JP5569721B2 - Function maintenance method and system for masonry purification bank - Google Patents

Function maintenance method and system for masonry purification bank Download PDF

Info

Publication number
JP5569721B2
JP5569721B2 JP2009243672A JP2009243672A JP5569721B2 JP 5569721 B2 JP5569721 B2 JP 5569721B2 JP 2009243672 A JP2009243672 A JP 2009243672A JP 2009243672 A JP2009243672 A JP 2009243672A JP 5569721 B2 JP5569721 B2 JP 5569721B2
Authority
JP
Japan
Prior art keywords
water
oxygen
masonry
bank
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243672A
Other languages
Japanese (ja)
Other versions
JP2011088075A (en
Inventor
衛 石垣
正夫 黒岩
敏章 木邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009243672A priority Critical patent/JP5569721B2/en
Publication of JP2011088075A publication Critical patent/JP2011088075A/en
Application granted granted Critical
Publication of JP5569721B2 publication Critical patent/JP5569721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Revetment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、水質浄化堤が貧酸素水塊や青潮に曝されたときにその水質浄化機能を維持する方法及びシステムに関する。   The present invention relates to a method and system for maintaining a water purification function when a water purification levee is exposed to an anoxic water mass or a blue tide.

都市部近傍の沿岸水域においては、河川による流入負荷や堆積ヘドロからの溶出負荷が大きく、広域かつ根本的な水質浄化を行うことは容易ではないが、かかる水域の一部を石積み浄化堤で取り囲み、その内側に拡がる内水域を浄化する試みが実施されるようになってきた。   In coastal waters near urban areas, the inflow load from rivers and the elution load from sediment sludge are large, and it is not easy to carry out wide area and fundamental water purification, but part of such water areas are surrounded by stone masonry purification banks. Attempts have been made to purify the inner waters spreading inside.

石積み浄化堤は、礫あるいは石を堤体材として海底から積み上げてなる海洋構造物であり、潮の干満や波が生じると、外水域の海水は堤体材の礫間を通過して内水域へと移動する。   Masonry purification levees are marine structures that are piled up from the sea bottom using gravel or stone as a dam body material, and when tidal and tides occur, the seawater in the outer water area passes between the gravels of the dam body material and becomes the inner water area. Move to.

ここで、プランクトン等の海水中の汚濁成分は、堤体材の表面に付着形成された微生物群からなる生物膜によって付着あるいは捕捉されるとともに、付着捕捉された濁り成分は、微生物群によって分解されたり、礫間に棲息する貝類や甲殻類によって摂取される。   Here, pollutant components in seawater such as plankton are attached or trapped by a biofilm consisting of microorganisms attached and formed on the surface of the bank body material, and the turbid components attached and trapped are decomposed by the microorganisms. Or ingested by shellfish and crustaceans that live between gravel.

すなわち、外水域の海水は、石積み浄化堤を構成する堤体材の礫間を通過することで汚濁成分が除去され、清浄な海水となって内水域に流入することとなり、かくして石積み浄化堤は、自然の生態を利用した水質浄化機能を果たす。   That is, the seawater in the outer water area passes through the gravel of the embankment material that constitutes the masonry purification embankment, so that the pollutant components are removed and flows into the inner water area as clean seawater. It fulfills the function of water purification using natural ecology.

特開平8−184081号公報Japanese Patent Laid-Open No. 8-184081 特開2000−45244号公報JP 2000-45244 A 特開平8−57489号公報JP-A-8-57489 特開平7−290084号公報JP-A-7-290084 特開2005−46756号公報JP 2005-46756 A

しかしながら、出願人による実証試験の結果、貧酸素水塊や青潮が潮汐や波浪によって石積み浄化堤に流入する懸念があることがわかってきた。かかる場合に遭遇した場合、石積み浄化堤の水質浄化機能は著しく低下することになる。   However, as a result of the verification test by the applicant, it has been found that there is a concern that an anoxic water mass and a blue tide may flow into the masonry purification bank due to tides and waves. If such a case is encountered, the water purification function of the masonry purification bank will be significantly reduced.

すなわち、貧酸素水塊は、海底近傍での有機物分解による多量の酸素消費によって溶存酸素濃度が例えば3.5mg/l未満に低下した海水であり、青潮は、かかる海水が表層部に湧昇し、それに含まれていた硫化水素が海面近傍で酸素と接触してコロイド状の硫黄になったものである。   That is, the anoxic water mass is seawater whose dissolved oxygen concentration is reduced to, for example, less than 3.5 mg / l due to a large amount of oxygen consumption due to organic matter decomposition near the seabed. However, the hydrogen sulfide contained therein is in contact with oxygen near the sea surface to form colloidal sulfur.

そのため、貧酸素塊や青潮が潮の干満や波によって石積み浄化堤を通過すると、堤体材に付着していた生物膜や棲息生物は、無酸素あるいは貧酸素の状態に曝されることとなり、その結果、生物膜や棲息生物が死滅し、ひいては石積み浄化堤の水質浄化機能が著しく低下するという問題を生じていた。   Therefore, when anoxic lumps and blue tides pass through the masonry purification bank due to tides and waves, the biofilms and habitats attached to the levee material will be exposed to anoxic or anoxic conditions. As a result, biofilms and habitats were killed, and as a result, the water purification function of the masonry purification dike was significantly reduced.

本発明は、上述した事情を考慮してなされたもので、貧酸素塊や青潮に曝されても水質浄化機能を維持することが可能な石積み浄化堤の機能維持方法及びシステムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and provides a function maintenance method and system for a masonry purification bank that can maintain a water purification function even when exposed to anoxic blocks and blue tides. With the goal.

上記目的を達成するため、本発明に係る石積み浄化堤の機能維持方法は請求項1に記載したように、石積み浄化堤で囲まれた内水域若しくは該石積み浄化堤を構成する堤体内に潮汐若しくは波浪によって流入した貧酸素水を前記内水域若しくは前記堤体内から取水し、又は前記石積み浄化堤に潮汐若しくは波浪によって流入しようとする貧酸素水を前記石積み浄化堤の外側に拡がる外水域から取水し、取水された貧酸素水の溶存酸素濃度を高めて高濃度酸素水とし、該高濃度酸素水を、前記内水域、前記外水域又は前記堤体内の水位が上昇中のときに前記石積み浄化堤を構成する堤体材の礫間に供給するものである。 In order to achieve the above object, the method for maintaining the function of a stone masonry dam according to the present invention, as described in claim 1, is a tidal or The anoxic water that has flowed in due to waves is taken from the inner water area or the body of the dam, or the oxic water that is about to flow into the stone masonry dam by tidal or wave is taken from the outside water area that spreads outside the masonry dam. , to increase the dissolved oxygen concentration of intake has been anoxic water was the high concentration oxygen water, the high-concentration oxygen water, said body of water, the masonry purifying crest at the outer body of water or the embankment of the water level is rising Supplied between the gravel of the levee body material.

また、本発明に係る石積み浄化堤の機能維持方法は、吐出口が前記礫間に位置決めされるように前記石積み浄化堤に埋設された吐出管を介して前記高濃度酸素水を供給するものである。   The function maintenance method of the masonry purification bank according to the present invention is to supply the high-concentration oxygen water through a discharge pipe embedded in the masonry purification bank so that a discharge port is positioned between the gravel. is there.

また、本発明に係る石積み浄化堤の機能維持システムは請求項に記載したように、石積み浄化堤で囲まれた内水域若しくは該石積み浄化堤を構成する堤体内に潮汐若しくは波浪によって流入した貧酸素水を前記内水域若しくは前記堤体内から取水し、又は前記石積み浄化堤に潮汐若しくは波浪によって流入しようとする貧酸素水を前記石積み浄化堤の外側に拡がる外水域から取水可能な取水ポンプと、入力側に前記取水ポンプが接続され該取水ポンプからの貧酸素水の溶存酸素濃度を高めて高濃度酸素水を生成可能な酸素水生成手段と、該酸素水生成手段の出力側に接続された酸素水供給手段とを備えるとともに、該酸素水供給手段を、前記高濃度酸素水が前記石積み浄化堤を構成する堤体材の礫間に供給されるように構成した石積み浄化堤の機能維持システムであって、前記内水域、前記外水域又は前記堤体内の水位を計測する水位計と該水位計で計測された水位の値に応じて前記酸素水生成手段を駆動制御する制御手段とを備え、該制御手段は、前記水位計による値からその水位が上昇中であるかどうかを判断し、該水位が上昇中であると判断されたときに前記酸素水生成手段を作動させるようになっているものである。 The function maintenance system for a masonry purification embankment according to the present invention, as described in claim 3 , is a poor flow which has flowed into the inner water area surrounded by the masonry purification embankment or into the embankment constituting the masonry purification embankment by tides or waves. A water intake pump capable of taking oxygen water from the inner water area or from the inside of the dike body, or taking oxygen water from the outer water area spreading outside the stone masonry purification bank from the masonry purification bank, by tide or wave. The intake pump is connected to the input side, and oxygen water generating means capable of generating high-concentration oxygen water by increasing the dissolved oxygen concentration of the poor oxygen water from the intake pump, and connected to the output side of the oxygen water generating means together and a oxygen water supply means, masonry purifying the acid Motomi supplying means, the high-concentration oxygen water is configured to be supplied between gravel embankment material constituting the masonry purifying Tsutsumi A functional maintenance system, said body of water, the outer body of water or the embankment of the control for driving and controlling the oxygen water generation means according to the value of the water level measured by the water level gauge and water level meter for measuring the water level And the control means determines whether or not the water level is rising from a value obtained by the water level gauge, and activates the oxygen water generating means when it is determined that the water level is rising. It is something like that.

石積み浄化堤が貧酸素水に曝されたとき、石積み浄化堤を構成する堤体材の表面に形成されている生物膜や礫間に棲息する生物は、上述したように貧酸素状態におかれて死滅し、石積み浄化堤はその水質浄化機能を喪失する。   When the masonry purification levee is exposed to anoxic water, the biofilms that are formed on the surface of the levee body material constituting the masonry purification levee and the organisms that live between the gravel are placed in an anoxic state as described above. The masonry purification dike loses its water purification function.

本出願人は、かかる問題を解決すべく、石積み浄化堤の堤体に酸素を供給すればどうかという点に着眼して研究開発を行ったところ、無酸素状態に近い貧酸素水に対しては、通常のエアレーションでは十分な量の酸素を供給することができないことや、短時間に大気に放散されてしまうため、堤体の隅々にまで酸素を供給することが難しいこと、さらには内水域に流入した貧酸素水が内水域を汚濁させることがあらたに判明した。   In order to solve this problem, the present applicant conducted research and development focusing on whether or not oxygen should be supplied to the dam body of the masonry purification dam. In addition, it is difficult to supply a sufficient amount of oxygen with normal aeration, and it is difficult to supply oxygen to every corner of the levee because it is released to the atmosphere in a short time. It became clear that the oxygen-poor water that flowed into the basin contaminated the inner water area.

これらの点を踏まえてさらに研究を続けたところ、石積み浄化堤で囲まれた内水域、該石積み浄化堤の外側に拡がる外水域又はその堤体内から取水し、次いで、その水の溶存酸素濃度を酸素水生成手段で高めて高濃度酸素水とした後、該高濃度酸素水を酸素水供給手段を介して堤体材の礫間に供給することにより、貧酸素状態となっている水を石積み浄化堤の近傍から除去するとともに、堤体材の表面に付着する生物膜や礫間に棲息する生物の死滅を未然に防止することができるというあらたな知見を得るに至ったものである。   Based on these points, we continued our research and found that water was taken from the inner water area surrounded by the masonry purification dike, the outer water area extending outside the masonry purification dike, or from the dike body, and then the dissolved oxygen concentration of the water was measured. After the oxygen water generating means raises it to high concentration oxygen water, the high concentration oxygen water is supplied between the gravels of the levee body material via the oxygen water supply means, so that the oxygen-poor water is stoned In addition to removing from the vicinity of the levee, new knowledge has been obtained that it is possible to prevent the death of organisms living between the biofilms and gravel attached to the surface of the levee body material.

貧酸素水を取水する位置としては、 As a position to take anoxic water ,

(a)石積み浄化堤の外側に拡がる外水域   (a) Outside water area extending outside the masonry purification bank

(b)石積み浄化堤で囲まれた内水域   (b) Inner waters surrounded by a stone masonry purification bank

(c)石積み浄化堤の堤体内   (c) Masonry purification wall

の3つから適宜選択することが可能であるが、石積み浄化堤の内水域から取水するようにすれば、貧酸素水が石積み浄化堤を通過して内水域に流入した後であっても、該内水域から貧酸素水を除去することができるので、内水域の水質浄化を行うことも可能となる。 However, if water is taken from the inner water area of the stone masonry dam, even after the oxygen-poor water flows into the inner water area through the masonry dam, Since the oxygen-poor water can be removed from the inner water area, the water quality of the inner water area can be purified.

一方、石積み浄化堤の堤体内、例えば堤体に取水ピットを設けて該取水ピットから取水するようにすれば、高濃度酸素水は、供給後、速やかに取水ポンプで回収されるため、堤体材の礫間には常に新鮮な高濃度酸素水が供給されることとなり、生物膜や礫間棲息生物の死滅をより確実に防止することが可能となる。   On the other hand, if a water intake pit is provided in the body of the masonry purification dike, for example, the water is taken from the water intake pit, the high-concentration oxygen water is quickly recovered by the intake pump after the supply. Fresh high-concentration oxygen water is always supplied between the pebbles of the timber, and it is possible to more reliably prevent the biofilms and the inhabitation organisms between the gravel.

溶存酸素濃度を高めて高濃度酸素水を生成するための酸素水生成手段は、例えば高濃度の酸素を溶解可能な装置を適宜用いればよい。   As the oxygen water generating means for increasing the dissolved oxygen concentration to generate high concentration oxygen water, for example, an apparatus capable of dissolving high concentration oxygen may be used as appropriate.

かかる酸素水生成手段は例えば、PSA方式の酸素濃縮装置と、該酸素濃縮装置で生成された高濃度酸素ガスを例えば90%程度に溶解させることが可能な酸素溶解装置とを組み合わせて構成することが可能であり、それぞれ市販の装置から適宜選択することができる。   Such oxygen water generating means is composed of, for example, a combination of a PSA type oxygen concentrating device and an oxygen dissolving device capable of dissolving, for example, about 90% of the high concentration oxygen gas generated by the oxygen concentrating device. Each of them can be appropriately selected from commercially available devices.

本発明において貧酸素水とは、溶存酸素濃度がきわめて小さい場合として実質的に無酸素水をも含むとともに、いわゆる貧酸素水塊もこれを含む概念で用いるものとする。また、青潮は、硫化水素や該硫化水素が酸化された硫黄酸化物を含むため、溶存酸素濃度が低い単なる貧酸素水塊とは区別されることがあるが、本明細書で貧酸素水とは、溶存酸素濃度が低い水であって、青潮も含む概念として用いるものとする。   In the present invention, the hypoxic water substantially includes anoxic water as a case where the dissolved oxygen concentration is extremely small, and a so-called hypoxic water mass is used in a concept including this. In addition, since the blue tide includes hydrogen sulfide and sulfur oxide obtained by oxidizing the hydrogen sulfide, it may be distinguished from a simple anoxic water mass having a low dissolved oxygen concentration. Is water having a low dissolved oxygen concentration, and is used as a concept including the blue tide.

高濃度酸素水は、石積み浄化堤を構成する堤体材の礫間に任意の方法で供給すれば足りるものであって、酸素水供給手段をどのように構成するかも任意である。   It is sufficient to supply the high-concentration oxygen water by an arbitrary method between the gravels of the embankment body material constituting the masonry purification bank, and the configuration of the oxygen water supply means is also arbitrary.

例えば、石積み浄化堤の堤体頂部近傍に設置された散水装置で酸素水供給手段を構成することにより、高濃度酸素水を石積み浄化堤の表面から内部へと浸透させるようにしてもよいし、石積み浄化堤の外水域側でかつ水面下方に配置された供給管で酸素水供給手段を構成することにより、高濃度酸素水を石積み浄化堤の外水域側で噴出させて堤体内に流入させてもよい。   For example, by configuring the oxygen water supply means with a watering device installed near the top of the masonry purification levee, high concentration oxygen water may permeate from the surface of the masonry purification dam to the inside, By configuring the oxygen water supply means with a supply pipe arranged on the outer water area side of the stone masonry purification bank and below the water surface, high-concentration oxygen water is jetted on the outer water area side of the stone masonry purification bank and allowed to flow into the levee body. Also good.

ここで、酸素水供給手段を、酸素水生成手段の出力側に接続された吐出管で構成するとともに、該吐出管を、その吐出口が礫間に位置決めされるように石積み浄化堤に埋設したならば、高濃度酸素水を拡散させることなく石積み浄化堤の礫間に吐出することができるので、生物膜や礫間棲息生物の死滅をより確実に防止することが可能となる。   Here, the oxygen water supply means is constituted by a discharge pipe connected to the output side of the oxygen water generation means, and the discharge pipe is embedded in the stone masonry purification bank so that the discharge port is positioned between the gravel. Then, since high concentration oxygen water can be discharged between the pebbles of the masonry purification bank without diffusing, it becomes possible to more surely prevent the biofilm and the interstitial habitats from being killed.

なお、酸素水供給手段は、吐出管のみで構成する以外に、吐出管及び該吐出管の上流側又は下流側に接続された送水ポンプで構成することが可能であるが、かかる送水ポンプは必要に応じて適宜備えるようにすればよい。   The oxygen water supply means can be composed of a discharge pipe and a water pump connected to the upstream side or the downstream side of the discharge pipe in addition to the discharge pipe alone, but such a water pump is necessary. Depending on the situation, it may be provided as appropriate.

酸素水生成手段をどのタイミングで作動させるかは任意であるが、貧酸素水は主として外水域側で発生して内水域側に流入するため、石積み浄化堤の内水域、外水域又は堤体内の水位が上昇中のときに高濃度酸素水の供給を行うようにすれば、貧酸素水の流入に合わせて高濃度酸素水が石積み浄化堤の堤体材間隙に供給されることとなり、効率的な維持管理が可能となる。 The timing of operating the oxygen water generating means is arbitrary. However, since the oxygen-poor water is mainly generated in the outer water area and flows into the inner water area, the inner water area, the outer water area, or the inner wall of the masonry purification levee If high-concentration oxygen water is supplied when the water level is rising , high-concentration oxygen water will be supplied to the gap between the walls of the masonry purification dyke in accordance with the inflow of the poor oxygen water. Maintenance is possible.

酸素水生成手段を作動させるには、内水域、外水域又は堤体内の水位を水位計で計測し、その値から水位が上昇中であるかどうかを制御手段で判断し、該水位が上昇中であると判断されたときに該制御手段で酸素水生成手段を作動させるようにすればよい。   To activate the oxygen water generation means, measure the water level in the inner water area, the outer water area or the dike body with a water level gauge, and determine whether the water level is rising from the value by the control means, and the water level is rising. When it is determined that the oxygen water generation means is operated by the control means.

水位は、石積み浄化堤の内水域、外水域又は堤体内のいずれで計測してもよく、堤体内で計測する場合には例えば計測ピットを設けて該計測ピットの水位を計測するようにすればよい。   The water level may be measured in any of the inner water area, the outer water area, or the dam body of the masonry purification dyke, and when measuring in the dam body, for example, a measurement pit may be provided to measure the water level of the measurement pit. Good.

また、石積み浄化堤の内水域、外水域又はその堤体内の溶存酸素濃度が所定値未満のときに高濃度酸素水の供給を行うようにすれば、石積み浄化堤が貧酸素水に曝されるおそれがあるときのみ、高濃度酸素水が供給されることとなり、水位上昇に基づく作動と同様、石積み浄化堤の効率的な維持管理が可能となる。   In addition, if the high concentration oxygen water is supplied when the dissolved oxygen concentration in the inner water area, the outer water area or the body of the masonry purification bank is less than a predetermined value, the masonry purification bank is exposed to the anoxic water. Only when there is a fear, high-concentration oxygen water will be supplied, and it will be possible to efficiently maintain and manage the stone masonry dam, similar to the operation based on the rise in water level.

酸素水生成手段を作動させるには、内水域、外水域又は堤体内の溶存酸素を溶存酸素計で計測し、その値が所定値未満のときに制御手段で酸素水生成手段を作動させるようにすればよい。   In order to operate the oxygen water generating means, the dissolved oxygen in the inner water area, the outer water area or the levee body is measured with a dissolved oxygen meter, and when the value is less than a predetermined value, the oxygen water generating means is operated by the control means. do it.

石積み浄化堤の機能維持システム1の概略図。Schematic of the function maintenance system 1 of a masonry purification bank. 吐出管12の図であり、(a)は堤体の軸線に直交する断面に沿った配置図、(b)はA−A線に沿う鉛直断面図、(c)は吐出管の拡大詳細図。It is the figure of the discharge pipe 12, (a) is a layout view along the cross section orthogonal to the axis of the bank body, (b) is a vertical cross-sectional view along the AA line, (c) is an enlarged detail view of the discharge pipe . 石積み浄化堤の機能維持システム1の実施手順を示したフローチャート。The flowchart which showed the implementation procedure of the function maintenance system 1 of a masonry purification bank. 変形例に係る石積み浄化堤の機能維持システムを示した概略図。Schematic which showed the function maintenance system of the masonry purification embankment which concerns on a modification. 別の変形例に係る石積み浄化堤の機能維持システムを示した概略図。Schematic which showed the function maintenance system of the masonry purification bank concerning another modification. 別の変形例に係る石積み浄化堤の機能維持システムを示した概略図。Schematic which showed the function maintenance system of the masonry purification bank concerning another modification.

以下、本発明に係る石積み浄化堤の機能維持方法及びシステムの実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a function maintenance method and system for a masonry purification bank according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る石積み浄化堤の機能維持システムを示した概略図である。同図でわかるように本実施形態に係る石積み浄化堤の機能維持システム1は、石積み浄化堤2で囲まれた内水域7に設置され該内水域から取水可能な取水ポンプ8と、該取水ポンプからの海水の溶存酸素濃度を高めて高濃度酸素水を生成可能な酸素水生成手段としての酸素濃縮装置9及び酸素溶解装置10と、高濃度酸素水を石積み浄化堤2に供給可能な酸素水供給手段としての送水ポンプ11及び吐出管12とからなる。   FIG. 1 is a schematic view showing a function maintenance system for a masonry purification bank according to the present embodiment. As can be seen from FIG. 1, the function maintenance system 1 for a masonry purification bank according to this embodiment is installed in an inner water area 7 surrounded by the masonry purification bank 2 and can take water from the inner water area, and the intake pump Oxygen concentration device 9 and oxygen dissolution device 10 as oxygen water generating means capable of generating high concentration oxygen water by increasing the dissolved oxygen concentration of seawater from the seawater, and oxygen water capable of supplying high concentration oxygen water to the masonry purification levee 2 It comprises a water pump 11 and a discharge pipe 12 as supply means.

石積み浄化堤2は、礫、石等の堤体材3を海底4から積み上げ、これを被覆石5で被覆して堤体を構成してある。   The masonry purification levee 2 is constructed by stacking levee body materials 3 such as gravel and stone from the seabed 4 and covering them with covering stones 5.

酸素濃縮装置9は、大気から空気を取り込んでこれを圧縮するコンプレッサ(図示せず)と、圧縮空気から水分を予め除去するクーラー及びドレインセパレータ(図示せず)と、該ドレインセパレータに接続された吸着筒(図示せず)とを備えており、該吸着筒は、ドレインセパレータから送られてきた空気中の窒素を加圧下でゼオライトに吸着させる一方、ゼオライトに吸着した窒素を減圧下で脱着させて大気に排出するプロセスを繰り返し行うようになっており、かかる吸着脱着工程を繰り返すことで、空気中の酸素を選択的に取り出し、例えば濃度が90%程度の酸素ガスを生成できるようになっている。   The oxygen concentrator 9 is connected to a compressor (not shown) that takes air from the atmosphere and compresses it, a cooler and drain separator (not shown) that removes moisture from the compressed air in advance, and the drain separator. An adsorption cylinder (not shown), which adsorbs nitrogen in the air sent from the drain separator to the zeolite under pressure while desorbing the nitrogen adsorbed to the zeolite under reduced pressure. The process of exhausting to the atmosphere is repeated, and by repeating this adsorption / desorption process, oxygen in the air can be selectively taken out, for example, oxygen gas having a concentration of about 90% can be generated. Yes.

かかる酸素濃縮装置9においては、吸着筒を例えば2本設置し、それぞれを吸着工程と脱着工程で切り替えながら連続同時使用するように構成することができる。   In this oxygen concentrator 9, for example, two adsorption cylinders can be installed and used continuously and simultaneously while switching between the adsorption process and the desorption process.

酸素溶解装置10は、酸素濃縮装置9から送られてきた高濃度酸素ガスを、取水ポンプ8から送られてきた海水で満たされた噴流ボックス(図示せず)に吹き込むことにより、該噴流ボックス内でキャビテーションを生じさせ、高濃度酸素ガスを例えば90%程度に貧酸素水に溶解させることができるようになっている。   The oxygen dissolving device 10 blows the high-concentration oxygen gas sent from the oxygen concentrating device 9 into a jet box (not shown) filled with seawater sent from the water intake pump 8, thereby Thus, cavitation is generated, and high-concentration oxygen gas can be dissolved in poor oxygen water to about 90%, for example.

送水ポンプ11は、その入力側を酸素溶解装置10の噴流ボックスに、その出力側を吐出管12にそれぞれ接続してあるとともに、吐出管12は図2でよくわかるように、該吐出管に形成された多数の吐出口13が石積み浄化堤2を構成する堤体材3の礫間に位置決めされるように石積み浄化堤2に埋設してあり、かかる構成により、酸素溶解装置10で生成された高濃度酸素水を石積み浄化堤2を構成する堤体材3の礫間に供給できるようになっている。   The water pump 11 has its input side connected to the jet box of the oxygen dissolving apparatus 10 and its output side connected to the discharge pipe 12, and the discharge pipe 12 is formed in the discharge pipe as can be seen in FIG. A large number of discharged outlets 13 are embedded in the stone masonry purification dam 2 so as to be positioned between the gravels of the dam body material 3 constituting the masonry purification dyke 2, and thus generated by the oxygen dissolving device 10. High-concentration oxygen water can be supplied between the gravel of the bank body material 3 constituting the masonry purification bank 2.

吐出管12は、高濃度酸素水が石積み浄化堤2のあらゆる箇所、特に堤体中央の底層部に確実に供給されるよう、断面積、本数、埋設深さ等を適宜設定するとともに、同様な観点で吐出口13の孔径や個数を適宜設定する。   The discharge pipe 12 has the same cross-sectional area, number, burial depth, etc. as appropriate so that high-concentration oxygen water can be reliably supplied to every part of the masonry purification dam 2, particularly to the bottom layer at the center of the dam body. From the viewpoint, the hole diameter and the number of the discharge ports 13 are appropriately set.

本実施形態に係る石積み浄化堤の機能維持システム1は図1に示すように、石積み浄化堤2の外水域14の潮位と溶存酸素濃度をそれぞれ計測する潮位計21及び溶存酸素計22と、潮位計21と溶存酸素計22とで計測された値に応じて酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を駆動制御する制御装置23とを備えており、該制御装置は、潮位計21による値から外水域14の水位が上昇中であるかどうかを判断し、該水位が上昇中であると判断されたとき、又は溶存酸素計22による値が所定値、例えば3.5mg/l未満のとき、酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を作動させるようになっている。   As shown in FIG. 1, the function maintenance system 1 for a masonry purification bank according to the present embodiment includes a tide gauge 21 and a dissolved oxygen gauge 22 that respectively measure the tide level and dissolved oxygen concentration in the outer water area 14 of the masonry purification bank 2, and the tide level. A control device 23 that controls the drive of the oxygen concentrator 9, the oxygen dissolver 10, the water pump 11, and the water intake pump 8 according to the values measured by the meter 21 and the dissolved oxygen meter 22 is provided. Then, it is determined whether or not the water level in the outer water area 14 is rising from the value obtained by the tide gauge 21, and when it is determined that the water level is rising, or the value obtained by the dissolved oxygen meter 22 is a predetermined value, for example, 3. When it is less than 5 mg / l, the oxygen concentrator 9, the oxygen dissolver 10, the water pump 11 and the water intake pump 8 are operated.

図3は、本実施形態に係る石積み浄化堤の機能維持システム1を用いて石積み浄化堤2の機能を維持する方法を実施する手順を示したフローチャートである。同図でわかるように、本実施形態に係る石積み浄化堤の機能維持方法においては、まず、石積み浄化堤2の外水域14の潮位と溶存酸素濃度を潮位計21及び溶存酸素計22でそれぞれ計測する(ステップ101)。   FIG. 3 is a flowchart showing a procedure for implementing a method for maintaining the function of the masonry purification bank 2 using the masonry purification bank function maintenance system 1 according to the present embodiment. As can be seen from the figure, in the method for maintaining the function of the masonry purification bank according to the present embodiment, first, the tide level and the dissolved oxygen concentration in the outer water area 14 of the masonry purification bank 2 are measured by the tide gauge 21 and the dissolved oxygen meter 22, respectively. (Step 101).

次いで、潮位計21による値から、外水域14の潮位が上昇中であるかどうかを判断する(ステップ102)。   Next, it is determined from the value obtained by the tide gauge 21 whether or not the tide level in the outer water area 14 is rising (step 102).

ここで、上昇中でない場合には(ステップ102、NO)、溶存酸素濃度が所定値、例えば3.5mg/l未満がどうかを判断し(ステップ103)、所定値以上であれば(ステップ103、NO)、潮位計21及び溶存酸素計22による計測を継続して行う(ステップ101)。   Here, when it is not increasing (step 102, NO), it is determined whether the dissolved oxygen concentration is a predetermined value, for example, less than 3.5 mg / l (step 103). NO), the measurement by the tide gauge 21 and the dissolved oxygen meter 22 is continued (step 101).

一方、外水域14の潮位が上昇中であれば(ステップ102、YES)、貧酸素水が外水域14の側に存在していた場合、潮汐によって貧酸素水が外水域14から内水域7に流入している可能性があるので、制御装置23で取水ポンプ8を作動させ、石積み浄化堤2で囲まれた内水域7から貧酸素水又はその可能性がある海水を取水する(ステップ104)。   On the other hand, if the tide level in the outer water area 14 is rising (step 102, YES), if the oxygen-poor water is present on the outer water area 14 side, the oxygen-lowering water is moved from the outer water area 14 to the inner water area 7 by the tide. Since there is a possibility of inflow, the control device 23 operates the water intake pump 8 to take in oxygen-poor water or seawater that may be there from the inner water area 7 surrounded by the masonry purification bank 2 (step 104). .

また、溶存酸素計22による値が所定値未満であれば(ステップ103、YES)、波浪によって貧酸素水が外水域14から内水域7に流入している可能性があるので、制御装置23で取水ポンプ8を作動させ、石積み浄化堤2で囲まれた内水域7から貧酸素水又はその可能性がある海水を取水する(ステップ104)。   Moreover, if the value by the dissolved oxygen meter 22 is less than a predetermined value (step 103, YES), since the oxygen-poor water may flow into the inner water area 7 from the outer water area 14 due to the waves, the control device 23 The water intake pump 8 is operated to take the oxygen-poor water or possibly seawater from the inner water area 7 surrounded by the masonry purification bank 2 (step 104).

次に、制御装置23で酸素濃縮装置9及び酸素溶解装置10を作動させることにより、取水された貧酸素水又はその可能性がある海水の溶存酸素濃度を高めて高濃度酸素水とする(ステップ105)。   Next, by operating the oxygen concentrating device 9 and the oxygen dissolving device 10 with the control device 23, the dissolved oxygen concentration of the taken-in poor oxygen water or possibly seawater is increased to obtain high-concentration oxygen water (step). 105).

次に、送水ポンプ11を制御装置23で制御することにより、酸素濃縮装置9及び酸素溶解装置10で生成された高濃度酸素水を吐出管12を介して送水し、該吐出管に形成された吐出口13を介して堤体材3の礫間に吐出する(ステップ106)。   Next, by controlling the water supply pump 11 with the control device 23, the high-concentration oxygen water generated by the oxygen concentrating device 9 and the oxygen dissolving device 10 is supplied through the discharge pipe 12, and formed in the discharge pipe. It discharges between the gravels of the bank body material 3 through the discharge port 13 (step 106).

以上説明したように、本実施形態に係る石積み浄化堤の機能維持システム1及び方法によれば、貧酸素水又はその可能性がある海水を取水ポンプ8で取水し、次いで、その溶存酸素濃度を酸素濃縮装置9及び酸素溶解装置10で高めて高濃度酸素水とした後、該高濃度酸素水を送水ポンプ11で送水し、吐出管12に形成された吐出口13から堤体材3の礫間に吐出するようにしたので、堤体材3の表面に付着する生物膜や礫間に棲息する生物の死滅を未然に防止し、ひいては石積み浄化堤2の水質浄化機能を維持することが可能となる。   As described above, according to the function maintenance system 1 and method of a stone masonry purification embankment according to the present embodiment, poor oxygen water or possibly seawater is taken with the water pump 8, and then the dissolved oxygen concentration is set. After increasing the oxygen concentration device 9 and the oxygen dissolving device 10 to high-concentration oxygen water, the high-concentration oxygen water is supplied by the water supply pump 11, and the gravel of the dam body material 3 from the discharge port 13 formed in the discharge pipe 12. Since it is discharged in the meantime, it is possible to prevent the death of living organisms living on the surface of the levee body material 3 and gravel, and to maintain the water purification function of the masonry purification levee 2 It becomes.

また、本実施形態に係る石積み浄化堤の機能維持システム1及び方法によれば、取水ポンプ8を石積み浄化堤2の内水域7に設置することで、貧酸素水又はその可能性がある海水を該内水域から取水するようにしたので、貧酸素水が石積み浄化堤2を通過して内水域7に流入した後であっても、該内水域から貧酸素水を除去することが可能となり、石積み浄化堤2の水質維持のみならず、内水域7の水質浄化も併せて行うことが可能となる。   Moreover, according to the function maintenance system 1 and the method of the masonry purification bank according to the present embodiment, by installing the intake pump 8 in the inner water area 7 of the stone masonry purification bank 2, the poor oxygen water or the seawater with the possibility thereof is obtained. Since water is taken from the inner water area, it becomes possible to remove the oxygen-poor water from the inner water area even after the oxygen-lowering water passes through the stone masonry dam 2 and flows into the inner water area 7. In addition to maintaining the water quality of the masonry purification bank 2, it is possible to purify the water quality of the inner water area 7 together.

また、本実施形態に係る石積み浄化堤の機能維持システム1及び方法によれば、石積み浄化堤2の外水域14の潮位を潮位計21で計測し、該潮位計で計測された値に応じて酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を制御装置23で駆動制御するようにしたので、高濃度酸素水を、貧酸素水の流入に合わせて石積み浄化堤2を構成する堤体材3の礫間に吐出することが可能となり、かくして石積み浄化堤2の効率的な維持管理が可能となる。   Moreover, according to the function maintenance system 1 and method of the masonry purification bank according to the present embodiment, the tide level in the outer water area 14 of the masonry purification bank 2 is measured by the tide gauge 21 and according to the value measured by the tide gauge. Since the oxygen concentrating device 9, the oxygen dissolving device 10, the water supply pump 11, and the water intake pump 8 are driven and controlled by the control device 23, the high-concentration oxygen water is configured to match the inflow of the oxygen-poor water to constitute the masonry purification dike 2 It becomes possible to discharge between the gravel of the levee body material 3 to be performed, and thus efficient maintenance management of the masonry purification levee 2 becomes possible.

また、本実施形態に係る石積み浄化堤の機能維持システム1及び方法によれば、石積み浄化堤2の外水域14の溶存酸素濃度を溶存酸素計22で計測し、該溶存酸素計で計測された値に応じて酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を制御装置23で駆動制御するようにしたので、石積み浄化堤2が貧酸素水に曝されるおそれがあるときのみ、高濃度酸素水を堤体材3の礫間に吐出することが可能となり、石積み浄化堤2のさらなる効率的な維持管理が可能となる。   Moreover, according to the function maintenance system 1 and method of the masonry purification bank according to the present embodiment, the dissolved oxygen concentration in the outer water area 14 of the masonry purification bank 2 is measured by the dissolved oxygen meter 22 and measured by the dissolved oxygen meter. When the oxygen concentrating device 9, the oxygen dissolving device 10, the water pump 11 and the water intake pump 8 are driven and controlled by the control device 23 according to the values, there is a possibility that the stone masonry purification bank 2 may be exposed to the oxygen-poor water Only high-concentration oxygen water can be discharged between the gravel of the bank body material 3, and further efficient maintenance and management of the masonry purification bank 2 is possible.

本実施形態では、石積み浄化堤2の外水域14における潮位と溶存酸素濃度を潮位計21及び溶存酸素計22でそれぞれ計測するとともに、それらの計測値に応じて酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を制御装置23で駆動制御するようにしたが、潮位計21及び溶存酸素計22のうち、いずれか一方のみを設置し、潮位又は溶存酸素濃度のいずれかだけで酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を制御装置23で駆動制御するようにしてもよい。   In the present embodiment, the tide level and dissolved oxygen concentration in the outer water area 14 of the masonry purification bank 2 are measured by the tide gauge 21 and the dissolved oxygen gauge 22, respectively, and the oxygen concentrator 9 and the oxygen dissolver 10 according to these measured values. The water pump 11 and the water intake pump 8 are driven and controlled by the control device 23. However, only one of the tide gauge 21 and the dissolved oxygen gauge 22 is installed, and only either the tide level or the dissolved oxygen concentration is installed. The oxygen concentrator 9, the oxygen dissolver 10, the water pump 11 and the water intake pump 8 may be driven and controlled by the controller 23.

例えば溶存酸素計22のみを外水域14に設置し、潮位とは関係なく溶存酸素濃度の計測値に応じて、酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を制御装置23で駆動制御するようにすれば、貧酸素水が石積み浄化堤2に到来した時点で、石積み浄化堤2の堤体材3の礫間には高濃度酸素水が既に満たされていることとなり、かくして高濃度酸素水は、石積み浄化堤2及びその内水域7を守るバリアとしての役目を果たし、石積み浄化堤2の機能低下を予防することが可能となる。   For example, only the dissolved oxygen meter 22 is installed in the outer water area 14, and the oxygen concentrator 9, the oxygen dissolver 10, the water pump 11, and the water intake pump 8 are controlled by the controller 23 according to the measured value of the dissolved oxygen concentration regardless of the tide level. If the damp oxygen water arrives at the stone masonry dam 2, high concentration oxygen water is already filled between the gravel of the dam body material 3 of the masonry dam 2, Thus, the high-concentration oxygen water serves as a barrier for protecting the stone masonry dam 2 and the inner water area 7, and prevents the masonry dam 2 from being deteriorated in function.

また、これとは逆に、制御装置23による各装置の作動条件を、潮位が上昇中でかつ溶存酸素濃度が所定値未満とすることが可能であり、かかる変形例においては、貧酸素水が流入している可能性がきわめて高い場合のみ、システムを稼働させるものであり、システムの運転コストを低減することが可能となる。   On the other hand, the operating conditions of each device by the control device 23 can be such that the tide level is rising and the dissolved oxygen concentration is less than a predetermined value. The system is operated only when there is a very high possibility that it is flowing in, and the operating cost of the system can be reduced.

また、潮位や溶存酸素濃度を別システムで監視しつつ、あるいは潮位や溶存酸素濃度とは関係なく適宜に、酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を手動で操作するようにしてもよい。   In addition, the oxygen concentration device 9, the oxygen dissolution device 10, the water supply pump 11, and the water intake pump 8 are manually operated while monitoring the tide level and dissolved oxygen concentration with another system, or as appropriate regardless of the tide level and dissolved oxygen concentration. You may do it.

一方、酸素濃縮装置9、酸素溶解装置10及び送水ポンプ11並びに取水ポンプ8を常時運転することで、高濃度酸素水を連続供給するようにしてもかまわない。   On the other hand, the high concentration oxygen water may be continuously supplied by always operating the oxygen concentrating device 9, the oxygen dissolving device 10, the water supply pump 11, and the water intake pump 8.

かかる変形例においては、システムの運転コストよりも、石積み浄化堤の機能維持が優先される。図4(a)は、かかる変形例を示したものであって、潮位計21、溶存酸素計22及び制御装置23は不要となる。   In such a modification, priority is given to maintaining the function of the masonry purification bank over the operating cost of the system. FIG. 4A shows such a modified example, and the tide gauge 21, the dissolved oxygen gauge 22, and the control device 23 are not necessary.

また、本実施形態では、石積み浄化堤2で囲まれた内水域7から貧酸素水又はその可能性がある海水を取水するようにしたが、これに代えて、石積み浄化堤2の堤体内から取水するようにしてもよい。   Moreover, in this embodiment, although it was made to take in anoxic water or the seawater with the possibility from the inner water area 7 enclosed by the masonry purification bank 2, it replaces with this from the bank of the masonry purification bank 2 You may make it take water.

図4(b)は、かかる変形例を示したものであり、堤体に取水ピットを設けて該取水ピットに取水ポンプ8を設置してなる。かかる変形例においては、吐出口13を出た高濃度酸素水が貧酸素水又はその可能性が高い海水とともに取水ポンプ8で回収される流れが比較的短い経路で形成されるため、常に新鮮な高濃度酸素水が堤体材の礫間に供給されることとなり、かくして生物膜や礫間棲息生物の死滅をより確実に防止することが可能となる。   FIG. 4 (b) shows such a modified example, in which a water intake pit is provided in the bank body and a water intake pump 8 is installed in the water intake pit. In such a modified example, since the high-concentration oxygen water that has exited the discharge port 13 is formed with a relatively short path, the flow collected by the intake pump 8 together with the oxygen-poor water or sea water that is likely to be formed is always fresh. High-concentration oxygen water is supplied between the gravels of the levee body material, and thus it is possible to more surely prevent the biofilms and inter-gravel living organisms from being killed.

また、本実施形態では、酸素水供給手段として送水ポンプ11を設けるようにしたが、場合によってはこれを省略してもかまわない。かかる変形例においては、酸素水供給手段は吐出管12のみで構成されることになるとともに、制御装置23は、酸素濃縮装置9、酸素溶解装置10及び取水ポンプ8を駆動制御することとなる。   Moreover, in this embodiment, although the water supply pump 11 was provided as an oxygen water supply means, depending on the case, this may be abbreviate | omitted. In such a modified example, the oxygen water supply means is constituted by only the discharge pipe 12, and the control device 23 drives and controls the oxygen concentrating device 9, the oxygen dissolving device 10, and the water intake pump 8.

また、本実施形態では、石積み浄化堤2に埋設された吐出管12を介して高濃度酸素水を石積み浄化堤2を構成する堤体材3の礫間に直接供給することで、高濃度酸素水の拡散を防ぐようにしたが、場合によっては高濃度酸素水を堤体材3の礫間に間接的に供給するようにしてもかまわない。   Moreover, in this embodiment, high concentration oxygen water is directly supplied between the gravel of the embankment body material 3 which comprises the masonry purification dam 2 through the discharge pipe 12 embed | buried in the masonry purification dam 2 and high concentration oxygen is supplied. Although water diffusion is prevented, high-concentration oxygen water may be indirectly supplied between the gravels of the bank body material 3 in some cases.

図5及び図6はかかる変形例を示したものであり、図5に示した変形例においては、酸素水供給手段としての散水装置52を石積み浄化堤2の堤体頂部に設置するとともに該散水装置の入力側を送水ポンプ11の出力側に接続することにより、高濃度酸素水を石積み浄化堤2の表面から内部へと浸透させるように構成してあり、図6に示した変形例においては、酸素水供給手段としての供給管62を石積み浄化堤2の外水域14側でかつ水面下方に配置するとともに該供給管の基端側を送水ポンプ11の出力側に接続することにより、高濃度酸素水を石積み浄化堤2の外水域14側で噴出させて堤体内に流入させるように構成してある。   5 and 6 show such a modified example. In the modified example shown in FIG. 5, a watering device 52 as oxygen water supply means is installed at the top of the dam body of the masonry purification dike 2 and the watering is performed. By connecting the input side of the apparatus to the output side of the water pump 11, high concentration oxygen water is configured to permeate from the surface of the masonry purification bank 2 into the interior. In the modification shown in FIG. By arranging the supply pipe 62 as oxygen water supply means on the outer water area 14 side of the stone masonry purification bank 2 and below the water surface, and connecting the base end side of the supply pipe to the output side of the water pump 11, high concentration Oxygen water is jetted on the outer water area 14 side of the stone masonry purification bank 2 and flows into the bank body.

かかる構成においても、高濃度酸素水の酸素濃度が多少低下するものの、該高濃度酸素水を石積み浄化堤2を構成する堤体材3の間隙に供給することは可能であって、上述した実施形態と同様の作用効果を奏するとともに、既存の石積み浄化堤に手を加える必要がないため、構築コストを安価に抑えることができるという作用効果も奏する。   Even in such a configuration, although the oxygen concentration of the high-concentration oxygen water is somewhat reduced, it is possible to supply the high-concentration oxygen water to the gap between the levee body materials 3 constituting the masonry purification dam 2. In addition to the operational effects similar to those of the embodiment, it is not necessary to modify the existing masonry purification bank, so that the construction cost can be reduced.

1 石積み浄化堤の機能維持システム
2 石積み浄化堤
3 堤体材
7 内水域
8 取水ポンプ
9 酸素濃縮装置(酸素水生成手段)
10 酸素溶解装置(酸素水生成手段)
11 送水ポンプ(酸素水供給手段)
12 吐出管(酸素水供給手段)
13 吐出口
14 外水域
21 潮位計(水位計)
22 溶存酸素計
23 制御装置(制御手段)
52 散水装置(酸素水供給手段)
62 供給管(酸素水供給手段)
1 Function maintenance system of stone masonry purification bank 2 Masonry purification bank 3 Embankment material 7 Inner water area 8 Intake pump 9 Oxygen concentrator (oxygen water generating means)
10 Oxygen dissolving device (oxygen water generating means)
11 Water pump (oxygen water supply means)
12 Discharge pipe (oxygen water supply means)
13 Discharge port 14 Outside water area 21 Tide gauge (water level gauge)
22 dissolved oxygen meter 23 control device (control means)
52 Watering device (oxygen water supply means)
62 Supply pipe (oxygen water supply means)

Claims (3)

石積み浄化堤で囲まれた内水域若しくは該石積み浄化堤を構成する堤体内に潮汐若しくは波浪によって流入した貧酸素水を前記内水域若しくは前記堤体内から取水し、又は前記石積み浄化堤に潮汐若しくは波浪によって流入しようとする貧酸素水を前記石積み浄化堤の外側に拡がる外水域から取水し、取水された貧酸素水の溶存酸素濃度を高めて高濃度酸素水とし、該高濃度酸素水を、前記内水域、前記外水域又は前記堤体内の水位が上昇中のときに前記石積み浄化堤を構成する堤体材の礫間に供給することを特徴とする石積み浄化堤の機能維持方法。 The poor oxygen water that has flowed into the inner water area surrounded by the masonry purification levee or the levee body constituting the masonry purification levee by tides or waves is taken from the inner water area or the levee body, or the poor oxygen water to be flowed intake from outside waters extending outside of the masonry purifying bank by increasing the dissolved oxygen concentration of intake has been anoxic water was the high concentration oxygen water, the high-concentration oxygen water, the A method for maintaining the function of a stone masonry dam, characterized in that it is supplied between gravels of a dam body material that constitutes the masonry sanitation dam when the water level in an inner water area, the outer water area or the levee body is rising . 吐出口が前記礫間に位置決めされるように前記石積み浄化堤に埋設された吐出管を介して前記高濃度酸素水を供給する請求項1記載の石積み浄化堤の機能維持方法。 The function maintenance method of the masonry purification bank of Claim 1 which supplies the said high concentration oxygen water through the discharge pipe embed | buried in the said masonry purification bank so that a discharge port may be positioned between the said gravel. 石積み浄化堤で囲まれた内水域若しくは該石積み浄化堤を構成する堤体内に潮汐若しくは波浪によって流入した貧酸素水を前記内水域若しくは前記堤体内から取水し、又は前記石積み浄化堤に潮汐若しくは波浪によって流入しようとする貧酸素水を前記石積み浄化堤の外側に拡がる外水域から取水可能な取水ポンプと、入力側に前記取水ポンプが接続され該取水ポンプからの貧酸素水の溶存酸素濃度を高めて高濃度酸素水を生成可能な酸素水生成手段と、該酸素水生成手段の出力側に接続された酸素水供給手段とを備えるとともに、該酸素水供給手段を、前記高濃度酸素水が前記石積み浄化堤を構成する堤体材の礫間に供給されるように構成した石積み浄化堤の機能維持システムであって、前記内水域、前記外水域又は前記堤体内の水位を計測する水位計と該水位計で計測された水位の値に応じて前記酸素水生成手段を駆動制御する制御手段とを備え、該制御手段は、前記水位計による値からその水位が上昇中であるかどうかを判断し、該水位が上昇中であると判断されたときに前記酸素水生成手段を作動させるようになっていることを特徴とする石積み浄化堤の機能維持システム。 The poor oxygen water that has flowed into the inner water area surrounded by the masonry purification levee or the levee body constituting the masonry purification levee by tides or waves is taken from the inner water area or the levee body, or The intake oxygen pump that can take in the poor oxygen water that is going to flow in from the outside of the masonry purification dike and the intake pump is connected to the input side to increase the dissolved oxygen concentration of the poor oxygen water from the intake pump Oxygen water generating means capable of generating high-concentration oxygen water, and oxygen water supply means connected to the output side of the oxygen water generating means. a functional maintenance system configuration the masonry purifying bank as supplied between gravel embankment material constituting the masonry purifying bank, said body of water, the outer body of water or a total of the water level of the embankment And a control means for driving and controlling the oxygen water generating means in accordance with the value of the water level measured by the water level gauge. The control means has its water level rising from the value by the water level gauge. A function maintenance system for a masonry purification bank, wherein the oxygen water generation means is activated when it is determined that the water level is rising.
JP2009243672A 2009-10-22 2009-10-22 Function maintenance method and system for masonry purification bank Active JP5569721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243672A JP5569721B2 (en) 2009-10-22 2009-10-22 Function maintenance method and system for masonry purification bank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243672A JP5569721B2 (en) 2009-10-22 2009-10-22 Function maintenance method and system for masonry purification bank

Publications (2)

Publication Number Publication Date
JP2011088075A JP2011088075A (en) 2011-05-06
JP5569721B2 true JP5569721B2 (en) 2014-08-13

Family

ID=44106849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243672A Active JP5569721B2 (en) 2009-10-22 2009-10-22 Function maintenance method and system for masonry purification bank

Country Status (1)

Country Link
JP (1) JP5569721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078711B2 (en) * 2011-11-02 2017-02-15 うつろ株式会社 Waste bottom mud replacement method for waste installed in "UTSURO"
JP2015157233A (en) * 2014-02-21 2015-09-03 日立造船株式会社 Seawater permeation intake apparatus

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH610870A5 (en) * 1975-11-11 1979-05-15 Gianmaria Righetti
JPS5850212A (en) * 1981-09-19 1983-03-24 Akai Isao Cleaning system for water region
JPS58128196A (en) * 1982-01-27 1983-07-30 C T I Sci Syst:Kk Preventing method of degration in water quality in closed sea area as well as lake and pond
JPS58173208A (en) * 1982-04-01 1983-10-12 Akai Isao Breakwater for clarifying water
JPS59107630U (en) * 1982-12-30 1984-07-20 赤井 功 Water pollution prevention system pre-treatment water area
JPS6070625U (en) * 1983-10-19 1985-05-18 赤井 功 water treatment system embankment
US4664680A (en) * 1986-04-07 1987-05-12 Atec Inc. Method and system for enriching oxygen content of water
JPS63200892A (en) * 1987-02-18 1988-08-19 Akai Isao Continuous cleaning system of flowing water utilizing water level varying device of catalytic oxidation bank
JP2726817B2 (en) * 1987-06-09 1998-03-11 赤井 功 A tidal current generator using the ocean sky
JPH02261112A (en) * 1989-03-31 1990-10-23 Kawasaki Steel Corp Hydrophilic and purification type shore method and equipment for protection
JPH04363405A (en) * 1991-02-04 1992-12-16 Toa Harbor Works Co Ltd Water quality purifying rubble-mound embankment
JPH04326990A (en) * 1991-04-25 1992-11-16 Riyouyuu Soken Kk Sewage treatment plant and bacterial bonded and living biological shelf
JPH0550078A (en) * 1991-08-22 1993-03-02 Maruzen Kogyo Kk Lacustrine water purifying apparatus
JPH0570700U (en) * 1992-03-04 1993-09-24 共和技術計画株式会社 Fine bubble and gravel purification unit that does not clog
JPH0747392A (en) * 1993-08-04 1995-02-21 Marine Giken:Kk Water stream type water quality improving and purifying device
JP3011322B2 (en) * 1994-12-28 2000-02-21 株式会社大林組 Masonry purification dike
JPH09220590A (en) * 1996-02-14 1997-08-26 Mitsubishi Heavy Ind Ltd Oxygen gas dissolving method
JP3555128B2 (en) * 1998-07-24 2004-08-18 株式会社大林組 Water purification levee and method of withdrawing water from its inner water area
JP2001017957A (en) * 1999-07-07 2001-01-23 Kazuaki Akai Purification system of exterior water basin utilizing hollow of water basin
JP2001104936A (en) * 1999-10-12 2001-04-17 Kazuaki Akai Clean waterway system using void of water area
JP3767284B2 (en) * 1999-10-29 2006-04-19 株式会社大林組 Method and apparatus for purifying contaminated groundwater
JP2003334575A (en) * 2002-05-15 2003-11-25 Hino Saiseki:Kk Device for cleaning water of pond, and the like, and water cleaning method
JP2006045876A (en) * 2004-08-04 2006-02-16 Namco Ltd Underwater installation object support device and underwater installation object support method
JP5223051B2 (en) * 2005-01-26 2013-06-26 うつろ株式会社 Advanced purification method using closed water area by “Utsuro”
JP4559289B2 (en) * 2005-04-28 2010-10-06 株式会社荏原製作所 Oxygen dissolving apparatus and oxygen dissolving method
JP4773211B2 (en) * 2006-01-12 2011-09-14 株式会社 多自然テクノワークス Waste liquid treatment equipment
JP5113552B2 (en) * 2008-02-20 2013-01-09 パナソニック株式会社 Water purification device
JP5531552B2 (en) * 2009-10-22 2014-06-25 株式会社大林組 Function maintenance method and system for masonry purification bank
JP5354290B2 (en) * 2009-10-22 2013-11-27 株式会社大林組 Function maintenance method and system for masonry purification bank

Also Published As

Publication number Publication date
JP2011088075A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
CN104926032B (en) A kind of tidal waterway, coastal cities multistage composite intensified purification method
KR101815246B1 (en) High efficiency composite wetland system
CN102966071B (en) In-situ treatment method for shallow flow rejuvenated water riverway
JP5569721B2 (en) Function maintenance method and system for masonry purification bank
CN203440200U (en) Multi-stage water quality ecological purification system suitable for shallow narrow mixed water river channel
JP5531552B2 (en) Function maintenance method and system for masonry purification bank
JP2007144343A (en) Water treatment method and apparatus for river
WO2016013109A1 (en) Reservoir apparatus using "enclosed water area (utsuro)"
JP2006205068A (en) Water quality improving mass and water quality improving mass device using it
JP5354290B2 (en) Function maintenance method and system for masonry purification bank
JPH0713766Y2 (en) Seawater purification structure
JPH11147010A (en) Water cleaning bag
JP2005058957A (en) Floating type water area cleaning apparatus
JPWO2008068872A1 (en) Advanced purification system for sewage using a fishway with contact oxidation bank
JP2005095773A (en) Combined type water purification structure
JP4061865B2 (en) Water purification structure
JP2007270458A (en) Permeable bank
JP2007007600A (en) Water cleaning facility utilizing energy of wave
CN206886924U (en) A kind of strong constructed wetland device of self-recovery
KR20100012021A (en) Nature-friendly process for purifying contaminated river water using advanced hydrologic systems configured to discharge as much as inflow from a river or river upstream
JP6940934B2 (en) On-site immersion type water purification equipment
JP2814349B2 (en) Occlusion water purification system
JP2007175573A (en) Method and apparatus for cleaning water of river
CN113548761A (en) Technical device for improving and lifting water quality of urban inland river
KR20110106835A (en) Ecological river creation method that cleans polluted river water into clean river water by first discharging clean water molecules with heavy gravity

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5569721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150