JPH0223237B2 - - Google Patents

Info

Publication number
JPH0223237B2
JPH0223237B2 JP8317585A JP8317585A JPH0223237B2 JP H0223237 B2 JPH0223237 B2 JP H0223237B2 JP 8317585 A JP8317585 A JP 8317585A JP 8317585 A JP8317585 A JP 8317585A JP H0223237 B2 JPH0223237 B2 JP H0223237B2
Authority
JP
Japan
Prior art keywords
zeolite
microorganisms
pellet
activated sludge
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8317585A
Other languages
Japanese (ja)
Other versions
JPS61242692A (en
Inventor
Katsuyuki Kataoka
Koji Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP60083175A priority Critical patent/JPS61242692A/en
Publication of JPS61242692A publication Critical patent/JPS61242692A/en
Publication of JPH0223237B2 publication Critical patent/JPH0223237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、下水などの有機性廃水、上水処理に
おける生物学的前処理などの各種の生物学的水処
理方法に関するものであり、醗酵工業にも応用可
能である。 「従来の技術」 従来および現時点において、最も一般的な生物
学的水処理方法は活性汚泥法である。しかし活性
汚泥法は、活性汚泥と処理水との安定的な固液分
離に難点があるという重大な問題をかかえてい
る。 このため、近年回転円板法、チユーブ接触酸化
法、粒状媒体(砂など)付着法などの生物膜法が
急速に普及してきた。 この生物膜法は、活性汚泥法の欠点を解決する
ものとして、一時期大きな注目を集めたが研究お
よび実施例が増加するにつれ、次のような重大な
問題点を持つていることが認識されてきた。 すなわち、 付着媒体への微生物の付着量を任意にコント
ロールすることができない。過大付着や過少付
着トラブルを招く。 媒体への付着性が乏しい微生物には適用が困
難である。(廃水の種類によつて、媒体への付
着性が乏しい微生物しか増殖しない場合がみら
れる。) 多量の微生物付着媒体を必要とするので、活
性汚泥法よりも装置の建設費が高くなる。 「発明が解決しようとする問題点」 本発明は、従来の活性汚泥法、各種生物膜法の
欠点を克服することを目的とするものであり、 生物膜法における付着媒体を不要化する。 媒体への付着性が乏しい微生物に対しても生
物膜法の特徴すなわち、固液分離が容易という
点を発揮できるようにする。 活性汚泥法における微生物の固液分離の難点
を完全に解決する。 大量生産が容易で、製造コストが安価な固定
化微生物の製造法を開発する。 以上を本発明の課題としている。 「問題点を解決するための手段」 あらかじめ培養した微生物の懸濁液に、粉末又
は微粒子状のゼオライト系鉱物、又は活性炭を添
加したのち、有機高分子凝集剤を添加し、撹拌す
ることによつて凝集造粒せしめ、ペレツト状の微
生物一吸着剤の複合粒子を形成させ、該ペレツト
状複合粒子を生物処理槽に投入して、処理対象原
水と好気的もしくは嫌気的条件下で接触せしめ
て、生物学的に処理を行なう。 次に本発明を下水処理に適用した場合を例に取
り詳述する。 まず、既設の下水処理場などの活性汚泥処理施
設の曝気槽に大量培養されている活性汚泥を採取
し、2〜3%程度の固形物濃度になるように濃縮
したのち、本発明を適用しようとする現場の生物
処理施設に運搬する。 しかるのち、この活性汚泥の所定量に、粉末あ
るいは微粒子状の活性炭又はゼオライト系鉱物
(ゼオライト、クリノプチライト、クリストバラ
イトなどのアンモニアを吸着する鉱物の総称)
を、必要量例えば1000〜5000mg/になるように
添加し、よく混合したのち、有機高分子凝集剤
(ポリアクリルアミド系、ポリアクリルエステル
系などの汚泥脱水助剤として、一般的に利用され
ているものを採用すればよい)を、活性汚泥乾燥
重量1Kgあたり、10〜30g程度添加し、撹拌槽で
撹拌すると、粒径2〜3mmのほぼ球状のペレツト
状凝集体が得られる。 ここにおいて、重要な実験的事実は活性炭ある
いはゼオライト系鉱物を添加せずに、有機高分子
凝集剤のみで凝集造粒したペレツト状粒子は、強
度が小さいが、セオライト系鉱物または活性炭の
微粒子をあらかじめ添加しておくと生成したペレ
ツトの強度が顕著に増加するという現象が認めら
れたことである。 この原因は活性炭あるいはゼオライト系鉱物の
微粒子の共存によつて、ペレツトの構造が強化さ
れることおよび有機高分子凝集剤と活性炭または
ゼオライト鉱物微粒子の表面とが強固に結合する
ためではないかと推定される。 以上のような方法によつて凝集造粒されたペレ
ツト状微生物集合体を、処理対象原水の生物処理
槽に投入し、浮遊粒子状態、充填層状態あるいは
流動層状態に維持しながら、原水と好気的もしく
は嫌気的雰囲気で接触せしめて、BOD除去、硝
化、脱窒素、メタン醗酵などの処理を行なう。 本発明におけるペレツト状微生物粒子は、一種
の「固定化微生物」と呼ぶことができるものであ
り、沈降性が秀れているので、活性汚泥法のよう
な固液分離の難点は認められない。 しかも、生物膜法における不可欠要件の微生物
付着媒体は不要である。 また、NH3−Nを含む原水の場合には、第1
図右のようにNH3―Nが微生物―ゼオライト複
合ペレツト内に包括されているゼオライトに吸着
されたのち、ゼオライト粒子の極めて近傍に高濃
度に存在する硝化菌によつて、吸着されたNH3
―Nが生物学的に硝化されるという理想的環境が
設定される。 この状況は単に第1図左図に示すように、浮遊
分散状の硝化菌に浮遊分散状のゼオライト系微粒
子を混合した系とは本質的に異なるものであり、
ゼオライト鉱物に吸着されたNH3―Nは、硝化
菌によつて非常に速やかにNOx―Nにまで硝化
される。 また活性炭と微生物が一体化されたペレツト状
固定化微生物は、COD、色度成分含有有機性廃
水にとくに有効である。 この原因は明確ではないが微生物と活性炭が高
濃度状態で接した状態で共存するので、活性炭に
吸着されたCOD成分が微生物の作用によつて分
解され、活性炭の生物学的再生が進行するためで
はないかと考えられる。なお、微生物、ゼオライ
ト系鉱物及び活性炭の三者が共存するペレツトを
作り利用することも当然可能である。 次に本発明の具体的実験例を説明する。 実施例 1 神奈川県藤沢市のE団地下水の活性汚泥処理施
設から、固形物濃度2.2%の新鮮な余剰活性汚泥
を採取し、 BOD100mg/、NH3―N30〜45mg/、PH
6.8〜7.2の某工場廃水に対して、NH3―Nの硝化
とBODの除去を目的とする実験のために、ペレ
ツト状の微生物―ゼオライト複合粒子を製造し
た。 すなわち、前記余剰活性汚泥に対し、粉末状の
ゼオライトを3000mg/添加してよく混合したの
ち、カチオン系有機高分子凝集剤(エバグロース
C―114荏原インフイルコ社製)を30mg/添加
し、円筒形のカイ型インペラー付撹拌槽内に供給
して撹拌せしめたところ、平均粒径2〜3mmの球
形のペレツト状粒子が得られた。 このゼオライト―微生物複合ペレツトをエアリ
フトエアレーシヨン型の曝気槽に微生物としての
MLSS濃度15000〜2000mg/になるように投入
して、BOD除去とNH3―Nの硝化を行なつた。
運転開始後2週間経過したのち、目標とした処理
水質すなわち溶解性BOD10mg/以下、NH3
N5mg/以下を達成するための限界滞留時間を
調査したところ15〜20分であり、極めて高速度に
BOD除去と硝化が行なわれることが認められた。 なお、本実験でのペレツトの流出はネツトを処
理水出口に張ることで容易に阻止できた。 以上の条件で、2ケ月間運転を継続したのち、
初期に投入した微生物ペレツトがエアレーシヨン
による剪断力によつて破壊していないか目視によ
つて観察したところ、一部球状でなく、いびつな
形になつていたりするのがあつたが、特に著しい
破損は認められなかつた。 むしろ、初期に投入したペレツト粒子の周囲
に、新たに増殖した微生物によるカプセル状の微
生物皮膜の形成さえ認められた。 実施例 2 実施例1のE団地下水の活性汚泥処理施設の余
剰活性汚泥(固形物濃度2.2%)に、粉末活性炭
を4000mg/添加したのち、カチオン系高分子凝
集剤(エパグロースC―134)を40mg/添加し、
前記の造粒撹拌槽において撹拌した結果、平均粒
径1.5〜2.5mmφ、黒褐色の球状ペレツトを得た。 このペレツトを、前記の曝気槽にMLSS15000
mg/になるように投入し、し尿の無希釈生物学
的硝化脱窒素処理水の凝集沈澱上澄水を処理し
た。 エアレーシヨンタンクの滞留時間は6時間と
し、3ケ月間順致運転を行なつた。その後1ケ月
間の処理成績を次表に示す。
"Field of Industrial Application" The present invention relates to various biological water treatment methods such as biological pretreatment in the treatment of organic wastewater such as sewage and water treatment, and is also applicable to the fermentation industry. . "Prior Art" Traditionally and currently, the most common biological water treatment method is the activated sludge method. However, the activated sludge method has a serious problem in that stable solid-liquid separation between activated sludge and treated water is difficult. For this reason, biofilm methods such as the rotating disk method, tube contact oxidation method, and granular media (sand, etc.) adhesion method have rapidly become popular in recent years. This biofilm method attracted a lot of attention for a while as a solution to the shortcomings of the activated sludge method, but as research and examples have increased, it has come to be recognized that it has the following serious problems. Ta. In other words, it is not possible to arbitrarily control the amount of microorganisms adhering to the adhesion medium. This may lead to problems with excessive adhesion or underadhesion. It is difficult to apply to microorganisms that have poor adhesion to the medium. (Depending on the type of wastewater, there are cases where only microorganisms that have poor adhesion to the medium proliferate.) Since a large amount of microorganism adhesion medium is required, the construction cost of the equipment is higher than that of the activated sludge method. "Problems to be Solved by the Invention" The present invention aims to overcome the drawbacks of the conventional activated sludge method and various biofilm methods, and eliminates the need for an adhesion medium in the biofilm method. The feature of the biofilm method, that is, easy solid-liquid separation, can be utilized even for microorganisms that have poor adhesion to media. Completely solves the difficulties of solid-liquid separation of microorganisms in activated sludge method. To develop a method for producing immobilized microorganisms that is easy to mass produce and inexpensive to produce. The above is the object of the present invention. ``Means for solving the problem'' After adding powdered or particulate zeolite minerals or activated carbon to a suspension of pre-cultured microorganisms, an organic polymer flocculant is added and stirred. The mixture is coagulated and granulated to form pellet-shaped microorganism-adsorbent composite particles, and the pellet-shaped composite particles are placed in a biological treatment tank and brought into contact with the raw water to be treated under aerobic or anaerobic conditions. , biologically processed. Next, an example in which the present invention is applied to sewage treatment will be described in detail. First, the activated sludge cultivated in large quantities in the aeration tank of an activated sludge treatment facility such as an existing sewage treatment plant is collected and concentrated to a solids concentration of about 2 to 3%, and then the present invention is applied. Transport to the on-site biological treatment facility. After that, a predetermined amount of this activated sludge is added with powdered or particulate activated carbon or zeolite minerals (a general term for minerals that adsorb ammonia such as zeolite, clinoptilite, and cristobalite).
is added in the required amount, for example 1000 to 5000 mg, and after mixing well, add an organic polymer flocculant (generally used as a sludge dewatering aid such as polyacrylamide type or polyacrylic ester type). Approximately 10 to 30 g of activated sludge is added to 1 kg of dry weight of activated sludge and stirred in a stirring tank to obtain approximately spherical pellet-like aggregates with a particle size of 2 to 3 mm. The important experimental fact here is that pellet-like particles that are agglomerated and granulated using only an organic polymer flocculant without the addition of activated carbon or zeolite minerals have low strength; A phenomenon was observed in which the strength of the pellets produced was significantly increased when the addition was made. The reason for this is thought to be that the structure of the pellet is strengthened by the coexistence of activated carbon or zeolite mineral fine particles, and that the organic polymer flocculant and the surface of activated carbon or zeolite mineral fine particles are strongly bonded. Ru. The pellet-shaped microbial aggregates that have been agglomerated and granulated by the method described above are put into a biological treatment tank for raw water to be treated, and while being maintained in a suspended particle state, a packed bed state, or a fluidized bed state, they are mixed with the raw water in a suitable manner. BOD removal, nitrification, denitrification, methane fermentation, and other treatments are performed by contacting in an air or anaerobic atmosphere. The pellet-like microorganism particles in the present invention can be called a type of "immobilized microorganisms" and have excellent sedimentation properties, so there are no difficulties in solid-liquid separation as in the activated sludge method. Moreover, a microbial adhesion medium, which is an essential requirement in the biofilm method, is not required. In addition, in the case of raw water containing NH 3 -N, the first
As shown on the right side of the figure, after NH 3 -N is adsorbed by the zeolite contained in the microorganism-zeolite composite pellet, the NH 3 is adsorbed by nitrifying bacteria that exist in high concentration in the vicinity of the zeolite particles.
- An ideal environment is established in which N is biologically nitrified. This situation is essentially different from the system in which suspended and dispersed nitrifying bacteria are mixed with suspended and dispersed zeolite fine particles, as shown in the left diagram of Figure 1.
NH 3 --N adsorbed on zeolite minerals is very quickly nitrified to NO x --N by nitrifying bacteria. In addition, pellet-shaped immobilized microorganisms in which activated carbon and microorganisms are integrated are particularly effective for organic wastewater containing COD and color components. The cause of this is not clear, but as microorganisms and activated carbon coexist in close contact with each other at high concentrations, the COD components adsorbed on the activated carbon are decomposed by the action of the microorganisms, and biological regeneration of the activated carbon progresses. It is thought that this is the case. Of course, it is also possible to make and use pellets in which the three components of microorganisms, zeolite minerals, and activated carbon coexist. Next, specific experimental examples of the present invention will be explained. Example 1 Fresh surplus activated sludge with a solids concentration of 2.2% was collected from an activated sludge treatment facility for underground water in Group E in Fujisawa City, Kanagawa Prefecture, and BOD 100 mg/, NH 3 -N 30 to 45 mg/, PH
Pellet-shaped microorganism-zeolite composite particles were produced for an experiment aimed at nitrifying NH 3 -N and removing BOD from wastewater from a certain factory in 6.8 to 7.2. That is, 3000 mg of powdered zeolite was added to the surplus activated sludge and mixed well, and then 30 mg of a cationic organic polymer flocculant (Evagrowth C-114 manufactured by Ebara Infilco) was added to form a cylindrical shape. When the mixture was fed into a stirring tank equipped with a chi-shaped impeller and stirred, spherical pellet-like particles with an average particle size of 2 to 3 mm were obtained. This zeolite-microorganism composite pellet is placed in an airlift aeration type aeration tank where it is treated as microorganisms.
BOD removal and NH 3 -N nitrification were performed by adding MLSS at a concentration of 15000 to 2000 mg/.
Two weeks after the start of operation, the target treated water quality, namely soluble BOD 10 mg/or less, NH 3 -
When we investigated the critical residence time to achieve N5mg/or less, it was found to be 15 to 20 minutes, which is extremely high speed.
It was observed that BOD removal and nitrification took place. In this experiment, the outflow of pellets could be easily prevented by placing a net over the outlet of the treated water. After continuing to operate for two months under the above conditions,
When we visually inspected the microbial pellets that were initially introduced to see if they had been destroyed by the shearing force caused by aeration, we found that some of them were not spherical but rather irregularly shaped, but there was no particularly significant damage. was not recognized. In fact, it was even observed that a capsule-shaped microbial film was formed by newly proliferated microorganisms around the pellet particles initially introduced. Example 2 After adding 4000 mg/powdered activated carbon to the surplus activated sludge (solids concentration 2.2%) from the activated sludge treatment facility for groundwater in Group E in Example 1, a cationic polymer flocculant (Epagrowth C-134) was added. 40mg/added,
As a result of stirring in the granulation stirring tank described above, blackish brown spherical pellets with an average particle size of 1.5 to 2.5 mmφ were obtained. The pellets were placed in the aeration tank with MLSS15000.
The flocculation and sedimentation supernatant water of the undiluted biological nitrification and denitrification treatment of human waste was treated. The residence time in the aeration tank was set to 6 hours, and compliant operation was conducted for 3 months. The treatment results for one month thereafter are shown in the table below.

【表】 「発明の効果」 活性汚泥法における固液分離の難点(バルキ
ング、キヤリオーバー)が完全に解決できる。 生物膜法における不可欠要因である微生物付
着媒体が不要である。 したがつて、媒体への付着能力の乏しい微生
物に対しても特に問題がなく、採用可能であ
る。 製造容易かつ工業的規模で大量生産に適した
微生物固定化法を提供でき、しかも固定化微生
物の製造コストが安価なので有価商品を生産し
ない廃水処理の分野にも適用できる。 アンモニア性(NH3―N)を含んだ原水を
生物学的に硝化する場合には、ゼオライト系鉱
物のNH4 +イオンの吸着能力と硝化菌の代謝と
の相乗効果によつて安定した硝化機能が発現さ
れる。 生物処理槽におけるエアレーシヨンによる水
流の乱れによつては、簡単に破壊しない強度を
持つペレツト状固定化微生物が製造できる。
[Table] "Effects of the invention" Difficulties in solid-liquid separation (bulking, carryover) in the activated sludge method can be completely solved. A microbial adhesion medium, which is an essential factor in the biofilm method, is not required. Therefore, there is no particular problem with microorganisms having poor adhesion ability to the medium, and the method can be adopted. A method for immobilizing microorganisms that is easy to manufacture and suitable for mass production on an industrial scale can be provided, and since the manufacturing cost of immobilized microorganisms is low, it can also be applied to the field of wastewater treatment where valuable products are not produced. When biologically nitrifying raw water containing ammonia (NH 3 -N), a stable nitrification function is achieved due to the synergistic effect between the NH 4 + ion adsorption ability of zeolite minerals and the metabolism of nitrifying bacteria. is expressed. By disrupting the water flow due to aeration in the biological treatment tank, it is possible to produce pellet-shaped immobilized microorganisms that are strong enough to not be easily destroyed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法との微生物と本発明によるペレ
ツト状微生物粒子の浮遊分散の状態を示す。 1…微生物、2…ゼオライト、3…微生物―ゼ
オライト複合ペレツト。
FIG. 1 shows the state of suspension and dispersion of microorganisms according to the conventional method and pellet-like microorganism particles according to the present invention. 1... Microorganism, 2... Zeolite, 3... Microorganism-zeolite composite pellet.

Claims (1)

【特許請求の範囲】 1 あらかじめ培養した微生物の懸濁液に、粉末
又は微粒子状のゼオライト系鉱物、又は活性炭を
添加したのち、有機高分子凝集剤を添加し、撹拌
することによつて凝集造粒せしめ、ペレツト状の
微生物一吸着剤の複合粒子を形成させ、該ペレツ
ト状複合粒子を生物処理槽に投入して、処理対象
原水と好気的もしくは嫌気的条件下で接触するこ
とを特徴とする生物学的水処理方法。 2 ゼオライト系鉱物としてゼオライト、クリノ
プチライト、クリストバライトなどの、アンモニ
アを吸着する鉱物を使用することを特徴とする特
許請求の範囲第1項記載の生物学的水処理方法。
[Claims] 1. Powdered or finely particulate zeolite minerals or activated carbon are added to a suspension of pre-cultured microorganisms, and then an organic polymer flocculant is added and stirred to produce flocculation. The method is characterized by forming pellet-shaped composite particles of microorganisms and adsorbent, and introducing the pellet-shaped composite particles into a biological treatment tank and contacting the raw water to be treated under aerobic or anaerobic conditions. biological water treatment method. 2. The biological water treatment method according to claim 1, wherein a mineral that adsorbs ammonia, such as zeolite, clinoptilite, or cristobalite, is used as the zeolite mineral.
JP60083175A 1985-04-18 1985-04-18 Biological treatment of water Granted JPS61242692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083175A JPS61242692A (en) 1985-04-18 1985-04-18 Biological treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083175A JPS61242692A (en) 1985-04-18 1985-04-18 Biological treatment of water

Publications (2)

Publication Number Publication Date
JPS61242692A JPS61242692A (en) 1986-10-28
JPH0223237B2 true JPH0223237B2 (en) 1990-05-23

Family

ID=13794947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083175A Granted JPS61242692A (en) 1985-04-18 1985-04-18 Biological treatment of water

Country Status (1)

Country Link
JP (1) JPS61242692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112436U (en) * 1990-03-02 1991-11-18
CN103739058A (en) * 2014-01-06 2014-04-23 上海交通大学 Sewage reinforced phosphorous removal packing and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737689B2 (en) * 2000-09-27 2006-01-18 青木電器工業株式会社 How to use pellets containing humic substances
JP2003235554A (en) * 2002-02-18 2003-08-26 Hitachi Plant Eng & Constr Co Ltd Microorganism-immobilized carrier and method for producing the same
KR100502957B1 (en) * 2002-09-05 2005-07-21 금강엔지니어링 주식회사 Reactor Comprising PBAC Carrier and Water Treatment Method Using the Same
JP5091496B2 (en) * 2007-02-02 2012-12-05 アサヒグループホールディングス株式会社 Method for producing activated carbon and fungus body fixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112436U (en) * 1990-03-02 1991-11-18
CN103739058A (en) * 2014-01-06 2014-04-23 上海交通大学 Sewage reinforced phosphorous removal packing and preparation method thereof

Also Published As

Publication number Publication date
JPS61242692A (en) 1986-10-28

Similar Documents

Publication Publication Date Title
Tang et al. Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors
US3356609A (en) Aerobic treatment of sewage
JPH01503764A (en) Sewage treatment
CN100448983C (en) Nitrobacteria growth promoter
JP2004524967A (en) Biochemical treatment of wastewater using nanomaterials
CN111233133A (en) Fluidized bed biological filler, preparation method thereof and flowing composite active biological bacteria biological bed
JPH0223237B2 (en)
CN100460498C (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
CN100445366C (en) Nitrobacteria culture promoter
CN100445365C (en) Nitrobacteria culture promoter
JPS6352556B2 (en)
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JPS6317513B2 (en)
JPH0217232B2 (en)
JPS62279888A (en) Treatment of sewage
CN100460500C (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
CN111847642B (en) High-flow carrier material for water treatment microorganisms, preparation method and water treatment method
CN100445364C (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
JPS63158194A (en) Biological treatment of organic sewage
JPH07313970A (en) Method for simultaneously removing ammonia and phosphorus from water
CN101045579A (en) Method for removing sewage aminonitrogen by activated sludge process
JPH0218910B2 (en)
CN113830904B (en) Technology for treating aged garbage leachate by combining iron-oxidizing microorganisms with activated carbon
JPS61242691A (en) Biological treatment of liquid material
JPH0295496A (en) Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body