JPH0295496A - Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body - Google Patents

Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body

Info

Publication number
JPH0295496A
JPH0295496A JP24786088A JP24786088A JPH0295496A JP H0295496 A JPH0295496 A JP H0295496A JP 24786088 A JP24786088 A JP 24786088A JP 24786088 A JP24786088 A JP 24786088A JP H0295496 A JPH0295496 A JP H0295496A
Authority
JP
Japan
Prior art keywords
water
immobilized
microorganisms
activated sludge
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24786088A
Other languages
Japanese (ja)
Inventor
Yasushi Terajima
寺島 泰
Hiroaki Ozaki
尾崎 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erusoru Prod Kk
Original Assignee
Erusoru Prod Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erusoru Prod Kk filed Critical Erusoru Prod Kk
Priority to JP24786088A priority Critical patent/JPH0295496A/en
Publication of JPH0295496A publication Critical patent/JPH0295496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To remove contaminants in water such as sewage, waste water, etc., with a high percentage of recovery by separating an immobilized product discharged together with treated water from a reaction tank in a magnetic separation apparatus and performing the water treatment continuously after returning the immobilized product to the reaction tank. CONSTITUTION:Microorganisms or enzymes capable of decomposing contaminants of water are immobilized together with a magnetic body using a high molecular material. After forming the immobilized product to a size at need sufficient for suspending product in water, the product is allowed to contact with the water to be treated in a reaction tank under aerobic or anaerobic condition. Thus, the contaminants are decomposed. The immobilized product discharged together with treated water from the reaction tank is then separated in a magnetic separation apparatus, and separated product is returned to the reaction tank to perform the water treatment continuously. Even if the immobilized product is formed to such small size as permitting suspension in water, by this process, the recovery and reutilization of the product can be performed very easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微生物、酵素と磁性体との固定化物による水
処理方法、さらに詳しくは、主として下水、廃水中に含
まれる易分解性の有機物の他、難分解性物質、毒性物質
、窒素、リン等の分解、除去をも行いうる微生物、酵素
と磁性体との固定化物による水処理方法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a water treatment method using an immobilized product of microorganisms, enzymes, and magnetic materials, and more specifically, to treatment of easily decomposable organic matter mainly contained in sewage and wastewater. In addition, the present invention relates to a water treatment method using an immobilized product of microorganisms, enzymes, and magnetic material that can decompose and remove persistent substances, toxic substances, nitrogen, phosphorus, etc.

(従来の技術及び発明が解決しようとする課題)従来、
比較的多量の有機性廃水を処理する方法としては、一般
に活性汚泥法か用いられている。
(Prior art and problems to be solved by the invention) Conventionally,
Activated sludge method is generally used to treat relatively large amounts of organic wastewater.

しかしながら、この方法においては、環境中に排出され
ると化学的酸素要求i (Coo)の原因となる難分解
性物質や含塩素有機物のような有機毒性物質、さらには
アンモニア性窒素をも同時に或いは個別的に処理する場
合には、これらを分解。
However, in this method, organic toxic substances such as persistent substances and chlorine-containing organic substances, which cause chemical oxygen demand i (Coo) when discharged into the environment, and even ammonia nitrogen are simultaneously or When processing them individually, disassemble them.

除去する微生物の増殖速度が遅いために、その微生物の
培養に長期間を要し、高濃度に集積培養することには困
難が伴っていた。
Since the growth rate of the microorganisms to be removed is slow, it takes a long time to culture the microorganisms, and it is difficult to culture them at high concentrations.

又、活性汚泥法においては余剰の活性汚泥の引き抜きか
通常行われるか、この際、増殖濃度が遅く貴重な微生物
のみを余剰汚泥から回収し、再利用することは不可能で
あり、これがまた微生物の高濃度化による処理の効率化
を妨げ、流入水中の汚濁物質の負荷変動にも対応しにく
い原因ともなっている。
In addition, in the activated sludge method, surplus activated sludge is usually withdrawn, but at this time, it is impossible to collect and reuse only valuable microorganisms with slow growth concentration from the surplus sludge; The high concentration of pollutants impedes treatment efficiency and makes it difficult to respond to changes in the load of pollutants in influent water.

さらに、活性汚泥法では流入水中の汚濁物質と微生物と
が直接に接触するために、種々の物質により微生物が阻
害作用を受は易く、槽内の水素イオン濃度等の環境条件
にも直接的に影響され、安定且つ効率的な処理が十分行
えないという問題点があった。
Furthermore, in the activated sludge method, the pollutants in the inflow water come into direct contact with the microorganisms, so the microorganisms are easily inhibited by various substances, and the environmental conditions such as the hydrogen ion concentration in the tank are also directly affected. There was a problem that stable and efficient processing could not be performed sufficiently.

そこで、このような活性汚泥法の問題点を解消するため
に、難分解性物質の除去を対象として、微生物の固定化
による方法も採用されている。
Therefore, in order to solve these problems with the activated sludge method, a method based on immobilization of microorganisms has been adopted for the removal of difficult-to-decompose substances.

すなわちこの方法は、微生物を有機高分子で包埋するか
、不溶性の担体と微生物を結合して微生物を固定化し、
その固定化物を反応槽内に充填することにより特定の微
生物を反応槽内に高濃度に集積して回収処理するもので
ある。
In other words, this method immobilizes microorganisms by embedding them in organic polymers or by bonding them to an insoluble carrier.
By filling the immobilized material into the reaction tank, specific microorganisms are accumulated in the reaction tank at a high concentration and then recovered.

しかしながら、この方法によれば、固定化物の大きさ、
厚さか画のオーダー以上であるために、酸素の固定化物
内への拡散が除去反応を律速したり、固定化物の表面の
みに活性を有する微生物か存在する傾向が強いという問
題点かあった。
However, according to this method, the size of the immobilized object,
Since the thickness is on the order of a picture, there are problems in that the diffusion of oxygen into the immobilized material is rate-limiting for the removal reaction, and there is a strong tendency for active microorganisms to exist only on the surface of the immobilized material.

この問題点を解決するためには、固定化物の大きさをよ
り小さくすることが考えられるが、特に活性汚泥のよう
な他機生物との混合系からこの固定化物のみを分離する
ことは非常に困難であり、特に増殖速度が遅いが故に貴
重な微生物を含むこの固定化物を回収、再利用すること
は実用上不可能となっていた。
In order to solve this problem, it is possible to reduce the size of the immobilized material, but it is extremely difficult to separate only the immobilized material from a mixed system with other organisms such as activated sludge. This is difficult, especially because of the slow growth rate, making it practically impossible to recover and reuse this immobilized material containing valuable microorganisms.

本発明は、上述のような問題点をすべて解決するために
なされたもので、上記微生物等による固定化物の回収を
非常に容易に且つ効率良く行わしめ、特に、活性汚泥等
の他の微生物との混合系においても高収率で固定化物を
回収せしめ、ひいては下水、廃水中等の水中の汚濁物質
を高回収率で除去せしめることを課題とするものである
The present invention has been made to solve all of the above-mentioned problems, and allows the recovery of immobilized substances by the above-mentioned microorganisms to be carried out very easily and efficiently. The object of the present invention is to recover immobilized substances with a high yield even in a mixed system, and to remove pollutants in water such as sewage and wastewater with a high recovery rate.

(課題を解決するための手段) 本発明は、このような課題を解決するためになされたも
ので、その課題解決のための手段は、水質汚濁物質を分
解しうる微生物又は酵素と、磁性体とを、高分子物質に
より固定化し、次に、その固定化物を必要に応じて水中
に浮遊する程度の大きさに成形した後、好気又は嫌気条
件下にある反応槽内において水と接触させて水質汚濁物
質を分解し、その後、反応槽から処理水とともに流出す
る前記固定化物を、磁気分離装置により分離した後、前
記反応槽に返送して連続的に水処理を行うことにある。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the means for solving the problems include microorganisms or enzymes that can decompose water pollutants, and magnetic materials. is immobilized with a polymeric substance, and then, if necessary, the immobilized product is formed into a size that is large enough to float in water, and then brought into contact with water in a reaction tank under aerobic or anaerobic conditions. The purpose is to decompose water pollutants, and then the immobilized substances flowing out of the reaction tank along with the treated water are separated by a magnetic separator and returned to the reaction tank for continuous water treatment.

又、他の手段は、含塩素化合物等の有機毒性物質や難分
解性物質を分解しうる微生物若しくは酵素、或いはアン
モニア性窒素の硝化やリン除去のように集積培養が必要
な微生物若しくは酵素と、磁性体とを、高分子物質によ
り固定化し、次に、その固定化物を必要に応じて水中に
浮遊する程度の大きさに成形した後、活性汚泥槽に投入
し、その後、活性汚泥槽から処理水とともに流出する前
記固定化物を、磁気分離装置により分離した後、前記活
性汚泥槽に返送し、且つ沈澱分離後の必要な活性汚泥を
前記活性汚泥槽に返送して連続的に水処理を行うことに
ある。
In addition, other means include microorganisms or enzymes that can decompose organic toxic substances and persistent substances such as chlorine-containing compounds, or microorganisms or enzymes that require enrichment culture such as nitrification of ammonia nitrogen and removal of phosphorus. The magnetic material is immobilized using a polymeric substance, and then the immobilized material is formed into a size that will float in water as required, and then placed in an activated sludge tank, and then processed from the activated sludge tank. The immobilized material flowing out with water is separated by a magnetic separator and then returned to the activated sludge tank, and the necessary activated sludge after sedimentation separation is returned to the activated sludge tank for continuous water treatment. There is a particular thing.

(作用) 本発明は、上述のように微生物又は酵素とともに磁性体
を同時に固定化した固定化物を用いる方法なるため、そ
の磁性体を保持する固定化物は、大きさ、形状を問わず
上記磁気分離装置によって容易に分離されることとなり
、従って、たとえ固定化物を水中に浮遊する程度に小さ
く成形しても、固定化物の回収、再利用か非常に容易に
行えるのである。
(Function) As the present invention is a method using an immobilized substance in which a magnetic substance is immobilized together with microorganisms or enzymes as described above, the immobilized substance holding the magnetic substance can be used for the above-mentioned magnetic separation regardless of its size or shape. It can be easily separated by the device, and therefore, even if the immobilized product is made small enough to float in water, it is very easy to recover and reuse the immobilized product.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 先ず、微生物をたとえばマグネタイト(Fe:+04)
等の強磁性体と付着、結合して固定化した磁性生成物(
強磁性体ハイブリット固定化細菌(以下、隼に強磁性体
ハイブリットという))を製造する操作について説明す
る。
Example 1 First, microorganisms, such as magnetite (Fe: +04)
Magnetic products attached and bonded with ferromagnetic materials such as
The operation for producing ferromagnetic hybrid immobilized bacteria (hereinafter referred to as ferromagnetic hybrid) will be described.

先ず、湿汚泥(細菌)の59を、生理食塩水20m1に
懸濁し、これに19のマグネタイトを添加し、混合する
First, wet sludge (bacteria) No. 59 is suspended in 20 ml of physiological saline, and magnetite No. 19 is added to this and mixed.

この湿汚泥としては、グルコースを含有する人工下水で
培養した一般の活性汚泥を用いる。
As this wet sludge, general activated sludge cultured in artificial sewage containing glucose is used.

次に、その懸濁液に7クリル7ミドモノマーの3、75
9を添加、混合した後、架橋剤としてのN。
Next, 3,75 of 7cryl 7mid monomer was added to the suspension.
After adding and mixing 9, N was added as a crosslinking agent.

N′−メチレンビスアクリル7ミド0.29を混合する
Mix 0.29% of N'-methylenebisacrylic 7amide.

その後、重合促進剤としての5%のβ−ジメチル7ミノ
プロビオニトリル2.5mlを添加し、さらに重合開始
剤としての2.5%のベルオキソニ硫酸カリウムの2.
5mlを添加する。
Thereafter, 2.5 ml of 5% β-dimethyl 7-minoprobionitrile as a polymerization accelerator was added, and 2.5 ml of 2.5% potassium beroxonisulfate as a polymerization initiator was added.
Add 5ml.

そして、これを約37度で約30分間静置すると、ゲル
状の固定化細菌が生成されることとなる。その後、その
ゲル状物を生理食塩水で洗浄した後、粉砕して149μ
m以上のもののみ篩分けし、磁気分離することによって
所望の強磁性体ハイブリットが得られるのである。
When this is left to stand at about 37 degrees for about 30 minutes, gel-like immobilized bacteria will be produced. After that, the gel-like material was washed with physiological saline and crushed to 149 μm.
The desired ferromagnetic hybrid can be obtained by sieving only those having a particle diameter of m or more and magnetically separating them.

このようにして調製された強磁性体ハイブリットの性状
を次長1に示す。
The properties of the ferromagnetic hybrid thus prepared are shown in Section 1.

この強磁性体ハイブリットのみかけ比重は、活性汚泥よ
りも大きく、静置するとやや沈降しやすいものの、曝気
のみで反応槽内を十分に浮遊させることが可能である。
The apparent specific gravity of this ferromagnetic hybrid is larger than that of activated sludge, and although it tends to settle somewhat when left to stand still, it is possible to sufficiently suspend it in the reaction tank just by aeration.

表1中の磁化は、マグネタイトの磁化(85,3emu
/q)と添加量から計算により求めた。この強磁性体ハ
イブリットの磁化の値は、添加するマグネタイトの量の
増減により制御か可能である。
The magnetization in Table 1 is the magnetite magnetization (85.3 emu
/q) and the amount added. The magnetization value of this ferromagnetic hybrid can be controlled by increasing or decreasing the amount of magnetite added.

表1 みかけ比重    ’ 1 、 17 (9/cni)
水分含有率    ’83.8% 羊位体積当りの マグネタイトJt   i 35 、 3 (mg/C
nt)゛=−−−−−−−−−−−−−−−−−−一−
゛−−−−−−用推定磁化(at 1.OT) i 1
5. 9 (emu/dry−9)次に、上記のように
して調製された強磁性体ハイブリットを、反応槽内にそ
れぞれ水とともに入れ、十分に曝気して浮遊させた。
Table 1 Apparent specific gravity '1, 17 (9/cni)
Moisture content '83.8% Magnetite Jt i 35, 3 (mg/C
nt)゛=−−−−−−−−−−−−−−−−−−1−
Estimated magnetization for ゛------(at 1.OT) i 1
5. 9 (emu/dry-9) Next, each of the ferromagnetic hybrids prepared as described above was placed in a reaction tank together with water, and was sufficiently aerated to float.

その後、1日1回グルコースを添加し、添加直後及び1
日後のグルコース濃度とC00c、を測定する操作を約
2週間繰り返した。
After that, glucose was added once a day, immediately after addition and once a day.
The operation of measuring the glucose concentration and C00c after 1 day was repeated for about 2 weeks.

その結果を別紙第1図に示す(Runl)。The results are shown in Appendix Figure 1 (Runl).

比較例 一方、マグネタイトを添加せず、活性汚泥のみを固定化
した固定化物を用いて、上記実施例1と同様にしてグル
コース濃度とC00c、とを測定した。その結果を第2
図に示す(Run2)。
Comparative Example On the other hand, the glucose concentration and C00c were measured in the same manner as in Example 1 using an immobilized product in which only activated sludge was immobilized without adding magnetite. The result is the second
As shown in the figure (Run 2).

これら第1図及び第2図から明らかなように、処理水中
のグルコース濃度とC0DCr濃度はほぼ同様な傾向を
示しており、マグネタイl加による影響は認められなか
った。また、固定化直後からグルコースはよく除去され
、固定化による大きな弊害は認められなかった。
As is clear from these FIGS. 1 and 2, the glucose concentration and CODCr concentration in the treated water showed almost the same tendency, and no influence by the addition of magnetite was observed. In addition, glucose was well removed immediately after immobilization, and no major adverse effects due to immobilization were observed.

一方、液中のC00c、は経過日数とともに高くなって
いる。これは、槽内水の交喚を行わない過酷な条件下で
の実験であったこともあり、代謝産物とともに固定化剤
の一部の溶出に由来するCOD crが槽内に蓄積され
たことが原因と考えられる。
On the other hand, C00c in the liquid increases with the number of days that have passed. This was because the experiment was conducted under harsh conditions without exchange of water in the tank, and COD cr derived from the elution of some of the fixatives accumulated in the tank along with metabolites. This is thought to be the cause.

実施例2 本実施例では、微生物として上記実施例のグルコース含
有の人工下水で培養した活性汚泥に代えて、フェノール
含有廃水の処理汚泥を種汚泥として培養したフェノール
分解菌を用いる。
Example 2 In this example, in place of the activated sludge cultured in glucose-containing artificial sewage of the above-mentioned example as a microorganism, phenol-degrading bacteria cultured using treated sludge of phenol-containing wastewater as seed sludge is used.

このフェノール分解菌を上記実施例1と同様にマグネタ
イトに固定化して得られた強磁性体ハイブリットを、上
記実施例1と同様の操作により反応槽に入れ曝気して浮
遊させた。
A ferromagnetic hybrid obtained by immobilizing this phenol-degrading bacteria on magnetite in the same manner as in Example 1 above was placed in a reaction tank and suspended by aeration in the same manner as in Example 1 above.

次に、フェノールを添加して回分方式でさらに約20日
間馴養後、次のような一連の回分実験を行った。
Next, after adding phenol and acclimatizing for about 20 days in a batch manner, the following series of batch experiments were conducted.

すなわち、先ず、強磁性体ハイブリットを入れた反応槽
に所定濃度(80mg/ l程度)になるようにフェノ
ールを;悉加しそのフェノール濃度の経時変化を調べた
(Ru n 3)。
That is, first, phenol was added to a reaction tank containing a ferromagnetic hybrid to a predetermined concentration (approximately 80 mg/l), and the change in phenol concentration over time was investigated (Run 3).

次に、上記の反応槽にさらにフェノールで馴養していな
い活性汚泥を投入して同様に回分実験を行い、こうした
混合系における強磁性体ハイプリントによるフェノール
除去性能について調べた(Run4)。
Next, activated sludge that had not been acclimatized with phenol was added to the above reaction tank, and a similar batch experiment was conducted to investigate the phenol removal performance of the ferromagnetic material Hyprint in such a mixed system (Run 4).

この実験終了後、上記の混合系から磁石により強磁性体
ハイブリットを分離し、それによるフェノール除去性能
(Run5)と残留活性汚泥のフェノール除去性(Ru
 n 6)を同様に回分実験により調べた。
After completing this experiment, the ferromagnetic hybrid was separated from the above mixed system using a magnet, and its phenol removal performance (Run 5) and phenol removal performance of residual activated sludge (Ru
n6) was similarly investigated by batch experiments.

各RunのDO濃度は4.5mg/1以上であった。The DO concentration in each Run was 4.5 mg/1 or more.

また、固定化物中の微生物(細菌)量は含有されている
T−P量の測定により求め、700 mg/1前後であ
った。尚、槽内のpHはすべて7〜7.4に調整した。
Further, the amount of microorganisms (bacteria) in the immobilized product was determined by measuring the amount of T-P contained, and was approximately 700 mg/1. In addition, the pH in all the tanks was adjusted to 7 to 7.4.

上記Run3〜6の結果は第3図に示す。The results of Runs 3 to 6 are shown in FIG.

強磁性体ハイブリットが存在するRun3〜5について
は単位微生物量目たりのフェノール量で表示しており、
フェノールで馴養された活性汚泥による処理でみられる
ように、フェノールはほぼ0次反応に従って除去されて
いる。Run3〜5の除去速度係数を次長2に示す。
For Runs 3 to 5 where ferromagnetic hybrids exist, the amount of phenol per unit amount of microorganisms is displayed.
As seen in the treatment with activated sludge acclimatized with phenol, phenol is removed almost according to a zero-order reaction. The removal rate coefficients for Runs 3 to 5 are shown in Section 2.

Run3 (強磁性体ハイブリットのみ)とRun4(
強磁性体ハイブリットと活性汚泥の混合系)のそれらが
同じ値であることから、この強磁性体ハイブリットは、
活性汚泥との混合系においても特に影響を受けることな
く、単独のときと同様にフェノールを除去し得た。
Run3 (ferromagnetic hybrid only) and Run4 (
Since these values are the same for the mixed system of ferromagnetic hybrid and activated sludge, this ferromagnetic hybrid has
Even in a mixed system with activated sludge, phenol could be removed in the same way as when it was used alone, without any particular effect.

又、Run5の除去速度係数はRun4のそれに近い値
となり、Run6 (分離後の活性汚泥)ではほとんど
フェノールを除去できなかったことから、強磁性体ハイ
ブリットは磁気分離によって大部分か回収され、フェノ
ールの漏出もほとんどみられないこと、さらに回収され
た強磁性体ハイブリットは再利用か可能であることか明
らかとなった。
In addition, the removal rate coefficient of Run 5 was close to that of Run 4, and almost no phenol could be removed in Run 6 (activated sludge after separation), so most of the ferromagnetic hybrid was recovered by magnetic separation, and phenol was not removed. It became clear that there was almost no leakage, and that the recovered ferromagnetic hybrid could be reused.

表2 =−’  −” ” ”−”−’−T Run3,1. 36X10 −3 (min−’  
)↑−□−胛や□□□□□□□□−□□□□−−−トφ
□□呻−一→←□轡□□□□□4Run4 !  1.
 33X 1 0 −3 (min−’  )−°−−
−−     −〜 −−l Run5 : 1. ′20X10 −’ (min−
’ン尚、別の実験において、表1に示す性状を有する強
磁性体ハイブリットは、上記のような混合系から市販磁
石により99.3%以上の高率で分離しうろことを確認
している。
Table 2 =-'-” ”-”-'-T Run3,1. 36X10-3 (min-'
)↑-□-胛や□□□□□□□□-□□□□---トφ
□□Moan-1→←□轡□□□□□4Run4! 1.
33X 10-3 (min-')-°--
-------l Run5: 1. '20X10-' (min-
In addition, in another experiment, it was confirmed that a ferromagnetic hybrid having the properties shown in Table 1 could be separated from the above-mentioned mixed system using a commercially available magnet at a high rate of 99.3% or more. .

一連の実験終了後、さらに約1か月間半回分式で上記強
磁性体ハイブリットによるフェノールの処理を続け、そ
の時点で磁気分離し得た上記強磁性体ハイフリットを用
いて、Run3 (強磁性体ハイブリットのみ)と同様
にフェノールの除去回分実験を行ったところ、2.28
XIO−3(min−’ )の除去速度係数か得られた
。Run3のそれより大きい値となった理由としては、
フェノール分解菌の馴養か道んだことが考えられるか、
いずれにしても、上記強磁性体ハイブリットは少なくと
も2ケ月近く活性を保持し得た。
After the series of experiments, the treatment of phenol with the ferromagnetic hybrid was continued for about one month in a semi-batch manner, and at that point, using the ferromagnetic hybrid that had been magnetically separated, Run 3 (ferromagnetic When we conducted a batch experiment for phenol removal in the same way as in the case of hybrid (hybrid only), we found that 2.28
A removal rate coefficient of XIO-3 (min-') was obtained. The reason why the value was larger than that of Run 3 is as follows.
Is it possible that the phenol-degrading bacteria have become acclimatized or something has gone wrong?
In any case, the ferromagnetic hybrid was able to maintain its activity for at least two months.

尚、上記実施例では、強磁性体としてマグネタイトを使
用したが、強磁性体の種類は決してこれに限定されるも
のではない。又、磁性体としては上記実施例のような強
磁性体に限らず、常磁性体等の弱磁性体を使用すること
も可能である。弱磁性体を使用する場合には、その磁力
に応じて磁気分離装置の磁力を強くする必要がある。
In the above embodiment, magnetite was used as the ferromagnetic material, but the type of ferromagnetic material is by no means limited to this. Further, the magnetic material is not limited to the ferromagnetic material as in the above embodiment, but it is also possible to use a weakly magnetic material such as a paramagnetic material. When using a weakly magnetic material, it is necessary to increase the magnetic force of the magnetic separation device in accordance with the magnetic force of the weakly magnetic material.

又、微生物の種類も上記実施例1のグルコース含有下水
で培養した活性汚泥や実施例2のフェノール分解菌に限
らず、要は、水処理に使用可能なもの、或いは水処理に
使用可能であるとともに、含塩素化合物等の有機毒性物
質や難分解性物質、或いは窒素、リン等を分解しうる微
生物であればよい。
In addition, the type of microorganisms is not limited to the activated sludge cultured in glucose-containing sewage as in Example 1 or the phenol-degrading bacteria as in Example 2, but in short, any microorganisms that can be used for water treatment or can be used for water treatment can be used. In addition, any microorganism that can decompose organic toxic substances such as chlorine-containing compounds, difficult-to-decompose substances, nitrogen, phosphorus, etc. may be used.

さらに、このような微生物に代えて、これらの微生物由
来の酵素を使用することも可能である。
Furthermore, instead of such microorganisms, it is also possible to use enzymes derived from these microorganisms.

さらに、磁性体と微生物、酵素とを固定化する固定化剤
や固定化の方法についても上記実施例に限定されるもの
ではなく、要はこれらか離散することなく、固定化され
た状態を維持するような固定化剤や固定化方法か用いら
れればよい。
Furthermore, the immobilizing agent and immobilization method for immobilizing the magnetic material, microorganisms, and enzymes are not limited to the above examples, and the point is to maintain the immobilized state without dispersing them. Any fixing agent or fixing method that can be used may be used.

さらに、上記実施例では下水、廃水処理に適用する場合
について説明したか、本発明の用途はこれに限らず、広
く水処理全般に使用することか可能である。
Further, in the above embodiments, the application to sewage and wastewater treatment has been described, but the application of the present invention is not limited to this, and can be widely used in water treatment in general.

(発明の効果) 叙上のように、本発明は、水処理に用いうる微生物又は
酵素と、磁性体とを固定化し、その固定化物を必要に応
じて水中に浮遊する程度の大きさこ成形した後、好気又
は嫌気条件下にある反応槽内において水と接触させて水
質汚濁の原因となる物質を分解し、その後、反応槽から
上記固定化物を磁気分離装置により分離した後、前記反
応槽に返送して連続的に水処理を行う方法なるため、微
生物の固定化によって汚濁物質の除去2回収か良好とな
るばかりでなく、上記磁気分離装置によって磁性体とと
もに固定化された微生物、酵素が確実に分離され、従っ
て、固定化物の大きさや形状を問わず固定化物の回収、
再利用が確実に行えるために、汚濁物質の回収率か単に
固定化微生物のみを利用した従来の方法に比べて著しく
向上するという顕著な効果を有するに至った。
(Effects of the Invention) As described above, the present invention immobilizes microorganisms or enzymes that can be used for water treatment and a magnetic material, and molds the immobilized product into a size that can float in water as necessary. After that, substances that cause water pollution are decomposed by contacting with water in a reaction tank under aerobic or anaerobic conditions, and then, after separating the immobilized substances from the reaction tank using a magnetic separation device, the reaction tank is This method not only improves the removal and recovery of pollutants by immobilizing microorganisms, but also removes the microorganisms and enzymes immobilized with the magnetic material by the magnetic separation device. Reliable separation and therefore recovery of immobilized materials regardless of their size or shape;
Since reuse can be ensured, the recovery rate of pollutants has been significantly improved compared to conventional methods that simply utilize immobilized microorganisms.

さらに、含塩素化合物等の有機毒性物質や難分解性物質
をも分解しうる微生物、酵素、或いはアンモニア性窒素
の硝化やリン除去のように集積培養か必要な微生物、酵
素と、磁性体とを固定化した固定化物を用いて活性汚泥
との混合系を使用する場合には、従来の活性汚泥法に新
たな処理能力を付与することとなり、又、必要な細菌の
高濃度化が可能になり、−層有用な水処理方法を提供で
きるという効果かある。
Furthermore, microorganisms and enzymes that can decompose organic toxic substances such as chlorine-containing compounds and persistent substances, or microorganisms and enzymes that require enrichment culture such as nitrification of ammonia nitrogen and phosphorus removal, and magnetic materials can be combined. When using a mixed system with activated sludge using immobilized substances, new processing capacity is added to the conventional activated sludge method, and it is also possible to increase the necessary concentration of bacteria. This has the effect of providing a useful water treatment method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活性汚泥の強磁性体ハイフリットのグルコース
、C00e、濃度の経口変化を示すグラフ。 第2図はマグネタイトを添加しない活性汚泥のみのグル
コース、C0Dc、J度の経口変化を示すグラフ。 第3図は第2実施例のフェノール濃度の経時変化を示す
グラフ。 第 1 因 りlL−’:J J 、COD、、 SL&のPbe’
を化(’l<、、り出願人 エルツルプロダクツ株式会
社 代理人    弁理士  藤本昇 起往喰L(F3’) 第 図 グルコース、Q’Dg3L皮の系)、θ受化し乙)g%
>”縣 第 図
FIG. 1 is a graph showing oral changes in glucose, C00e, and concentration of ferromagnetic material Hyfrit in activated sludge. FIG. 2 is a graph showing oral changes in glucose, C0Dc, and J degree using only activated sludge without the addition of magnetite. FIG. 3 is a graph showing the change in phenol concentration over time in the second example. 1st cause lL-': JJ, COD,, SL&Pbe'
('l <, , Applicant: Erzl Products Co., Ltd. Agent, Patent Attorney: Noboru Fujimoto L (F3') Diagram: Glucose, Q'Dg3L skin system), θ)g%
>”Area map

Claims (1)

【特許請求の範囲】 1、水質汚濁物質を分解しうる微生物又は酵素と、磁性
体とを、高分子物質により固定化し、次に、その固定化
物を必要に応じて水中に浮遊する程度の大きさに成形し
た後、好気又は嫌気条件下にある反応槽内において水と
接触させて水質汚濁物質を分解し、その後、反応槽から
処理水とともに流出する前記固定化物を、磁気分離装置
により分離した後、前記反応槽に返送して連続的に水処
理を行うことを特徴とする微生物、酵素と磁性体との固
定化物による水処理方法。 2、含塩素化合物等の有機毒性物質や難分解性物質を分
解しうる微生物若しくは酵素、或いはアンモニア性窒素
の硝化やリン除去のように集積培養が必要な微生物若し
くは酵素と、磁性体とを、高分子物質により固定化し、
次に、その固定化物を必要に応じて水中に浮遊する程度
の大きさに成形した後、活性汚泥槽に投入し、その後、
活性汚泥槽から処理水とともに流出する前記固定化物を
、磁気分離装置により分離した後、前記活性汚泥槽に返
送し、且つ沈澱分離後の必要な活性汚泥を前記活性汚泥
槽に返送して連続的に水処理を行うことを特徴とする微
生物、酵素と磁性体との固定化物による水処理方法。
[Scope of Claims] 1. A microorganism or an enzyme capable of decomposing water pollutants and a magnetic material are immobilized using a polymeric material, and then the immobilized material is made into a large enough material to float in water as necessary. After the molding process is carried out, water pollutants are decomposed by contact with water in a reaction tank under aerobic or anaerobic conditions, and the immobilized substances flowing out of the reaction tank together with the treated water are separated by a magnetic separation device. A water treatment method using an immobilized product of microorganisms, enzymes, and magnetic material, characterized in that the water is then returned to the reaction tank for continuous water treatment. 2. Microorganisms or enzymes that can decompose organic toxic substances and persistent substances such as chlorine-containing compounds, or microorganisms or enzymes that require enrichment culture such as nitrification of ammonia nitrogen or phosphorus removal, and a magnetic material, Immobilized with a polymer substance,
Next, the immobilized material is shaped into a size that will float in water as necessary, and then placed in an activated sludge tank.
The immobilized material flowing out from the activated sludge tank together with the treated water is separated by a magnetic separator and then returned to the activated sludge tank, and the necessary activated sludge after sedimentation and separation is returned to the activated sludge tank for continuous operation. A water treatment method using an immobilized product of microorganisms, enzymes, and magnetic material, which is characterized in that water treatment is performed on water.
JP24786088A 1988-09-30 1988-09-30 Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body Pending JPH0295496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24786088A JPH0295496A (en) 1988-09-30 1988-09-30 Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24786088A JPH0295496A (en) 1988-09-30 1988-09-30 Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body

Publications (1)

Publication Number Publication Date
JPH0295496A true JPH0295496A (en) 1990-04-06

Family

ID=17169718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24786088A Pending JPH0295496A (en) 1988-09-30 1988-09-30 Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body

Country Status (1)

Country Link
JP (1) JPH0295496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071407A (en) * 1995-08-16 2000-06-06 University Of Southampton Magnetic separation
US6103127A (en) * 1993-06-08 2000-08-15 Cortex Biochem, Inc. Methods for removing hazardous organic molecules from liquid waste
US6160864A (en) * 1999-03-05 2000-12-12 General Electric Company Seismic isolators
WO2015078241A1 (en) * 2013-11-29 2015-06-04 中国科学院过程工程研究所 Method for removing trace amount of toxic pollutants in water by enhanced flocculation of enzyme-loading magnetic particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water
JPS6250200A (en) * 1986-08-25 1987-03-04 武藤工業株式会社 Fixture for roller in cursor for rail

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water
JPS6250200A (en) * 1986-08-25 1987-03-04 武藤工業株式会社 Fixture for roller in cursor for rail

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103127A (en) * 1993-06-08 2000-08-15 Cortex Biochem, Inc. Methods for removing hazardous organic molecules from liquid waste
US6416671B1 (en) 1993-06-08 2002-07-09 Cortex Biochem, Inc. Methods for removing hazardous organic molecules from liquid waste
US6071407A (en) * 1995-08-16 2000-06-06 University Of Southampton Magnetic separation
GB2304301B (en) * 1995-08-16 2000-06-14 Univ Southampton Magnetic separation
US6160864A (en) * 1999-03-05 2000-12-12 General Electric Company Seismic isolators
WO2015078241A1 (en) * 2013-11-29 2015-06-04 中国科学院过程工程研究所 Method for removing trace amount of toxic pollutants in water by enhanced flocculation of enzyme-loading magnetic particles

Similar Documents

Publication Publication Date Title
JP4224951B2 (en) Denitrification method
Liang et al. Formation, extracellular polymeric substances and microbial community of aerobic granules enhanced by microbial flocculant compared with poly-aluminum chloride
CN104843858B (en) A kind of sewage disposal system and operation method thereof
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
Furukawa et al. Nitrification of NH4-N polluted sea water by immobilized acclimated marine nitrifying sludge (AMNS)
CN102295353A (en) Method for realizing synchronous denitrification and dephosphorization of sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
Zeng et al. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique
JP2002192186A (en) Heavy metal trapping method and heavy metal recovering method
Hattori et al. Effects of an external magnetic field on the sedimentation of activated sludge
JPH0295496A (en) Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body
JPS6352556B2 (en)
JPS62279888A (en) Treatment of sewage
AU2021100969A4 (en) Wastewater treatment device based on bioaugmentation coupling of carrier
JPH0259000B2 (en)
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH0223237B2 (en)
JPH05345195A (en) Method for treating waste water
Lewandowski Nitrification process in activated sludge with suspended marble particles
JP2000325986A (en) Waste water treatment apparatus having phosphorus removing process
JPS63158194A (en) Biological treatment of organic sewage
JPS62168592A (en) Waste water treatment unit
JPH0788498A (en) Method for removing and recovering phosphorus in phosphorus containing aqueous solution with microorganism
JPH078984A (en) Gel particle carrier for immobilization of microorganism, preparation thereof and method for water treatment by using it
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus