JPH04363194A - Method for purifying organic material-containing waste water - Google Patents

Method for purifying organic material-containing waste water

Info

Publication number
JPH04363194A
JPH04363194A JP3233653A JP23365391A JPH04363194A JP H04363194 A JPH04363194 A JP H04363194A JP 3233653 A JP3233653 A JP 3233653A JP 23365391 A JP23365391 A JP 23365391A JP H04363194 A JPH04363194 A JP H04363194A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
phenol
org
biocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3233653A
Other languages
Japanese (ja)
Other versions
JP2535267B2 (en
Inventor
Ikutoshi Matsumura
松村 幾敏
Shinichiro Kitaoka
北岡 信一郎
Toyohiko Kawamura
川村 豊彦
Tamio Saito
斎藤 民男
Hiroo Takeda
武田 紘雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP3233653A priority Critical patent/JP2535267B2/en
Publication of JPH04363194A publication Critical patent/JPH04363194A/en
Application granted granted Critical
Publication of JP2535267B2 publication Critical patent/JP2535267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To provide the method for purifying org. material-contg. waste water which is capable of removing the phenol in the org. material-contg. waste water with high efficiency, effectively controlling the quantity of the dissolved oxygen necessary for maintaining the activity of the bacteria for decomposing the org. materials, decreasing the amt. of the excess sludge generated at the time of a purification treatment and lessening the generation of smell. CONSTITUTION:This method for purifying the org. material-contg. waste water consists in supplying the org. material-contg. waste water and air for aeration of 10 to 150(Nm<3> -air/h/m<3> -waste water/h) of the volume of the waste water (m<3> -waste water/h) into a fluidized bed type bioreactor which is packed with biocatalysts formed by including and immobilizing the bacteria for decomposing the org. materials into a polyvinyl alcohol gel at such a ratio as to attain a packing rate of a 5 to 60mol% range, is installed with a diffusion plate having 0.5 to 5mmphi pore diameter and 0.3 to 20% opening rate and has 3 to 9 column height/column diameter, thereby bringing the air for aeration, the org. material- contg. waste water and the biocatalysts into contact with each other.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は有機物類含有廃水、特に
石油精製プラント等から排出されるフェノール含有廃水
を生体触媒を充填した流動床型バイオリアクターで浄化
処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying wastewater containing organic substances, particularly phenol-containing wastewater discharged from petroleum refining plants, etc., using a fluidized bed bioreactor filled with a biocatalyst.

【0002】0002

【従来の技術】従来の活性汚泥法による処理の問題点を
列記すると、次のとおりである。■石油精製プラント等
から排出されるフェノール含有廃水のフェノール濃度は
40〜500ppmで、活性汚泥法による処理では90
〜98%の除去率でこれ以上除去は困難である。■ばっ
気工程と生物反応で発生する汚泥の沈降分離工程の切り
替え処理のために連続処理が難しい。■余剰汚泥の発生
が非常に多く、後続する処理工程に負担が掛かると共に
余剰汚泥を産業廃棄物として処理する場合はコストがか
かりすぎる。■原因不明の処理不調が発生しやすく、活
性汚泥(バクテリア)の活性を正常な状態に回復させる
には1〜6ケ月以上の長時間を要することがある。■一
般に活性汚泥法による生物反応は比較的に遅く、そのた
めに反応槽を大きくする必要があり、設置面積が必然的
に大きくなる。■従来の活性汚泥法による廃水処理では
臭気の発生が著しく、臭気対策が困難である。
BACKGROUND OF THE INVENTION The problems of the conventional activated sludge process are listed below. ■The phenol concentration of phenol-containing wastewater discharged from oil refinery plants, etc. is 40 to 500 ppm, and when treated by the activated sludge method, the concentration of phenol is 90 ppm.
With a removal rate of ~98%, further removal is difficult. ■ Continuous treatment is difficult because of the switching process between the aeration process and the sedimentation separation process of sludge generated by biological reactions. ■A large amount of surplus sludge is generated, which puts a burden on the subsequent treatment process and costs too much if the surplus sludge is treated as industrial waste. ■Processing failures of unknown causes are likely to occur, and it may take a long time of 1 to 6 months or more to restore the activity of activated sludge (bacteria) to its normal state. ■Generally, the biological reaction produced by the activated sludge method is relatively slow, and therefore the reaction tank needs to be large, which inevitably increases the installation area. ■ Conventional wastewater treatment using the activated sludge method produces a significant amount of odor, making it difficult to counteract the odor.

【0003】次に、これらの問題点についてさらに詳細
に説明する。まず、フェノール除去率が90〜98%で
これ以上の除去率を期待できないのは活性汚泥(バクテ
リア)は一種の雑菌の集まり(混合菌)であり、特定の
環境下においても対象物を100%分解する菌体のみが
菌相を形成することはなく、そのためばっ気用空気、栄
養分、接触時間(反応時間)等の調整を行っても上述の
ような除去率以上とはならない。活性汚泥法ではばっ気
工程で十分にばっ気し、生物反応を行わせた後一旦通水
を停止し、生物反応により発生した汚泥を沈降分離し、
しかるのち上澄水を後続の処理工程に流し、沈降分離さ
れた汚泥は産業廃棄物として処理する。この活性汚泥法
ではしばしば発生した余剰汚泥が十分に沈降分離せずに
後続の処理工程に入る場合があり排水処理装置の運転が
不能となる。従って連続処理が困難であり、処理能力に
は限界がある。この対策として同一の装置を2基建設し
たり、2段方式で処理する等の対応策が考えられるが、
経済的に極めて不利なことは明らかである。
Next, these problems will be explained in more detail. First of all, the phenol removal rate is 90-98%, and we cannot expect a higher removal rate because activated sludge (bacteria) is a kind of collection of bacteria (mixed bacteria), and even under certain environments, it can remove 100% of the target material. Only bacterial cells that decompose do not form a bacterial phase, so even if the aeration air, nutrients, contact time (reaction time), etc. are adjusted, the removal rate will not exceed the above-mentioned level. In the activated sludge method, after sufficiently aerating in the aeration process and allowing biological reactions to occur, water flow is temporarily stopped, and the sludge generated by the biological reactions is sedimented and separated.
The supernatant water is then sent to the subsequent treatment process, and the sedimented and separated sludge is treated as industrial waste. In this activated sludge method, surplus sludge generated often enters the subsequent treatment process without being sufficiently sedimented and separated, making it impossible to operate the wastewater treatment equipment. Therefore, continuous processing is difficult and processing capacity is limited. Possible countermeasures to this problem include constructing two identical devices or using a two-stage processing method.
It is clear that this is extremely disadvantageous economically.

【0004】次に、活性汚泥(バクテリア)はしばしば
原因不明の処理不調の状態が発生する。これは廃水の状
態(性状)が急激に変化した場合、つまり石油精製プラ
ント等の運転状態が不調の場合は排水中のアンモニア性
窒素、硫黄イオン(S2−)等が急激に増加し、そのた
めこれら物質のために活性汚泥(バクテリア)の活性が
著しく阻害され、殆どフェノールが除去されない場合が
ある。
[0004] Next, activated sludge (bacteria) often suffers from unsatisfactory treatment for unknown reasons. This is because when the state (properties) of wastewater changes rapidly, that is, when the operating conditions of an oil refinery plant etc. are poor, ammonia nitrogen, sulfur ions (S2-), etc. The activity of activated sludge (bacteria) is significantly inhibited by the substance, and in some cases, almost no phenol is removed.

【0005】活性汚泥(バクテリア)の活性が著しく阻
害され活性が低下した場合は、その回復には時間を要し
、前述したように1〜6ケ月の時間がかかり自然回復に
期待せざるを得ない。従って、活性汚泥法による処理は
限定されたものとならざるをえない。
[0005] When the activity of activated sludge (bacteria) is significantly inhibited and its activity is reduced, it takes time to recover, and as mentioned above, it takes 1 to 6 months, and one cannot help but hope for natural recovery. do not have. Therefore, treatment using the activated sludge method is inevitably limited.

【0006】さらに活性汚泥(バクテリア)の活性度は
低く、馴化・培養期間を含め除去率を一定に維持するた
めには必然的に反応槽が大きくなり、従って設置面積も
大きくならざるをえない。また、従来活性汚泥(バクテ
リア)による廃水の処理に際しては悪臭を発生する代表
的な発生源であり、特になんらかの原因で汚泥が異常に
大量発生した場合等は悪臭発生が著しい。活性汚泥法は
一般に地上に処理槽に設置するか、あるいは半地下式処
理槽で処理するため悪臭対策は不十分とならざるをえな
い。
Furthermore, the activity of activated sludge (bacteria) is low, and in order to maintain a constant removal rate including the acclimatization and culture period, the reaction tank must necessarily be large, and the installation area must therefore also be large. . In addition, activated sludge (bacteria) is a typical source of odor when treating wastewater, and especially when an abnormally large amount of sludge is generated for some reason, the odor is particularly noticeable. In the activated sludge method, the treatment is generally carried out in a treatment tank above ground or in a semi-underground treatment tank, which inevitably results in insufficient countermeasures against bad odors.

【0007】[0007]

【発明が解決しようとする課題】本発明は有機物類含有
廃水中のフェノールを高効率で除去すること、有機物類
を分解する菌体の活性維持に必要な溶存酸素量を効果的
にコントロールすること、浄化処理時において発生する
余剰汚泥の量を少なくすること、臭気の発生を少なくす
ることができる有機物類含有廃水の浄化方法を提供する
ことを目的とする。
[Problems to be Solved by the Invention] The present invention aims to remove phenol from wastewater containing organic matter with high efficiency, and to effectively control the amount of dissolved oxygen necessary to maintain the activity of microbial cells that decompose organic matter. An object of the present invention is to provide a method for purifying organic matter-containing wastewater that can reduce the amount of surplus sludge generated during purification treatment and reduce the generation of odor.

【0008】[0008]

【課題を解決するための手段】本発明者らは有機物類含
有廃水を浄化処理する方法について鋭意研究した結果、
特定の生体触媒を充填した流動床型バイオリアクターで
浄化処理することにより有機物類含有廃水中のフェノー
ルを高効率で除去できることを見い出し、この知見に基
づいて本発明を達成することができた。
[Means for Solving the Problems] As a result of intensive research into methods for purifying wastewater containing organic matter, the present inventors found that
It was discovered that phenol in organic matter-containing wastewater can be removed with high efficiency by purification using a fluidized bed bioreactor filled with a specific biocatalyst, and based on this knowledge, the present invention was achieved.

【0009】すなわち、本発明は有機物類を分解する菌
体をポリビニールアルコールゲルに包括固定化した生体
触媒を充填率が5〜60vol%の範囲になるように充
填し、孔径が0.5〜5mmφおよび開孔率が0.3〜
20%の分散板を設置した塔高/塔径が3〜9の流動床
型バイオリアクターに有機物類含有廃水と廃水量(m3
−廃水/h)に対して10〜150(Nm3−空気/h
/m3−廃水/h)のばっ気用空気を供給してばっ気用
空気、有機物類含有廃水および生体触媒を接触させてな
る有機物類含有廃水の浄化方法を提供する。
That is, in the present invention, a biocatalyst in which bacterial cells that decompose organic substances are entrapping immobilized in a polyvinyl alcohol gel is filled so that the filling rate is in the range of 5 to 60 vol %, and the pore size is in the range of 0.5 to 60 vol %. 5mmφ and open area ratio 0.3~
Organic matter-containing wastewater and the amount of wastewater (m3
- wastewater/h) to 10-150 (Nm3-air/h)
A method for purifying organic matter-containing wastewater is provided by supplying aeration air of /m3-wastewater/h) and bringing the aeration air, organic matter-containing wastewater, and a biocatalyst into contact with each other.

【0010】本発明の有機物類含有廃水とは各種工場廃
水、生活廃水等中に有機物類が含有する廃水で、例えば
COD、BOD濃度が10mg/l以上、好ましくは1
00〜500mg/l、その他油分を含有する廃水であ
る。本発明では特に前記の有機物類の他にフェノール類
が40〜500ppm含有する廃水、具体的には石油精
製プラントの流動接触分解または流動接触分解製品貯蔵
タンクからのフェノール類含有廃水を有効に浄化できる
[0010] The organic matter-containing wastewater of the present invention refers to wastewater containing organic matter in various industrial wastewater, domestic wastewater, etc., and for example, COD and BOD concentrations are 10 mg/l or more, preferably 1
It is wastewater containing 00 to 500 mg/l and other oil components. In particular, the present invention can effectively purify wastewater containing 40 to 500 ppm of phenols in addition to the above-mentioned organic substances, specifically, phenol-containing wastewater from fluid catalytic cracking or fluid catalytic cracking product storage tanks of petroleum refinery plants. .

【0011】本発明の生体触媒とは有機物類を分解する
菌体をポリビニールアルコールゲルに包括固定化した触
媒である。例えば、特開平1−281195号公報に記
載の生体触媒が好ましく用いられる。有機物類を分解す
る菌体(微生物)としてはフェノールおよびクレゾール
等のフェノール類を分解できる菌体であればその種類は
特に限定されない。例えば、バクテリア、酵母等を使用
することができる。好ましくは均径が約1〜3μmのバ
クテリア等を有効に用いることができる。
The biocatalyst of the present invention is a catalyst in which bacterial cells that decompose organic substances are entrappingly immobilized on a polyvinyl alcohol gel. For example, the biocatalyst described in JP-A-1-281195 is preferably used. The type of bacterial cells (microorganisms) that decompose organic substances is not particularly limited as long as they can decompose phenols such as phenol and cresol. For example, bacteria, yeast, etc. can be used. Preferably, bacteria having an average diameter of about 1 to 3 μm can be effectively used.

【0012】ポリビニールアルコールゲル(PVAゲル
と称する)としては特に限定されない。例えば、特開平
1−281195号公報に記載の(1)ケン化度95モ
ル%以上、粘度平均重合度1500以上のPVA5〜2
5wt%および(2)多糖類またはタンパク質0.01
〜5wt%を含有し、網目巾2〜3μmの均一な微細網
目構造を有するPVAゲルが好ましい。生体触媒の形状
は任意の形状にしたものでよい。例えば平均径は約1〜
30mm、好ましくは3〜15mmのサイコロ状または
粒状が好ましい。
[0012] The polyvinyl alcohol gel (referred to as PVA gel) is not particularly limited. For example, (1) PVA5-2 having a saponification degree of 95 mol% or more and a viscosity average polymerization degree of 1500 or more as described in JP-A-1-281195
5 wt% and (2) polysaccharide or protein 0.01
PVA gel containing ~5 wt% and having a uniform fine network structure with a mesh width of 2 to 3 μm is preferred. The biocatalyst may have any shape. For example, the average diameter is about 1~
A dice or granule shape of 30 mm, preferably 3 to 15 mm is preferred.

【0013】本発明の生体触媒の充填率はバイオリアク
ターの容積に対して5〜60vol%、好ましくは15
〜50vol%の範囲になるように充填する。充填率が
5vol%未満であると生体触媒がバイオリアクター内
で偏流を起こし、微生物反応の効率が低下する。充填率
が60vol%を越えると生体触媒の流動が著しく制限
されて、生体触媒が局部的に流動しなかったり、あるい
はばっ気用空気が合一して不安定な流動状態を生じる。
[0013] The filling rate of the biocatalyst of the present invention is 5 to 60 vol%, preferably 15 vol% to the volume of the bioreactor.
Fill it to a range of ~50 vol%. When the filling rate is less than 5 vol%, the biocatalyst causes uneven flow within the bioreactor, reducing the efficiency of the microbial reaction. When the filling rate exceeds 60 vol %, the flow of the biocatalyst is significantly restricted, and the biocatalyst may not flow locally, or the aeration air may coalesce, resulting in an unstable flow state.

【0014】本発明のバイオリアクターはリアクターの
下部に分散板を設置した流動床型バイオリアクターであ
る。バイオリアクターの塔高/塔径は3〜9、好ましく
は5〜7の範囲である。塔高/塔径が3未満であるとバ
イオリアクター内の中央部の生体触媒のみが流動し、バ
イオリアクター壁面付近の生体触媒が殆ど流動しないた
め、スライムが発生する。塔高/塔径が9を越えるとバ
イオリアクターの塔底部から塔頂部にわたって生体触媒
およびばっ気用空気に分布が生じ、均一な流動状態がえ
られない。分散板は孔径0.5〜5mmφ、好ましくは
1.5〜3.5mmφの孔が複数設けてあり、開孔率が
0.3〜20%、好ましくは3〜15%である。孔径が
0.5mmφ未満であると廃水中に含まれる微細な浮遊
物質により目詰りを生じると共に、分散板表面で空気泡
の合一が発生する。孔径が5mmφを越えると8〜10
mmφの空気泡が生じ、溶存酸素量が著しく低下する。 開孔率が0.3%未満であるとばっ気用空気が著しく制
限されるため、溶存酸素量が著しく低下するばかりでな
く、分散板の孔が少なくなるため、生体触媒の流動が局
部的に悪くなる。開孔率が20%を越えると孔と孔の間
隔が極端に狭くなり、ばっ気用空気の気泡の合一が著し
くなると共に分散板の製作の時に強度を保つことができ
なくなる。
The bioreactor of the present invention is a fluidized bed type bioreactor in which a dispersion plate is installed at the bottom of the reactor. The column height/column diameter of the bioreactor is in the range of 3-9, preferably 5-7. If the column height/column diameter is less than 3, only the biocatalyst in the center of the bioreactor will flow, and the biocatalyst near the bioreactor wall will hardly flow, resulting in slime generation. If the column height/column diameter exceeds 9, the biocatalyst and aeration air will be distributed from the bottom of the bioreactor to the top of the column, making it impossible to obtain a uniform fluidization state. The dispersion plate is provided with a plurality of holes having a diameter of 0.5 to 5 mm, preferably 1.5 to 3.5 mm, and has a porosity of 0.3 to 20%, preferably 3 to 15%. If the pore diameter is less than 0.5 mmφ, clogging occurs due to fine suspended substances contained in the wastewater, and air bubbles coalesce on the surface of the dispersion plate. 8 to 10 if the hole diameter exceeds 5 mmφ
Air bubbles of mmφ are generated, and the amount of dissolved oxygen is significantly reduced. If the porosity is less than 0.3%, the aeration air will be severely restricted, which will not only significantly reduce the amount of dissolved oxygen, but also cause the flow of the biocatalyst to be localized due to fewer pores in the dispersion plate. It gets worse. When the porosity exceeds 20%, the distance between the holes becomes extremely narrow, the coalescence of aeration air bubbles becomes remarkable, and it becomes impossible to maintain the strength when manufacturing the distribution plate.

【0015】本発明において有機物類含有廃水と接触さ
せるばっ気用空気の供給量は廃水量(m3−廃水/h)
に対して10〜150(Nm3−空気/h/m3−廃水
/h)、好ましくは30〜130(Nm3−空気/h/
m3−廃水/h)の範囲である。ばっ気用空気の供給量
が10(Nm3−空気/h/m3−廃水/h)未満であ
ると生体触媒の活性が著しく低下し、フェノール類の除
去率が低下する。ばっ気用空気の供給量が150(Nm
3−空気/h/m3−廃水/h)を越えるとばっ気用空
気が過剰となり、経済的に不利になる。有機物類含有廃
水の滞留時間(HRT)は0.5〜5時間(hr)が好
ましい。LHSV(1/時間)は0.1〜2が好ましい
。有機物類含有廃水、ばっ気用空気および生体触媒の接
触温度は特に限定されないが、好ましくは20〜40℃
の範囲である。
In the present invention, the amount of aeration air that is brought into contact with the wastewater containing organic matter is the amount of wastewater (m3-wastewater/h).
10 to 150 (Nm3-air/h/m3-wastewater/h), preferably 30 to 130 (Nm3-air/h/
m3-wastewater/h). If the supply amount of aeration air is less than 10 (Nm3-air/h/m3-wastewater/h), the activity of the biocatalyst will decrease significantly and the removal rate of phenols will decrease. The supply amount of air for aeration is 150 (Nm)
3-air/h/m3-wastewater/h), the aeration air becomes excessive and becomes economically disadvantageous. The residence time (HRT) of the organic matter-containing wastewater is preferably 0.5 to 5 hours (hr). LHSV (1/hour) is preferably 0.1 to 2. The contact temperature of organic matter-containing wastewater, aeration air, and biocatalyst is not particularly limited, but is preferably 20 to 40°C.
is within the range of

【0016】本発明において前記条件の場合には生体触
媒の流動状態は極めて良好で、かつ気泡の合一もほとん
どなく、気泡の分布も均一な状態となる。本発明のバイ
オリアクターのプロセスフローは図6に示す。このプロ
セスフローに基づいて有機物類含有廃水の処理方法を述
べる。 1.廃水ストリッパー処理水(廃水)を廃水槽■に貯留
する。 2.廃水槽■の廃水およびばっ気用空気を予め生体触媒
を充填したバイオリアクター■の下部から分散板■を経
て供給する。 (バイオリアクター■には予め廃水を張込んでおき、生
体触媒を所定量充填し、ばっ気状態にしておく)3.バ
イオリアクター■に廃水および空気を供給することによ
り生体触媒は流動状態を形成し、生体触媒中の菌体によ
り廃水中の有機物類がCO2,H2Oに分解される。 4.バイオリアクター■で生体触媒中の菌体により処理
された廃水はピット■に流入し、サンドフィルター■を
経て処理水槽■に入れ、その後放流する。 5.バイオリアクター■内のばっ気用空気はバイオリア
クター■の上部から排出される。
In the present invention, under the above conditions, the fluidity of the biocatalyst is extremely good, there is almost no coalescence of bubbles, and the distribution of bubbles is uniform. The process flow of the bioreactor of the present invention is shown in FIG. A method for treating wastewater containing organic matter will be described based on this process flow. 1. Wastewater stripper The treated water (wastewater) is stored in the wastewater tank ■. 2. Wastewater from the wastewater tank (■) and air for aeration are supplied from the bottom of the bioreactor (■), which has been filled with a biocatalyst, through the distribution plate (■). (Pre-fill the bioreactor ■ with wastewater, fill it with a predetermined amount of biocatalyst, and keep it in an aerated state)3. By supplying wastewater and air to the bioreactor (1), the biocatalyst forms a fluid state, and the organic matter in the wastewater is decomposed into CO2 and H2O by the bacteria in the biocatalyst. 4. Wastewater treated by the bacteria in the biocatalyst in the bioreactor (■) flows into the pit (■), passes through the sand filter (■), enters the treated water tank (■), and is then discharged. 5. The aeration air inside the bioreactor ■ is exhausted from the top of the bioreactor ■.

【0017】[0017]

【実施例】【Example】

『実施例1』容量0.5l(塔高=25cm,塔径=6
cm)のバイオリアクターを用いて、処理実験を行なっ
た。この場合のフェノール含有廃水(人工水)性状及び
処理条件を下表に示す。
"Example 1" Capacity 0.5L (column height = 25cm, column diameter = 6
Treatment experiments were carried out using a bioreactor with a bioreactor (cm). The properties and treatment conditions of the phenol-containing wastewater (artificial water) in this case are shown in the table below.

【0018】[0018]

【表1】[Table 1]

【0019】図1にフェノール含有廃水の処理結果を示
す。これによると廃水中のフェノールはほぼ完全に除去
されることが明かとなった。なお、この実験はフェノー
ル含有廃水として人工水を用いたものであり、約90日
間の連続処理実験では上記処理条件が有効であることが
明かである。図1に示した結果は生体触媒充填率が30
vol%の場合であるが、生体触媒充填率がそれぞれ2
0,50vol%の場合も同様な結果を示した。生体触
媒の流動を最適な状態に維持するには生体触媒充填率が
20〜30vol%の場合が良く、従ってフェノール除
去率と流動特性の両面から考慮し、生体触媒充填率が3
0%程度が最良と考えられる。
FIG. 1 shows the results of treatment of phenol-containing wastewater. This revealed that phenol in wastewater was almost completely removed. Note that this experiment used artificial water as the phenol-containing wastewater, and it is clear that the above treatment conditions are effective in a continuous treatment experiment of about 90 days. The results shown in Figure 1 show that the biocatalyst loading rate is 30.
In the case of vol%, the biocatalyst loading rate is 2.
Similar results were shown in the case of 0.50 vol%. In order to maintain the flow of the biocatalyst in an optimal state, the biocatalyst loading rate is preferably 20 to 30 vol%. Therefore, considering both the phenol removal rate and the flow characteristics, the biocatalyst loading rate is 3.
Approximately 0% is considered best.

【0020】『実施例2』容量0.5l(塔高=25c
m,塔径=6cm)のバイオリアクターを用いて、処理
実験を行なった。原水として石油精製プラントから排出
されたフェノール含有廃水にフェノールを添加してフェ
ノール濃度を300ppm程度に調製した廃水を用いて
実験に供した。廃水性状及び処理条件を下表に示す。
"Example 2" Capacity 0.5l (tower height = 25c
Treatment experiments were conducted using a bioreactor with a diameter of 6 cm. The experiment was conducted using raw water that was prepared by adding phenol to phenol-containing wastewater discharged from a petroleum refinery plant to have a phenol concentration of about 300 ppm. The wastewater properties and treatment conditions are shown in the table below.

【0021】[0021]

【表2】[Table 2]

【0022】図2にフェノール含有廃水の処理結果を示
す。これによると廃水中のフェノールはほぼ完全に除去
されることが明かとなった。約300日間の連続処理実
験の結果であり、生体触媒の活性低下が殆ど無く、また
、余剰汚泥の発生も殆ど無かった。フェノール,COD
,BOD等の除去率は下記のとおりである。
FIG. 2 shows the results of treatment of phenol-containing wastewater. This revealed that phenol in wastewater was almost completely removed. These are the results of a continuous treatment experiment for about 300 days, and there was almost no decrease in the activity of the biocatalyst, and there was almost no generation of excess sludge. Phenol, COD
, BOD, etc. removal rate is as follows.

【0023】[0023]

【表3】[Table 3]

【0024】『実施例3』容量10l(塔高=60cm
,塔径=15cm)のバイオリアクターを用いて、廃水
の処理実験を行なった。実施例1,実施例2では基礎実
験として0.5lの実験装置を用いたが、今回は容量が
20倍の10lのバイオリアクターで、廃水として石油
精製プロセス廃水を用いて処理条件を検討した。
[Example 3] Capacity 10 liters (tower height = 60 cm)
A wastewater treatment experiment was conducted using a bioreactor with a diameter of 15 cm. In Examples 1 and 2, a 0.5 liter experimental apparatus was used as a basic experiment, but this time, a 10 liter bioreactor with 20 times the capacity was used, and treatment conditions were investigated using petroleum refining process wastewater as wastewater.

【0025】[0025]

【表4】[Table 4]

【0026】図3にフェノール含有廃水の処理結果を示
した。実施例1,2の処理条件を検討し、HRT:30
分〜2時間,LHSV(1/時間):0.5〜2.0,
処理温度(℃):20〜40,生体触媒充填率(vol
%):20〜35で実験を行なった結果である。約1年
間にわたる連続処理実験で、生体触媒の活性低下、担体
であるPVAゲルの崩壊等はまったく認められず、フェ
ノールをほぼ100%除去できた。また、余剰汚泥の発
生はほとんどなく、本処理方式は非常に効果があること
が明かとなった。今回の実験結果から最適処理条件は、
下表のとおりである。
FIG. 3 shows the results of treatment of phenol-containing wastewater. Examining the processing conditions of Examples 1 and 2, HRT: 30
minutes to 2 hours, LHSV (1/hour): 0.5 to 2.0,
Treatment temperature (°C): 20-40, biocatalyst loading rate (vol
%): 20 to 35. In a continuous treatment experiment lasting about one year, no decrease in the activity of the biocatalyst or collapse of the PVA gel carrier was observed, and almost 100% of phenol was removed. Additionally, almost no surplus sludge was generated, making it clear that this treatment method is extremely effective. From the results of this experiment, the optimal processing conditions are:
As shown in the table below.

【0027】[0027]

【表5】[Table 5]

【0028】『実施例4』容量10l(塔高=60cm
,塔径=15cm)のバイオリアクターを用いて、廃水
の処理実験を行なった。実施例3の結果を検討し、原水
として石油精製プロセス廃水にフェノールを添加してフ
ェノール濃度を300ppm程度に調製し、実施例3の
処理条件を基に連続処理実験を行なった。フェノール含
有廃水の性状を下表に示す。
"Example 4" Capacity 10 liters (tower height = 60 cm
A wastewater treatment experiment was conducted using a bioreactor with a diameter of 15 cm. After examining the results of Example 3, phenol was added to petroleum refining process wastewater as raw water to adjust the phenol concentration to about 300 ppm, and a continuous treatment experiment was conducted based on the treatment conditions of Example 3. The properties of phenol-containing wastewater are shown in the table below.

【0029】[0029]

【表6】[Table 6]

【0030】図4の結果からフェノール分300ppm
という高濃度フェノール含有廃水の場合でも、下表の運
転条件で処理し、ほぼ完全にフェノールを除去できるこ
とが明かとなった。実施例3の場合と同様に約100日
の連続処理でも生体触媒の活性低下、担体であるPVA
ゲルの崩壊等は認められず、本処理方式は非常に効果が
あることが明かとなった。
From the results shown in Figure 4, the phenol content was 300 ppm.
Even in the case of wastewater containing a high concentration of phenol, it was revealed that phenol could be almost completely removed by treating it under the operating conditions shown in the table below. As in Example 3, the activity of the biocatalyst decreased even after continuous treatment for about 100 days, and the PVA support
No gel collapse was observed, indicating that this treatment method is extremely effective.

【0031】[0031]

【表7】[Table 7]

【0032】『実施例5』容量200l(塔高=300
cm,塔径=30cm)のバイオリアクターを用いて、
廃水の処理実験を行なった。実施例4の結果を検討し、
原水として石油精製プロセス廃水にフェノールを添加し
てフェノール濃度を300ppm程度に調製し、実施例
4の処理条件参考にして連続処理実験を行なった。フェ
ノール含有廃水の性状を下表に示す。
``Example 5'' Capacity 200 liters (tower height = 300
cm, column diameter = 30 cm) using a bioreactor,
A wastewater treatment experiment was conducted. Considering the results of Example 4,
Phenol was added to petroleum refining process wastewater as raw water to adjust the phenol concentration to about 300 ppm, and a continuous treatment experiment was conducted using the treatment conditions of Example 4 as reference. The properties of phenol-containing wastewater are shown in the table below.

【0033】[0033]

【表8】[Table 8]

【0034】本実験はベンチプラント規模の装置を用い
たフェノール含有廃水の処理であり、約7ケ月間の連続
処理実験を行なった結果を図5に示す。本実験において
も生体触媒の活性低下、担体であるPVAゲルの崩壊等
は起こらず、本処理方式が優れていることは明かとなっ
た。この場合の最適処理条件は下表の通りである。
[0034] This experiment involved the treatment of phenol-containing wastewater using equipment on a bench plant scale. Figure 5 shows the results of a continuous treatment experiment lasting about 7 months. In this experiment, there was no decrease in the activity of the biocatalyst, no collapse of the PVA gel as a carrier, and it became clear that this treatment method was superior. The optimum processing conditions in this case are shown in the table below.

【0035】[0035]

【表9】[Table 9]

【0036】『実施例6』フェノール濃度が500pp
mのフェノール含有廃水を、LHSV=0.6(HRT
=1時間40分、その他の処理条件は実施例5と同様)
で約3ケ月間処理した結果、フェノールをほぼ完全に除
去できた。この結果からフェノール分500ppmでも
本処理方式で十分対処出来ることが明かとなった。
"Example 6" Phenol concentration is 500 pp
m of phenol-containing wastewater at LHSV=0.6 (HRT
= 1 hour 40 minutes, other processing conditions are the same as in Example 5)
As a result of treatment for about 3 months, phenol was almost completely removed. These results revealed that even a phenol content of 500 ppm can be adequately treated with this treatment method.

【0037】『比較例1』本バイオリアクター方式の有
効性を立証するために、従来法である活性汚泥法と比較
した。フェノール含有廃水は石油精製プラントの廃水に
フェノールを添加し、フェノール濃度300ppm程度
に調製した廃水を用いた。
Comparative Example 1 In order to prove the effectiveness of this bioreactor system, it was compared with the conventional activated sludge method. The phenol-containing wastewater was prepared by adding phenol to wastewater from a petroleum refinery plant to have a phenol concentration of about 300 ppm.

【0038】[0038]

【表10】[Table 10]

【0039】上記処理条件でバイオリアクター法と活性
汚泥法を比較したところ次表に示すような結果を得た。 この実験結果からバイオリアクター法では活性汚泥法に
比較して処理水量フェノール負荷,フェノール除去率,
菌体馴養期間,余剰汚泥の発生等で極めて優れているこ
とが明かとなった。
When the bioreactor method and the activated sludge method were compared under the above treatment conditions, the results shown in the following table were obtained. The results of this experiment show that the bioreactor method has a higher amount of treated water, phenol load, phenol removal rate, and lower phenol removal rate than the activated sludge method.
It has been found that this method is extremely superior in terms of bacterial acclimatization period, generation of excess sludge, etc.

【0040】[0040]

【表11】[Table 11]

【0041】[0041]

【発明の効果】1.菌体(微生物)の活性維持に必要な
溶存酸素量を効果的にコントロールできる。 2.廃水処理時において発生する余剰汚泥の量を従来法
である活性汚泥法に比べて1/5〜1/10に制御でき
る。 3.生体触媒中のフェノール類分解菌はPVAゲルとい
う極めて強度的にも強く、耐酸性、耐アルカリ性があり
、かつ化学反応、生物反応にも強い担体に包括固定化さ
れ、保護された状態にあるために原因不明の処理不調が
発生しても直接影響を受けず活性低下を阻止できると共
に長期間連続処理運転を実施しても新規な生体触媒を補
充することなく活性を維持できる。4.石油精製プラン
ト等から排出されるフェノール類含有廃水中のフェノー
ル類をほぼ100%除去でき、生体触媒中のフェノール
類分解菌は自己消化力の極めて強い菌体であるため余剰
汚泥の発生は極めて少ないため余剰汚泥処理を必要とせ
ず、かつ活性汚泥法のような浮遊物の沈降分離装置を必
要とせず、さらに臭気の発生は少なく臭気対策が容易に
できるため必然的に設置面積を小さくできる極めてコン
パクトであるので経済的に極めて有利である。5.従来
法である活性汚泥法はバッチ式であるのに対して本発明
の方式は連続的に廃水処理できる。6.生体触媒中のフ
ェノール類分解菌は活性が極めて高く、同一条件で比較
した場合、活性汚泥法の5〜10倍の活性度を有してい
る。そのために処理装置の規模をコンパクトに製作でき
、従って設置面積を活性汚泥法に比べて1/3〜1/2
に縮小できる。
[Effect of the invention] 1. The amount of dissolved oxygen required to maintain the activity of bacterial cells (microorganisms) can be effectively controlled. 2. The amount of surplus sludge generated during wastewater treatment can be controlled to 1/5 to 1/10 compared to the conventional activated sludge method. 3. The phenol-degrading bacteria in the biocatalyst are encircled and protected by PVA gel, which is extremely strong, acid- and alkali-resistant, and resistant to chemical and biological reactions. Even if a processing malfunction of unknown cause occurs, the activity can be prevented from decreasing without being directly affected, and the activity can be maintained without replenishing new biocatalyst even if continuous processing operation is performed for a long period of time. 4. Almost 100% of phenols from phenol-containing wastewater discharged from oil refinery plants, etc. can be removed, and the phenol-degrading bacteria in the biocatalyst have extremely strong self-extinguishing power, so excess sludge is extremely rare. Therefore, there is no need to process excess sludge, and there is no need for a sedimentation separation device for suspended matter as in the activated sludge method.Furthermore, there is little odor generation, and odor countermeasures can be easily taken, so it is extremely compact and requires a small installation area. Therefore, it is extremely advantageous economically. 5. While the conventional activated sludge method is a batch method, the method of the present invention can treat wastewater continuously. 6. The activity of the phenol-degrading bacteria in the biocatalyst is extremely high, and when compared under the same conditions, the activity is 5 to 10 times that of the activated sludge method. Therefore, the scale of the treatment equipment can be made compact, and therefore the installation area is 1/3 to 1/2 compared to the activated sludge method.
It can be reduced to

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水        ●:処理水
FIG. 1 shows the treatment results of phenol-containing wastewater obtained according to Example 1. ○: Wastewater ●: Treated water

【図2】実施例2に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水        ●:処理水
FIG. 2 shows the treatment results of phenol-containing wastewater obtained according to Example 2. ○: Wastewater ●: Treated water

【図3】実施例3に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水        ●:処理水
FIG. 3 shows the treatment results of phenol-containing wastewater obtained according to Example 3. ○: Wastewater ●: Treated water

【図4】実施例4に従って得られた結果を示す。FIG. 4 shows the results obtained according to Example 4.

【図5】ベンチプラント規模の装置を用いたフェノール
含有廃水の処理結果を示す。 ○:廃水        ●:処理水
FIG. 5 shows the results of treatment of phenol-containing wastewater using bench plant scale equipment. ○: Wastewater ●: Treated water

【図6】本発明のバイプロセスプローを示す。FIG. 6 shows a biprocess probe of the present invention.

【符号の説明】[Explanation of symbols]

1    廃水槽 2    バイオリアクター 3    分散板 4    ピット 5    サンドフィルター 6    処理水槽 1 Waste water tank 2 Bioreactor 3 Dispersion plate 4 Pit 5 Sand filter 6         treatment water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有機物類を分解する菌体をポリビニー
ルアルコールゲルに包括固定化した生体触媒を充填率が
5〜60vol%の範囲になるように充填し、孔径が0
.5〜5mmφおよび開孔率が0.3〜20%の分散板
を設置した塔高/塔径が3〜9の流動床型バイオリアク
ターに有機物類含有廃水と廃水量(m2−廃水/h)に
対して10〜150(Nm3−空気/h/m3−廃水/
h)のばっ気用空気を供給してばっ気用空気、有機物類
含有廃水および生体触媒を接触させてなる有機物類含有
廃水の浄化方法。
Claim 1: A biocatalyst in which bacterial cells that decompose organic substances are entrappingly immobilized in a polyvinyl alcohol gel is filled so that the filling rate is in the range of 5 to 60 vol%, and the pore size is 0.
.. Organic matter-containing wastewater and the amount of wastewater (m2 - wastewater/h) are placed in a fluidized bed bioreactor with a column height/column diameter of 3 to 9 in which a dispersion plate with a diameter of 5 to 5 mm and a porosity of 0.3 to 20% is installed. 10 to 150 (Nm3-air/h/m3-wastewater/
h) A method for purifying organic matter-containing wastewater, which comprises supplying aeration air and bringing the aeration air, organic matter-containing wastewater, and a biocatalyst into contact with each other.
JP3233653A 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances Expired - Lifetime JP2535267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233653A JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233653A JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Publications (2)

Publication Number Publication Date
JPH04363194A true JPH04363194A (en) 1992-12-16
JP2535267B2 JP2535267B2 (en) 1996-09-18

Family

ID=16958422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233653A Expired - Lifetime JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Country Status (1)

Country Link
JP (1) JP2535267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073917A (en) * 2013-10-07 2015-04-20 株式会社クラレ Oil-containing wastewater treatment method
CN108314176A (en) * 2017-01-17 2018-07-24 中国石化集团四川维尼纶厂 A kind of polyvinyl alcohol immobilized microorganism Gel Treatment sewage aerator and aeration method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158594A (en) * 1986-12-23 1988-07-01 ヤマハ株式会社 Waveform data formation circuit for musical sound synthesization
JPS63158194A (en) * 1985-08-28 1988-07-01 Kobe Steel Ltd Biological treatment of organic sewage
JPH01281195A (en) * 1988-04-30 1989-11-13 Akua Runesansu Gijutsu Kenkyu Kumiai Pva high water content gel having fine reticulated structure and purification of waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158194A (en) * 1985-08-28 1988-07-01 Kobe Steel Ltd Biological treatment of organic sewage
JPS63158594A (en) * 1986-12-23 1988-07-01 ヤマハ株式会社 Waveform data formation circuit for musical sound synthesization
JPH01281195A (en) * 1988-04-30 1989-11-13 Akua Runesansu Gijutsu Kenkyu Kumiai Pva high water content gel having fine reticulated structure and purification of waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073917A (en) * 2013-10-07 2015-04-20 株式会社クラレ Oil-containing wastewater treatment method
CN108314176A (en) * 2017-01-17 2018-07-24 中国石化集团四川维尼纶厂 A kind of polyvinyl alcohol immobilized microorganism Gel Treatment sewage aerator and aeration method

Also Published As

Publication number Publication date
JP2535267B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
US4253947A (en) Method for wastewater treatment in fluidized bed biological reactors
US6582596B2 (en) Bioreactor systems for biological nutrient removal
US9561976B2 (en) Coupling bioreactor and method for purifying malodorous gases and wastewater
TWI568687B (en) Suspended media membrane biological reactor system and process including suspension system and multiple biological reactor zones
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
EP1542932A1 (en) Method for the treatment of waste water with sludge granules
US4159945A (en) Method for denitrification of treated sewage
KR100603182B1 (en) Method for advanced treatment of wastewater
JPH04363194A (en) Method for purifying organic material-containing waste water
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
Yang et al. Domestic sewage and secondary effluent treatment using vertical submerged biological filter
JP4581211B2 (en) Biological denitrification equipment
CN105254123B (en) Coking advanced waste treatment system and its reuse technology
JPH10263594A (en) Removing method and device of nitrate ion in waste water
KR970002486B1 (en) Apparatus and method for waste water treatment
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
Klimenko et al. Biosorption processes for natural and wastewater treatment–part 1: Literature review
EP1293484A1 (en) Process and an apparatus for biological treatment of aqueous organic wastes
JP2002177986A (en) Biological denitrification equipment
KR20050075323A (en) Aerobic/anaerobic co-treatment method to high concentrated organic waste water by self-closed air releasing control layer, and micro air bubble injection
JPH03118891A (en) Treatment of organic sewage
KR100191865B1 (en) Biological and aerobic disposal apparatus and its method of wastewater with closed-type