JP2005288052A - Carbonic acid bath apparatus - Google Patents

Carbonic acid bath apparatus Download PDF

Info

Publication number
JP2005288052A
JP2005288052A JP2004111795A JP2004111795A JP2005288052A JP 2005288052 A JP2005288052 A JP 2005288052A JP 2004111795 A JP2004111795 A JP 2004111795A JP 2004111795 A JP2004111795 A JP 2004111795A JP 2005288052 A JP2005288052 A JP 2005288052A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
hot water
liquid
carbonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004111795A
Other languages
Japanese (ja)
Inventor
Ryuta Kondo
龍太 近藤
Hideki Ono
英樹 大野
Masamitsu Kondo
正満 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004111795A priority Critical patent/JP2005288052A/en
Publication of JP2005288052A publication Critical patent/JP2005288052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonic acid bath apparatus capable of creating a carbonate spring with a large free carbon dioxide concentration in a simple constitution at low cost by efficiently dissolving carbon dioxide in bathtub water. <P>SOLUTION: A vessel body 30 having a hollow part 29 is provided at the end of a circulating track 14 of a bathtub hot water circulating device 10 circulating the hot water in the bathtub 12 by a pump 15, and the bathtub hot water and the carbon dioxide are circulated in the hollow part 29 and jetted out inside the bathtub 12 as fine air bubbles. This constitution can efficiently dissolve the carbon dioxide in the bathtub hot water to create the carbonate spring with the large free carbon dioxide concentration in the simple constitution at the low cost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浴槽の湯を循環させる回路に、高濃度の炭酸を加圧混入し浴槽内の浴槽湯へ微細気泡として放出する炭酸風呂装置に関するものである。   The present invention relates to a carbonated bath apparatus that pressurizes and mixes high-concentration carbon dioxide in a circuit for circulating hot water in a bathtub and discharges it as fine bubbles to the bathtub hot water in the bathtub.

遊離炭酸を含有する炭酸泉に入浴すると、炭酸泉内の炭酸成分が皮膚下の毛細血管に作用してこの毛細血管を拡張させ、これにより入浴者の血行が改善されて入浴者の疲労回復や健康増進が図れる。このように疲労回復等を図るべく浴槽湯に炭酸ガスを溶解させるようにした炭酸風呂装置として従来、給湯装置の燃焼排ガスに浴槽への供給水を散布する構成で炭酸ガスを溶解させるものがあった(例えば特許文献1参照)。図11は、特許文献に記載された従来の炭酸風呂装置を示すものである。図11に示すように、給湯用バーナ1により加熱される給湯用熱交換器2を介してシャワー、給湯栓等に給湯する給湯配管3と、給湯配管3より分岐して浴槽4へ給湯する分岐配管5を備え、給湯用熱交換器2の排気から排熱を回収する気液接触室6には水道水を供給して、得られた温水を分岐配管5に合流させることで炭酸ガスを溶解させるものである。   When bathing in a carbonated spring containing free carbonic acid, the carbonate component in the carbonated spring acts on the capillaries under the skin to expand the capillaries, thereby improving the blood circulation of the bather and improving the bather's fatigue and health. Can be planned. As a carbonated bath apparatus in which carbon dioxide gas is dissolved in bathtub water so as to recover from fatigue and the like, there is a conventional one that dissolves carbon dioxide gas in a configuration in which water supplied to the bathtub is sprayed on the combustion exhaust gas of the water heater. (See, for example, Patent Document 1). FIG. 11 shows a conventional carbonated bath apparatus described in the patent literature. As shown in FIG. 11, a hot water supply pipe 3 for supplying hot water to a shower, a hot water tap, etc. via a hot water supply heat exchanger 2 heated by a hot water supply burner 1, and a branch branched from the hot water supply pipe 3 to supply hot water to a bathtub 4. Supplying tap water to the gas-liquid contact chamber 6 provided with piping 5 and recovering exhaust heat from the exhaust of the hot water supply heat exchanger 2, and melting the carbon dioxide gas by joining the obtained hot water to the branch piping 5 It is something to be made.

また、他の従来の炭酸風呂装置としては、例えば、中空糸膜を用いて中空糸膜の中空部に炭酸ガスを通し、炭酸ガスを温水に溶解するものがあった(特許文献2参照)。   Moreover, as another conventional carbonated bath apparatus, for example, there is a device that uses a hollow fiber membrane to pass carbon dioxide through the hollow portion of the hollow fiber membrane and dissolve the carbon dioxide in warm water (see Patent Document 2).

図12において、浴槽の湯を送るポンプ7と中空糸膜を内蔵した炭酸ガス溶解器8を接続して循環路を構成し、この溶解器8の流入口から流入した温水が中空糸膜表面を通過する際に中空糸膜と接触することにより、炭酸ガスボンベ9から中空糸膜に注入された炭酸ガスが温水に溶解されるようになっている。
特開平5−137662号公報 特開平7−313855号公報
In FIG. 12, a pump 7 for feeding hot water from a bathtub and a carbon dioxide gas dissolver 8 incorporating a hollow fiber membrane are connected to constitute a circulation path, and the hot water flowing from the inlet of the dissolver 8 flows over the surface of the hollow fiber membrane. By contacting the hollow fiber membrane when passing, the carbon dioxide gas injected from the carbon dioxide cylinder 9 into the hollow fiber membrane is dissolved in the warm water.
Japanese Patent Laid-Open No. 5-137762 JP 7-313855 A

しかしながら、一般に炭酸ガスをエゼクタなどで温水の流れに単に混入させるだけの方法や、気液接触室内の噴霧による溶解方法では、1000ppmに近い(例えば500〜1000ppm)十分な遊離炭酸濃度を得ることは困難である。そこで、上記特許文献1の従来の炭酸風呂装置では、少しでも炭酸ガスの溶解度を向上させるために気液接触室6内で温度の低い水を炭酸ガスに接触させるようにしているが、下流で給湯配管3から来る温水と混合しているので炭酸濃度が下がる。また気液接触室6での溶解度を向上するために炭酸ガスと水との接触時間および接触面積を大きくするには装置が複雑になり、また噴霧水の粒径を微細化するには高圧ポンプが必要になるなどコストアップになるという課題を有していた。   However, in general, a method in which carbon dioxide gas is simply mixed into the flow of hot water with an ejector or a dissolution method by spraying in a gas-liquid contact chamber can obtain a sufficient free carbonic acid concentration close to 1000 ppm (for example, 500 to 1000 ppm). Have difficulty. Therefore, in the conventional carbonated bath device of Patent Document 1, water having a low temperature is brought into contact with carbon dioxide in the gas-liquid contact chamber 6 in order to improve the solubility of carbon dioxide even slightly. Since it is mixed with hot water coming from the hot water supply pipe 3, the carbonic acid concentration is lowered. Further, in order to improve the solubility in the gas-liquid contact chamber 6, the apparatus is complicated to increase the contact time and contact area between carbon dioxide gas and water, and the high pressure pump is used to reduce the particle size of the spray water. However, there was a problem that the cost would be increased.

また、上記特許文献2の他の従来の炭酸風呂装置では、中空糸膜のコストが高く、浴槽中のゴミなどの異物で目詰まりを起こしやすいので、その場合には中空糸膜交換の手間と費用が掛かってしまうといった課題があった。   Moreover, in the other conventional carbonated bath apparatus of the said patent document 2, since the cost of a hollow fiber membrane is high and it is easy to raise | generate clogging with foreign materials, such as the dust in a bathtub, in that case, the effort of hollow fiber membrane replacement | exchange is required. There was a problem that it would be expensive.

本発明は前記従来の課題を解決するもので、浴室外に設けた炭酸富化装置から高濃度二酸化炭素ガスを浴槽湯循環回路へ混合供給し、浴槽へ噴出する際に高濃度二酸化炭素ガスを浴槽湯に効率よく溶解させて、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることが可能な炭酸風呂装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and a high concentration carbon dioxide gas is mixed and supplied from a carbon dioxide enrichment device provided outside the bathroom to the bathtub hot water circulation circuit, and the high concentration carbon dioxide gas is ejected to the bathtub. An object of the present invention is to provide a carbonated bath apparatus that can be efficiently dissolved in bath water and can produce a carbonated spring having a high free carbonate concentration at a low cost with a simple configuration.

前記従来の課題を解決するために、本発明の炭酸風呂装置は、浴槽の湯が循環する循環回路と、高濃度の炭酸を供給する炭酸富化装置との間を炭酸配管で接続し、浴槽に湯を流出する循環回路の終端に設けた中空部を有する器体と、器体に開口された流入口と、循環回路から流入口に接続される加圧液導入管と、器体に開口した気液噴出孔とを備え、浴槽湯と炭酸富化装置から出る高濃度二酸化炭素ガスとを導入して器体内で旋回流とし気液噴出孔より噴出させることで、二酸化炭素を湯に溶解させる構成としたものである。   In order to solve the above-mentioned conventional problems, a carbonated bath apparatus of the present invention connects a circulation circuit through which hot water in a bathtub circulates and a carbonate enrichment apparatus that supplies high-concentration carbonate with a carbonate pipe, A vessel having a hollow portion provided at the end of the circulation circuit for flowing out hot water, an inlet opening in the vessel, a pressurized liquid introduction pipe connected to the inlet from the circulation circuit, and an opening in the vessel The gas-liquid injection hole is used, and the hot water in the bath and the high-concentration carbon dioxide gas emitted from the carbon dioxide enrichment device are introduced to make a swirl flow in the vessel, and the carbon dioxide is dissolved in the hot water. It is set as the structure to be made.

これによって、浴室外部に設けた炭酸富化装置で高濃度にした炭酸が生成され、生成された高濃度の炭酸は炭酸配管を通過して器体内で旋回することで気液が激しく接触し二酸化炭素が湯に溶解したり、あるいは生じた摩擦と剪断で多量の高濃度二酸化炭素微細気泡が発生して、湯との接触面積が著しく増加することで多くの二酸化炭素が湯に溶解しやすくなった状態で、気液噴出孔からより浴槽内へ噴出させる。   As a result, high-concentration carbonic acid is generated by a carbonic acid enrichment device provided outside the bathroom, and the generated high-concentration carbonic acid passes through the carbonic acid piping and swirls inside the vessel, causing intense contact between gas and liquid, and carbon dioxide. Carbon dissolves in hot water, or a large amount of high-concentration carbon dioxide microbubbles are generated due to the friction and shear generated, and the contact area with hot water increases significantly, so that much carbon dioxide is easily dissolved in hot water. In this state, the gas is ejected from the gas / liquid ejection hole into the bathtub.

本発明の炭酸風呂装置は、高濃度二酸化炭素ガスを浴槽湯に効率よく溶解させて、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができ、手軽に高濃度遊離炭酸の炭酸泉に入浴できるようになる。   The carbonated bath apparatus of the present invention can efficiently dissolve high-concentration carbon dioxide gas in bath water, and can easily create a carbonated spring with a high free carbonic acid concentration with a simple structure at a low cost. You can take a bath.

第1の発明は、浴槽の湯が循環する浴槽湯循環装置と循環回路と、高濃度の二酸化炭素ガスを供給する炭酸富化装置と、炭酸富化装置と循環回路との間に設けた炭酸配管と、浴槽に湯を流出する循環回路終端に設けた中空部を有する器体と、器体に開口された流入口と、循環回路から流入口に接続される加圧液導入管と、器体に開口した気液噴出孔とを備え、浴槽湯と炭酸富化装置から出る高濃度二酸化炭素ガスとを導入して器体内で旋回流とし気液噴出孔より噴出させることで、二酸化炭素を湯に溶解させるようにしたことで、浴槽湯と高濃度二酸化炭素ガスが器体内で旋回流になると、気体と液体の比重差により高濃度二酸化炭素ガスが旋回中心部に収束して気体軸が形成され、気液が激しく接触し摩擦と剪断が生じる。この接触時に二酸化炭素が湯に溶解するとともに、気体軸を有する器体内の旋回流が気液噴出孔より噴出しながら気体軸が剪断されて、高濃度二酸化炭素がミクロンオーダーの多量の微細気泡となり、湯との接触面積が著しく増加することでさらに多くの二酸化炭素が湯に溶解しやすくなり、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   The first invention is a bathtub hot water circulation device and a circulation circuit through which hot water in a bathtub circulates, a carbon dioxide enrichment device for supplying high-concentration carbon dioxide gas, and a carbonic acid provided between the carbon dioxide enrichment device and the circulation circuit. A pipe, a vessel having a hollow portion provided at the end of the circulation circuit for flowing hot water into the bathtub, an inlet opening in the vessel, a pressurized liquid introduction pipe connected to the inlet from the circulation circuit, and a vessel It is equipped with a gas-liquid jet hole that opens in the body, and introduces high-concentration carbon dioxide gas from the bath water and carbonic acid enrichment device to make a swirl flow in the body and to blow out carbon dioxide from the gas-liquid jet hole When bath water and high-concentration carbon dioxide gas are swirling in the vessel, the high-concentration carbon dioxide gas converges on the swirling center due to the difference in specific gravity between the gas and liquid, and the gas axis It is formed, and the gas-liquid contacts vigorously and friction and shear occur. At the time of this contact, carbon dioxide dissolves in the hot water, and the swirling flow in the container having the gas axis is ejected from the gas-liquid jet hole, the gas axis is sheared, and high-concentration carbon dioxide becomes a large number of micro bubbles on the order of microns. Since the contact area with hot water is remarkably increased, more carbon dioxide is easily dissolved in hot water, and a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure at low cost.

第2の発明は、特に、第1の発明の器体の中空部を略回転対称に形成し、流入口は器体の周壁部に接線方向に開口されて構成することにより、器体内に強い旋回流を生じさせることが可能になるので、気液の接触度合と剪断が大きくなり、浴槽湯への二酸化炭素の溶解がより促進されて、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   According to the second invention, in particular, the hollow portion of the container body of the first invention is formed substantially rotationally symmetric, and the inflow port is configured to be opened in a tangential direction to the peripheral wall portion of the container body. Since it is possible to generate a swirling flow, the degree of gas-liquid contact and shear are increased, and the dissolution of carbon dioxide in bath water is further promoted. Can be made.

第3の発明は、特に、第2の発明の器体の周壁部に接線方向に開口された流入口が、器体の周壁部の円周上に所定の間隔を置いて複数個備えることにより、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心の気体軸の形成を確保し、気液の接触と剪断を強めるとともに、微細気泡の多量発生を進めることで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In the third invention, in particular, a plurality of inflow ports opened in a tangential direction to the peripheral wall portion of the container body of the second invention are provided at predetermined intervals on the circumference of the peripheral wall portion of the container body. , Because it promotes swirling from multiple locations in the same rotation direction, it can generate a strong and stable swirling flow, ensuring the formation of the gas axis at the swiveling center, strengthening gas-liquid contact and shearing, and fine bubbles The amount of dissolved carbon dioxide can be increased by advancing the generation of a large amount of carbon dioxide, and a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure at a low cost.

第4の発明は、特に、第1〜3の発明のいずれか1つの発明の器体を略中空円筒状に形成することにより、円筒状器体の内部中空部は、回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができ、気液の接触と剪断を強めるとともに、微細気泡の多量発生を進めることで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In the fourth aspect of the invention, in particular, the inner hollow part of the cylindrical body is formed at the both ends of the rotational symmetry axis by forming the body of any one of the first to third aspects into a substantially hollow cylindrical shape. It becomes a substantially planar cylindrical space perpendicular to the axis, and liquid flows in tangentially from the circumference of this cylindrical space, so that there is almost no flow velocity component in the swirl axis direction disturbing the swirl flow, and perpendicular to the swivel axis. Since it is possible to make only the flow velocity component of a simple swirl, a strong and stable swirl flow can be generated, the gas-liquid contact and shear are strengthened, and the amount of dissolved carbon dioxide is reduced by advancing the generation of a large amount of fine bubbles. A carbonated spring with a high free carbonic acid concentration can be made with a simple structure and at a low cost.

第5の発明は、特に、第1〜4の発明のいずれか1つの発明の器体の気液噴出孔と所定の間隔を有して器体外部に噴出流が衝突する衝突部を備えることにより、器体内の高濃度二酸化炭素ガスと湯が気液噴出孔を出る際に微細気泡を発生した後流で、この噴出流が勢いよく衝突部に衝突することにより、さらに気泡が剪断されて多くの微細気泡が発生するので、湯との接触面積が著しく増加することでより多くの二酸化炭素が湯に溶解しやすくなり、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In particular, the fifth aspect of the present invention includes a collision portion that has a predetermined interval from the gas-liquid ejection hole of the container body according to any one of the first to fourth aspects of the present invention and that collides the ejection flow outside the container body. As a result, the high-concentration carbon dioxide gas and hot water in the vessel generate fine bubbles when they exit the gas-liquid jet holes, and this jet stream vigorously collides with the collision part, resulting in further shearing of the bubbles. Since many fine bubbles are generated, the area of contact with hot water is significantly increased, so that more carbon dioxide is easily dissolved in hot water, and a carbonated spring with a high free carbonic acid concentration can be made with a simple structure at low cost. .

第6の発明は、特に、第1〜5の発明のいずれか1つの発明の器体中空部の周壁部近傍に羽根を有し、旋回流の旋回軸を回転軸とする羽根車を器体内に設けることにより、流入口から導入された液体の流れにより中空部周壁部にある羽根が接線方向に力を受けて羽根車が旋回流とともに回転し、旋回軸方向の流速成分に乱される等の影響を防止して旋回流を安定させることができ、気液の接触と剪断を強めるとともに、羽根による気泡の剪断微細化効果も加わり、微細気泡の多量発生を促進することで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In particular, the sixth aspect of the invention includes an impeller having blades in the vicinity of the peripheral wall portion of the hollow portion of the vessel body according to any one of the first to fifth aspects of the invention, and an impeller having a rotating shaft as a rotation axis of the swirling flow. The blades on the peripheral wall of the hollow portion receive a force in the tangential direction due to the flow of the liquid introduced from the inlet, and the impeller rotates with the swirling flow, and is disturbed by the flow velocity component in the swirling axis direction, etc. In addition to strengthening gas-liquid contact and shearing, the effect of air bubble shearing and refinement is added, and the generation of a large amount of microbubbles is promoted to promote the dissolution of carbon dioxide. The amount can be increased, and a carbonated spring with a high free carbonic acid concentration can be produced at a low cost with a simple structure.

第7の発明は、特に、第1〜6の発明のいずれか1つの発明の気液噴出孔は旋回流の旋回軸の両軸端の一方に開口し、気液噴出孔と所定の間隔を有して器体外部に噴出流が衝突する衝突部を備え、衝突部一つの旋回軸の延長線上に炭酸配管と繋がる炭酸吸入部を設けた構成とすることにより、浴槽湯と高濃度二酸化炭素ガスが器体内で旋回流になると、気体と液体の比重差により高濃度二酸化炭素ガスが旋回中心部に収束して気体軸が形成され、気液が激しく接触し摩擦と剪断が生じる。また、旋回外周部は高圧に中心部は低圧になるので、気体軸が存在する旋回流の旋回軸部が負圧になり、衝突部に設けた炭酸吸入部から高濃度二酸化炭素ガスを自吸できるようになる。したがって高濃度二酸化炭素の供給構成が簡単になるとともに、気液噴出孔の数を増やしたり旋回流強化の構成にするなど器体形状の自由度が高まり、二酸化炭素の溶解促進が可能となるので、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In the seventh aspect of the invention, in particular, the gas / liquid ejection hole according to any one of the first to sixth aspects of the invention opens to one of both ends of the swirling axis of the swirling flow, and has a predetermined distance from the gas / liquid ejection hole. It has a collision part where the jet flow collides with the outside of the container body, and has a structure in which a carbonic acid suction part connected to the carbonic acid piping is provided on the extension line of one of the collision parts. When the gas turns into a swirl, the high-concentration carbon dioxide gas converges on the turning center due to the difference in specific gravity between the gas and the liquid, and a gas shaft is formed. In addition, since the swirling outer periphery has a high pressure and the central portion has a low pressure, the swirling shaft portion of the swirling flow in which the gas shaft exists has a negative pressure, and the high-concentration carbon dioxide gas is self-absorbed from the carbon dioxide suction portion provided in the collision portion. become able to. Therefore, the supply structure of high-concentration carbon dioxide is simplified, and the degree of freedom in the shape of the vessel is increased by increasing the number of gas-liquid jet holes and the structure of strengthening the swirl flow. A carbonated spring with a high free carbonic acid concentration can be produced at a low cost with a simple structure.

第8の発明は、特に、第1〜7の発明のいずれか1つの発明の気液噴出孔は旋回流の旋回軸軸端の両側に開口した構成とすることにより、気液噴出孔の数を増やすことで気液噴出孔から出る微細気泡量を増大させることができるので、湯との接触面積を増加させてさらに多くの二酸化炭素が湯に溶解しやすくなり、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In the eighth aspect of the invention, in particular, the number of gas-liquid ejection holes is determined by adopting a configuration in which the gas-liquid ejection holes of any one of the first to seventh inventions are opened on both sides of the swirling shaft end of the swirling flow. Can increase the amount of fine bubbles coming out of the gas-liquid ejection holes, increasing the contact area with hot water, making more carbon dioxide easier to dissolve in hot water, It can be made at low cost with a simple configuration.

第9の発明は、特に、第1〜8の発明のいずれか1つの発明の気液噴出孔は旋回流の旋回軸の両軸端の一方に開口し、器体は気液噴出孔にむかって断面積が縮小する先細り形状とすることにより、液体の旋回流の旋回半径が気液噴出孔に近づくにつれて小さくなり流路も狭くなるので、流速が早くなるとともに増速に伴う気液の接触度合と剪断力が大きくなり、気泡の微細化も促進されて浴槽湯への二酸化炭素の溶解が進み、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In the ninth aspect of the invention, in particular, the gas-liquid ejection hole of any one of the first to eighth aspects of the invention opens to one of both ends of the swirling shaft of the swirling flow, and the body is directed to the gas-liquid ejection hole. By making the cross-sectional area tapered, the swirl radius of the liquid swirl becomes smaller and the flow path becomes narrower as it approaches the gas-liquid jet hole, so that the flow rate becomes faster and the gas-liquid contact accompanying the increase in speed increases. The degree and shearing force are increased, and the refinement of bubbles is promoted, so that the dissolution of carbon dioxide in the bath water advances, and a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure at low cost.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施例の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the form of this Example.

(実施の形態1)
図1は本発明の第1の実施の形態における炭酸風呂装置のシステム全体構成図であり、図2は第1の実施の形態における炭酸風呂装置の微細気泡発生部の斜視図、図3は同微細気泡発生部の断面図である。
(Embodiment 1)
FIG. 1 is an overall system configuration diagram of a carbonated bath apparatus according to a first embodiment of the present invention, FIG. 2 is a perspective view of a fine bubble generating portion of the carbonated bath apparatus according to the first embodiment, and FIG. It is sectional drawing of a fine bubble generation | occurrence | production part.

図1〜図3において、浴槽湯循環装置10は、浴室11内の浴槽12のエプロン13下部に設けられており、循環回路14に設けられたポンプ15により浴槽12内のお湯を循環する。浴室11の外部に設けた炭酸富化装置16は、炭酸富化膜17と、送風ファン18と、真空ポンプ19と、逆止弁20とで構成され、給湯燃焼器21で発生し熱交換器22を経た排気ガスから炭酸富化膜17を通って濃縮された炭酸富化空気は高濃度二酸化炭素ガスとして炭酸配管23を通過して炭酸吸込口24へ入り、循環回路14へ混入する。浴槽12には浴槽湯が循環する吸込口25及び吐出口26が形成されている。吸込口25には循環回路14を介してポンプ15が連結されるとともに、このポンプ15には、高濃度炭酸を吸い込む炭酸吸込口24が連結されている。また、ポンプ15の下流側には溶解タンク27が配置され、ポンプ15と溶解タンク27との間は循環回路14によって連通されている。そして、浴槽12の吐出口26には微細気泡発生部28が設けられ、溶解タンク27と微細気泡発生部28との間は、循環回路14により連通されている。   In FIG. 1 to FIG. 3, the bathtub hot water circulation device 10 is provided below the apron 13 of the bathtub 12 in the bathroom 11 and circulates hot water in the bathtub 12 by a pump 15 provided in the circulation circuit 14. A carbonate enrichment device 16 provided outside the bathroom 11 is composed of a carbonate enrichment film 17, a blower fan 18, a vacuum pump 19, and a check valve 20, and is generated in a hot water combustor 21 and is a heat exchanger. The carbon-enriched air concentrated through the carbon-rich film 17 from the exhaust gas having passed through 22 passes through the carbonic acid piping 23 as high-concentration carbon dioxide gas, enters the carbonic acid suction port 24, and enters the circulation circuit 14. The bathtub 12 is formed with a suction port 25 and a discharge port 26 through which bath water circulates. A pump 15 is connected to the suction port 25 via the circulation circuit 14, and a carbonic acid suction port 24 for sucking high-concentration carbonic acid is connected to the pump 15. A dissolution tank 27 is disposed on the downstream side of the pump 15, and the pump 15 and the dissolution tank 27 are communicated with each other by the circulation circuit 14. The discharge port 26 of the bathtub 12 is provided with a fine bubble generation unit 28, and the dissolution tank 27 and the fine bubble generation unit 28 are communicated by the circulation circuit 14.

次に、図2および図3において微細気泡発生部28は、略長楕円球体状に形成された回転対称の中空部29を有する器体30と、器体30の周囲壁に設けられ回転対称軸に垂直な円形断面の接線方向に開口された流入口31と、循環回路14を連通する加圧液導入管32とで構成されるとともに、中空部29の回転対称軸の両端部には、それぞれ開口された気液噴出孔33が設けられ、この2つの気液噴出孔33の外側には衝突部である円形状のバッフル板34が配置されている。このバッフル板34は器体30から伸びた4本の支柱35によって2つの気液噴出孔33それぞれと所定の間隔を有して取り付けられている。   Next, in FIG. 2 and FIG. 3, the fine bubble generating portion 28 includes a vessel body 30 having a rotationally symmetric hollow portion 29 formed in a substantially elliptical sphere shape, and a rotationally symmetric axis provided on the peripheral wall of the vessel body 30. The inlet 31 is opened in a tangential direction with a circular cross section perpendicular to the pressure circuit, and the pressurized liquid introduction pipe 32 communicates with the circulation circuit 14. Opened gas-liquid ejection holes 33 are provided, and a circular baffle plate 34 that is a collision portion is disposed outside the two gas-liquid ejection holes 33. The baffle plate 34 is attached to each of the two gas-liquid ejection holes 33 with a predetermined interval by four support columns 35 extending from the vessel body 30.

以上のように構成された炭酸富化浴槽湯循環装置について、以下その動作・作用を説明する。真空ポンプ19で減圧されることで給湯燃焼器21の排気ガスが熱交換器22を経て炭酸富化膜17を通過し、高濃度二酸化炭素ガスとなり、炭酸配管23を通過し、循環回路14に混入され溶解タンク27内で一時貯められ、吐出口26から循環された浴槽湯と共に浴槽12へ噴出する。   The operation and action of the carbonated enriched bathtub hot water circulating apparatus configured as described above will be described below. By reducing the pressure by the vacuum pump 19, the exhaust gas of the hot water combustor 21 passes through the heat exchanger 22, passes through the carbon dioxide enriched film 17, becomes high-concentration carbon dioxide gas, passes through the carbonate pipe 23, and enters the circulation circuit 14. It is mixed, temporarily stored in the dissolution tank 27, and ejected to the bathtub 12 together with the bath water circulated from the discharge port 26.

ポンプ15を運転するとポンプの吸引力が生じて、浴槽12内の湯は吸込口25から、炭酸吸込口24からは高濃度二酸化炭素ガスが、循環回路14を介してポンプ15内に吸い込まれ、ポンプ15内から循環回路14を経て溶解タンク27にかけての部分で高濃度二酸化炭素ガスの一部は湯に加圧溶解される。そして、溶解タンク27内では溶解しきれなかった大部分の高濃度二酸化炭素ガスを含有する湯は気液二層流の混気水となり、循環回路14を通って微細気泡発生部28に搬送される。加圧液導入管32を経て流入口31を通り器体30の中空部29に入った混気水は、内周壁の接線方向から流入するので中空部29の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回速度が大きければ大きいほど外周部と中心部との圧力差は大きくなって、旋回外周部は高圧に中心部は低圧になる。そして旋回中心となる器体30の回転対称軸部に気体と液体の比重差によってこの高濃度二酸化炭素ガスが収束して細紐状の気体軸36が形成される。   When the pump 15 is operated, a suction force of the pump is generated, and hot water in the bathtub 12 is sucked into the pump 15 from the suction port 25 and from the carbonic acid suction port 24 through the circulation circuit 14. A portion of the high-concentration carbon dioxide gas is pressurized and dissolved in hot water in the portion from the pump 15 through the circulation circuit 14 to the dissolution tank 27. The hot water containing most of the high-concentration carbon dioxide gas that could not be dissolved in the dissolution tank 27 becomes a gas-liquid two-layer mixed water, and is conveyed to the fine bubble generating section 28 through the circulation circuit 14. The The mixed water that has entered the hollow portion 29 of the vessel body 30 through the inlet 31 through the pressurized liquid introduction pipe 32 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 29. Due to the swirling motion of the water flow, a pressure difference is produced between the outer periphery and the center of the swirl, and the larger the swirl speed, the greater the pressure difference between the outer periphery and the center. become. Then, the high-concentration carbon dioxide gas converges on the rotationally symmetric shaft portion of the vessel body 30 serving as the turning center due to the difference in specific gravity between the gas and the liquid, thereby forming a thin string-like gas shaft 36.

中空部29内の混気水は、旋回しながら2つの気液噴出孔33に近づくにつれて気液噴出孔33から流出するために旋回半径が小さくなり流路も狭くなるので、気液噴出孔33付近でその旋回速度および圧力は最大となり、外部側の水と気液噴出孔33の出口で押し合う状態になる。気体軸36に集まった高濃度二酸化炭素ガスは、この外部の水と旋回状態の混気水との境界面や境界域で圧縮、剪断され、微細気泡を含有した流体として2つの気液噴出孔33から外部の水中へ噴出される。噴出した流体はさらに噴出流で剪断されるものも含めて、高濃度二酸化炭素の微細気泡として多量に発生されるようになる。   Since the mixed water in the hollow portion 29 flows out of the gas-liquid jet holes 33 as it approaches the two gas-liquid jet holes 33 while turning, the turning radius is reduced and the flow path is also narrowed. In the vicinity, the turning speed and pressure become maximum, and the water on the outside side and the outlet of the gas-liquid jet hole 33 are pressed against each other. The high-concentration carbon dioxide gas collected on the gas shaft 36 is compressed and sheared at the boundary surface or boundary region between the external water and the swirling mixed water, and is formed into two gas-liquid ejection holes as fluid containing fine bubbles. 33 is ejected into the outside water. A large amount of the ejected fluid is generated as fine bubbles of high-concentration carbon dioxide, including those that are sheared by the ejected flow.

このように、混気水の旋回流で気液が激しく接触して摩擦と剪断が生じ、この接触時に二酸化炭素が湯に溶解するとともに、気体軸を有する器体内の旋回流が気液噴出孔より噴出しながら気体軸が剪断されて、高濃度二酸化炭素がミクロンオーダーの多量の微細気泡となり、湯との接触面積が著しく増加することでさらに多くの二酸化炭素が湯に溶解しやすくなる。一般に炭酸風呂の遊離炭酸濃度が100ppmあたりを超えると、入浴による血行促進効果が顕著になり、温熱効果や疲労回復のほか優れた生理的効果が生じるが、この様にして遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Thus, the gas-liquid is vigorously contacted by the swirling flow of the mixed water, causing friction and shearing. At the time of this contact, carbon dioxide dissolves in the hot water, and the swirling flow in the vessel having the gas axis As the gas shaft is sheared while being ejected more, high-concentration carbon dioxide becomes a large amount of fine bubbles on the order of microns, and the contact area with hot water increases remarkably, so that more carbon dioxide is easily dissolved in hot water. In general, when the free carbonate concentration in the carbonate bath exceeds about 100 ppm, the blood circulation promotion effect by bathing becomes remarkable, and there is an excellent physiological effect in addition to the thermal effect and fatigue recovery, but in this way a carbonate spring with a large free carbonate concentration Can be made at low cost with a simple configuration.

なお、本実施の形態では加圧液導入管32につながる流入口31を、器体30の周囲壁に接線方向に開口して設けているが、器体30の回転対称軸方向に速度成分を有するように流入口31を傾けて開口設置しても、混気水の流入流速が十分に早ければ、旋回流が生じて回転対称軸上に気体軸が生成されるので、接触と剪断が高濃度二酸化炭素ガスの溶解を促して同様の効果が得られる。   In the present embodiment, the inlet 31 connected to the pressurized liquid introduction pipe 32 is provided in a tangential direction on the peripheral wall of the container body 30, but the velocity component is applied in the rotational symmetry axis direction of the container body 30. Even if the inlet 31 is tilted so as to have an opening, if the inflow speed of the mixed water is sufficiently high, a swirling flow is generated and a gas axis is generated on the rotationally symmetric axis. The same effect can be obtained by promoting dissolution of carbon dioxide gas.

また、器体中空部29の周壁部接線方向に加圧液体を導入することで、器体内に強い旋回流を生じさせることが可能になるので、気液の接触度合と剪断が大きくなり、浴槽湯への二酸化炭素の溶解がより促進されて、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Further, by introducing the pressurized liquid in the tangential direction of the peripheral wall portion of the hollow body portion 29, it becomes possible to generate a strong swirling flow in the hollow body, so that the contact degree and shear of the gas-liquid increase, and the bathtub Dissolution of carbon dioxide in hot water is further promoted, and a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure at low cost.

この結果、入浴者は給湯燃焼器21の排気から得られた高濃度の炭酸泉に入浴することが可能となり、炭酸泉内の炭酸成分が皮膚下の毛細血管に作用してこの毛細血管を拡張させ、これにより入浴者の血行が改善されて入浴者の疲労回復や健康増進が図れる。また炭酸ガスの経皮進入によって、毛細血管床の増加及び拡張が起こり、皮膚の血行を改善することで効果があるとされている、退行性病変及び末梢循環障害の治療効果を享受することができる。   As a result, the bather can take a bath in a high-concentration carbonated spring obtained from the exhaust of the hot water combustor 21, and the carbonate component in the carbonated spring acts on the capillary under the skin to expand the capillary. As a result, the blood circulation of the bather is improved, and the fatigue and health of the bather can be improved. In addition, the percutaneous entry of carbon dioxide gas causes an increase and expansion of the capillary bed, and it is possible to enjoy the therapeutic effects of degenerative lesions and peripheral circulation disorders, which are said to be effective by improving the blood circulation of the skin. it can.

そして、器体30内の中空部29形状を気液噴出孔33にむかって先細り形状にしたことにより、液体の旋回流の旋回半径が気液噴出孔に近づくにつれて小さくなり流路も狭くなるので、流速が早くなるとともに増速に伴う気液の接触度合と剪断力が大きくなり、気泡の微細化も促進されて浴槽湯への二酸化炭素の溶解が進み、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Since the hollow portion 29 in the container 30 is tapered toward the gas-liquid ejection hole 33, the swirl radius of the liquid swirl becomes smaller as the gas-liquid ejection hole approaches the gas-liquid ejection hole, and the flow path becomes narrower. As the flow rate increases, the degree of contact between the gas and liquid and the shearing force that accompany the increase in speed increase, miniaturization of bubbles is promoted, and the dissolution of carbon dioxide in the bath water advances. Can be made at low cost.

その上、溶解気体を含む液体が気液噴出孔を出た直後の急減圧による微細気泡を発生した後も、その下流でさらに噴出流が勢いよく衝突部に衝突することにより微細気泡やその核の発生が生じて、より多くの高濃度炭酸の微細気泡が発生することになるので、ゴミの付着防止と微細気泡の多量発生の両立が実現できる。   In addition, even after the liquid containing dissolved gas has generated fine bubbles due to sudden decompression immediately after exiting the gas-liquid jet holes, the jet flow further vigorously collides with the collision part downstream so that the fine bubbles and their nuclei As a result, more high-concentration carbonic fine bubbles are generated, so that it is possible to achieve both the prevention of dust adhesion and the generation of a large amount of fine bubbles.

さらに気液噴出孔33を旋回軸軸端の両側に開口しているので、気液噴出孔の数を2つにすることで気液噴出孔から出る微細気泡量を増大させることができるので、湯との接触面積を増加させてさらに多くの二酸化炭素が湯に溶解しやすくなり、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Furthermore, since the gas-liquid ejection holes 33 are opened on both sides of the pivot shaft end, the number of gas-liquid ejection holes can be increased to increase the amount of fine bubbles coming out of the gas-liquid ejection holes. By increasing the contact area with hot water, more carbon dioxide can be easily dissolved in hot water, and a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure at low cost.

(実施の形態2)
図4は本発明の第2の実施の形態における炭酸風呂装置のシステム全体構成図であり、図5は本発明の第2の実施の形態における炭酸風呂装置の微細気泡発生部の斜視図、図6は同微細気泡発生部の断面図である。なお、第1の実施の形態の炭酸風呂装置と同一構造のものは同一符号を付与し、説明を省略する。図4〜6において、第1の実施の形態の構成と異なるところは、循環回路14途中に炭酸吸込口が無く、略長楕円球体状に形成された回転対称の中空部29の2つの気液噴出孔33の外側にはバッフル板34が設けられ、このバッフル板34の一方には旋回軸を延長した線と交わる位置に炭酸吸入部37が器体30に向いて開口され、炭酸配管23はこの循環回路14の終端となる炭酸吸入部37に接続されている点にある。
(Embodiment 2)
FIG. 4 is an overall system configuration diagram of the carbonated bath apparatus according to the second embodiment of the present invention, and FIG. 5 is a perspective view of a fine bubble generating unit of the carbonated bath apparatus according to the second embodiment of the present invention. 6 is a cross-sectional view of the fine bubble generating portion. In addition, the thing of the same structure as the carbonated bath apparatus of 1st Embodiment gives the same code | symbol, and abbreviate | omits description. 4 to 6, the difference from the configuration of the first embodiment is that there are two gas-liquids in the rotationally symmetric hollow portion 29 formed in a substantially elliptical spherical shape without a carbonic acid suction port in the middle of the circulation circuit 14. A baffle plate 34 is provided outside the ejection hole 33, and a carbonic acid suction part 37 is opened toward one side of the baffle plate 34 toward the body 30 at a position where it intersects with a line extending the pivot axis. The point is that it is connected to a carbonic acid suction part 37 which is the end of the circulation circuit 14.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の炭酸風呂装置においてポンプ15を運転すると、吸い込まれた浴槽湯が循環流路14を経て微細気泡発生部28に搬送される。流入口31から器体30の中空部29に入った浴槽湯は、内周壁の接線方向から流入するので中空部29の周壁に沿って旋回する。この水流の旋回運動によって旋回外周部と中心部には圧力差が生じ、旋回外周部は高圧に中心部は低圧になるので、器体30の回転対称軸部が旋回中心となり、この旋回軸の延長線上は負圧になる。炭酸富化装置16を運転し、真空ポンプ19で減圧されることで給湯燃焼器21の排気ガスが熱交換器22を経て炭酸富化膜17を通過し、高濃度二酸化炭素ガスとなり、炭酸配管23を通過し、炭酸吸入部37から旋回軸の負圧部に吸引される。これによって、旋回中心となる器体30の回転対称軸部に気体軸36が形成されるとともに、気液が激しく接触し摩擦と剪断が生じる。   The operation and action of the above configuration will be described. When the pump 15 is operated in the carbonated bath apparatus of the embodiment shown in the figure, the sucked bath water is conveyed to the fine bubble generating part 28 through the circulation channel 14. The bath water that has entered the hollow portion 29 of the container body 30 from the inlet 31 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 29. Due to the swirling motion of the water flow, a pressure difference is generated between the swirling outer peripheral portion and the central portion, and the swirling outer peripheral portion has a high pressure and the central portion has a low pressure. Negative pressure on the extension line. The carbon dioxide enricher 16 is operated and the exhaust gas from the hot water combustor 21 passes through the carbon dioxide enriched film 17 through the heat exchanger 22 by being depressurized by the vacuum pump 19, and becomes a high concentration carbon dioxide gas. 23 and sucked from the carbon dioxide suction part 37 to the negative pressure part of the turning shaft. As a result, the gas shaft 36 is formed at the rotationally symmetric shaft portion of the vessel body 30 as the turning center, and the gas-liquid is vigorously contacted to generate friction and shear.

このように、旋回外周部は高圧に中心部は低圧になるので、気体軸36が存在する旋回流の旋回軸部が負圧になり、衝突部であるバッフル板34に設けた炭酸吸入部37から高濃度二酸化炭素ガスを自吸できるようになるので、高濃度二酸化炭素の供給構成が簡単になるとともに、気液噴出孔の数を増やしたり旋回流強化の構成にするなど器体形状の自由度が高まり、二酸化炭素の溶解促進が可能となるので、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Thus, since the swirling outer peripheral portion has a high pressure and the central portion has a low pressure, the swirling shaft portion of the swirling flow in which the gas shaft 36 exists has a negative pressure, and the carbon dioxide suction portion 37 provided on the baffle plate 34 which is a collision portion. The high-concentration carbon dioxide gas can be self-absorbed from the air, so the supply configuration of the high-concentration carbon dioxide becomes simple, and the body shape can be freely configured, such as increasing the number of gas-liquid jet holes or configuring the swirl flow strengthening. Since the degree of carbon dioxide dissolution can be increased, a carbonated spring having a high free carbonic acid concentration can be produced with a simple structure and at a low cost.

(実施の形態3)
図7は本発明の第3の実施の形態における炭酸風呂装置のシステム全体構成図であり、図8は本発明の第3の実施の形態における炭酸風呂装置の微細気泡発生部の断面図である。なお、第1の実施の形態および第2の実施の形態の炭酸風呂装置と同一構造のものは同一符号を付与し、説明を省略する。図7および図8において、第1の実施の形態および第2の実施の形態の構成と異なるところは、炭酸富化装置38は、炭酸ボンベ39と調圧器40と流量調節弁41とからなり、炭酸ボンベ39から出た炭酸ガスは調圧器40を通って流量調節弁41で浴槽湯に溶解させる所定の流量に調節されて炭酸配管23に流入し、炭酸吸込口24から浴槽湯に混入される。微細気泡発生部28は、円錐台形状に形成された中空部42を有するように器体43が構成され、中空部42の回転対称軸端部の小底円側に気液噴出孔44が設けられている点にある。
(Embodiment 3)
FIG. 7 is an overall system configuration diagram of the carbonated bath apparatus according to the third embodiment of the present invention, and FIG. 8 is a cross-sectional view of a fine bubble generating portion of the carbonated bath apparatus according to the third embodiment of the present invention. . In addition, the thing of the same structure as the carbonated bath apparatus of 1st Embodiment and 2nd Embodiment gives the same code | symbol, and abbreviate | omits description. 7 and 8, the difference from the configuration of the first embodiment and the second embodiment is that the carbon dioxide enriching device 38 includes a carbon dioxide cylinder 39, a pressure regulator 40, and a flow rate adjustment valve 41. The carbon dioxide gas discharged from the carbon dioxide cylinder 39 passes through the pressure regulator 40 and is adjusted to a predetermined flow rate that is dissolved in the bath water by the flow rate control valve 41, flows into the carbonate pipe 23, and is mixed into the bath water from the carbon dioxide suction port 24. . The fine bubble generating part 28 is configured to have a hollow body 42 formed in a truncated cone shape, and a gas-liquid jet hole 44 is provided on the small bottom circle side of the rotationally symmetrical axis end of the hollow part 42. It is in the point.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の炭酸風呂装置においてポンプ15を運転すると、吸い込まれた浴槽湯と炭酸吸込口24から供給された高濃度二酸化炭素ガスが混気水となり、微細気泡発生部28に搬送される。循環流路14を経て流入口31から器体43の中空部42に入った混気水は、内周壁の接線方向から流入するので中空部42の周壁に沿って旋回する。この水流の旋回運動によって旋回中心となる器体43の回転対称軸部に気体軸36が形成される。中空部42内の混気水は、旋回しながら気液噴出孔44に近づくにつれて断面積が縮小する先細り形状となっているので旋回半径が小さくなり流路も狭くなるので、気液噴出孔44付近でその旋回速度は最大となり、増速に伴う気液の接触度合と剪断力が大きくなる。   The operation and action of the above configuration will be described. When the pump 15 is operated in the carbonated bath apparatus of the embodiment shown in the figure, the sucked bath water and the high-concentration carbon dioxide gas supplied from the carbonated suction port 24 become mixed water and are conveyed to the fine bubble generating unit 28. The The air-mixed water that has entered the hollow portion 42 of the vessel body 43 from the inlet 31 through the circulation channel 14 flows in from the tangential direction of the inner peripheral wall, and thus swirls along the peripheral wall of the hollow portion 42. A gas shaft 36 is formed on the rotationally symmetric shaft portion of the vessel body 43 serving as a turning center by the swirling motion of the water flow. Since the mixed water in the hollow portion 42 has a tapered shape in which the cross-sectional area decreases as it approaches the gas-liquid ejection hole 44 while turning, the turning radius becomes smaller and the flow path becomes narrower. In the vicinity, the turning speed becomes maximum, and the degree of gas-liquid contact and the shearing force accompanying the increase in speed increase.

このように、器体43内の中空部42の形状を気液噴出孔にむかって先細り形状にしたことにより、液体の旋回流の旋回半径が気液噴出孔44に近づくにつれて小さくなり流路も狭くなるので、気液の接触度合と剪断力が大きくなり、気泡の微細化も促進されて浴槽湯への二酸化炭素の溶解が進み、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Thus, by making the shape of the hollow part 42 in the container body 43 taper toward the gas-liquid ejection hole, the swirl radius of the liquid swirl becomes smaller as the gas-liquid ejection hole 44 approaches, and the flow path is also reduced. Because the gas is narrowed, the degree of gas-liquid contact and shearing force are increased, the finer bubbles are promoted, and the dissolution of carbon dioxide in the bath water advances, making a carbonated spring with a high free carbonic acid concentration simple and low cost. Can do.

(実施の形態4)
図8は本発明の第4の実施の形態における炭酸風呂装置の微細気泡発生部の断面図である。なお、第1〜第3の実施の形態の炭酸風呂装置と同一構造のものは同一符号を付与し、説明を省略する。図8において、第1〜第3の実施の形態の構成と異なるところは、円柱形状に形成された中空部45を有するように器体46が有底有蓋円筒状に構成され、気液噴出孔47は中空部45の回転対称軸の両軸端の一方に開口し、器体46への流入口31を回転対称軸の軸長中心よりも気液噴出孔47側に設けるとともに、中空部45の周壁部近傍に径方向の複数の羽根48を有して旋回流の旋回軸を回転軸とする羽根車49を、中空部45内に設けている点にある。
(Embodiment 4)
FIG. 8 is a cross-sectional view of the fine bubble generating portion of the carbonated bath apparatus according to the fourth embodiment of the present invention. In addition, the thing of the same structure as the carbonated bath apparatus of the 1st-3rd embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 8, the difference from the configuration of the first to third embodiments is that the body 46 is formed in a bottomed and covered cylindrical shape so as to have a hollow portion 45 formed in a columnar shape, and a gas-liquid ejection hole 47 is opened at one of both axial ends of the rotationally symmetric axis of the hollow part 45, and the inlet 31 to the body 46 is provided closer to the gas-liquid ejection hole 47 than the axial center of the rotationally symmetric axis. An impeller 49 having a plurality of radial blades 48 in the vicinity of the peripheral wall portion and having a swirl flow swirl axis as a rotation axis is provided in the hollow portion 45.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプ15を運転することにより、吸い込まれた浴槽湯と炭酸吸込口24から供給された高濃度二酸化炭素ガスの混気水が、流入口31から器体46の中空部45に内周壁の接線方向から流入する。この流れは中空部45の周壁に沿って旋回するとともに、中空部45の周壁部にある羽根48を周方向に押すことで羽根車49が旋回流とともに回転し、安定した旋回流を発生させる。この水流の旋回運動によって旋回中心となる器体46の回転対称軸部に気体軸36が形成される。このとき、中空部45は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気液の接触が激しくなるとともに、気体軸36の形成が容易になる。   The operation and action of the above configuration will be described. By operating the pump 15 in the bubble generator of the embodiment shown in the figure, the mixed water of the high-concentration carbon dioxide gas supplied from the bath water that has been sucked in and the carbonic acid suction port 24 is supplied from the inlet 31 to the body. 46 flows into the hollow portion 45 from the tangential direction of the inner peripheral wall. This flow swirls along the peripheral wall of the hollow portion 45, and the impeller 49 rotates with the swirl flow by pushing the blades 48 on the peripheral wall portion of the hollow portion 45 in the circumferential direction, thereby generating a stable swirl flow. A gas shaft 36 is formed at the rotationally symmetric shaft portion of the vessel body 46 serving as a turning center by the swirling motion of the water flow. At this time, the hollow portion 45 becomes a substantially planar cylindrical space whose both ends are rotationally symmetric and perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space. Since there is almost no flow velocity component in the axial direction and only the flow velocity component of the swirl perpendicular to the swivel axis can be generated, a strong and stable swirl flow can be generated, so that the gas-liquid contact becomes intense and the gas shaft Formation of 36 becomes easy.

この気体軸36を有する器体46内の旋回流が気液噴出孔47より噴出する際に、気体軸36が剪断されてミクロンサイズの微細気泡となり、多量の高濃度二酸化炭素ガスの微細気泡を発生させることができる。そして高濃度二酸化炭素ガスが噴出した多量の微細気泡になることで、湯との接触面積が著しく増加して湯水への溶解が促進する。このように、強く安定した旋回流が気液の接触と剪断を強めるとともに、微細気泡の多量発生を進めることで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   When the swirling flow in the vessel 46 having the gas shaft 36 is ejected from the gas-liquid ejection hole 47, the gas shaft 36 is sheared to become micron-sized fine bubbles, and a large amount of fine bubbles of high-concentration carbon dioxide gas is formed. Can be generated. And since it becomes a lot of fine bubbles from which high concentration carbon dioxide gas was ejected, the contact area with hot water is remarkably increased, and dissolution into hot water is promoted. In this way, a strong and stable swirl flow enhances gas-liquid contact and shear, and by increasing the amount of fine bubbles generated, the amount of dissolved carbon dioxide can be increased, and a carbonated spring with a high free carbonic acid concentration can be easily configured. Can be made at low cost.

また、羽根車49の作用により旋回軸方向の流速成分に乱されることなく旋回流がより一層安定して生じるので、気液の接触と剪断を強めるとともに、羽根による気泡の剪断微細化効果も加わり、微細気泡の多量発生を促進することで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In addition, since the swirl flow is more stably generated by the action of the impeller 49 without being disturbed by the flow velocity component in the swirl axis direction, the gas-liquid contact and shear are strengthened, and the air bubble shear refinement effect by the blades is also improved. In addition, the amount of dissolved carbon dioxide can be increased by promoting the generation of a large amount of fine bubbles, and a carbonated spring with a high free carbonic acid concentration can be produced with a simple structure at low cost.

さらに、流入口31を気液噴出孔47側に近づけて配置し、流入口31から器体対称軸の他端までの距離を十分に設けることにより、流入口31から導入された混気水が気液噴出孔47へすぐに向かわず、他端の方へ旋回流を成長・促進することができるので旋回流が安定し、気液の接触と剪断を強めるとともに、微細気泡の多量発生を促進することで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   Furthermore, by arranging the inlet 31 close to the gas-liquid ejection hole 47 side and providing a sufficient distance from the inlet 31 to the other end of the body symmetry axis, the mixed water introduced from the inlet 31 can be reduced. The swirl flow can be grown and promoted toward the other end without going to the gas-liquid jet hole 47 immediately, so that the swirl flow is stabilized, the gas-liquid contact and shear are strengthened, and the generation of a large amount of fine bubbles is promoted. By doing so, the amount of carbon dioxide dissolved can be increased, and a carbonated spring having a high free carbonic acid concentration can be produced at a low cost with a simple configuration.

なお、本実施の形態では器体46の周囲壁に接線方向に開口された流入口31に対して、中空部45の周壁部近傍に径方向の複数の羽根48を有し、旋回流の旋回軸を回転軸とする羽根車49を中空部45内に設けた構成としたが、循環流路14からの水流の力を受けて旋回を生じる羽根車であればよく、例えば中空部45の周壁部近傍では略径方向のひねり羽根を用いた構成や、器体46周囲壁接線方向から傾けて設けた流入口とひねり羽根との組み合わせでも同様の効果が得られる。   In the present embodiment, a plurality of radial blades 48 are provided in the vicinity of the peripheral wall portion of the hollow portion 45 with respect to the inflow port 31 opened tangentially to the peripheral wall of the vessel body 46, and swirling of the swirling flow Although the impeller 49 having the shaft as the rotation shaft is provided in the hollow portion 45, it may be an impeller that turns by receiving the force of the water flow from the circulation flow path 14. For example, the peripheral wall of the hollow portion 45 Similar effects can be obtained by a configuration using a substantially radial twist blade in the vicinity of the portion or a combination of an inlet and a twist blade provided inclined from the tangential direction of the peripheral wall of the vessel body 46.

(実施の形態5)
図9は本発明の第5の実施の形態における炭酸風呂装置の微細気泡発生部の斜視図である。なお、第1〜第4の実施の形態の炭酸風呂装置と同一構造のものは同一符号を付与し、説明を省略する。図9において、第1〜第4の実施の形態の構成と異なるところは、円柱形状に形成された中空部45を有するように器体46が有底有蓋円筒状に構成され、器体46周囲壁円周上の回転対称軸を挟んで対向する位置に接線方向に開口した2つの流入口50が設けられ、分岐した2本の加圧液導入管51を通って2つの流入口50から混気水が中空部45に送られるようになっているとともに、気液噴出孔47は中空部45の回転対称軸の両軸端の一方に開口し、2つの流入口50は気液噴出孔47側に近づけて配置され、流入口50と気液噴出孔47との距離が回転対称軸軸長の半分よりも短くなっている点にある。
(Embodiment 5)
FIG. 9 is a perspective view of the fine bubble generating part of the carbonated bath apparatus according to the fifth embodiment of the present invention. In addition, the thing of the same structure as the carbonated bath apparatus of 1st-4th embodiment gives the same code | symbol, and abbreviate | omits description. In FIG. 9, the difference from the configurations of the first to fourth embodiments is that the container body 46 is configured in a bottomed and covered cylindrical shape so as to have a hollow portion 45 formed in a columnar shape, and the periphery of the container body 46. Two inflow ports 50 opened in a tangential direction are provided at positions opposed to each other across the rotational symmetry axis on the wall circumference, and mixed from the two inflow ports 50 through two branched pressurized liquid introduction pipes 51. Gas water is sent to the hollow portion 45, and the gas / liquid ejection hole 47 opens to one of both axial ends of the rotational symmetry axis of the hollow portion 45, and the two inflow ports 50 serve as the gas / liquid ejection hole 47. The distance between the inflow port 50 and the gas-liquid jet hole 47 is shorter than half of the axial length of the rotational symmetry axis.

以上の構成で、その動作、作用について説明する。図に示す実施の形態の気泡発生装置においてポンプ15を運転することにより、吸い込まれた浴槽湯と炭酸吸込口24から供給された高濃度二酸化炭素ガスの混気水が、2つの流入口50から器体46の中空部45に内周壁の接線方向から流入し、中空部45の周壁に沿って旋回する。この水流の旋回運動によって旋回中心となる器体46の回転対称軸部に気体軸36が形成される。このとき、中空部45は回転対称軸両端部が軸に垂直な略平面の円柱状空間になり、この円柱状空間の円周部から接線方向に液体が流入することで、旋回流を乱す旋回軸方向の流速成分がほとんど無くなり、旋回軸に垂直な旋回の流速成分ばかりにすることができるので、強く安定した旋回流を生じさせることができるので、気液の接触が激しくなる。そして気体軸36を有する器体46内の旋回流が気液噴出孔47より噴出する際に、気体軸が剪断されて微細気泡となり、高濃度二酸化炭素ガスが多量の微細気泡として噴出されることで、湯との接触面積が著しく増加して湯水への溶解が促進する。   The operation and action of the above configuration will be described. By operating the pump 15 in the bubble generating device of the embodiment shown in the figure, the mixed water of the high-concentration carbon dioxide gas supplied from the bath water that has been sucked in and the carbonic acid suction port 24 is supplied from the two inflow ports 50. It flows into the hollow part 45 of the container body 46 from the tangential direction of the inner peripheral wall and turns along the peripheral wall of the hollow part 45. A gas shaft 36 is formed at the rotationally symmetric shaft portion of the vessel body 46 serving as a turning center by the swirling motion of the water flow. At this time, the hollow portion 45 becomes a substantially planar cylindrical space whose both ends are rotationally symmetric and perpendicular to the axis, and the liquid flows in a tangential direction from the circumferential portion of the cylindrical space. Since the flow velocity component in the axial direction is almost eliminated and only the flow velocity component of the swirl perpendicular to the swivel axis can be obtained, a strong and stable swirl flow can be generated, and the contact between the gas and the liquid becomes intense. When the swirl flow in the vessel 46 having the gas shaft 36 is ejected from the gas-liquid ejection hole 47, the gas shaft is sheared into fine bubbles, and the high-concentration carbon dioxide gas is ejected as a large amount of fine bubbles. Therefore, the contact area with hot water is remarkably increased and dissolution in hot water is promoted.

このように、強く安定した旋回流が気液の接触と剪断を強めるとともに、微細気泡の多量発生を進めることで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In this way, a strong and stable swirl flow enhances gas-liquid contact and shear, and by increasing the amount of fine bubbles generated, the amount of dissolved carbon dioxide can be increased, and a carbonated spring with a high free carbonic acid concentration can be easily configured. Can be made at low cost.

また、旋回流の同一円周上に2つの流入口50を備えて、同一回転方向に複数の箇所から旋回を促進させるので、強く安定した旋回流を生じさせることができ、旋回中心の気体軸の形成を確保し、気液の接触と剪断を強めるとともに、微細気泡の多量発生を進めることで二酸化炭素の溶解量を大きくすることができ、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることができる。   In addition, since two inflow ports 50 are provided on the same circumference of the swirl flow and swirl is promoted from a plurality of locations in the same rotation direction, a strong and stable swirl flow can be generated, and the swivel center gas axis The amount of dissolved carbon dioxide can be increased by promoting the generation of a large amount of fine bubbles, while ensuring the formation of water and gas and liquid contact and shearing. Can be made.

なお、本実施の形態では器体46周囲壁円周上の対向する位置に2つの流入口50を設けた構成としたが、中空部45周壁の同一円周上に対向しなくとも所定の間隔を置いて2個以上配置した構成としても同様の効果が得られる。   In the present embodiment, the two inflow ports 50 are provided at opposing positions on the circumference of the peripheral wall of the vessel 46. However, the predetermined interval is not required even when facing the same circumference of the peripheral wall of the hollow portion 45. A similar effect can be obtained even when two or more of the components are arranged.

以上のように、本発明にかかる炭酸風呂装置は、気液の接触を強めるとともに、高濃度二酸化炭素ガスの微細気泡の多量発生を進めることで二酸化炭素溶解量の増大を図り、遊離炭酸濃度の大きい炭酸泉を簡単構成で低コストにつくることが可能となるので、溶存炭酸濃度増加用などの曝気装置、飲料水や食品の改質装置、全身浴やだけでなく部分浴やその他の方法で使う健康福祉機器、気液反応装置等の用途にも適用できる。   As described above, the carbonated bath apparatus according to the present invention enhances the gas-liquid contact and increases the amount of dissolved carbon dioxide by advancing the generation of a large amount of fine bubbles of high-concentration carbon dioxide gas. A large carbonated spring can be made easily and at low cost, so it can be used for aeration equipment for increasing the concentration of dissolved carbonate, reforming equipment for drinking water and food, not only for whole body baths but also for partial baths and other methods. It can be applied to uses such as health welfare equipment and gas-liquid reaction equipment.

本発明の実施の形態1における炭酸風呂装置の全体構成図Overall configuration diagram of carbonated bath apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における炭酸風呂装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 1 of this invention 本発明の実施の形態1における炭酸風呂装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 1 of this invention 本発明の実施の形態2における炭酸風呂装置の全体構成図Whole block diagram of carbonated bath apparatus in Embodiment 2 of the present invention 本発明の実施の形態2における炭酸風呂装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 2 of this invention 本発明の実施の形態2における炭酸風呂装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 2 of this invention 本発明の実施の形態3における炭酸風呂装置の全体構成図Whole block diagram of carbonated bath apparatus in Embodiment 3 of the present invention 本発明の実施の形態3における炭酸風呂装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 3 of this invention 本発明の実施の形態4における炭酸風呂装置の微細気泡発生部の断面図Sectional drawing of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 4 of this invention 本発明の実施の形態5における炭酸風呂装置の微細気泡発生部の斜視図The perspective view of the fine bubble generation | occurrence | production part of the carbonated bath apparatus in Embodiment 5 of this invention 従来の炭酸風呂装置の全体構成図Overall configuration of conventional carbonated bath equipment 従来の炭酸風呂装置の全体構成図Overall configuration of conventional carbonated bath equipment

符号の説明Explanation of symbols

10 浴槽湯循環装置
12 浴槽
14 循環回路
16 炭酸富化装置
23 炭酸配管
29 中空部
30 器体
31 流入口
32 加圧液導入管
33 気液噴出孔
34 衝突部
37 炭酸吸入部
38 炭酸富化装置
42 中空部
43 器体
44 気液噴出孔
45 中空部
46 器体
47 気液噴出孔
48 羽根
49 羽根車
50 流入口
51 加圧液導入管
DESCRIPTION OF SYMBOLS 10 Bath hot water circulation device 12 Bath 14 Circulation circuit 16 Carbonation enrichment device 23 Carbonation piping 29 Hollow part 30 Body 31 Inlet 32 Pressurization liquid introduction pipe 33 Gas-liquid ejection hole 34 Collision part 37 Carbonation suction part 38 Carbonation enrichment apparatus 42 hollow part 43 container 44 gas-liquid ejection hole 45 hollow part 46 container 47 gas-liquid ejection hole 48 blade 49 impeller 50 inflow port 51 pressurized liquid introduction pipe

Claims (9)

浴槽の湯が循環する浴槽湯循環装置と循環回路と、高濃度の二酸化炭素ガスを供給する炭酸富化装置と、前記炭酸富化装置と前記循環回路との間に設けた炭酸配管と、前記浴槽に湯を流出する前記循環回路の終端に設けた中空部を有する器体と、前記器体に開口された流入口と、前記循環回路から前記流入口に接続される加圧液導入管と、前記器体に開口した気液噴出孔とを備え、浴槽湯と前記炭酸富化装置から出る高濃度二酸化炭素ガスとを導入して前記器体内で旋回流とし前記気液噴出孔より噴出させることで、二酸化炭素を湯に溶解させるようにした炭酸風呂装置。 A bath hot water circulation device and a circulation circuit through which hot water in the bathtub circulates, a carbonate enrichment device for supplying high-concentration carbon dioxide gas, a carbonate pipe provided between the carbonate enrichment device and the circulation circuit, A vessel having a hollow portion provided at the end of the circulation circuit for flowing hot water into the bathtub, an inlet opening in the vessel, and a pressurized liquid introduction pipe connected from the circulation circuit to the inlet A gas-liquid jet hole opened in the vessel body, and introduces hot water from the bath and high-concentration carbon dioxide gas coming out of the carbonic acid enrichment device into a swirl flow in the vessel body and jets from the gas-liquid jet hole This is a carbonated bath device that dissolves carbon dioxide in hot water. 器体の中空部は略回転対称に形成され、流入口は前記器体の周壁部に接線方向に開口されて構成した請求項1記載の炭酸風呂装置。 The carbonated bath apparatus according to claim 1, wherein the hollow part of the vessel body is formed substantially rotationally symmetric, and the inflow port is opened in a tangential direction to the peripheral wall part of the vessel body. 器体の周壁部に接線方向に開口された流入口は、前記器体の周壁部の円周上に所定の間隔を置いて複数個備えた請求項2記載の炭酸風呂装置。 The carbonated bath apparatus according to claim 2, wherein a plurality of inflow ports opened in a tangential direction to the peripheral wall portion of the vessel body are provided at predetermined intervals on the circumference of the peripheral wall portion of the vessel body. 器体は略中空円筒状に形成された請求項1〜3のいずれか1項に記載の炭酸風呂装置。 The carbonated bath device according to any one of claims 1 to 3, wherein the container is formed in a substantially hollow cylindrical shape. 器体の気液噴出孔と所定の間隔を有して前記器体外部に噴出流が衝突する衝突部を備えた請求項1〜4のいずれか1項に記載の炭酸風呂装置。 The carbonated bath apparatus of any one of Claims 1-4 provided with the collision part which has a predetermined space | interval with the gas-liquid ejection hole of a container, and an ejection flow collides with the said exterior of a container. 器体中空部の周壁部近傍に羽根を有し、旋回流の旋回軸を回転軸とする羽根車を器体内に設けた請求項1〜5のいずれか1項に記載の炭酸風呂装置。 The carbonated bath apparatus according to any one of claims 1 to 5, wherein a bladed wheel is provided in the vicinity of the peripheral wall portion of the container hollow portion, and an impeller having a rotating shaft as a rotation axis is provided in the container body. 気液噴出孔は旋回流の旋回軸の両軸端の少なくとも一方に開口し、前記気液噴出孔と所定の間隔を有して前記器体外部に噴出流が衝突する衝突部を備え、少なくとも前記衝突部一つの前記旋回軸の延長線上に炭酸配管と繋がる炭酸吸入部を設けた請求項1〜6のいずれか1項に記載の炭酸風呂装置。 The gas-liquid ejection hole is provided at least at one of both ends of the swirling axis of the swirling flow, and includes a collision portion having a predetermined distance from the gas-liquid ejection hole and colliding with the ejection flow outside the vessel body. The carbonated bath apparatus of any one of Claims 1-6 which provided the carbonic acid suction part connected with carbonic acid piping on the extension line of the said rotating shaft of the said collision part. 気液噴出孔は旋回流の旋回軸軸端の両側に開口した請求項1〜7のいずれか1項に記載の炭酸風呂装置。 The carbonated bath device according to any one of claims 1 to 7, wherein the gas-liquid ejection holes are opened on both sides of the swirl shaft end of the swirl flow. 気液噴出孔は旋回流の旋回軸の両軸端の少なくとも一方に開口し、器体は前記気液噴出孔にむかって断面積が縮小する先細り形状とした請求項1〜8のいずれか1項に記載の炭酸風呂装置。 The gas-liquid ejection hole opens at at least one of both axial ends of the swirling axis of the swirling flow, and the vessel body has a tapered shape whose cross-sectional area decreases toward the gas-liquid ejection hole. The carbonated bath apparatus according to item.
JP2004111795A 2004-04-06 2004-04-06 Carbonic acid bath apparatus Pending JP2005288052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111795A JP2005288052A (en) 2004-04-06 2004-04-06 Carbonic acid bath apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111795A JP2005288052A (en) 2004-04-06 2004-04-06 Carbonic acid bath apparatus

Publications (1)

Publication Number Publication Date
JP2005288052A true JP2005288052A (en) 2005-10-20

Family

ID=35321645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111795A Pending JP2005288052A (en) 2004-04-06 2004-04-06 Carbonic acid bath apparatus

Country Status (1)

Country Link
JP (1) JP2005288052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289256A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Jet bath system
JP2008063236A (en) * 2006-09-05 2008-03-21 Aqua Science:Kk Method for producing artificial carbonated spring
JP2010236704A (en) * 2009-03-30 2010-10-21 Noritz Corp Circulation adapter with swirling function for generating fine air bubble
JP2013529130A (en) * 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US9610551B2 (en) 2011-06-23 2017-04-04 Apiqe Holdings, Llc Flow compensator
US9878273B2 (en) 2011-06-23 2018-01-30 Apiqe Holdings, Llc Disposable filter cartridge for water dispenser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289256A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Jet bath system
JP2008063236A (en) * 2006-09-05 2008-03-21 Aqua Science:Kk Method for producing artificial carbonated spring
JP2010236704A (en) * 2009-03-30 2010-10-21 Noritz Corp Circulation adapter with swirling function for generating fine air bubble
JP2013529130A (en) * 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions
US9309103B2 (en) 2010-05-03 2016-04-12 Cgp Water Systems, Llc Water dispenser system
US10150089B2 (en) 2010-05-03 2018-12-11 Apiqe Holdings, Llc Apparatuses, systems and methods for efficient solubilization of carbon dioxide in water using high energy impact
US9610551B2 (en) 2011-06-23 2017-04-04 Apiqe Holdings, Llc Flow compensator
US9878273B2 (en) 2011-06-23 2018-01-30 Apiqe Holdings, Llc Disposable filter cartridge for water dispenser

Similar Documents

Publication Publication Date Title
JP4094633B2 (en) Ultra-fine bubble generator
JP5748162B2 (en) Swivel unit-based microbubble generator
JP3762206B2 (en) Ultra-fine bubble generator
JP2010075838A (en) Bubble generation nozzle
WO2001097958A9 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP4929874B2 (en) Microbubble generator
JP2007021343A (en) Microbubble generator
JP4415794B2 (en) Microbubble generator
JP2007289903A (en) Micro-bubble generating device and bath system
KR101053488B1 (en) Fine Bubble Nozzle
JP2010284619A (en) Microbubble generation apparatus and shower head
JP2014097449A (en) Through-flow pump ultrafine bubble flow supply device
JP2008161822A (en) Gas dissolving device and microbubble feeding device
JP2005288052A (en) Carbonic acid bath apparatus
JP2013000626A (en) Fine air bubble generator
JP2006263246A (en) Microbubble-jetting device for bathtub or shower
JP2007313465A (en) Gas dissolving apparatus
JP2001276589A (en) Aerator
CN211395013U (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
JP5291312B2 (en) Pickling apparatus and method
KR100854687B1 (en) Micro bubble system
JP4305178B2 (en) Oxygen enriched bathtub equipment
CN207838737U (en) Bubble manufacturing device
JP2001259395A (en) Aerator
KR20030063776A (en) minute an air bubble generation device