JPS621498A - Utilization of anaerobic bacteria - Google Patents
Utilization of anaerobic bacteriaInfo
- Publication number
- JPS621498A JPS621498A JP60140237A JP14023785A JPS621498A JP S621498 A JPS621498 A JP S621498A JP 60140237 A JP60140237 A JP 60140237A JP 14023785 A JP14023785 A JP 14023785A JP S621498 A JPS621498 A JP S621498A
- Authority
- JP
- Japan
- Prior art keywords
- anaerobic
- gel
- gas
- column
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241001148471 unidentified anaerobic bacterium Species 0.000 title description 12
- 241000894006 Bacteria Species 0.000 claims abstract description 14
- 239000007863 gel particle Substances 0.000 claims abstract description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002952 polymeric resin Substances 0.000 claims abstract description 3
- 239000002002 slurry Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 27
- 244000005700 microbiome Species 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 230000000813 microbial effect Effects 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 2
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 230000001079 digestive effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 46
- 230000029087 digestion Effects 0.000 abstract description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 14
- 239000010802 sludge Substances 0.000 abstract description 8
- 238000000855 fermentation Methods 0.000 abstract description 7
- 230000004151 fermentation Effects 0.000 abstract description 7
- 230000001580 bacterial effect Effects 0.000 abstract description 5
- 239000008188 pellet Substances 0.000 abstract description 4
- 229920000642 polymer Polymers 0.000 abstract description 3
- 239000011347 resin Substances 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 abstract description 3
- 238000003756 stirring Methods 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 2
- 230000029142 excretion Effects 0.000 abstract 1
- 229920003002 synthetic resin Polymers 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 7
- 239000010800 human waste Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、有機性廃液の嫌気性消化、硝酸性窒素(NO
x−N)含有水の生物学的脱窒素、5o42−イオン含
有水の硫酸還元菌による4Sの生成などの廃水処理分野
における嫌気性微生物処理を主たる利用分野とするもの
であるが、この外アルコール発酵など有価物の生産を目
的とする発酵工業における嫌気性微生物の利用分野にお
ける固定化嫌気性微生物の利用方法に関するものである
。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to anaerobic digestion of organic waste liquid, nitrate nitrogen (NO
The main application field is anaerobic microbial treatment in the wastewater treatment field, such as biological denitrification of water containing x-N) and generation of 4S by sulfate-reducing bacteria in water containing 5o42- ions. This invention relates to a method of using immobilized anaerobic microorganisms in the field of using anaerobic microorganisms in the fermentation industry for the purpose of producing valuable products such as fermentation.
嫌気性菌を保持する手段を有する嫌気性反応装置は最近
とみに注目されており、次のような方式がさかんに検討
され、一部では実用化もされている。Anaerobic reaction devices having means for retaining anaerobic bacteria have recently attracted much attention, and the following systems have been actively studied, and some have even been put into practical use.
■ 嫌気性ヂ床 (Anaerobic IFilte
r )■ 嫌気性上向流プランケラ) (UASB)■
嫌気性粒状媒体上向流流動層
嫌気住戸床法とは、石、グラスチック(ポリエステル、
塩化ビニルなど)などの粒状固体をカラム内に充填し、
該粒状固体の表面に1メタン菌などの嫌気性菌の生物膜
を繁殖させ、その生物膜上に被処理水を流通させるもの
であるが、8Bを多く含む水を処理すると、炉床が閉塞
されやすいという欠点がある。また、炉床の閉塞を防ぐ
ため、粒状固体の粒径を大きくすると、戸材の表面積が
減少し嫌気性菌の量が減少する結果、反応速度が小さく
なってしまうという矛盾に遭遇する。■ Anaerobic Ifilte
r)■ Anaerobic Upflow Planchella) (UASB)■
The anaerobic granular media upflow fluidized bed anaerobic housing floor method uses stone, glass (polyester,
Fill the column with granular solids such as vinyl chloride, etc.
A biofilm of anaerobic bacteria such as 1methane bacteria is grown on the surface of the granular solid, and the water to be treated is passed over the biofilm, but when water containing a large amount of 8B is treated, the hearth becomes clogged. The disadvantage is that it is easy to Furthermore, if the particle size of the granular solid is increased in order to prevent clogging of the hearth, the surface area of the door material will be reduced and the amount of anaerobic bacteria will be reduced, resulting in a contradiction in that the reaction rate will be reduced.
次に1気性上向流ブランケツト法は、オランダ国のレツ
チンガ(Lettinga氏)によって1979年に開
発されたもので、嫌気性菌体の70ツクの軽い部分を流
出させ重比の団粒化した菌体のみを流動層として原水を
上向流で流通させるものである。Next, the 1-air upflow blanket method was developed in 1979 by Mr. Lettinga of the Netherlands, in which the light part of anaerobic bacteria (70 kg) is drained out to form agglomerated bacteria with a heavy ratio. The raw water is circulated in an upward flow using only the body as a fluidized bed.
この方法を第2図に基いて簡単に説明すると、被処理水
は被処理水導入管12から処理槽11の底部の団粒化汚
泥床14中に流入水分散配板13により分配流入させ、
該被処理液は団粒化汚泥床14から汚泥ブランケット1
5を過少、バッフル16と沈降槽17の間隙を通夛沈降
槽17の底部開口を経て沈降槽17に導入され、沈降槽
中で随伴する汚泥が分離され、処理水は処理水排出管1
8より排出され、一方、分離された汚泥は沈降槽17の
下部開口からバッフル16と16′の間を通って汚泥ブ
ランケット部へ返送される。また、処理槽11中で生成
したガスは処理槽の上部に集められ、ガス排出管19か
ら槽外に排出される。この方法は、砂などの菌体付着用
の粒状媒体を使用しないので、自己担体固体化法とも呼
ばれている。このTTASB法は、極めて興味深い方法
であるが、本発明者の追試によれば次のような問題点が
認められる。To briefly explain this method based on FIG. 2, the water to be treated is distributed from the water introduction pipe 12 into the agglomerated sludge bed 14 at the bottom of the treatment tank 11 by the inflow water distribution plate 13,
The liquid to be treated is transferred from the agglomerated sludge bed 14 to the sludge blanket 1.
5 is too small, the water is introduced into the settling tank 17 through the gap between the baffle 16 and the settling tank 17 through the bottom opening of the settling tank 17, the accompanying sludge is separated in the settling tank, and the treated water is discharged into the treated water discharge pipe 1.
8, and the separated sludge is returned to the sludge blanket section from the lower opening of the settling tank 17, passing between the baffles 16 and 16'. Further, the gas generated in the processing tank 11 is collected in the upper part of the processing tank and is discharged from the tank through the gas discharge pipe 19. This method is also called a self-carrier solidification method because it does not use a granular medium such as sand for adhesion of bacterial cells. Although this TTASB method is an extremely interesting method, the following problems have been found according to the inventor's additional tests.
■ 運転開始時の重質の団粒化した菌体の形成に長時間
を要し、団粒化菌が結局形成されないままに終わってし
まう場合もある。■ It takes a long time to form heavy aggregated bacteria at the start of operation, and in some cases, the process ends without any aggregated bacteria being formed.
@ 原水を槽底部から均等に導入分配するのが難かしく
、偏った上向流を生じやすい。特に槽径が大きい場合は
、原水の均等分配は、極めて難しい。@ It is difficult to introduce and distribute raw water evenly from the bottom of the tank, which tends to cause uneven upward flow. Especially when the tank diameter is large, it is extremely difficult to distribute the raw water evenly.
次に、粒状媒体上向流流動層法はカラム中で砂粒、粒状
活性炭などの小粒径粒状固体の表面に嫌気性菌の生物膜
を形成させ、カラムの下部から原水を上向流として導入
して粒状固体の流動層を形成しながら原水を処理する方
法である。Next, in the granular media upflow fluidized bed method, a biofilm of anaerobic bacteria is formed on the surface of small-sized granular solids such as sand grains and granular activated carbon in a column, and raw water is introduced from the bottom of the column as an upward flow. This method treats raw water while forming a fluidized bed of granular solids.
この方法の長所として、粒子全体が流動状態になるから
閉塞する可能性がない反面、次のような欠点をもってい
る。すなわち、SEIの多い原水に対しては、沈降槽を
別個に設ける必要があシ、また粒子周囲の流速を粒子の
浮遊速度に近い流速にすることになるから、粒子がキャ
リオーバーする可能性が多くなる。さらに1媒体流動化
のために上向流速を大きくする必要があるので、原水処
理量が少ない場合は処理水を循環させるための循環ポン
プが必要になり、このポンプ動力費が無視し得ないコス
トになることがある。Although this method has the advantage of eliminating the possibility of clogging because the entire particle is in a fluid state, it does have the following drawbacks. In other words, it is necessary to provide a separate sedimentation tank for raw water with a high SEI content, and because the flow velocity around the particles is set to be close to the floating velocity of the particles, there is a possibility of particle carryover. There will be more. Furthermore, it is necessary to increase the upward flow velocity to fluidize one medium, so if the amount of raw water to be treated is small, a circulation pump is required to circulate the treated water, and the power cost of this pump is a cost that cannot be ignored. It may become.
本発明は、前述の従来技術の問題点のすべてを、従来例
にみられない方法によって解決するものである。The present invention solves all of the problems of the prior art described above by a method not seen in the prior art.
本発明は、嫌気性消化槽、脱窒素菌などの嫌気性微生物
菌体スラリーとゲル形成能を有する有機高分子樹脂類ま
たはこれらのモノマ又はプレポリマとを気泡の存在下で
混合したのちゲル化させることによって、該嫌気性微生
物菌体と気泡とを包括固定化し、該ゲルの粒状物を嫌気
性生物処理槽に充填して浮上層となし、処理対象液を該
浮上層に対して下向°流で流通せしめることを特徴とす
る嫌気性微生物の利用方法である。The present invention uses an anaerobic digestion tank, a slurry of anaerobic microorganisms such as denitrifying bacteria, and organic polymer resins having gel-forming ability, or monomers or prepolymers thereof, which are mixed in the presence of air bubbles and then gelled. By this, the anaerobic microorganism cells and air bubbles are immobilized, the granular material of the gel is filled into an anaerobic biological treatment tank to form a floating layer, and the liquid to be treated is directed downward to the floating layer. This is a method of utilizing anaerobic microorganisms characterized by distributing them in a stream.
ゲル内に包括する気泡としては、高濃度の酸素ガスは、
嫌気性菌を失活させるので好ましくなく、嫌気性菌を失
活させない0Otskガスなどが適している。Highly concentrated oxygen gas is contained in the gel as air bubbles.
This is not preferable because it deactivates anaerobic bacteria, and 0Otsk gas, which does not deactivate anaerobic bacteria, is suitable.
本発明の一実施態様をし尿の嫌気性消化を例として説明
する。One embodiment of the present invention will be explained using anaerobic digestion of human waste as an example.
既設のし尿の嫌気性消化槽から消化汚泥(固形物濃度3
%)を採取し、これにウレタンプレポリマーを10容量
%添加し、該ポリマーと水との反応によって生じるCO
,ガス気泡の存在下で混合攪拌したところ、O偽気泡お
よび嫌気性消化筒が包括固定化されたゲルを得た。この
ゲルの比重は、cL95〜α98で、水に浮上した。Digested sludge (solids concentration 3) from the existing human waste anaerobic digestion tank
%) is collected, 10% by volume of urethane prepolymer is added thereto, and the CO generated by the reaction of the polymer with water is collected.
When mixed and stirred in the presence of gas bubbles, a gel in which O pseudobubbles and anaerobic digesters were entrapping and immobilized was obtained. This gel had a specific gravity of cL95 to α98 and floated on water.
上記ゲルをスクリュー押出し造粒機で直径5vm長さ5
−の円柱状ペレットに造粒したのち、第1図に示した実
験装置(充填部カラム直径200−φ)に投入し層厚5
00−の浮上充填層を形成させた。処理対象液(除渣し
尿)は、導入管1から上部の原水分配器2(逆傘状)を
経て、嫌気性消化カラム3内に導入し下向流で流過させ
た。カラム3内には、前述の嫌気性消化筒を包括固定化
した浮上性ゲル粒子4が充填されており、原水(除渣し
尿)は、層内を流過してゆくに従って、ゲル粒子内の高
濃度の嫌気性消化歯によってメタン発酵をうけ、CH4
、C偽ガスを発生する。発生した〇H,を主成分とする
消化ガス気泡は、層内の空隙をぬって浮上し、槽上部の
ガス抜きv5から消化ガス貯留タンク(図示せず)に導
く。なお、発生した消化ガス気泡がゲル粒子の表面に付
着抑留され、槽上部のガス集積部5′に向って上昇して
ゆかない場合には、発生ガス抜き管5からガスの一部を
分岐して浮上性ゲル粒子層の下部から散気すると浮上層
内にショックが与えられるので、ゲル粒子の表面に抑留
されていた気泡が離れて上昇してゆくので効果的である
。また、他の対策としては浮上層内部を攪拌翼で機械的
に攪拌する方法も効果がある。The above gel was extruded using a screw extrusion granulator to a diameter of 5vm and a length of 5mm.
- After granulation into cylindrical pellets, they were put into the experimental apparatus shown in Fig. 1 (packed column diameter: 200-φ) and the layer thickness was 5.
A floating filling layer of 00- was formed. The liquid to be treated (removed human waste) was introduced into the anaerobic digestion column 3 from the introduction pipe 1 through the upper raw water distributor 2 (inverted umbrella shape) and allowed to flow downward. The column 3 is filled with floating gel particles 4 in which the aforementioned anaerobic digester is encased and immobilized, and as the raw water (removed human waste) flows through the layer, the particles in the gel particles are CH4 is subjected to methane fermentation by high-concentration anaerobic digestion teeth.
,C generates false gas. The generated digestion gas bubbles containing 〇H, as a main component float up through the gaps in the layer and are led to the digestion gas storage tank (not shown) from the gas vent v5 at the top of the tank. In addition, if the generated digestion gas bubbles are stuck to the surface of the gel particles and do not rise toward the gas accumulation part 5' at the top of the tank, a part of the gas is branched off from the generated gas vent pipe 5. When air is diffused from the bottom of the buoyant gel particle layer, a shock is given to the inside of the buoyant layer, which is effective because the air bubbles trapped on the surface of the gel particles separate and rise. Another effective method is to mechanically stir the inside of the floating layer using stirring blades.
本発明においては、嫌気性消化歯が浮上層を形成してい
るので、従来法の嫌気性上向流ブランケット法KThい
て不可欠な特殊なガス分離機構が不要であり、また、ガ
スの上昇力によって、嫌気性菌が系外に流出するおそれ
が全くなく、むしろ発生ガスの上昇作用によってゲル粒
子は浮上しようとするから、さらに安定して菌体がカラ
ム内に保持されるという重要な特徴がある。In the present invention, since the anaerobic digestion teeth form the floating layer, there is no need for a special gas separation mechanism that is indispensable in the conventional anaerobic upflow blanket method KTh. , there is no risk of anaerobic bacteria leaking out of the system; rather, the gel particles tend to float due to the rising action of the generated gas, which is an important feature in that the bacterial cells are more stably retained within the column. .
そして、充分な嫌気性消化を受けたのち浮上層4から流
出する液中のaS(懸濁粒子)−原水 ・中の非生分
解性BE−1?よび新たに生成した菌体88から構成さ
れるーは、沈殿部6に沈降し、処理水は処理水上昇流出
部7を経由して処理水流出管8から系外に排出される。Then, aS (suspended particles) in the liquid flowing out from the floating layer 4 after undergoing sufficient anaerobic digestion - non-biodegradable BE-1 in the raw water? and the newly generated microbial cells 88 settle in the sedimentation section 6, and the treated water is discharged from the system from the treated water outflow pipe 8 via the treated water upflow and outflow section 7.
なお、日日は処理水が処理水上昇流出部7を通過してゆ
く過程においても、沈降分−される。Incidentally, during the course of the treated water passing through the rising and outflowing section 7, the treated water is also subject to sedimentation.
このように本発明では、メタン発酵槽の下部にSS沈降
分離部を設けることが可能であるので、メタン発酵槽と
は別個に88沈降分離槽を設ける必要がないという実用
上の重要な効果がある。In this way, in the present invention, since it is possible to provide the SS sedimentation separation section at the bottom of the methane fermentation tank, there is an important practical effect that there is no need to provide the 88 sedimentation separation tank separately from the methane fermentation tank. be.
なお、気泡と嫌気性菌体とを一緒に包括固定化するゲル
材質としては、前述のウレタンのほかに1ポリアクリル
アミド、アルギン酸カルシウム、光架橋性樹脂などの微
生物固定化用樹脂を用いることができるが、ウレタンを
用いる場合プレポリマーが馬0分子と反応して発生する
00、気泡を、ゲルに浮上性を付与することに利用でき
るので本発明においては最も適している。In addition to the above-mentioned urethane, microorganism immobilization resins such as polyacrylamide, calcium alginate, and photocrosslinkable resin can be used as the gel material for entrapping and immobilizing air bubbles and anaerobic microbial cells. However, when urethane is used, the bubbles generated when the prepolymer reacts with the molecule can be used to impart floating properties to the gel, so it is most suitable for the present invention.
また嫌気性菌としては、脱窒素菌、硫酸還元菌、アルコ
ール発酵菌を、処理目的に応じて選ぶことができること
は言うまでもない。It goes without saying that as the anaerobic bacteria, denitrifying bacteria, sulfate reducing bacteria, and alcohol fermenting bacteria can be selected depending on the purpose of treatment.
実施例1 し尿の嫌気性消化
発明の実施態様の項に記した方法で調製したポリウレタ
ンゲル包括嫌気性消化筒の粒状ゲルを、第1図に示した
充分に保温された実験装置(浮上層カラム直径200−
φ、カラム高さ10100(1ゲル浮上層厚さ500箇
)に充填し、除渣されたし尿を温度35℃に加温し、浮
上層滞留時間5日間の条件で供給した。除渣し尿の水質
は
EOD 817o ry)/1
ss aloo my/1
00Dcr 12000q/r
T−N3200#
pH7,8
である。Example 1 Anaerobic Digestion of Human Human Waste The granular gel of an anaerobic digester encased in polyurethane gel prepared by the method described in the embodiment section of the invention was heated in a sufficiently warmed experimental apparatus (floating bed column) shown in FIG. Diameter 200-
φ, column height 10100 (1 gel floating layer thickness 500 points), the removed human waste was heated to a temperature of 35° C., and fed under the conditions that the floating layer residence time was 5 days. The water quality of the filtered human urine is EOD 817 o ry)/1 ss aloo my/1 00Dcr 12000q/r T-N3200# pH 7.8.
通水開始後7日後から、順調なメタン発酵が進行し始め
、0ODarの除去率80%という好成績を得た。Seven days after the start of water flow, methane fermentation started to progress smoothly, and a good result of 80% removal rate of 0ODar was obtained.
実施例2 生物学的脱窒素処理
Hog−N (硝酸性窒素) ヲ100〜150m9/
1含有する工場廃水の生物学的脱窒素処理に、本発明法
と適用した結果会述べる。Example 2 Biological denitrification treatment Hog-N (nitrate nitrogen) 100-150m9/
This paper describes the results of applying the method of the present invention to biological denitrification treatment of factory wastewater containing 1.
あらかじめ、NaN01水溶液により、有機炭素源とし
て0%OHを使用して培養した生物学的脱窒素菌体スラ
リー(菌体濃度5000Rg//)jO/に対し、アク
リルアミドモノマー25002とメチレンビスアクリル
アミド120?を添加して溶解させた後、5%β−ジメ
チルアミノプロビオニトリル溶液1500−を加えて、
島の微細気泡を散気したところ、約20分で重合して、
脱窒電画と島気泡を包括固定化した、ポリアクリルアミ
ドのゲルを得た。このゲルを、スクリュー押出し造粒機
によって直径2m長さ4■の円柱状ペレットに成型した
のち直径100■φのカラムに充填して、層厚400簡
の浮上層を形成した。前記のN0I−N含有廃水(pa
ts。Acrylamide monomer 25002 and methylenebisacrylamide 120? After adding and dissolving 5% β-dimethylaminoprobionitrile solution 1500-
When the microbubbles on the island were aerated, it polymerized in about 20 minutes.
A polyacrylamide gel was obtained in which denitrification images and island bubbles were immobilized. This gel was formed into cylindrical pellets with a diameter of 2 m and a length of 4 mm using a screw extrusion granulator, and then packed into a column with a diameter of 100 mm to form a floating layer with a layer thickness of 400 mm. The aforementioned N0I-N-containing wastewater (pa
ts.
水温25℃)に、CH,OHを300〜500ダ/l添
加したのち、上記カラムに下向流で供給し、浮上層内液
滞留時間を1.5時間(空塔基準)として運転を継続し
たところ、通水開始後2日目から、Hog−Nの還元に
よるN、ガスがさかんに発生し始めた。通水開始3日目
よシ1ケ月にわたつて、浮上ゲル層からの流出水のN0
x−Nを分析したところ2〜arn9/zと極めて良好
な除去率を示した。After adding 300 to 500 da/l of CH, OH to the water temperature (25℃), the column was fed in a downward flow, and the operation was continued with the liquid residence time in the floating layer being 1.5 hours (empty column standard). As a result, from the second day after the start of water flow, N and gas due to the reduction of Hog-N began to be generated rapidly. On the 3rd day of water flow, the N0 of the water flowing out from the floating gel layer continued for 1 month.
Analysis of x-N showed an extremely good removal rate of 2 to arn9/z.
■ 嫌気性菌の代謝産物であるCH4、N!、Cへなど
の気泡の上昇力によって発生する乱れによって、嫌気性
菌バイオマスが系外に流出するおそれが全くない。■ CH4, N, which are metabolic products of anaerobic bacteria! There is no fear that the anaerobic bacterial biomass will flow out of the system due to disturbances caused by the upward force of bubbles such as , C, etc.
■ 嫌気性上向流ブランケット法のように1メタン菌自
身の団粒形成性を期待する必要がないので、スタートア
ップが非常に容易である。■ Unlike the anaerobic upflow blanket method, there is no need to expect the methane bacteria to form aggregates themselves, so startup is very easy.
また、該方法におけるガス分離機を設ける必要がないの
で装置製作が容易である。Furthermore, since there is no need to provide a gas separator in this method, the device is easy to manufacture.
■ 原水が上部から、気相部を落下して、嫌気性菌の浮
上層に供給されるので、水頭による圧力損失が々いから
、原水の均等分配が容易となシ、tJAsB法における
問題点の一つが解′消できるしスケールアップも簡単で
ある。■ Since the raw water falls from the top through the gas phase and is supplied to the floating layer of anaerobic bacteria, the pressure loss due to the water head is large, making it easy to distribute the raw water evenly.Problems with the tJAsB method One of the problems can be solved and scaling up is easy.
■ 同一槽の上部を、嫌気性生物処理部となし、下部を
BB沈沈降分郡部することができるので、従来法のよう
に別個に沈降槽を設ける必要がない。(2) The upper part of the same tank can be used as the anaerobic biological treatment part and the lower part can be used as the BB sedimentation division, so there is no need to provide a separate settling tank as in the conventional method.
■ tJAsB 法および、粒状媒体上向流流動層法
においては、多量の88を含む原水を処理すると、槽の
上部にスカム層が形成され、処理機能を阻害するが、本
発明では原水が下向流で流過するので、スカムの浮上も
なく、またスカムが、水流によって破壊されるのでスカ
ム形成が認められない。■ In the tJAsB method and the granular media upflow fluidized bed method, when raw water containing a large amount of 88 is treated, a scum layer is formed at the top of the tank, which impedes the treatment function, but in the present invention, the raw water is Since the water flows through the water, no scum floats up, and the scum is destroyed by the water flow, so no scum formation is observed.
■ 原水流入部でゲルに包括された高濃度の微生物と接
触するため、反応全体の効率が高まる。■ The raw water inlet comes into contact with a high concentration of microorganisms enclosed in gel, increasing the efficiency of the overall reaction.
第1図は本発明の詳細な説明する為の装置の断面概略図
を示し、第2図は嫌気性上向流ブランケット法CUA8
B法)を説明する為の装置の断面概略図を示す。Fig. 1 shows a cross-sectional schematic diagram of an apparatus for explaining the present invention in detail, and Fig. 2 shows an anaerobic upflow blanket method CUA8.
A schematic cross-sectional view of an apparatus for explaining Method B) is shown.
Claims (1)
ーと、ゲル形成能を有する有機高分子樹脂類またはこれ
らのモノマ又はプレポリマとを気泡の存在下で混合した
のちゲル化させることによつて、該嫌気性微生物菌体と
気泡とを包括固定化し、該ゲルの粒状物を嫌気性生物処
理槽に充填して浮上層となし、処理対象液を該浮上層に
対して下向流で流通せしめることを特徴とする嫌気性微
生物の利用方法。 2、前記ゲル形成物質がウレタンプレポリマーである特
許請求の範囲第1項記載の方法。[Claims] 1. After mixing a slurry of anaerobic microorganisms such as anaerobic digestive bacteria and denitrifying bacteria with organic polymer resins having gel-forming ability or their monomers or prepolymers in the presence of air bubbles, By gelatinization, the anaerobic microbial cells and air bubbles are immobilized, the gel particles are filled into an anaerobic biological treatment tank to form a floating layer, and the liquid to be treated is placed in the floating layer. A method for utilizing anaerobic microorganisms, which is characterized by allowing them to circulate in a downward flow. 2. The method according to claim 1, wherein the gel-forming substance is a urethane prepolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14023785A JPH0228393B2 (en) | 1985-06-28 | 1985-06-28 | KENKISEIBISEIBUTSUNORYOHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14023785A JPH0228393B2 (en) | 1985-06-28 | 1985-06-28 | KENKISEIBISEIBUTSUNORYOHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS621498A true JPS621498A (en) | 1987-01-07 |
JPH0228393B2 JPH0228393B2 (en) | 1990-06-22 |
Family
ID=15264096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14023785A Expired - Lifetime JPH0228393B2 (en) | 1985-06-28 | 1985-06-28 | KENKISEIBISEIBUTSUNORYOHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0228393B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0290996A (en) * | 1988-09-27 | 1990-03-30 | Kumagai Gumi Co Ltd | Waste water treatment process |
JP2003053385A (en) * | 2001-08-09 | 2003-02-25 | Kurita Water Ind Ltd | Biological denitrification equipment |
US6709591B1 (en) * | 2001-07-02 | 2004-03-23 | Iowa State University Research Foundation, Inc. | Static granular bed reactor |
CN104761053A (en) * | 2015-04-21 | 2015-07-08 | 牧原食品股份有限公司 | Efficient anaerobic reaction tank for large-scale raising of livestock |
-
1985
- 1985-06-28 JP JP14023785A patent/JPH0228393B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0290996A (en) * | 1988-09-27 | 1990-03-30 | Kumagai Gumi Co Ltd | Waste water treatment process |
US6709591B1 (en) * | 2001-07-02 | 2004-03-23 | Iowa State University Research Foundation, Inc. | Static granular bed reactor |
JP2003053385A (en) * | 2001-08-09 | 2003-02-25 | Kurita Water Ind Ltd | Biological denitrification equipment |
CN104761053A (en) * | 2015-04-21 | 2015-07-08 | 牧原食品股份有限公司 | Efficient anaerobic reaction tank for large-scale raising of livestock |
Also Published As
Publication number | Publication date |
---|---|
JPH0228393B2 (en) | 1990-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4664803A (en) | Anaerobic treatment of wastewater | |
JP2002336885A (en) | Method for aerobic treatment of waste water | |
JP5685902B2 (en) | Organic wastewater treatment method | |
JP5092619B2 (en) | Wastewater biological treatment method | |
JPS621498A (en) | Utilization of anaerobic bacteria | |
JPS6352556B2 (en) | ||
JP2001137889A (en) | Method and device for anaerobic treatment | |
US5395528A (en) | Method of biologically purifying liquids contaminated with impurities | |
CN114853294A (en) | Method for rapidly solving problem of non-filamentous bacterium sludge bulking of granular sludge | |
JPH01123697A (en) | Aerobic biological treatment device for organic waste water | |
JPH0210717B2 (en) | ||
JPH02203993A (en) | Anaerobic waste water treating method | |
JPS61192389A (en) | Biological treatment of water | |
JPS61222595A (en) | Treatment of sewage containing nitrite and nitrate | |
JPH1177075A (en) | Fluidized bed type waste water treating apparatus | |
JPH0218910B2 (en) | ||
JPS61268396A (en) | Fluidized bed reaction apparatus | |
JP3465419B2 (en) | Wastewater treatment agent and wastewater treatment method | |
JPS63158194A (en) | Biological treatment of organic sewage | |
JP2520798B2 (en) | Method and apparatus for biological dephosphorization of organic wastewater | |
JPH0210716B2 (en) | ||
JPH06142674A (en) | Biological purification carrier for water and method and device for purifying water using its carrier | |
CN116750868A (en) | Microbial flocculation granulation generator | |
JPS61178096A (en) | Anaerobic waste water treatment apparatus | |
JPH0217676Y2 (en) |