JPS63158194A - Biological treatment of organic sewage - Google Patents

Biological treatment of organic sewage

Info

Publication number
JPS63158194A
JPS63158194A JP60190624A JP19062485A JPS63158194A JP S63158194 A JPS63158194 A JP S63158194A JP 60190624 A JP60190624 A JP 60190624A JP 19062485 A JP19062485 A JP 19062485A JP S63158194 A JPS63158194 A JP S63158194A
Authority
JP
Japan
Prior art keywords
particles
biofilm
immobilized
reaction tank
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60190624A
Other languages
Japanese (ja)
Inventor
Koji Ishizaki
石崎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60190624A priority Critical patent/JPS63158194A/en
Publication of JPS63158194A publication Critical patent/JPS63158194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To efficiently perform purifying treatment, by packing a reaction tank with particles wherein a biofilm is grown and immobilized on the surfaces of fine particles. CONSTITUTION:An immobilized bacteria bed 5 packed with immobilized bacteria is formed on the perforated plate 3 in a reaction tank 2. Organic sewage W1 is supplied to the lower part of the reaction tank 2 through an introducing pipe 6 and allowed to rise and pass through the immobilized bacteria bed 5 to be treated while an upward stream is formed through the perforated plate 3. The immobilized bacteria allowed to pack the immobilized bacteria bed are prepared by forming a biofilm to solid carrier particles composed of sand or activated carbon using an immobilizing material such as polyacrylamide, K-carageenan or calcium alginate and immobilizing biofilm particles. By this method, the reaction tank is easily made compact.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明Jt有機性汚水の生物学的処理方法に関し、詳細
にはアンモニア性窒素等を含む有機性汚水を固定化微生
物を用いて効率良く処理し得る方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a biological treatment method for Jt organic sewage, in particular, it is a method for efficiently treating organic sewage containing ammonia nitrogen, etc. using immobilized microorganisms. It concerns how it can be done.

[従来の技術] 近年、微生物利用工業の分野においては、酵素を固定化
して効率良く操業する技術が種々研究され、一部では既
に実用化の段階に入っている。この様に、固定化技術は
主に酵素を対象として研究されてきたのであるが、最近
微生物自体を固体触媒として利用する目的で微生物を直
接固定化するという研究も徐々に行なわれ、例えば固定
化微生物を果糖、アミノ酸及び有機酸等の製造に利用し
てそれなりの成果が得られている。
[Prior Art] In recent years, in the field of microbial utilization industry, various techniques for efficient operation by immobilizing enzymes have been studied, and some have already entered the stage of practical application. In this way, immobilization technology has mainly been researched on enzymes, but recently research has been gradually conducted on directly immobilizing microorganisms for the purpose of using the microorganisms themselves as solid catalysts. Some results have been obtained using microorganisms to produce fructose, amino acids, organic acids, etc.

一方有機性汚水を処理する方法として微生物を利用した
生物学的処理法が広く利用されているが、固定化微生物
を利用した技術は現在のところ試みられていない、該生
物学的処理法は従来から行なわれている活性汚泥法の他
、生物膜法と呼ばれている方法の研究開発が進められて
きた。上記生物脱法は1回転円板法、接触曝気法、流動
、床法等に例示される様に、特に反応槽内微生物の高濃
度化による効率化が口論まれている。上記列挙した生物
膜法の中でも特に微生物の高濃度化が実現されている手
法は流動床法であり、当該手法によって処理袋はの小型
化が実現されつつある。
On the other hand, biological treatment methods using microorganisms are widely used as a method for treating organic wastewater, but no technology using immobilized microorganisms has been attempted to date. In addition to the activated sludge method that has been used since then, research and development has been progressing on a method called the biofilm method. The above-mentioned biological removal methods are exemplified by the single-rotation disk method, contact aeration method, fluidized flow method, bed method, etc., and improvements in efficiency by increasing the concentration of microorganisms in the reaction tank are being discussed. Among the biofilm methods listed above, the fluidized bed method is one that has achieved a particularly high concentration of microorganisms, and the size of processing bags is being reduced by this method.

[発明が解決しようとする問題点] しかしながら上記流動床法においても若干の問題が残さ
れている。即ち流動床法を応用した有機性汚水の生物学
的処理法として、例えば脱窒反応を伴う固−液2相型流
動床を例示して問題の所在を明らかにすると、固体担体
粒子の表面に生物膜が過度に生育した場合、当該粒子(
以下生物膜粒子と称することもある)の見かけ比重が低
下してしまい、その結果、生物膜粒子が流動床上方に浮
上し、処理水と共に槽外に流出してしまうので安定な操
業を妨げるといった事態が生じる。その対策として流動
床槽内に機械的攪拌機構を設け、肥大した生物膜を攪拌
によって剥離することが試みられ、一応の効果が挙げら
れるものの、動力費の増加をもたらすといった新たな問
題が生じる。
[Problems to be Solved by the Invention] However, some problems remain even in the above fluidized bed method. In other words, as a biological treatment method for organic wastewater applying the fluidized bed method, for example, a solid-liquid two-phase fluidized bed involving a denitrification reaction is exemplified to clarify the problem. When biofilm grows excessively, the particles (
The apparent specific gravity of the biofilm particles (hereinafter sometimes referred to as biofilm particles) decreases, and as a result, the biofilm particles float above the fluidized bed and flow out of the tank together with the treated water, impeding stable operation. A situation arises. As a countermeasure, attempts have been made to install a mechanical agitation mechanism in the fluidized bed tank and use agitation to detach the enlarged biofilm, and although this has been somewhat effective, new problems have arisen, such as an increase in power costs.

一方BOD除去或は硝化等の好気的処理の為の気体−固
体−液体3相型流動床においては、曝気による槽内攪拌
によって、2相型流動床における前記の様な生物膜粒子
の槽外流出は防止できる。
On the other hand, in a gas-solid-liquid three-phase fluidized bed for aerobic treatment such as BOD removal or nitrification, the tank of biofilm particles as described above in a two-phase fluidized bed is Outflow can be prevented.

その反面、生物膜粒子から剥離された生物膜は微細化し
てしまうが、当該生物膜は活性汚泥法における余剰汚泥
に相当する。従って処理効果を挙げる為にはこれを除去
する必要があるが、非常に微細である為そのままでは沈
降分離が困難であるという欠点を有している。又処理す
べき汚水の流入琶が降雨等によって増大すると生物膜粒
子が槽外へ流出する事1gは避けがたく、これは2相型
流動床においても同様である。
On the other hand, the biofilm separated from the biofilm particles becomes finer, but the biofilm corresponds to surplus sludge in the activated sludge method. Therefore, in order to obtain a treatment effect, it is necessary to remove this, but it has the disadvantage that it is difficult to sediment and separate it as it is because it is extremely fine. Furthermore, when the inflow volume of wastewater to be treated increases due to rainfall, etc., it is inevitable that 1 g of biofilm particles will flow out of the tank, and this is the same in a two-phase fluidized bed.

流動床方式では高濃度に微生物を保持するという観点に
立つ限り、固体担体粒子の粒径をできるだけ小さくし生
物膜粒子の槽内における表面積を可及的に大きくするこ
とが有利である。しかしながらその様にすると前記2相
型流動床においては生物膜粒子の槽外への流出が一層助
長され、他方3相型流動床においては生物膜粒子と処理
水の迅速な固液分離の為には沈降分離を大きくする何ら
かの手段を講じなければならず、又2相型流動床の場合
と同様に生物膜粒子が槽外へ流出し易い状態となる。こ
の様なところから、流動床方式の固体担体粒子として一
般的に使用されている砂、の粒径は1通常2腸■Φ程度
まで小さくするのが限度であるとされている。
In the fluidized bed system, from the viewpoint of retaining microorganisms at a high concentration, it is advantageous to make the particle size of the solid carrier particles as small as possible and to increase the surface area of the biofilm particles in the tank as much as possible. However, in the two-phase fluidized bed, the outflow of biofilm particles to the outside of the tank is further facilitated, while in the three-phase fluidized bed, the biofilm particles and the treated water are rapidly separated into solid and liquid. In this case, some means must be taken to increase sedimentation separation, and as in the case of a two-phase fluidized bed, biofilm particles tend to flow out of the tank. From this point of view, it is said that the particle size of sand, which is generally used as solid carrier particles in a fluidized bed system, is limited to a size of about 1 mm or 2 mm.

そこで本発明者は上記現状に鑑み、微生物を固定化して
流出しにくい状態にすることによって。
Therefore, in view of the above-mentioned current situation, the present inventors immobilized microorganisms to make them difficult to leak out.

流動床方式における従来の問題点を一挙に解決し得ると
共に更に効率良く有機性汚水の処理が達成できるとの着
想を得、本発明を完成するに至った。
The present invention was completed based on the idea that the problems of conventional fluidized bed systems could be solved all at once, and that organic sewage could be treated more efficiently.

[問題点を解決する為の手段] 本発明は、微細粒子の表面に生物膜を生育せしめ、次い
で包括法を適用して上記粒子を固定化し、その後固定化
した粒子を反応槽内に充填して操業する点に要旨を有す
るものである。
[Means for solving the problem] The present invention involves growing a biofilm on the surface of fine particles, then immobilizing the particles by applying an entrapment method, and then filling the immobilized particles into a reaction tank. The main point is that the system is operated by

[作用] 発明者は、活性汚泥法および流動床方式等の様な各種汚
水処理技術について長年研究を行なってきたが、研究成
果として下記に示す知見が得られた。即ち、表面に生物
膜が過度に生育した生物膜粒子は見かけ比重が低下して
既述の問題点が指摘され従来注目されなかったのである
が、該生物膜粒子について脱窒速度及び硝化速度を測定
したところ第2図及び第3図に示す注目すべき結果が得
られた。第2図は活性汚泥濃度(MLVSS)当たりの
脱窒速度と水温との関係を示し、第3図はMLVSS当
たりの硝化速度と水温との関係を示している。第2図及
び第3図には、比較の為に活性汚泥法による窒素除去装
置において曝気槽の長時間・間欠曝気による場合の脱窒
速度及び硝化速度が夫々示されている。
[Function] The inventor has been conducting research on various sewage treatment technologies such as activated sludge method and fluidized bed method for many years, and as a result of the research, the following findings were obtained. In other words, biofilm particles with excessive biofilm growth on their surfaces have not received much attention because their apparent specific gravity decreases and the aforementioned problems have been pointed out. As a result of the measurement, remarkable results shown in FIGS. 2 and 3 were obtained. Figure 2 shows the relationship between denitrification rate per activated sludge concentration (MLVSS) and water temperature, and Figure 3 shows the relationship between nitrification rate per MLVSS and water temperature. For comparison, FIGS. 2 and 3 respectively show the denitrification rate and nitrification rate when long-term and intermittent aeration is used in the aeration tank in a nitrogen removal apparatus using the activated sludge method.

第2図及び第3図から明らかな様に、流動床方式におけ
る脱窒、硝化速度は、活性汚泥法における場合と比較し
てどの水温においてもはるかに高く、脱窒速度は8〜i
o倍及び硝化速度は4〜7倍にもなっている。このこと
から生物膜粒子の表面には活性汚泥法に比べて脱窒菌、
硝化菌等がより高濃度に生育していることが理解される
。その結果、生物膜粒子は既述の問題点を解消しさえす
れば、汚水処理技術に有効に利用し得るものであるとの
確証を得た。
As is clear from Figures 2 and 3, the denitrification and nitrification rates in the fluidized bed method are much higher than those in the activated sludge method at any water temperature;
o times and the nitrification rate is 4 to 7 times higher. Therefore, compared to the activated sludge method, there are more denitrifying bacteria on the surface of the biofilm particles.
It is understood that nitrifying bacteria and the like are growing at higher concentrations. As a result, we obtained confirmation that biofilm particles can be effectively used in wastewater treatment technology as long as the aforementioned problems are resolved.

尚第2図及び第3図に結果を示した活性汚泥法では、約
0.05 Kg 1I800 /kg NLVSSll
dat (7)低い負荷で操業されており、汚泥滞留時
間(SRT)は40〜50日であうだが、その間硝化菌
及び脱窒菌の流出は認められなかった。又上記活性汚泥
法における活性汚泥濃度(MLVSS)は2100〜2
700mg/ lであったのに対し、流動床方式におけ
る脱窒槽及び硝化槽の生物膜粒子のMLVSSは夫々4
800〜7800■g/交及び5000〜7500鳳g
/見であり、夫々の平均値で比較すれば約2.6倍であ
る。
In addition, in the activated sludge method whose results are shown in Figures 2 and 3, approximately 0.05 Kg 1I800 /kg NLVSSll
dat (7) It was operated at a low load, and the sludge retention time (SRT) was 40 to 50 days, but no nitrifying bacteria or denitrifying bacteria were observed to flow out during that time. In addition, the activated sludge concentration (MLVSS) in the above activated sludge method is 2100 to 2.
700 mg/l, whereas the MLVSS of biofilm particles in the denitrification tank and nitrification tank in the fluidized bed method was 4, respectively.
800-7800g/kou and 5000-7500g
/, and if you compare their average values, it is about 2.6 times as large.

更に両者の脱窒及び硝化箋力を比較すると、流動床方式
による場合は活性汚泥法による場合に比べ夫々21〜2
6倍および10〜18倍であった。
Furthermore, when comparing the denitrification and nitrification power of the two methods, the fluidized bed method has a 21 to 2
6 times and 10-18 times.

次に本発明者は上記知見に基づいて生物膜粒子の固定化
を試みた。生物膜粒子を固定する手段は同等限定するも
のではないが、その−例゛を例示すると下記の構成を採
用することができる。即ち。
Next, the present inventor attempted to immobilize biofilm particles based on the above findings. Although the means for fixing the biofilm particles is not similarly limited, the following configuration can be adopted as an example thereof. That is.

粒径0.15m層未満の微細粒子(固体担体粒子)を用
い1間欠曝気による回分培養によって生物膜粒子を形成
し該生物膜粒子を遠心分離機で分m−濃縮する。しかる
後、包括法を適用して上記生物膜粒子を固定化し1粒径
2〜3層腸程度のペレット状又はビーズ状にする。ここ
で包括法とは酵素の固定化技術として従来から知られた
手法であり、ポリマー(固定化材)のゲル格子の中に微
生物を包み込んで脱離できない状態にして固定化する方
法である。
Using fine particles (solid carrier particles) with a particle size of less than 0.15 m, biofilm particles are formed by batch culture with one intermittent aeration, and the biofilm particles are concentrated in a centrifuge for minutes. Thereafter, the entrapment method is applied to immobilize the biofilm particles to form pellets or beads each having a particle size of about 2 to 3 layers of intestines. The entrapment method here is a conventionally known enzyme immobilization technique in which microorganisms are encapsulated in a gel lattice of a polymer (immobilization material) and immobilized in a state where they cannot be detached.

固体担体粒子に関して述べれば、その表面に硝化菌、脱
窒菌、有機物酸化菌等が高濃度に付着・生育できるもの
の中から適宜選択すればよいが、例えば砂、活性炭、コ
ークス、ゼオライト、シャモット、軽量骨材及び塩化ビ
ニル樹脂等を挙げることができる。該固体担体粒子の粒
径は通常微細である程好ましく、本発明でも粒径0.1
〜0.15mm以下の固体担体粒子を用いるのが望まし
い、尚間欠曝気による回分培養に際し、生物膜粒子の沈
降速度が遅い場合には微生物から抽出されるバイオポリ
マー又は重版の高分子凝集剤を添加すればよい。
As for the solid carrier particles, they may be selected as appropriate from those on which nitrifying bacteria, denitrifying bacteria, organic matter oxidizing bacteria, etc. can adhere and grow in high concentrations, such as sand, activated carbon, coke, zeolite, chamotte, lightweight particles, etc. Examples include aggregate and vinyl chloride resin. The finer the particle size of the solid carrier particles, the better, and in the present invention, the particle size is 0.1.
It is desirable to use solid carrier particles of ~0.15 mm or less. When performing batch culture with intermittent aeration, if the sedimentation rate of biofilm particles is slow, add a biopolymer extracted from microorganisms or a reprinted polymer flocculant. do it.

一方包括法で用いられる固定化材に関しても種種知られ
ており何ら限定するものではないが、例えばポリアクリ
ルアミド、k−カラギーナン、アルギン酸カルシウム、
光硬化性ウレタン樹脂及びポリビニルアルコール等が挙
げられる。特に比較的安価なポリビニルアルコールは、
冷凍−解凍によって得られるゲルの機械的強度が大きく
、且つ微生物に対する毒性もないので優れた固定化材で
ある。生成される固定化微生物の粒径は、基質や生成物
のゲル内拡散を考慮すると2〜30層程度又はそれ以下
が望ましい。
On the other hand, various types of immobilization materials used in the comprehensive method are known and are not limited in any way, but examples include polyacrylamide, k-carrageenan, calcium alginate,
Examples include photocurable urethane resin and polyvinyl alcohol. Especially relatively cheap polyvinyl alcohol,
The gel obtained by freezing-thawing has high mechanical strength and is not toxic to microorganisms, making it an excellent immobilizing material. The particle size of the immobilized microorganisms to be produced is desirably about 2 to 30 layers or less, taking into account the diffusion of the substrate and product within the gel.

本発明において、固体担体粒子として砂や軽量骨材等を
用いた場合には、その結果生成される固定化微生物の比
重は微生物を濃縮して固定化する公知の固定化微生物の
比重に比べて大きくなり。
In the present invention, when sand, lightweight aggregate, etc. are used as solid carrier particles, the specific gravity of the resulting immobilized microorganisms is higher than that of known immobilized microorganisms that concentrate and immobilize microorganisms. Get bigger.

その粒径も流動床の生物膜粒子の10倍程度となる為そ
の沈降速度も大きくなる。従って本発明に係る固定化微
生物を利用した反応槽においては、従来の2相型Fi、
動床にむける様な生物Il!粒子の槽外流出は皆無とな
り、3相型流動床における様な生物膜粒子の沈降分離部
を可及的に小さくすることができる。
Since the particle size is about 10 times that of biofilm particles in a fluidized bed, the sedimentation rate is also high. Therefore, in the reaction tank using immobilized microorganisms according to the present invention, the conventional two-phase Fi,
A creature that looks like it's headed for a moving bed! There is no outflow of particles out of the tank, and the sedimentation and separation section for biofilm particles, such as in a three-phase fluidized bed, can be made as small as possible.

更に本発明に係る固定化微生物は流動床式反応槽に利用
し得るのみでなく、充填床(固定床)としての利用も可
能である。その場合には流動床における微生物濃度より
も更に濃度を高めることができるので、無理効率を一層
向上することができるばかりでなく、3相流動床では必
須条件とされている強攪拌もない為生成する余剰汚泥の
沈降性は良好で清澄な処理水を容易に得ることができる
。しかし工水発明の構成を採用することによって、従来
技術における問題点を一挙に解決し得るばかりでなく1
反応槽内におけるより高濃度の微生物保持が可能となり
1反応槽の単純化、コンパクト化を容易に達成すること
ができる。
Furthermore, the immobilized microorganism according to the present invention can be used not only in a fluidized bed type reaction tank but also as a packed bed (fixed bed). In that case, the concentration of microorganisms can be further increased than that in the fluidized bed, which not only makes it possible to further improve the force efficiency, but also eliminates the need for strong stirring, which is an essential condition for three-phase fluidized beds. The excess sludge has good sedimentation properties, and clear treated water can be easily obtained. However, by adopting the structure of the industrial water invention, not only can the problems in the conventional technology be solved at once, but also one
It is possible to maintain a higher concentration of microorganisms in the reaction tank, and one reaction tank can be simplified and made more compact.

[実施例] まず本発明者は下記に示す手順に従って固定化微生物を
製造した。
[Example] First, the present inventor produced an immobilized microorganism according to the procedure shown below.

内容積量lO1の攪拌機付き回分培養槽中に、■開き0
.082 asの篩通過の軽量骨材を、見かけ容JA1
1投入し、下水処理場の2次処理水を加えて7見とした
。柊に、ペプトン・肉エキスを有機物源とする。BOD
820■g/l、ケルダール性窒素130 mgl見、
全燐25膳g/文の合成下水31を前記回分培養槽中に
10分間で注入した後、曝気5分及び曝気停止1:5分
の間欠曝気を6回繰り返した。更に静置45分の後、5
分間で上澄水31を排出し、再び合成下水3交を10分
間で注入し。
In a batch culture tank with an internal volume of 1O1 and a stirrer,
.. Lightweight aggregate that passes through a sieve of 082 as, with an apparent volume of JA1
1 was added, and secondary treated water from the sewage treatment plant was added to make 7 samples. Hiiragi, peptone and meat extract are used as organic sources. BOD
820 g/l, Kjeldahl nitrogen 130 mgl,
After injecting synthetic sewage 31 containing 25 grams/liter of total phosphorus into the batch culture tank for 10 minutes, intermittent aeration of 5 minutes of aeration and 1:5 minutes of aeration stop was repeated 6 times. After a further 45 minutes of standing, 5
The supernatant water 31 was discharged in 1 minute, and 3 parts of synthetic sewage water was again injected in 10 minutes.

間欠曝気→静置→上澄水排出のサイクルを第4図(タイ
ミングチャート)に示すような操作手順で自動的に行な
った。尚水温は25℃にrAT1シ、回分培養は50日
間行なった。
The cycle of intermittent aeration → standing → supernatant water discharge was automatically performed according to the operating procedure shown in FIG. 4 (timing chart). The water temperature was kept at 25° C. for rAT1, and batch culture was carried out for 50 days.

この様にして得られる生物膜粒子を遠心分離機にて分離
−濃縮し、容積で2.5倍量の17%ポリビニルアルコ
ール溶液と混合して混合物とした。
The biofilm particles thus obtained were separated and concentrated using a centrifuge, and mixed with 2.5 times the volume of a 17% polyvinyl alcohol solution to form a mixture.

用いたポリビニルアルコールは重合度1700.ケン価
度119.85%以上のものである。上記混合物を内径
3履1のテフロン管に押し出し、該押出し物を一20℃
の冷凍庫に24時間入れた後室温で解凍、再び一20℃
の冷凍庫に12時間入れるという反復操作を5回行なっ
た。その後5℃の冷蔵庫中に24時間保存した後、直径
3鵬組長さ3■■の固定化微生物のペレットを作成した
The polyvinyl alcohol used had a polymerization degree of 1700. It has a saponification value of 119.85% or more. The above mixture was extruded into a Teflon tube with an inner diameter of 3 and 1, and the extrudate was heated at -20°C.
After putting it in the freezer for 24 hours, thaw it at room temperature and return it to -20℃.
The repeated operation of placing the sample in a freezer for 12 hours was performed 5 times. Thereafter, the pellet was stored in a refrigerator at 5° C. for 24 hours, and a pellet of immobilized microorganisms with a diameter of 3 mm and a length of 3 mm was prepared.

次に本発明者は得られた固定化微生物の窒素除去能力に
関する実験を行なった。該実験に用いられた処理袋fa
tの概略図を第1図に示す。
Next, the present inventor conducted an experiment regarding the nitrogen removal ability of the obtained immobilized microorganism. Processing bag fa used in the experiment
A schematic diagram of t is shown in FIG.

処理袋21tの反応槽2は内径5c■、高さ25c1の
アクリル樹脂製のものを用いた0反応槽2の槽下部には
多孔板3が配設され、該多孔板3の下方には散気管4が
配設されている0反応槽2内には多孔板3の上方で、固
定化微生物を充填した固定化微生物層5が形成されてい
る0合成下水W!は導入管6を介して反応槽2の槽下部
に供給され。
The reaction tank 2 of the processing bag 21t is made of acrylic resin and has an inner diameter of 5c and a height of 25c. An immobilized microorganism layer 5 filled with immobilized microorganisms is formed above the perforated plate 3 in the reaction tank 2 in which the trachea 4 is disposed.Synthetic sewage W! is supplied to the lower part of the reaction tank 2 via the introduction pipe 6.

多孔板3を通って上向流を形成しつつ固定化微生物層5
内を上昇通過する。この際、酸素含有ガスGはガス導入
管7.及び前記散気管4を介して反応槽2の下部に間欠
的に送入される。酸素含有ガスGとしては85%酸素含
有のものを用い、間欠送入はガス導入管7に介設された
電磁弁loのタイマーTによる開閉制御により行なった
The immobilized microorganism layer 5 forms an upward flow through the perforated plate 3.
rise and pass through. At this time, the oxygen-containing gas G is supplied to the gas introduction pipe 7. and is intermittently fed into the lower part of the reaction tank 2 via the aeration pipe 4. As the oxygen-containing gas G, one containing 85% oxygen was used, and the intermittent feeding was performed by controlling the opening and closing of a solenoid valve lo provided in the gas introduction pipe 7 using a timer T.

反応槽2に供給された合成下水W1は固定化微生物層5
内を上昇通過しつつ有機物や窒素等が除去され、処理水
W2となって反応槽2上部の越流堰8及び排出管9を介
して排出される0反応槽2内の処理温度は、反応槽2を
恒温水槽中に浸漬することによって25℃に調節される
The synthetic sewage W1 supplied to the reaction tank 2 has an immobilized microorganism layer 5.
Organic matter, nitrogen, etc. are removed as the water rises through the reactor tank 2, and the treated water W2 is discharged through the overflow weir 8 and discharge pipe 9 at the upper part of the reactor tank 2. The temperature is adjusted to 25° C. by immersing the tank 2 in a constant temperature water bath.

合成下水Wlは、固定化微生物を生成したときに使用し
たものと同じである。固定化微生物層5における固定化
微生物の充#A量は見かけ容量で5001、合成下水W
!の注入水量は260m1/hr、BOD負荷はl O
Kg* B OD/m3 * dayであった。曝気条
件は、曝気時間5分及び曝気停止時間5分の間欠曝気で
ある。尚酸素含宥ガスGは、曝気開始5分後に1反応槽
z内の溶存酸素濃度4〜5sg/iとなる様に流量調節
した。
The synthetic sewage Wl is the same as that used when producing the immobilized microorganisms. The amount of immobilized microorganisms in the immobilized microorganism layer 5 is 5001 in apparent capacity, and the synthetic sewage W
! The amount of water injected is 260 m1/hr, and the BOD load is l O
Kg*BOD/m3*day. The aeration conditions were intermittent aeration with an aeration time of 5 minutes and an aeration stop time of 5 minutes. The flow rate of the oxygen-containing gas G was adjusted so that the dissolved oxygen concentration in one reaction tank z was 4 to 5 sg/i 5 minutes after the start of aeration.

この様にして得られた処理水W2を濾紙で濾過した後分
析した。平均分析値は、BOD : 4mg/文、 N
Ha −N : 0.3履g/l T−N : 1.?
■g/見であった。又余剰汚泥生成量は、除去BODに
対し、平均12%であった。
The treated water W2 thus obtained was filtered through a filter paper and then analyzed. The average analysis value is BOD: 4mg/sentence, N
Ha-N: 0.3 g/l T-N: 1. ?
■g/I saw it. Furthermore, the amount of surplus sludge produced was on average 12% of the removed BOD.

上記実験は連続3力月行なわれたが、その間固定化微生
物は極めて強固であり、充填容a5001中のMLvS
Sは約15000 mg/ l ニ保持され、順調に有
機物や窒素の除去が行なわれた。
The above experiment was conducted for three consecutive months, during which time the immobilized microorganisms were extremely strong, and the MLvS in the filling volume A5001 was
S content was maintained at about 15,000 mg/l, and organic matter and nitrogen were removed smoothly.

[発明の効果] 以上述べた様に本発明によれば1本発明に係る固定化微
生物を有機性汚水処理の様な生物学的処理に適用するこ
とによって、従来技術で述べた種種の問題点を一挙に解
決できるばかりでなく装置の一層の単純化、コンパクト
化が図れるようになる。
[Effects of the Invention] As described above, according to the present invention, various problems described in the prior art can be solved by applying the immobilized microorganism according to the present invention to biological treatment such as organic sewage treatment. Not only can the problems be solved all at once, but the device can also be made even simpler and more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は処理装置lの概略図、第2図はMLVSSmた
りの脱窒速度と水温との関係を示すグラフ、第3図はM
LvSS当たりの硝化速度と水温との関係を示すグラフ
、第4図は回分培養によって生物膜粒子を生成する際の
操業条件を示すタイミングチャートである。
Figure 1 is a schematic diagram of the treatment equipment l, Figure 2 is a graph showing the relationship between denitrification rate per MLVSSm and water temperature, and Figure 3 is a graph showing the relationship between denitrification rate per MLVSSm and water temperature.
A graph showing the relationship between the nitrification rate per LvSS and water temperature, and FIG. 4 is a timing chart showing the operating conditions when producing biofilm particles by batch culture.

Claims (1)

【特許請求の範囲】[Claims] 微細粒子の表面に生物膜を生育せしめ、次いで包括法を
適用して上記粒子を固定化し、その後固定化した粒子を
反応槽内に充填して操業することを特徴とする有機性汚
水の生物学的処理方法。
Biology of organic sewage characterized by growing a biofilm on the surface of fine particles, then immobilizing the particles by applying an entrapment method, and then filling a reaction tank with the immobilized particles for operation. processing method.
JP60190624A 1985-08-28 1985-08-28 Biological treatment of organic sewage Pending JPS63158194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190624A JPS63158194A (en) 1985-08-28 1985-08-28 Biological treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190624A JPS63158194A (en) 1985-08-28 1985-08-28 Biological treatment of organic sewage

Publications (1)

Publication Number Publication Date
JPS63158194A true JPS63158194A (en) 1988-07-01

Family

ID=16261163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190624A Pending JPS63158194A (en) 1985-08-28 1985-08-28 Biological treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS63158194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143599A (en) * 1989-10-26 1991-06-19 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JPH04363194A (en) * 1991-06-07 1992-12-16 Nippon Oil Co Ltd Method for purifying organic material-containing waste water
US5992420A (en) * 1998-06-25 1999-11-30 Moriyama; Yasunobu Cigarette-attached extinguishing device
JP2014014792A (en) * 2012-07-10 2014-01-30 Fuji Clean Co Ltd Wastewater treatment apparatus
CN111747538A (en) * 2020-06-12 2020-10-09 佛山市绿之源环保技术有限公司 Black and odorous bottom mud repairing agent and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143599A (en) * 1989-10-26 1991-06-19 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JPH04363194A (en) * 1991-06-07 1992-12-16 Nippon Oil Co Ltd Method for purifying organic material-containing waste water
US5992420A (en) * 1998-06-25 1999-11-30 Moriyama; Yasunobu Cigarette-attached extinguishing device
JP2014014792A (en) * 2012-07-10 2014-01-30 Fuji Clean Co Ltd Wastewater treatment apparatus
CN111747538A (en) * 2020-06-12 2020-10-09 佛山市绿之源环保技术有限公司 Black and odorous bottom mud repairing agent and application thereof

Similar Documents

Publication Publication Date Title
JP4224951B2 (en) Denitrification method
CN100412013C (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP5150993B2 (en) Denitrification method and apparatus
JPS5867395A (en) Method and apparatus for biologically purifying waste water
JPH05504295A (en) Methods and reactors for water purification
JP2002336885A (en) Method for aerobic treatment of waste water
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP2003053385A (en) Biological denitrification equipment
JPS63158194A (en) Biological treatment of organic sewage
CN1554599A (en) Process for treating waste water by aerobic-anaerobic microbic repeated coupling
JPS6352556B2 (en)
JPH07290088A (en) Method for biologically denitrifying organic waste water
KR100673831B1 (en) Treatment methods of swine wastewater, landfill leachate and night soil
JPS6317513B2 (en)
JP3136900B2 (en) Wastewater treatment method
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JPH0376200B2 (en)
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
JP2003024982A (en) Biological denitrification method and biological denitrification apparatus
JPH0223237B2 (en)
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP3658802B2 (en) Method for treating selenium-containing water
JPS5857238B2 (en) Wastewater treatment method