現できる。   Then, the hollow portion 29 in the container body 30 is tapered toward the gas-liquid jet hole 33, so that the flow velocity is increased and the flow resistance is increased to increase the pressure. The generation of fine bubbles is promoted by the increase in the shearing force and the increase in the pressure difference before and after the gas-liquid ejection hole. Further, in order to circulate the liquid against the increase in the channel resistance in the vessel 30, the operating pressure of the pump 15 is increased to increase the liquid introduction pressure. This also increases the amount of generation of fine bubbles, which makes it possible to achieve both dust prevention and reliable generation of a large amount of fine bubbles.

その上、溶解気体を含む液体が気液噴出孔を出た直後の急減圧による微細気泡を発生した後も、その下流でさらに噴出流が勢いよく衝突部に衝突することにより微細気泡やその核の発生が生じて、より多くの高濃度酸素の微細気泡が発生することになるので、ゴミの付着防止と微細気泡の多量発生の両立が実現できる。   In addition, even after the liquid containing dissolved gas has generated fine bubbles due to sudden decompression immediately after exiting the gas-liquid jet holes, the jet flow further vigorously collides with the collision part downstream so that the fine bubbles and their nuclei As a result, more fine bubbles of high-concentration oxygen are generated. Therefore, it is possible to achieve both prevention of dust adhesion and generation of a large amount of fine bubbles.

(実施の形態2)
図4は本発明の第2の実施の形態における酸素富化浴槽装置の微細気泡発生部の斜視図、図5は同微細気泡発生部の断面図である。なお、第1の実施の形態の酸素富化浴槽装置と同一構造のものは同一符号を付与し、説明を省略する。図4〜5において、第1の実施の形態の構成と異なるところは、半球に円柱を接続した形状に形成された中空部37を有する器体38において、中空部37の回転対称軸の半球側の端部には、外側にバッフル板34が配置された気液噴出孔39が設けられている点にある。
(Embodiment 2)
FIG. 4 is a perspective view of the fine bubble generating part of the oxygen-enriched bathtub apparatus according to the second embodiment of the present invention, and FIG. 5 is a sectional view of the fine bubble generating part. In addition, the thing of the same structure as the oxygen enriched bathtub apparatus of 1st Embodiment gives the same code | symbol, and abbreviate | omits description. 4 to 5, the difference from the configuration of the first embodiment is that in a vessel body 38 having a hollow portion 37 formed in a shape in which a column is connected to a hemisphere, the hemispherical side of the rotational symmetry axis of the hollow portion 37. This is in that a gas-liquid ejection hole 39 in which a baffle plate 34 is disposed on the outside is provided at the end of the.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の酸素富化浴槽装置においてポンプ15を運転すると、吸い込まれた高濃度酸素空気が浴槽湯に加圧溶解されて混気水となり、微細気泡発生部28に搬送される。循環流路14を経て流入口31から器体38の中空部37に入った混気水は、内周壁の接線方向から流入するので中空部37の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体37の回転対称軸部に気体軸36が形成される。中空部37内の混気水は、旋回しながら気液噴出孔39に近づくにつれて断面積が縮小する先細り形状となっているので旋回半径が小さくなり流路も狭くなるので、気液噴出孔39付近でその旋回速度および圧力は最大となり、増速に伴う気体軸36の剪断力増大と気液噴出孔39前後の圧力差の増大で、気体軸が剪断された微細気泡が発生するとともに、圧力差で溶解しきれず析出する微細気泡の発生が促進される。   The operation and action of the above configuration will be described. When the pump 15 is operated in the oxygen-enriched bathtub apparatus of the embodiment shown in the figure, the sucked high-concentration oxygen air is pressurized and dissolved in the bathtub water to become mixed water, and is conveyed to the fine bubble generating unit 28. The air-mixed water that has entered the hollow portion 37 of the container body 38 from the inlet 31 through the circulation channel 14 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 37. The swirling motion of this water flow creates a pressure difference between the swirling outer periphery and the central portion, and the swirling outer periphery has a high pressure and the central portion has a low pressure. As a result, the dissolved gas is separated, and a gas shaft 36 is formed at the rotationally symmetric shaft portion of the vessel 37 serving as the center of rotation. Since the mixed water in the hollow portion 37 has a tapered shape in which the cross-sectional area decreases as it approaches the gas-liquid jet hole 39 while turning, the turning radius becomes smaller and the flow path becomes narrower. The swirling speed and pressure are maximized in the vicinity, and by increasing the shearing force of the gas shaft 36 and the increase of the pressure difference before and after the gas-liquid ejection hole 39 accompanying the increase in speed, fine bubbles with sheared gas shafts are generated, The generation of fine bubbles that cannot be completely dissolved and precipitate due to the difference is promoted.

このように、核となる微細気泡の発生を促進し、ゴミ付着を起こす微細流路なしに、確実に減圧分離による多量の微細気泡を発生することができる。また、器体内の流路抵抗の増大に抗して液体を流通させるために液体の導入圧力、すなわちポンプの動作圧力を増大させることになり、溶解液体の圧力が大きくなるので溶解する気体量も大きくなり、このことによっても微細気泡の発生量が大きくなり、ゴミの付着防止と確実な高濃度酸素空気の微細気泡多量発生の両立が実現できる。   In this way, it is possible to promote generation of micro bubbles as a core and reliably generate a large amount of micro bubbles by decompression separation without a micro flow path causing dust adhesion. In addition, the liquid introduction pressure, that is, the pump operating pressure is increased in order to circulate the liquid against the increase in the flow path resistance in the body, and the dissolved liquid pressure increases, so the amount of dissolved gas also increases. This also increases the amount of fine bubbles generated, and it is possible to achieve both prevention of dust adhesion and reliable generation of a large amount of fine bubbles of high-concentration oxygen air.

この結果、入浴者は浴室11外の空気から得られた高濃度の酸素を吸いながら入浴することが可能で、入浴と高濃度酸素吸入と静かな気泡入浴によるリラクゼーションの相乗効果を発揮できる。さらに、全身入浴となる水圧により胸部を多少圧迫した入浴状態であっても、高濃度酸素を吸入できることで酸素不足に陥りにくい為、長湯が可能で温浴効果を促進できる。また、酸素吸入による覚醒作用を発揮できる。   As a result, the bather can take a bath while sucking high-concentration oxygen obtained from the air outside the bathroom 11, and can exhibit the synergistic effect of relaxation by bathing, high-concentration oxygen inhalation, and quiet bubble bathing. Furthermore, even in a bathing state in which the chest is slightly compressed by water pressure for whole body bathing, high concentration oxygen can be inhaled, so that it is difficult to fall short of oxygen. Moreover, the awakening effect by oxygen inhalation can be exhibited.

(実施の形態3)
図6は本発明の第3の実施の形態における酸素富化浴槽装置の微細気泡発生部の断面図である。なお、第1の実施の形態および第2の実施の形態の酸素富化浴槽装置と同一構造のものは同一符号を付与し、説明を省略する。図6において、第1の実施の形態および第2の実施の形態の構成と異なるところは、円錐台形状に形成された中空部40を有するように器体41が構成され、中空部40の回転対称軸端部の小底円側に気液噴出孔42が設けられている点にある。
(Embodiment 3)
FIG. 6 is a cross-sectional view of the fine bubble generating portion of the oxygen-enriched bathtub apparatus according to the third embodiment of the present invention. In addition, the thing of the same structure as the oxygen enriched bathtub apparatus of 1st Embodiment and 2nd Embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 6, the difference from the configurations of the first embodiment and the second embodiment is that the container body 41 is configured to have a hollow portion 40 formed in a truncated cone shape, and the rotation of the hollow portion 40 is performed. The gas-liquid jet hole 42 is provided on the small bottom circle side of the end portion of the symmetrical axis.

以上の構成とすることにより、器体41内の中空部40形状を気液噴出孔42にむかって先細りの円錐台形状になっているので、実施の形態2と同様の効果が生じることは明らかである。   By adopting the above configuration, the shape of the hollow portion 40 in the vessel body 41 is tapered toward the gas-liquid ejection hole 42, so that it is clear that the same effect as in the second embodiment is produced. It is.

(実施の形態4)
図7は本発明の第4の実施の形態における酸素富化浴槽装置の微細気泡発生部の断面図である。なお、第1〜第3の実施の形態の酸素富化浴槽装置と同一構造のものは同一符号を付与し、説明を省略する。図7において、第1〜第3の実施の形態の構成と異なるところは、円柱形状に形成された中空部43を有するように器体44が有底有蓋円筒状に構成され、気液噴出孔45は中空部43の回転対称軸の両軸端の一方に開口し、器体44への流入口31を回転対称軸の軸長中心よりも気液噴出孔45側に設けるとともに、中空部43の周壁部近傍に径方向の複数の羽根46を有し、旋回流の旋回軸を回転軸とする羽根車47を中空部43内に設けられている点にある。
(Embodiment 4)
FIG. 7 is a cross-sectional view of the fine bubble generating part of the oxygen-enriched bathtub apparatus according to the fourth embodiment of the present invention. In addition, the thing of the same structure as the oxygen enriched bathtub apparatus of 1st-3rd embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 7, the difference from the configuration of the first to third embodiments is that the vessel body 44 is configured in a bottomed and covered cylindrical shape so as to have a hollow portion 43 formed in a columnar shape, and a gas-liquid ejection hole 45 opens to one of both axial ends of the rotationally symmetric axis of the hollow portion 43, and the inlet 31 to the container body 44 is provided closer to the gas / liquid ejection hole 45 than the axial length center of the rotationally symmetric axis. A plurality of blades 46 in the radial direction are provided in the vicinity of the peripheral wall portion, and an impeller 47 having a rotating shaft as a rotating shaft of the swirling flow is provided in the hollow portion 43.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプ15を運転することにより、空気が加圧溶解された混気水が流入口31から器体44の中空部43に内周壁の接線方向から流入する。この流れは中空部43の周壁に沿って旋回するとともに、中空部43の周壁部にある羽根46を周方向に押すことで羽根車47が旋回流とともに回転し、安定した旋回流を発生させる。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧に中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体44の回転対称軸部に気体軸36が形成される。   The operation and action of the above configuration will be described. By operating the pump 15 in the bubble generating device of the embodiment shown in the figure, the mixed water in which air is pressurized and dissolved flows from the inlet 31 into the hollow portion 43 of the container body 44 from the tangential direction of the inner peripheral wall. . The flow swirls along the peripheral wall of the hollow portion 43, and the impeller 47 rotates with the swirl flow by pushing the blades 46 on the peripheral wall portion of the hollow portion 43 in the circumferential direction, thereby generating a stable swirl flow. The swirling motion of this water flow causes a pressure difference between the swirling outer periphery and the central portion, and the swirling outer periphery is at a high pressure and the center is at a low pressure. As a result, the dissolved gas is separated, and a gas shaft 36 is formed on the rotationally symmetric shaft portion of the vessel 44 serving as the center of rotation.

このとき、中空部43は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気体軸36の形成が容易になる。この気体軸36を有する器体44内の旋回流が気液噴出孔45より噴出する際に、気体軸36が剪断されて微細気泡となり、噴出した混気水は噴出抵抗により減圧され、前述の微細気泡を核として溶解気体を分離し、多量の高濃度酸素空気の微細気泡を発生させることができる。   At this time, the hollow portion 43 becomes a substantially planar cylindrical space with both ends of the rotationally symmetric axis perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space, so that the swirling flow is disturbed. Since the flow velocity component in the axial direction is almost eliminated and only the flow velocity component of the swirl perpendicular to the swirl axis can be obtained, a strong and stable swirl flow can be generated, and the formation of the gas shaft 36 is facilitated. When the swirling flow in the container body 44 having the gas shaft 36 is ejected from the gas-liquid ejection hole 45, the gas shaft 36 is sheared into fine bubbles, and the ejected mixed water is decompressed by the ejection resistance, The dissolved gas is separated using the fine bubbles as nuclei, and a large amount of fine bubbles of high-concentration oxygen air can be generated.

このように、微細気泡発生部28を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   As described above, since the fine bubble generating portion 28 is not made of a fine orifice shape or a net, both reliable generation of fine bubbles and prevention of stagnation of dust can be achieved.

また、羽根車47の作用により旋回軸方向の流速成分に乱されることなく旋回流がより一層安定して生じるので、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   Further, since the swirl flow is generated more stably without being disturbed by the flow velocity component in the swirl axis direction by the action of the impeller 47, formation of the swivel center gas axis by depressurization of liquid near the swirl center and separation of dissolved gas. And a large amount of fine bubbles can be generated more reliably.

さらに、流入口31を気液噴出孔45側に近づけて配置し、流入口31から器体対称軸の他端までの距離を十分に設けることにより、流入口31から導入された混気水が気液噴出孔45へすぐに向かわず、他端の方へ旋回流を成長・促進することができるので旋回流が安定し、旋回中心近傍の混気水の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   Furthermore, by arranging the inlet 31 close to the gas-liquid ejection hole 45 side and providing a sufficient distance from the inlet 31 to the other end of the body symmetry axis, the mixed water introduced from the inlet 31 can be reduced. The swirl flow can be grown and promoted toward the other end instead of going directly to the gas-liquid jet hole 45, so that the swirl flow is stable, and the swirling center of the swirl center by the decompression of the mixed water near the swirl center and separation of dissolved gas Formation of the gas shaft can be ensured, and a large amount of fine bubbles can be generated more reliably.

なお、本実施の形態では器体44の周囲壁に接線方向に開口された流入口31に対して、中空部43の周壁部近傍に径方向の複数の羽根46を有し、旋回流の旋回軸を回転軸とする羽根車47を中空部43内に設けた構成としたが、循環流路14からの水流の力を受けて旋回を生じる羽根車であればよく、例えば中空部43の周壁部近傍では略径方向のひねり羽根を用いた構成や、器体44周囲壁接線方向から傾けて設けた流入口とひねり羽根との組み合わせでも同様の効果が得られる。   In the present embodiment, a plurality of radial blades 46 are provided in the vicinity of the peripheral wall portion of the hollow portion 43 with respect to the inflow port 31 opened in the tangential direction to the peripheral wall of the container body 44, and swirling of the swirling flow The impeller 47 having the shaft as the rotation shaft is provided in the hollow portion 43. However, the impeller 47 may be any impeller that can turn by receiving the force of the water flow from the circulation flow path 14. For example, the peripheral wall of the hollow portion 43. Similar effects can be obtained by a configuration using a substantially radial twist blade in the vicinity of the portion or a combination of an inlet and a twist blade provided inclined from the tangential direction of the peripheral wall of the vessel body 44.

(実施の形態5)
図8は本発明の第5の実施の形態における酸素富化浴槽装置の微細気泡発生部の斜視図である。なお、第1〜第4の実施の形態の酸素富化浴槽装置と同一構造のものは同一符号を付与し、説明を省略する。図8において、第1〜第4の実施の形態の構成と異なるところは、円柱形状に形成された中空部43を有するように器体44が有底有蓋円筒状に構成され、器体44周囲壁円周上の回転対称軸を挟んで対向する位置に接線方向に開口した2つの流入口48が設けられ、分岐した2本の加圧液導入管49を通って2つの流入口49から混気水が中空部43に送られるようになっているとともに、気液噴出孔45は中空部43の回転対称軸の両軸端の一方に開口し、2つの流入口49は気液噴出孔45側に近づけて配置され、流入口49と気液噴出孔45との距離が回転対称軸軸長の半分よりも短くなっている点にある。
(Embodiment 5)
FIG. 8 is a perspective view of the fine bubble generating part of the oxygen-enriched bathtub apparatus in the fifth embodiment of the present invention. In addition, the thing of the same structure as the oxygen enriched bathtub apparatus of 1st-4th embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 8, the difference from the configuration of the first to fourth embodiments is that the container body 44 is formed in a bottomed and covered cylindrical shape so as to have a hollow portion 43 formed in a columnar shape, and the periphery of the container body 44. Two inflow ports 48 opened in a tangential direction are provided at positions facing each other across the rotational symmetry axis on the wall circumference, and mixed from the two inflow ports 49 through the two branched pressurized liquid introduction pipes 49. Gas water is sent to the hollow portion 43, and the gas / liquid ejection hole 45 opens to one of both axial ends of the rotational symmetry axis of the hollow portion 43, and the two inflow ports 49 are the gas / liquid ejection holes 45. The distance between the inflow port 49 and the gas-liquid jet hole 45 is shorter than half the axial length of the rotationally symmetric axis.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプ15を運転することにより、高濃度酸素の空気が加圧溶解された混気水が2つの流入口49から器体44の中空部43に内周壁の接線方向から流入し、中空部43の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧になり中心部は低圧になるので、旋回中心近傍では導入された混気水の一部に減圧が生じて溶解気体が分離するとともに、旋回中心となる器体44の回転対称軸部に気体軸が形成される。   The operation and action of the above configuration will be described. By operating the pump 15 in the bubble generating apparatus of the embodiment shown in the figure, the mixed water in which high-concentration oxygen air is pressurized and dissolved is supplied from the two inlets 49 to the hollow portion 43 of the container body 44. From the direction of the tangent of, and swivels along the peripheral wall of the hollow portion 43. Due to the swirling motion of the water flow, a pressure difference is generated between the swirling outer peripheral portion and the central portion, and the swirling outer peripheral portion has a high pressure and the central portion has a low pressure. As a result, the dissolved gas is separated, and a gas axis is formed at the rotationally symmetric shaft portion of the vessel 44 serving as the center of rotation.

このとき、中空部43は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気体軸の形成が容易になる。   At this time, the hollow portion 43 becomes a substantially planar cylindrical space with both ends of the rotationally symmetric axis perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space, so that the swirling flow is disturbed. Since the flow velocity component in the axial direction is almost eliminated and only the flow velocity component of the swirl perpendicular to the swirl axis can be obtained, a strong and stable swirl flow can be generated, and the formation of the gas shaft is facilitated.

この気体軸を有する器体44内の旋回流が気液噴出孔45より噴出する際に、気体軸が剪断されて微細気泡となり、噴出した混気水は噴出抵抗により減圧され、前述の微細気泡を核として溶解気体を分離し、多量の微細気泡を発生させることができる。このように、微細気泡発生部28を微細なオリフィス形状や網を用いたものにしないので、確実な微細気泡発生とゴミの付着停滞防止の両立を図ることができる。   When the swirling flow in the container body 44 having the gas axis is ejected from the gas-liquid ejection hole 45, the gas axis is sheared to become fine bubbles, and the ejected mixed water is decompressed by the ejection resistance, and the fine bubbles are It is possible to separate dissolved gas by using as a nucleus and generate a large amount of fine bubbles. As described above, since the fine bubble generating portion 28 is not made of a fine orifice shape or a net, both reliable generation of fine bubbles and prevention of stagnation of dust can be achieved.

また、旋回流の同一円周上に2つの流入口49を備えて、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心近傍の液体の減圧と溶解気体分離による旋回中心の気体軸の形成を確保し、微細気泡の多量発生をより確実に実現することができる。   In addition, since two inflow ports 49 are provided on the same circumference of the swirl flow and swirl is promoted from a plurality of locations in the same rotation direction, a strong and stable swirl flow can be generated, and the liquid near the swirl center can be generated. It is possible to secure the formation of a gas axis at the center of rotation by reducing the pressure and separating the dissolved gas, and more reliably generate a large amount of fine bubbles.

なお、本実施の形態では器体44周囲壁円周上の対向する位置に2つの流入口49を設けた構成としたが、中空部43周壁の同一円周上に対向しなくとも所定の間隔を置いて2個以上配置した構成としても同様の効果が得られる。   In the present embodiment, the two inlets 49 are provided at opposite positions on the circumference of the peripheral wall of the vessel body 44. However, a predetermined interval may be used even if they do not face the same circumference of the peripheral wall of the hollow portion 43. A similar effect can be obtained even when two or more of the components are arranged.

以上のように、本発明にかかる酸素富化浴槽装置は微細気泡発生部を微細なオリフィス形状や網状部材の使用を避けて確実な微細気泡発生とゴミの付着停滞防止の両立を図ることが可能となるので、微細気泡風呂や、湖沼などの汚濁水の水質浄化装置、溶存酸素濃度増加用などの曝気装置、水生生物などの養殖用装置、飲料水や食品の改質装置、健康福祉機器、気液反応装置等の用途にも適用できる。   As described above, the oxygen-enriched bathtub apparatus according to the present invention can achieve both the generation of fine bubbles and the prevention of stagnation of dust by avoiding the use of a fine orifice shape or a net-like member in the fine bubble generation unit. Therefore, a microbubble bath, water purification equipment for polluted water such as lakes, aeration equipment for increasing dissolved oxygen concentration, aquaculture equipment such as aquatic organisms, drinking water and food reforming equipment, health and welfare equipment, It can also be applied to uses such as gas-liquid reactors.

本発明の実施の形態1における酸素富化浴槽装置の全体構成図Overall configuration diagram of oxygen-enriched bathtub apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における酸素富化浴槽装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 1 of this invention 本発明の実施の形態1における酸素富化浴槽装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 1 of this invention 本発明の実施の形態2における酸素富化浴槽装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 2 of this invention 本発明の実施の形態2における酸素富化浴槽装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 2 of this invention 本発明の実施の形態3における酸素富化浴槽装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 3 of this invention. 本発明の実施の形態4における酸素富化浴槽装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 4 of this invention. 本発明の実施の形態5における酸素富化浴槽装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the oxygen enriched bathtub apparatus in Embodiment 5 of this invention 従来の酸素富化浴槽装置の全体構成図Overall configuration diagram of a conventional oxygen-enriched bathtub apparatus

10 浴槽湯循環装置
12 浴槽
14 循環回路
17 酸素富化装置
23 酸素配管
29、37、40、43 中空部
30、38、41、44 器体
31、48 流入口
32、49 加圧液導入管
33 気液噴出孔
34 衝突部
36 気体軸
39、42、45 気液噴出孔
46 羽根
47 羽根車
DESCRIPTION OF SYMBOLS 10 Bath hot water circulation device 12 Bath 14 Circulation circuit 17 Oxygen enrichment device 23 Oxygen piping 29, 37, 40, 43 Hollow part 30, 38, 41, 44 Body 31, 48 Inlet port 32, 49 Pressurized liquid introduction pipe 33 Gas-liquid ejection hole 34 Colliding part 36 Gas shaft 39, 42, 45 Gas-liquid ejection hole 46 Blade 47 Impeller

Claims (6)

浴槽の湯が循環する浴槽湯循環装置と循環回路と、高濃度の酸素を供給する酸素富化装置と、前記酸素富化装置と前記循環回路との間に設けた酸素配管と、高濃度酸素を前記浴槽へ吹き出す略回転対称に形成された中空部を有する器体と、前記器体の周壁部に接線方向に開口された流入口と、前記流入口に接続される加圧液導入管と、前記器体に開口した気液噴出孔とを備え、気体が加圧溶解した液体を前記流入口に導入して前記器体内で旋回流とし前記気液噴出孔より噴出させることで、減圧が生じて気泡を発生できるとともに、前記気液噴出孔は前記器体中空部の回転対称軸の両軸端の一方に開口し、前記器体の流入口を前記回転対称軸の軸長中心よりも前記気液噴出孔側に設けた酸素富化浴槽装置。 Bathtub hot water circulation device and a circulation circuit for circulating hot water in the bathtub, an oxygen enrichment device for supplying high concentration oxygen, an oxygen pipe provided between the oxygen enrichment device and the circulation circuit, and high concentration oxygen A container having a hollow portion formed in a substantially rotationally symmetric manner, and an inlet opening tangentially to the peripheral wall of the container, and a pressurized liquid inlet pipe connected to the inlet A gas-liquid ejection hole opened in the vessel body, and a liquid in which a gas is pressurized and dissolved is introduced into the inflow port to be swirled in the vessel body and ejected from the gas-liquid ejection hole, thereby reducing the pressure. The gas-liquid jet hole opens at one of both ends of the rotationally symmetric axis of the hollow part of the vessel body, and the inlet of the vessel is located at the axial length center of the rotationally symmetric axis. An oxygen-enriched bathtub device provided on the gas-liquid jet hole side . 器体の周壁部に接線方向に開口された流入口は、前記器体の周壁部の円周上に所定の間隔を置いて複数個備えた請求項1記載の酸素富化浴槽装置。 The oxygen-enriched bathtub apparatus according to claim 1 , wherein a plurality of inflow ports opened in a tangential direction to the peripheral wall portion of the vessel body are provided at predetermined intervals on the circumference of the peripheral wall portion of the vessel body. 器体は略中空円筒状に形成された請求項1または2に記載の酸素富化浴槽装置。 The oxygen-enriched bathtub apparatus according to claim 1 or 2 , wherein the vessel body is formed in a substantially hollow cylindrical shape. 器体の気液噴出孔と所定の間隔を有して前記器体外部に噴出流が衝突する衝突部を備えた請求項1〜3のいずれか1項に記載の酸素富化浴槽装置。 The oxygen-enriched bathtub apparatus according to any one of claims 1 to 3 , further comprising a collision portion that has a predetermined interval from a gas-liquid ejection hole of the container body and that the ejection flow collides with the outside of the container body. 器体中空部の周壁部近傍に羽根を有し、旋回流の旋回軸を回転軸とする羽根車を器体内に設けた請求項1〜4のいずれか1項に記載の酸素富化浴槽装置。 The oxygen-enriched bathtub apparatus according to any one of claims 1 to 4 , further comprising: vanes in the vicinity of the peripheral wall portion of the hollow portion of the vessel body, and an impeller having a rotating shaft as a rotation axis of the swirling flow provided in the vessel body. . 気液噴出孔は旋回流の旋回軸の両軸端の一方に開口し、器体は前記気液噴出孔にむかって断面積が縮小する先細り形状とした請求項1〜5のいずれか1項に記載の酸素富化浴槽装置。 Liquid ejection holes is opened in one of the two axial ends of the pivot axis of the swirling flow, Utsuwatai the claim 1 which has a tapered shape to reduce the cross-sectional area toward the gas-liquid jet holes The oxygen-enriched bathtub device as described in 1.
JP2003433097A 2003-12-26 2003-12-26 Oxygen enriched bathtub equipment Expired - Fee Related JP4305178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433097A JP4305178B2 (en) 2003-12-26 2003-12-26 Oxygen enriched bathtub equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433097A JP4305178B2 (en) 2003-12-26 2003-12-26 Oxygen enriched bathtub equipment

Publications (2)

Publication Number Publication Date
JP2005185665A JP2005185665A (en) 2005-07-14
JP4305178B2 true JP4305178B2 (en) 2009-07-29

Family

ID=34790584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433097A Expired - Fee Related JP4305178B2 (en) 2003-12-26 2003-12-26 Oxygen enriched bathtub equipment

Country Status (1)

Country Link
JP (1) JP4305178B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257586B2 (en) * 2008-07-07 2013-08-07 秀雄 山▲崎▼ Swivel type micro bubble generator
WO2012008805A2 (en) * 2010-07-15 2012-01-19 한국기계연구원 Micro bubble generation device based on rotating unit
JP5334141B2 (en) * 2011-10-31 2013-11-06 株式会社御池鐵工所 Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water

Also Published As

Publication number Publication date
JP2005185665A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
KR101829734B1 (en) Serve nano micro bubble generator
JP6483303B2 (en) Gas-liquid dissolution tank and fine bubble generator
JP5748162B2 (en) Swivel unit-based microbubble generator
US6382601B1 (en) Swirling fine-bubble generator
JP5573879B2 (en) Microbubble generator
KR101192809B1 (en) Apparatus for Generating Water Containing Micro-Nano Bubbles
WO2001097958A9 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP2002085949A (en) Device for generating superfine air bubble
KR101053488B1 (en) Fine Bubble Nozzle
JP2008161825A (en) Gas dissolving device
JP2007069071A (en) Minute bubble generator and minute bubble circulation system incorporated with it
KR20170104351A (en) Apparatus for generating micro bubbles
JP2014097449A5 (en)
JP2008006397A (en) Microbubble generation apparatus
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
JP2008161822A (en) Gas dissolving device and microbubble feeding device
JP2002273183A (en) Gas-liquid mixing and dissolving apparatus
CN112177107A (en) Water outlet device
CN207899270U (en) Bubble maker
JP6646300B2 (en) Bubble generator for sewage purification and sewage purification method
JP4305178B2 (en) Oxygen enriched bathtub equipment
KR20210081666A (en) Ultra fine bubble generating system with coil-shaped nozzle
JP2011115674A (en) Micronization mixer
CN211395013U (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
JP2005288052A (en) Carbonic acid bath apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees