JPS5851986A - Apparatus for biologically purifying waste water with aerobes - Google Patents

Apparatus for biologically purifying waste water with aerobes

Info

Publication number
JPS5851986A
JPS5851986A JP56151133A JP15113381A JPS5851986A JP S5851986 A JPS5851986 A JP S5851986A JP 56151133 A JP56151133 A JP 56151133A JP 15113381 A JP15113381 A JP 15113381A JP S5851986 A JPS5851986 A JP S5851986A
Authority
JP
Japan
Prior art keywords
water
waste water
air
filler
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56151133A
Other languages
Japanese (ja)
Other versions
JPS644834B2 (en
Inventor
Koji Ishizaki
石崎 晃司
Masao Sato
正夫 佐藤
Tadashige Nakamoto
忠繁 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56151133A priority Critical patent/JPS5851986A/en
Publication of JPS5851986A publication Critical patent/JPS5851986A/en
Publication of JPS644834B2 publication Critical patent/JPS644834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To enhance the effect of biological treatment and to improve the efficiency of purifying waste water, by providing a packed layer formed by uniformly mixing solid particles having a particle size of 0.2-10mm. and a filler larger than the particles and a supporting layer for the packed layer inside a purifying cell. CONSTITUTION:Waste water containing BOD components, nitrogen components, etc. is let flow from raw water piping 2 into a purifying cell 1, while air is fed from piping 7 through a water-collecting air-introducing means 5 into the cell 1 to maintain a packed layer 3 in an aerobic atmosphere. While the waste water passes through the packed layer 3, BOD components, etc. in the waste water adhere to and grow on the surface of the filler to form biomembranes of aerobes such as BOD component-decomposing bacteria and nitrifying bacteria. Consequently, BOD components, etc. in the waste water successively flowing downwards through the packed layer 3 are decomposed and removed by the action of the aerobic biomembranes. Ammoniac nitrogen and organic nitrogen are oxidized into NO3-N and NO2-N, while purified water is withdrawn through the water- collecting means 5 and a draining opening 15.

Description

【発明の詳細な説明】 本発明は、廃水の好気性生物学的処理装置に関し、詳細
には、生物膜を利用して好気性条件下で廃水を生物学的
に浄化する廃水処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aerobic biological treatment device for wastewater, and more particularly, to a wastewater treatment device that biologically purifies wastewater under aerobic conditions using a biofilm. It is.

窒素化合物や他の有機物を含む有機質汚水の浄化には、
一般に生物学的方法が採用されている。
To purify organic wastewater containing nitrogen compounds and other organic substances,
Biological methods are generally employed.

生物学的方法では、BOD−’Pc0D等の指標で示さ
れる有機物特にBOD成分が微生物によって酸化除去さ
れる。即ちアンモニア性窒素は好気性条件下で硝化菌に
よって硝酸性窒素或いは亜硝酸性窒素に酸化(硝化)さ
れた後、嫌気性条件下で脱窒菌によって窒素ガスに還元
(脱窒)されて除去される。
In biological methods, organic substances, especially BOD components, indicated by indicators such as BOD-'Pc0D, are oxidized and removed by microorganisms. In other words, ammonia nitrogen is oxidized (nitrified) to nitrate nitrogen or nitrite nitrogen by nitrifying bacteria under aerobic conditions, and then reduced to nitrogen gas (denitrification) by denitrifying bacteria under anaerobic conditions and removed. Ru.

ところで好気性条件下でBOD成分除去及び硝化を行な
う生物学的処理法として、浮遊汚泥を用いる活性汚泥法
が知られている。この方法では、処理槽内で被処理水と
浮遊汚泥を曝気しつつ接触させて酸化を行なった後、処
理水と浮遊汚泥の混合物を沈降槽に移し、汚泥を沈降さ
せて処理水と分離する。処理水はそのまま排出するか或
いは次の処理槽に導入し、沈降した汚泥は引抜いて一部
は元の処理槽に戻して再使用し、残りは余剰汚泥として
廃棄する。この方法では処理速度が極めて遅く処理に長
時間を要する為、大量の廃水を処理するのに大容量の設
備を要す。またいわゆるバルキングと称される現象を起
こして汚泥の沈降が悲くなり、汚泥が処理水と共に流出
して処理水質が低下し、ひどい場合には処理槽内の汚泥
が無くなって生物学的処理自体が進行しなくなるという
問題もある。しかも酸素吸収効率が低いから好気条件を
維持する為には大量の空気を吹込まなければならず、動
力費がかさむという問題も指摘されている。
By the way, an activated sludge method using suspended sludge is known as a biological treatment method for removing BOD components and nitrification under aerobic conditions. In this method, treated water and suspended sludge are brought into contact with each other in a treatment tank with aeration to perform oxidation, and then the mixture of treated water and suspended sludge is transferred to a settling tank, where the sludge settles and is separated from the treated water. . The treated water is either discharged as is or introduced into the next treatment tank, the settled sludge is pulled out and a portion is returned to the original treatment tank for reuse, and the rest is disposed of as surplus sludge. This method has an extremely slow processing speed and requires a long time to process, so large-capacity equipment is required to treat a large amount of wastewater. In addition, a phenomenon called bulking occurs, causing the sludge to settle, causing the sludge to flow out together with the treated water, reducing the quality of the treated water, and in severe cases, causing the sludge in the treatment tank to disappear, resulting in biological treatment itself. There is also the problem that it stops progressing. Furthermore, it has been pointed out that since the oxygen absorption efficiency is low, a large amount of air must be blown in to maintain aerobic conditions, which increases power costs.

他方、前記活性汚泥性以外の生物学的処理法として生物
膜方式があり、これに層する方法としては散水沖床法、
浸漬沖床法、回転円板法等がある。
On the other hand, there is a biofilm method as a biological treatment method other than the above-mentioned activated sludge method.
There are methods such as the immersion offshore method and the rotating disk method.

これらは、生物膜媒体として処理槽内に充填したプラス
チック製充填物、ハニカムチューブ、固体粒子或いは円
板等の表面に付着した微生物膜によって廃水を浄化する
方式であり、活性汚泥法の様に汚泥を返送する必要がな
く、1つバルキングを生じないから維持管理が容易であ
る等の利点がある。しかしこれらの方法には、■槽容積
当りの生物膜面積が比較的小さく処理能力が低い、■彼
処水中のSS成分及び生物膜媒体より剥離した微生物膜
が処理水と共に槽外へ流出する為、別途固液分離の操作
が必要となる、等の欠点がある。
These methods purify wastewater using a microbial film attached to the surface of plastic fillers, honeycomb tubes, solid particles, disks, etc. filled in the treatment tank as biofilm media. It has advantages such as easy maintenance and management since there is no need to send it back and bulking does not occur. However, these methods have two problems: ■ The biofilm area per tank volume is relatively small and the treatment capacity is low; ■ The SS components in the treated water and the microbial film detached from the biofilm medium flow out of the tank together with the treated water. There are drawbacks such as the need for separate solid-liquid separation operations.

本発明は上記の様な事情に看目し、生物膜方式で指摘さ
れている処理能力及び処理水質の問題を解決ずべく鋭意
研究の結果完成されたものであって、その構成は、上部
に廃水導入部、下部に処理水排出部を設けた処理槽より
なる廃水の生物学的処理自体゛であって、処理槽内には
充填j―と該充填層の支持I―を設け、該支持j―のf
側に処理水集水装置及び空気尋人装置を設けてなり、=
i+記充kA層は、粒径が0.2〜l0IIJIの固形
粒子と該固形粒子よりも十分に大きな充填材を均一に混
合して充填したものであることを要旨とする。
In view of the above-mentioned circumstances, the present invention was completed as a result of intensive research to solve the problems of treatment capacity and treated water quality that have been pointed out in the biofilm method. The biological treatment of wastewater consists of a treatment tank provided with a wastewater introduction part and a treated water discharge part at the bottom. f of j-
A treated water collection device and an air intake device are installed on the side, =
The gist of the i+ filled kA layer is that solid particles having a particle size of 0.2 to 10IIJI and a filler that is sufficiently larger than the solid particles are uniformly mixed and filled.

以下実施例を示す図面に基づいて本発明の構成及び作用
効果を説明するが、下記は代表例であって本発明を限定
する性質のものではなく、前・後記の趣旨に適合し得る
範囲で処理槽本体の形状や構造を変更したり、処理水集
水装置や空気導入装置の構成或いは被処理水等の配管を
変更することは自由であり、それらはすべて本発明技術
の範囲に含まれる。
The structure and effects of the present invention will be explained below based on the drawings showing examples, but the following are representative examples and are not intended to limit the present invention, and will be limited to the extent that can comply with the spirit of the above and below. It is free to change the shape and structure of the treatment tank body, the configuration of the treated water collection device and air introduction device, or the piping for the treated water, etc., and all of these are included in the scope of the technology of the present invention. .

第1図は本発明の処理装置を概念的に示す説明図、第2
図は該処理装置の要部破断見取り図であり、図中1は処
理槽、2は処理水貯槽、3は充填層、4は支持層、5は
処理水の集水と曝気用空気の導入を兼ねた集水・空気導
入装M(詳細は後述)、6は原水導入管、7は空気配管
、8.9は処理水配管を夫々示す。処理槽1の底部には
処理水を集めるだけでなく逆洗水及び空気を処理槽1全
体に分散させる為の集水・空気導入装置5が配置され、
その上部には支持層4、該支持層4の上部には本発明で
最も特徴付けられる充填層3が配−゛されている。そし
て処理槽1の底部適所には淵部14か形成されており、
その下方壁面に処理水排出口15を設けると共に、集水
°空気導入装置5に空気を供給する為の空気配管7を配
置する。尚第1図の10は充填層3を逆洗する時に使用
する逆洗ポンプ、13はバルブを示し、11は逆洗水の
排出管路を示す。第3図は集水・空気導入装置5を拡大
して示す破断見取り図であり、矩形筒体5a内に2枚の
補強板5bを挿入配置すると共に、矩形筒体5aの上方
壁及び補強板5bには多数の貫通孔5Cを穿設してなり
、この矩形筒体5aを、第2図に示す如く処理槽1の底
面に多数敷きつめて集水・空気導入装!5が構成される
。従って後述する如く充填層3及び支持層4を通過しつ
つ浄化された処理水は貫通孔5Cから矩形筒体5a内に
入り、底面を伝って淵部14方向へ流れて排出口15か
ら槽外へ排出される。また空気配管7から矩形筒体5a
内に送り込まれた空気は、貫通孔5Cより処理槽1の下
面全域から分散上昇する。
FIG. 1 is an explanatory diagram conceptually showing the processing device of the present invention, and FIG.
The figure is a cutaway diagram of the main parts of the treatment equipment, in which 1 is the treatment tank, 2 is the treated water storage tank, 3 is the packed bed, 4 is the support layer, and 5 is the collection of the treated water and the introduction of air for aeration. A water collection/air introduction device M (details will be described later), 6 indicates a raw water introduction pipe, 7 indicates an air pipe, and 8.9 indicates a treated water pipe. A water collection/air introduction device 5 is arranged at the bottom of the treatment tank 1 to not only collect treated water but also to disperse backwash water and air throughout the treatment tank 1.
A support layer 4 is disposed above the support layer 4, and a filling layer 3, which is the most characteristic feature of the present invention, is disposed above the support layer 4. A deep part 14 is formed at a suitable position at the bottom of the treatment tank 1.
A treated water outlet 15 is provided on the lower wall surface, and an air pipe 7 for supplying air to the water collection and air introduction device 5 is arranged. In FIG. 1, reference numeral 10 indicates a backwash pump used when backwashing the packed bed 3, 13 indicates a valve, and 11 indicates a discharge pipe for backwash water. FIG. 3 is an enlarged cutaway diagram showing the water collection/air introduction device 5, in which two reinforcing plates 5b are inserted into the rectangular cylindrical body 5a, and the upper wall of the rectangular cylindrical body 5a and the reinforcing plate 5b are arranged. A large number of through holes 5C are bored in the cylindrical body 5C, and a large number of rectangular cylindrical bodies 5a are arranged on the bottom of the treatment tank 1 as shown in FIG. 2 to form a water collection and air introduction system. 5 is composed. Therefore, as will be described later, the treated water that has been purified while passing through the packed bed 3 and the support layer 4 enters the rectangular cylinder 5a through the through hole 5C, flows along the bottom toward the bottom 14, and exits the tank from the discharge port 15. is discharged to. Also, from the air pipe 7 to the rectangular cylinder 5a
The air sent inside is dispersed and rises from the entire lower surface of the processing tank 1 through the through hole 5C.

この様な装置を用いた廃水処理は次のようにして行なわ
れる。まずBOD成分や窒素成分等を含む廃水を原水配
管2から処理槽1内へ流入させると共に、空気は、配管
7から集水・空気導入装置5を通して槽1内に送り込み
、充填層3を好気性雰囲気にする。廃水が充填層3を通
過する過程で充填材の表面に廃水中のBOD成分等が付
着生育し、BOD成分酸化菌や硝化菌等の好気性微生物
膜が形成され、順次充填層3内を流下してくる廃水中の
BOD成分等は上記好気性微生物膜の作用で分解除去さ
れ、アンモニア性窒素や有機性窒素はN0a−NやNO
2−N まで酸化される。この様にして浄化された処理
水は、集水・空気導入装置5及び排出口15を経て取り
出される。
Wastewater treatment using such a device is carried out as follows. First, wastewater containing BOD components, nitrogen components, etc. is flowed into the treatment tank 1 from the raw water pipe 2, and air is sent into the tank 1 from the pipe 7 through the water collection/air introduction device 5 to make the packed bed 3 aerobic. Create an atmosphere. In the process of wastewater passing through the packed bed 3, BOD components in the wastewater adhere to and grow on the surface of the filling material, and an aerobic microbial film such as BOD component oxidizing bacteria and nitrifying bacteria is formed, which sequentially flows down inside the packed bed 3. BOD components, etc. in the wastewater are decomposed and removed by the action of the aerobic microbial membrane, and ammonia nitrogen and organic nitrogen are converted into N0a-N and NO.
Oxidized to 2-N. The treated water purified in this manner is taken out through the water collection/air introduction device 5 and the discharge port 15.

ところで上記の生物学的浄化作用を効率良く進行させる
為には、充填層3の各充填物表面に形成される好気性微
生物膜の廃水との接触有効面積を大きくすると共に、空
気が充填層3中を均等に拡散しながら上昇し全体を好気
性雰囲気にする必要がある。しかも上記微生物膜の成長
が進むと充填物表面から脱落し、処理水の清浄度を低下
させるから、この様な障害を防止する為には充填層3自
体に沖過作用を持たせることも必要である。しかしなが
らこの種の装置で使用されている従来の充填層では、充
填物の粒径が大きすぎて好気性微生物膜の有効面積を十
分に大きくすることができず生物学的浄化効果が不十分
であったり、或は充填物の粒径が小さすぎて空気が充填
層全体を均等に上昇せず一部が嫌気性雰囲気になって浄
化効果が乏しくなる等の問題があり、現場の要求を満た
しているとは言えなかった。
By the way, in order to efficiently proceed with the biological purification described above, it is necessary to increase the effective contact area of the aerobic microbial film formed on the surface of each filling material in the packed bed 3 with the wastewater, and to also It is necessary to rise while dispersing the air evenly and create an aerobic atmosphere throughout. Moreover, as the growth of the microbial film progresses, it falls off the surface of the filler and reduces the cleanliness of the treated water, so in order to prevent such problems, it is necessary to provide the filler bed 3 itself with an overflow effect. It is. However, in the conventional packed bed used in this type of equipment, the particle size of the packed material is too large and the effective area of the aerobic microbial membrane cannot be made large enough, resulting in insufficient biological purification effects. If the particle size of the packing material is too small, the air will not rise evenly through the entire packing bed, creating an anaerobic atmosphere in some areas and reducing the purification effect. I couldn't say that it was.

これに対し本発明では、充填層を構成する充填物の粒度
構成を調整することによって浄化効果を著しく高めてい
る。即ち充填材としては粒径か0.2〜10關、特に好
ましくは0.4〜7關の比較的微細な固形粒子と、該固
形粒子よりも十分に大きな充填材との均一混合物を使用
しなければならず、従来例の如く略単−粒径の充填物で
は目的を達成できない。しかして本発明者等が実験によ
り確認したところでは、■充填物のみの場合は、空気の
上昇は充填層全体で均一になるが、表面積が小さい為に
微生物膜の有効面積を十分に大きくすることができず、
また充填層の空隙率が大きい為に気泡が上昇過程で大粒
に成長し易く微生物の活動が緩慢になり易い、しかも微
生物膜脱落物の除去効果が乏しい。これに対し■微細充
填物のみの場合は、表面積が大きいから微生物膜の有効
面積を大きくすることができ、微生物膜脱落物の除去効
果も高いが、充填物の空隙率が小さい為に空気が充填層
全体を均等に上昇せず、局部的に嫌気性雰囲気が形成さ
れて浄化効果が低下する他、充填層内の目詰まりが起こ
りやすく、逆洗を頻繁に行なう必要かある。
In contrast, in the present invention, the purification effect is significantly enhanced by adjusting the particle size structure of the filler constituting the packed bed. That is, the filler used is a homogeneous mixture of relatively fine solid particles with a particle size of 0.2 to 10 degrees, particularly preferably 0.4 to 7 degrees, and a filler that is sufficiently larger than the solid particles. However, the purpose cannot be achieved with a filler having a substantially single particle size as in the conventional example. However, the inventors have confirmed through experiments that: (1) In the case of only the filling, the air rises uniformly throughout the packed bed, but because the surface area is small, the effective area of the microbial film is sufficiently large. I can't do it,
Furthermore, since the porosity of the packed bed is large, bubbles tend to grow into large particles during the rising process, which tends to slow down the activity of microorganisms, and the removal effect of microbial membrane debris is poor. On the other hand, in the case of only fine packing, the effective area of the microbial membrane can be increased due to the large surface area, and the removal effect of microbial membrane debris is also high, but since the porosity of the packing is small, air The entire packed bed is not raised evenly, and an anaerobic atmosphere is formed locally, reducing the purification effect. In addition, the packed bed is likely to become clogged, requiring frequent backwashing.

しかし充填物と微細充填物の均一混合物を使用すると、
両者の特長が生かされると共に欠点が解消され、卓越し
た浄化効果を発揮する。ここで固形粒子の粒径を0.2
〜]、Owに定めた理由は、空気の拡散性、微生物膜の
有効表面積、処理効率、沖過効果等を同時に満足させる
為であり、0.2順未満の微細物では空気の拡散性及び
処理効率が低下し、10flを越えると微生物膜の有効
表面積が不十分になると共に沖過効果も乏しくなり、何
れも本発明の目的を達成できない。また充填材は空気の
拡散性を高めると共に処理効率及び逆洗効率を高める作
用があり、上記固形粒子よりも十分に大きなものであれ
ばよく、粒径を特定することは困難である。しかし最も
実用的な粒径は25〜300頗、特に好ましいのは60
〜300關であり、処理槽の大きさや併用する固形粒子
の粒径等を考慮しつつ上記粒径範囲のものから選択する
のがよい。上記固形粒子と充填材は均一に混合して充填
することが不可欠の要件であり、混合が不十分であると
空気及び原水が充填材の片寄った部分に集中し、浄化効
果が極端に低下すると共に逆洗効率も低下する。また両
者の配合比率は特に限定されないが、充填材を見かけ容
積で、充填層容積の50〜100%充填するのが好まし
い。充填層3の空隙率は両者の配合比率によって変わる
が、固形粒子(砂の場合)単独では50%程度、充填材
単独では70〜95%程度であるから、空気の拡散性、
生物学的処理効果、沖過効果等を考慮しつつ、上記単独
ものの空隙率の間の値に設定される。実際の充填方法は
、一度に充填層を形成するのは難かしく、ある程度しき
つめた充填材の空隙に固形粒子を充填するとともに水あ
るいは空気により均一に充填するよう調整する工程を段
階的に行なって一定高さの層を形成する方法が好ましい
However, when using a homogeneous mixture of fillers and fine fillers,
It takes advantage of the features of both, eliminates their drawbacks, and exhibits an outstanding purifying effect. Here, the particle size of the solid particles is 0.2
~], Ow is set in order to simultaneously satisfy the diffusibility of air, effective surface area of microbial film, treatment efficiency, Oki-over effect, etc., and for fine particles of less than 0.2 order, the diffusivity of air and The treatment efficiency decreases, and if the amount exceeds 10 fl, the effective surface area of the microbial film becomes insufficient and the overflow effect becomes poor, both of which fail to achieve the object of the present invention. Further, the filler has the effect of increasing air diffusivity and increasing processing efficiency and backwashing efficiency, and it is sufficient that the filler is sufficiently larger than the solid particles, and it is difficult to specify the particle size. However, the most practical particle size is between 25 and 300 mm, with 60 mm being particularly preferred.
~300, and it is preferable to select from those within the above particle size range, taking into consideration the size of the processing tank and the particle size of the solid particles used together. It is essential that the solid particles and filler be mixed uniformly when filling. If the mixing is insufficient, air and raw water will concentrate in uneven parts of the filler, and the purification effect will be extremely reduced. At the same time, the backwashing efficiency also decreases. Although the blending ratio of the two is not particularly limited, it is preferable that the filler is filled in an apparent volume of 50 to 100% of the volume of the filled bed. The porosity of the packed bed 3 varies depending on the blending ratio of the two, but it is about 50% for solid particles (in the case of sand) alone and about 70 to 95% for the filler alone, so air diffusivity,
The porosity is set to a value between the above individual porosity values, taking into consideration biological treatment effects, offshore effects, etc. In the actual filling method, it is difficult to form a packed layer all at once, and the process of filling solid particles into the pores of the filler, which have been tightened to a certain extent, and adjusting the filling uniformly with water or air is carried out in stages. A method of forming a layer of constant height is preferred.

上記固形粒子としては、砂、ア”ンスラサイト、高炉ス
ラグ、プラスチック製粒子等従来から知られた全ての充
填材料を使用することができ、その形状も球状に限定さ
れる訳ではなく、ペレット状、短柱状、破砕のままの異
形状等すべてを使用できる。また充填材も、気液接触装
置等に利用されるラシヒリング、レッシング状充填物等
の種々のタイプの充填物、パイプ、球体、不定形の砂利
、種々の格子状そう入物等がすべて使用できる。
As the solid particles mentioned above, all conventionally known filling materials such as sand, anthracite, blast furnace slag, and plastic particles can be used, and the shape is not limited to spherical shapes, but also pellet-like, All types of fillers can be used, including short columnar shapes and irregularly shaped crushed pieces.Furthermore, various types of fillers such as Raschig rings and Lessing-shaped fillers used in gas-liquid contact devices, pipes, spheres, and irregular shapes can be used. Gravel, various lattice containers, etc. can all be used.

上記充填層の下部に配置される支持層は、充填層中の微
細な固体粒子が集水・空気導入装置5の貫通孔5Cから
漏れ出さない様にする為に設けられるもので、上記固体
粒子よりも若干大径の砂利等が使用される。
The support layer disposed below the packed bed is provided to prevent fine solid particles in the packed bed from leaking out from the through holes 5C of the water collection/air introduction device 5. Gravel, etc. with a slightly larger diameter is used.

また集水・空気導入装置5としては、伸銅ファウドラー
■の開発したA/W式レオレオボルドブロックタイプの
を図示しており、これは処理槽の下面全域から空気を送
給し得る点で最も有効であるか、勿論これに限定される
訳ではなく、有孔ブロック式、多孔管式、多孔板式、ボ
イラ一式、T型ブロック式、ストレーナ式等の集水装置
を使用することもできる。また支持層等に別途空気吹込
み管を設け、集水装置とは別の位置から曝気用空気を送
給することも可能である。
In addition, as the water collection/air introduction device 5, an A/W type Leo Leobold block type developed by Shindo Faudler ■ is shown, which is the best in that it can feed air from the entire bottom surface of the treatment tank. It is of course possible to use water collection devices such as a perforated block type, perforated pipe type, perforated plate type, boiler set, T-block type, and strainer type, which are effective. It is also possible to provide a separate air blowing pipe in the support layer or the like to supply aeration air from a location different from the water collection device.

本発明は概略以上の様に構成されるが、要は充填層の充
填物として微細な固形粒子と充填物との均一混合物を使
用することによって、以下に列記する如く高い浄化効果
を有する廃水処理装置を得ることができた。
The present invention is roughly constructed as described above, but the point is that by using a uniform mixture of fine solid particles and fillers as the filler in the packed bed, wastewater treatment has a high purification effect as listed below. I was able to obtain the equipment.

(1)充填材の存在によって曝気用空気が充填I一層全
体均一に供給されるから、層全体を好気性雰囲気に保つ
ことかでき、生物学的処理効果か高まる。
(1) Due to the presence of the filler, aeration air is uniformly supplied to the entire layer of the filler I, so the entire layer can be maintained in an aerobic atmosphere, increasing the biological treatment effect.

しかも充填層全体を適度の空隙率にすることができ、廃
水処理能率及び逆洗能率も向上する。
Furthermore, the entire packed bed can be made to have an appropriate porosity, and the efficiency of wastewater treatment and backwashing can also be improved.

(2)微細な固形粒子の存在によって微生物膜の有効表
面積が拡大され、また曝気用空気の細泡化も促進される
から生物学的処理効率は一段と高まる。
(2) The presence of fine solid particles expands the effective surface area of the microbial membrane and also promotes the formation of fine bubbles in the aeration air, further increasing the biological treatment efficiency.

しかも固形粒子の充填部は、微生物膜脱落物や廃水中の
SS成分の沖過効果も発揮するから、処理水の清浄度が
高まる。
In addition, the solid particle-filled section also has the effect of removing microbial membrane debris and SS components in wastewater, thereby increasing the cleanliness of the treated water.

次に実施例を挙げて本発明の効果を明確にする。Next, examples will be given to clarify the effects of the present invention.

実施例1 実験用として直径200fi、高さ3500mの処理塔
を使用し、下部に集水・空気導入装置を配置し、その上
に粒径2〜20tm1gの範囲の砂利を粒径に応じて充
填して支持層とした。この上層に、固形粒子として粒径
0.4〜3闘メの砂、充填材として2560の磁性球及
び25鱈ダのレッシング状充填物を夫々使用し、充填材
を見かけ容積で充填層容積のioo%充填し、その空隙
に固形粒子を充填した(レッシング状充填物を401充
填し、その空間を固形粒子でうめる)。充填物を層高さ
1300 m (充填容積401)に充填する。この処
理塔を使用し、ペプトンを主体とするBOD成分200
 ppmの合成下水を下記の条件で処理し、BOD成分
の除去率を調べた。
Example 1 A treatment tower with a diameter of 200 fi and a height of 3,500 m was used for experiment purposes, a water collection/air introduction device was placed at the bottom, and gravel with a particle size in the range of 2 to 20 tml/g was filled on top according to the particle size. It was used as a support layer. In this upper layer, sand with a particle size of 0.4 to 3 mm is used as solid particles, magnetic spheres of 2560 and lessing-like filler of 25 mm are used as fillers, and the apparent volume of the filler is equal to the volume of the packed bed. ioo% filling, and the voids were filled with solid particles (401 fillings of lessing-like filler were filled, and the spaces were filled with solid particles). The filling is filled to a bed height of 1300 m (filling volume 401). Using this treatment tower, 200% of BOD components mainly consisting of peptone
ppm synthetic sewage was treated under the following conditions and the removal rate of BOD components was investigated.

処理水it:1m’/日  LV:32rn/日処理水
温=25℃   SV:1”/hBOD負荷=5即/d
・日 空気量:1.7Ntrt/日逆洗回数=2回/日 結果を第1表に示す。
Treated water IT: 1m'/day LV: 32rn/day Treated water temperature = 25℃ SV: 1"/hBOD load = 5 instant/d
- Day Air amount: 1.7 Ntrt/day Number of backwashing = 2 times/day The results are shown in Table 1.

第1表 第1表からも明らかな様に、固形粒子としての砂を単独
で使用した場合のBOD除去率は低いが、砂と充填物を
混合使用することによってBOD除去率を大幅に高める
ことができる。
Table 1 As is clear from Table 1, the BOD removal rate is low when sand as solid particles is used alone, but the BOD removal rate can be significantly increased by using a mixture of sand and filler. I can do it.

実施例2 充填物として25■径のレッシング状充填物、固形粒子
として0.4〜3m径の高炉水砕スラグ、砂又はアンス
ラサイトを使用した他は実施例1と同様にして充填1−
を形成し、下記の条件で下水1次処理水の処理を行なっ
た。
Example 2 Filling 1-
was formed, and the primary treated sewage water was treated under the following conditions.

処理水m:1.7a、r/日 LV    :65m/日 SV    :1.81/h BOD負荷=4.6〜7.1即/d・日空気吹込量:2
.2Nyv/日 空気蓋/処理水量:1.3 処理水温 :17〜21℃ 逆洗回数 :3回/日 結果を第2表に示す。
Treated water m: 1.7a, r/day LV: 65m/day SV: 1.81/h BOD load = 4.6-7.1 instant/d・day Air blowing amount: 2
.. 2 Nyv/day Air lid/Amount of treated water: 1.3 Treated water temperature: 17-21°C Number of backwashing: 3 times/day The results are shown in Table 2.

第2表 第2表からも明らかな様に何れの混合充填物を使用した
場合でも、処理水のBOD値は20 ppm以下、SS
含有量は15 ppm以下となり、高い浄化効果を得る
ことができる。また固形粒子として高炉水砕スラグ及び
砂を使用したものについては、BOD負荷を8.5〜l
0KF/ゴ・日及び7.5〜8Vd・日に夫々高めて処
理を行なったが、何れの場合もBOD値が20 ppm
以下の処理水を得ることができた。
As is clear from Table 2, no matter which mixed filler is used, the BOD value of the treated water is 20 ppm or less, SS
The content is 15 ppm or less, and a high purification effect can be obtained. In addition, for those using granulated blast furnace slag and sand as solid particles, the BOD load is 8.5 to 1
The treatment was carried out at higher levels of 0 KF/day and 7.5 to 8 Vd/day, but in both cases the BOD value was 20 ppm.
The following treated water could be obtained.

実施例3 直径600m、高さ400(1mの処理塔の下部に集水
・空気導入装置を配置し、その上に粒径2〜20M0の
砂利を充填して支持層とした。この上層部に、70闘径
のレッシング状充填物と0.4〜3wxDの高炉水砕ス
ラグを夫々使用し、充填材を見かけ容積で充填層容積の
100%充填し、その空隙に固形粒子を充填した(レッ
シング状充填物を40を充填しその空間を固形粒子で埋
める)。
Example 3 A water collection/air introduction device was placed at the bottom of a treatment tower with a diameter of 600 m and a height of 400 m (1 m), and gravel with a particle size of 2 to 20 M0 was filled on top to form a support layer. , lessing-like packing with a fighting diameter of 70 and granulated blast furnace slag with a diameter of 0.4 to 3 wxD were used, and the apparent volume of the filler was 100% of the packed bed volume, and the voids were filled with solid particles (Lessing (fill the space with solid particles).

この処理塔を用い、原水として、安水をペンゾール抽出
により脱フェノールした排水を冷却水等の雑排水で5倍
に希釈したものを使用し、下記の条件で浄化処理を行な
った。
Using this treatment tower, purification treatment was carried out under the following conditions using as raw water a wastewater obtained by removing phenol from ammonium water by penzol extraction and diluting it five times with gray water such as cooling water.

処理水jii  :4.0m7日 LV    :tam/日 SV   :O151/h BOD負荷:9.6KF/ゴ・日 空気吹込量:33Nm’/日 空気量/処理水量: 7 処理水濡 :23〜25℃ 逆洗回数 :2回/日 結果を第3表に示す。Treated water jii: 4.0m 7 days LV: tam/day SV: O151/h BOD load: 9.6KF/day Air blowing amount: 33Nm’/day Air volume/processed water volume: 7 Processing water wet: 23-25℃ Backwashing frequency: 2 times/day The results are shown in Table 3.

第3表 第3表からも明らかな様に、BOD負荷が9.6Kg/
−・日という高負荷でも、BOD及びフェノールを極め
て効率良く除去し得ることが分かる。
As is clear from Table 3, the BOD load is 9.6Kg/
It can be seen that BOD and phenol can be removed extremely efficiently even under a high load of -.

実施例4 充填物として25ff径のレッシング状充填物、固形粒
子として0.4〜3wmDの高炉水砕スラグを使用した
他は実施例1と同様にして処理塔を作製し、下記の条件
で下水2次処理水の浄化を行なった。尚処理に当っては
、充填層内のpH低下を防止する為処理塔内にpH電極
を配置し、pHが7.0となる様にNaOH水溶液を添
加した。
Example 4 A treatment tower was prepared in the same manner as in Example 1, except that a lessing-like packing with a diameter of 25 ff was used as the packing material, and granulated blast furnace slag with a diameter of 0.4 to 3 wmD was used as the solid particles. The secondary treated water was purified. During the treatment, a pH electrode was placed in the treatment tower to prevent a decrease in the pH within the packed bed, and an aqueous NaOH solution was added to adjust the pH to 7.0.

処理水−:1.2,47日 LV    :38n龜/日 SV   :1.25 1/h ]30D負荷:0.4々/扉・日 NHa−N負荷:0.6即/−・日 空気吹込量:1.2Nゴ/日 処理水温 :25℃ 逆洗回数 :1回/日 結果を第4表に示す。Treated water: 1, 2, 47 days LV: 38n/day SV: 1.25 1/h ]30D load: 0.4/door/day NHa-N load: 0.6 immediate/-day Air blowing amount: 1.2Ngo/day Processing water temperature: 25℃ Backwashing frequency: 1 time/day The results are shown in Table 4.

第4表 第4表からも明らかな様に、この処理でNHa−Nは9
9%以上除去され、BOD及びSS成分も効率良く除去
することができる。
Table 4 As is clear from Table 4, this treatment resulted in NHa-N of 9
9% or more is removed, and BOD and SS components can also be removed efficiently.

実施例5 固形粒子として、NaOHでpH12に調整したリン酸
塩溶液で含浸処理し脱燐機能を持たせた0、4〜3酊ダ
の高炉水砕スラグを使用した他は、実施例4と同様にし
て処理塔を作製し、下水2次処理水の浄化を行なった。
Example 5 The same procedure as Example 4 was used, except that as the solid particles, granulated blast furnace slag of 0.4 to 3. A treatment tower was prepared in the same manner, and the secondary treated sewage water was purified.

尚処理に当り、塔内のpHはNaOH水溶液によって9
に調整し、Ca源として別途CaCl2水溶欣を塔内に
添加し、その他の処理条件は実施例4と同一とした。尚
Ca添加量は100 ppmとした。
During the treatment, the pH inside the column was adjusted to 9 using an aqueous NaOH solution.
The other treatment conditions were the same as in Example 4 except that an aqueous solution of CaCl2 was separately added into the column as a Ca source. The amount of Ca added was 100 ppm.

結果は第5表に示す通りであり、固形粒子に脱燐性付与
処理を施こしておけば、硝化と同時に燐も効率良く除去
することができる。
The results are shown in Table 5, and if the solid particles are subjected to dephosphorization treatment, phosphorus can be efficiently removed at the same time as nitrification.

+191 第  5  表+191 Table 5

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理装置を例示する概略全体図、第2
図は処理槽の一部破断見取り図、第3図は集水・空気導
入装置を拡大して示す一部破断見取り図である。 1・・・処理槽、2・処理水貯槽、3・・充填層、4・
・・支持層、5・・集水・空気導入装置、6・・原水(
廃水)導入管、7・・・空気配管、8,9・・処理水配
管、10・・・逆洗用ポンプ、15・・処理水排出口、
14・・淵部
FIG. 1 is a schematic overall view illustrating the processing apparatus of the present invention, and FIG.
The figure is a partially cutaway sketch of the treatment tank, and FIG. 3 is a partially cutaway sketch showing an enlarged view of the water collection/air introduction device. 1. Treatment tank, 2. Treated water storage tank, 3. Filled bed, 4.
・・Support layer, 5.・Water collection/air introduction device, 6.・Raw water (
Wastewater) introduction pipe, 7... Air piping, 8, 9... Treated water piping, 10... Backwash pump, 15... Treated water outlet,
14...Fuchibe

Claims (1)

【特許請求の範囲】[Claims] (1)上部に廃水導入部、下部に処理水排出部を設けた
処理槽よりなる廃水の生物学的処理装置であって、処理
槽内には充填層と該充填層の支持層を設け、該支持層の
下側に処理水集水装置及び空気導入装置を設けてなり、
前記充填層は、粒径が0.2〜10餌の固形粒子と該固
形粒子よりも十分に大きな充填材を均一に混合して充填
したものであることを特徴とする廃水の好気性生物学的
処理装置。
(1) A biological treatment device for wastewater consisting of a treatment tank with a wastewater introduction section at the top and a treated water discharge section at the bottom, the treatment tank having a packed bed and a support layer for the packed bed, A treated water collection device and an air introduction device are provided below the support layer,
Wastewater aerobic biology characterized in that the packed bed is filled with a uniform mixture of solid particles having a particle size of 0.2 to 10 bait and a filler that is sufficiently larger than the solid particles. processing equipment.
JP56151133A 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes Granted JPS5851986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151133A JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151133A JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Publications (2)

Publication Number Publication Date
JPS5851986A true JPS5851986A (en) 1983-03-26
JPS644834B2 JPS644834B2 (en) 1989-01-26

Family

ID=15512084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151133A Granted JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Country Status (1)

Country Link
JP (1) JPS5851986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209089A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Method and apparatus for treating organic waste water
JPS6283092A (en) * 1985-10-08 1987-04-16 Shimizu Constr Co Ltd Apparatus for treating waste water
JPS6342796A (en) * 1986-08-06 1988-02-23 Nippon Steel Corp Continuous activated sludge treatment of sewerage by using blast furnace granulated slag as carrier for immobilizing activated sludge
JPS63229190A (en) * 1987-03-17 1988-09-26 Nippon Steel Corp Treatment of waste water
JPH02152596A (en) * 1988-12-01 1990-06-12 Hitachi Plant Eng & Constr Co Ltd Biological treatment of waste water in fixed bed
JP2002001372A (en) * 2000-06-28 2002-01-08 Pekku:Kk Sewage cleaning apparatus
JP2021079365A (en) * 2019-11-20 2021-05-27 南京大学 Modular filter, water and air distribution device and its system and application method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209089A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Method and apparatus for treating organic waste water
JPS6283092A (en) * 1985-10-08 1987-04-16 Shimizu Constr Co Ltd Apparatus for treating waste water
JPH0724830B2 (en) * 1985-10-08 1995-03-22 清水建設株式会社 Wastewater treatment equipment
JPS6342796A (en) * 1986-08-06 1988-02-23 Nippon Steel Corp Continuous activated sludge treatment of sewerage by using blast furnace granulated slag as carrier for immobilizing activated sludge
JPH0575479B2 (en) * 1986-08-06 1993-10-20 Shinnippon Seitetsu Kk
JPS63229190A (en) * 1987-03-17 1988-09-26 Nippon Steel Corp Treatment of waste water
JPH02152596A (en) * 1988-12-01 1990-06-12 Hitachi Plant Eng & Constr Co Ltd Biological treatment of waste water in fixed bed
JP2002001372A (en) * 2000-06-28 2002-01-08 Pekku:Kk Sewage cleaning apparatus
JP2021079365A (en) * 2019-11-20 2021-05-27 南京大学 Modular filter, water and air distribution device and its system and application method

Also Published As

Publication number Publication date
JPS644834B2 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
US4009099A (en) Apparatus and process for removing ammonia nitrogen from waste water
US4800021A (en) Process for biologically purifying sewage on a bed of granular material
US4415454A (en) Nitrification treatment of wastewater
JP3183406B2 (en) Methods and reactors for water purification
US3846289A (en) Waste treatment process
US7022233B2 (en) Biologically active reactor system and method for treating wastewater
US4182675A (en) Waste treatment process
JPH01135592A (en) Biological purification of waste water
US3956129A (en) Waste treatment apparatus
JP2652841B2 (en) Operating method of wastewater treatment equipment
IL46494A (en) Adsorption - biooxidation treatment of waste waters to remove contaminants therefrom
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
JPS644835B2 (en)
JP2584386B2 (en) Biological filtration method and device
US5395528A (en) Method of biologically purifying liquids contaminated with impurities
JP3136900B2 (en) Wastewater treatment method
JP2022191066A (en) Water treatment method and water treatment apparatus
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
CN112723566A (en) BAF aeration pipe and method for removing COD through BAF denitrification
JP2003033793A (en) Biological denitration equipment and biological denitration method
CN213327205U (en) Integrated biological filter sewage treatment equipment
JPS6323999Y2 (en)
CN218811247U (en) Deep purification device for refractory externally-discharged tail water
JPH0231895A (en) Process and apparatus for treating filthy water
JPS5857238B2 (en) Wastewater treatment method