JPS644834B2 - - Google Patents

Info

Publication number
JPS644834B2
JPS644834B2 JP15113381A JP15113381A JPS644834B2 JP S644834 B2 JPS644834 B2 JP S644834B2 JP 15113381 A JP15113381 A JP 15113381A JP 15113381 A JP15113381 A JP 15113381A JP S644834 B2 JPS644834 B2 JP S644834B2
Authority
JP
Japan
Prior art keywords
packed bed
treatment
water
air
solid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15113381A
Other languages
Japanese (ja)
Other versions
JPS5851986A (en
Inventor
Koji Ishizaki
Masao Sato
Tadashige Nakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56151133A priority Critical patent/JPS5851986A/en
Publication of JPS5851986A publication Critical patent/JPS5851986A/en
Publication of JPS644834B2 publication Critical patent/JPS644834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、廃水の好気性生物学的処理装置に関
し、詳細には、生物膜を利用して好気性条件下で
廃水を生物学的に浄化する廃水処理装置に関する
ものである。 窒素化合物や他の有機物を含む有機質汚水の浄
化には、一般に生物学的方法が採用されている。 生物学的方法では、BODがCOD等の指標で示
される有機物特にBOD成分が微生物によつて酸
化除去される。即ちアンモニア性窒素は好気性条
件下で硝化菌によつて硝酸性窒素或いは亜硝酸性
窒素に酸化(硝化)された後、嫌気性条件下で脱
窒菌によつて窒素ガスに還元(脱窒)されて除去
される。 ところで好気性条件下でBOD成分除去及び硝
化を行なう生物学的処理法として、浮遊汚泥を用
いる活性汚泥法が知られている。この方法では、
処理槽内で被処理水と浮遊汚泥を曝気しつつ接触
させて酸化を行なつた後、処理水と浮遊汚泥の混
合物を沈降槽に移し、汚泥を沈降させて処理水と
分離する。処理水はそのまま排出するか或いは次
の処理槽に導入し、沈降した汚泥は引抜いて一部
は元の処理槽に戻して再使用し、残りは余剰汚泥
として廃棄する。この方法では処理速度が極めて
遅く処理に長時間を要する為、大量の廃水を処理
するのに大容量の設備を要す。またいわゆるバル
キングと称される現象を起こして汚泥の沈降が悪
くなり、汚泥が処理水と共に流出して処理水質が
低下し、ひどい場合には処理槽内の汚泥が無くな
つて生物学的処理自体が進行しなくなるという問
題もある。しかも酸素吸収効率が低いから好気条
件を維持する為には大量の空気を吹込まなければ
ならず、動力費がかさむという問題も指摘されて
いる。 他方、前記活性汚泥法以外の生物学的処理法と
して生成膜方式があり、これに層する方法として
は散水床法、浸漬床法、回転円板法等があ
る。これらは、生物膜媒体として処理槽内に充填
したプラスチツク製充填物、ハニカムチユーブ、
固体粒子或いは円板等の表面に付着した微生物膜
によつて廃水を浄化する方式であり、活性汚泥法
の様に汚泥を返送する必要がなく、且つバルキン
グを生じないから維持管理が容易である等の利点
がある。しかしこれらの方法には、槽容積当り
の生物膜面積が比較的小さく処理能力が低い、
被処水中のSS成分及び生物膜媒体より剥離した
微生物膜が処理水と共に槽外へ流出する為、別途
固液分離の操作が必要となる、等の欠点がある。 本発明は上記の様な事情に着目し、生物膜方式
で指摘されている処理能力及び処理水質の問題を
解決すべく鋭意研究の結果完成されたものであつ
て、その構成は、上部に廃水導入部、下部に処理
水排出部を設けた処理槽よりなる廃水の生物学的
処理装置であつて、処理槽内には充填層と該充填
層の支持層を設け、該支持層の下側に処理水集水
装置及び空気導入装置を設けてなり、前記充填層
は、粒径が0.2〜10mmの固形粒子と該固形粒子よ
りも十分に大きな充填材を均一に混合して充填し
たものであることを要旨とする。 以下実施例を示す図面に基づいて本発明の構成
及び作用効果を説明するが、下記は代表例であつ
て本発明を限定する性質のものではなく、前・後
記の趣旨に適合し得る範囲で処理槽本体の形状や
構造を変更したり、処理水集水装置や空気導入装
置の構成或いは被処理水等の配管を変更すること
は自由であり、それらはすべて本発明技術の範囲
に含まれる。 第1図は本発明の処理装置を概念的に示す説明
図、第2図は該処理装置の要部破断見取り図であ
り、図中1は処理槽、2は処理水貯槽、3は充填
層、4は支持層、5は処理水の集水と曝気用空気
の導入を兼ねた集水・空気導入装置(詳細は後
述)、6は原水導入管、7は空気配管、8,9は
処理水配管を夫々示す。処理槽1の底部には処理
水を集めるだけでなく逆洗水及び空気を処理槽1
全体に分散させる為の集水・空気導入装置5が配
置され、その上部には支持層4、該支持層4の上
部には本発明で最も特徴付けられる充填層3が配
置されている。そして処理槽1の底部適所には淵
部14が形成されており、その下方壁面に処理水
排出口15を設けると共に、集水・空気導入装置
5に空気を供給する為の空気配管7を配置する。
尚第1図の10は充填層3を逆洗する時に使用す
る逆洗ポンプ、13はバルブを示し、11は逆洗
水の排出管路を示す。第3図は集水・空気導入装
置5を拡大して示す破断見取り図であり、矩形筒
体5a内に2枚の補強板5bを挿入配置すると共
に、矩形筒体5aの上方壁及び補強板5bには多
数の貫通孔5cを穿設してなり、この矩形筒体5
aを、第2図に示す如く処理槽1の底面に多数敷
きつめて集水・空気導入装置5が構成される。従
つて後述する如く充填層3及び支持層4を通過し
つつ浄化された処理水は貫通孔5cから矩形筒体
5a内に入り、底面を伝つて淵部14方向へ流れ
て排出口15から槽外へ排出される。また、空気
配管7から矩形筒体5a内に送り込まれた空気
は、貫通孔5cより処理槽1の下面全域から分散
上昇する。 この様な装置を用いた廃水処理は次のようにし
て行なわれる。まず、BOD成分や窒素成分等を
含む廃水を原水配管2から処理槽1内へ流入させ
ると共に、空気は、配管7から集水・空気導入装
置5を通して槽1内に送り込み、充填層3を好気
性雰囲気にする。廃水が充填層3を通過する過程
で充填材の表面に廃水中のBOD成分等が付着生
育し、BOD成分酸化菌や硝化菌等の好気性微生
物膜が形成され、順次充填層3内を流下してくる
廃水中のBOD成分等は上記好気性微生物膜の作
用で分解除去され、アンモニア性窒素や有機性窒
素はNO3−NやNO2−Nまで酸化される。この
様にして浄化された処理水は、集水・空気導入装
置5及び排出口15を経て取り出される。 ところで上記の生物学的浄化作用を効率良く進
行させる為には、充填層3の各充填物表面に形成
される好気性微生物膜の廃水との接触有効面積を
大きくすると共に、空気が充填層3中を均等に拡
散しながら上昇し全体を好気性雰囲気にする必要
がある。しかも上記微生物膜の成長が進むと充填
物表面から脱落し、処理水の清浄度を低下させる
から、この様な障害を防止する為には充填層3自
体に過作用を持たせることも必要である。しか
しながらこの種の装置で使用されている従来の充
填層では、充填物の粒径が大きすぎて好気性微生
物膜の有効面積を十分に大きくすることができず
生物学的浄化効果が不十分であつたり、或は充填
物の粒径が小さすぎて空気が充填層全体を均等に
上昇せず一部が嫌気性雰囲気になつて浄化効果が
乏しくなる等の問題があり、現場の要求を満たし
ているとは言えなかつた。 これに対し本発明では、充填層を構成する充填
物の粒度構成を調整することによつて浄化効果を
著しく高めている。即ち充填材としては粒径が
0.2〜10mm、特に好ましくは0.4〜7mmの比較的微
細な固形粒子と、該固形粒子よりも十分に大きな
充填材との均一混合物を使用しなければならず、
従来例の如く略単一粒径の充填物では目的を達成
できない。しかして本発明者等が実験により観認
したところでは、充填物のみの場合は、空の上
昇は充填層全体で均一になるが、表面積が小さい
為に微生物膜の有効面積を十分に大きくすること
ができず、また充填層の空隙率が大きい為に気泡
が上昇過程で大粒に成長し易く微生物の活動が緩
慢になり易い、しかも微生物膜脱落物の除去効果
が乏しい。これに対し微細充填物のみの場合
は、表面積が大きいから微生物膜の有効面積を大
きくすることができ、微生物膜脱落物の除去効果
も高いが、充填物の空隙率が小さい為に空気が充
填層全体を均等に上昇せず、局部的に嫌気性雰囲
気が形成されて浄化効果が低下する多、充填層内
の目詰まりが起こりやすく、逆洗を頻繁に行なう
必要がある。 しかし充填物と微細充填物の均一混合物を使用
すると、両者の特長が生かされると共に欠点が解
消され、卓越した浄化効果を発揮する。ここで固
形粒子の粒径を0.2〜10mmに定めた理由は、空気
の拡散性、微生物膜の有効表面積、処理効率、
過効果等を同時に満足させる為であり、0.2mm未
満の微細物では空気の拡散性及び処理効率が低下
し、10mmを越えると微生物膜の有効表面積が不十
分になると共に過効果も乏しくなり、何れも本
発明の目的を達成できない。また充填材は空気の
拡散性を高めると共に処理効率及び逆洗効率を高
める作用があり、上記固形粒子よりも十分に大き
なものであればよく、粒径を特定することは困難
である。しかし最も実用的な粒径は25〜300mm、
特に好ましいのは60〜300mmであり、処理槽の大
きさや併用する固形粒子の粒径等を考慮しつつ上
記粒径範囲のものから選択するのがよい。上記固
形粒子と充填材は均一に混合して充填することが
不可欠の要件であり、混合が不十分であると空気
及び原水が充填材の片寄つた部分に集中し、浄化
効果が極端に低下すると共に逆洗効率も低下す
る。また両者の配合比率は特に限定されないが、
充填材を見かけ容積で、充填層容積の50〜100%
充填するのが好ましい。充填層3の空隙率は両者
の配合比率によつて変わるが、固形粒子(砂の場
合)単独では50%程度、充填材単独では70〜95%
程度であるから、空気の拡散性、生物学的処理効
果、過効果等を考慮しつつ、上記単独ものの空
隙率の間の値に設定される。実際の充填方法は、
一度に充填層を形成するのは難かしく、ある程度
しきつめた充填材の空隙に固形粒子を充填すると
ともに水あるいは空気により均一に充填するよう
調整する工程を段階的に行なつて一定高さの層を
形成する方法が好ましい。 上記固形粒子としては、砂、アンスラサイト、
高炉スラグ、プラスチツク製粒子等従来から知ら
れた全ての充填材料を使用することができ、その
形状も球状に限定される訳ではなく、ペレツト
状、短柱状、破砕のままの異形状等すべてを使用
できる。また充填材も、気液接触装置等に利用さ
れるラシヒリング、レツシング状充填物等の種々
のタイプの充填物、パイプ、球体、不定形の砂
利、種々の格子状そう入物等がすべて使用でき
る。 上記充填層の下部に配置される支持層は、充填
層中の微細な固体粒子が集水・空気導入装置5の
貫通孔5cから漏れ出さない様にする為に設けら
れるもので、上記固体粒子よりも若干太径の砂利
等が使用される。 また集水・空気導入装置5としては、神鋼フア
ウドラー(株)の開発したA/W式レオポルドブロツ
クタイプのものを図示しており、これは処理槽の
下面全域から空気を送給し得る点で最も有効であ
るが、勿論これに限定される訳ではなく、有孔プ
ロツク式、多孔管式、多孔板式、ボイラー式、T
型ブロツク式、ストレーナ式等の集水装置を使用
することもできる。また支持層等に別途空気吹込
み管を設け、集水装置とは別の位置から曝気用空
気を送給することも可能である。 本発明は概略以上の様に構成されるが、要は充
填層の充填物として微細な固形粒子と充填材との
均一混合物を使用することによつて、以下に列記
する如く高い浄化効果を有する廃水処理装置を得
ることができた。 (1) 充填材の存在によつて曝気用空気が充填層全
体に均一に供給されるから、層全体を好気性雰
囲気に保つことができ、生物学的処理効果が高
まる。しかも充填層全体を適度の空隙率にする
ことができ、廃水処理能率及び逆洗能率も向上
する。 (2) 微細な固形粒子の存在によつて微生物膜の有
効表面積が拡大され、また曝気用空気の細泡化
も促進されるから生物学的処理効率は一段と高
まる。しかも固形粒子の充填部は、微生物膜脱
落物や廃水中のSS成分の過効果も発揮する
から、処理水の清浄度が高まる。 次に実施例を挙げて本発明の効果を明確にす
る。 実施例 1 実験用として直径200mm、高さ3500mmの処理塔
を使用し、下部に集水・空気導入装置を配置し、
その上に粒径2〜20mmφの範囲の砂利を粒径に応
じて充填して支持層とした。この上層に、固形粒
子として粒径0.4〜3mmφの砂、充填材として25
mmφの磁性球及び25mmφのレツシング状充填物を
夫々使用し、充填材を見かけ容積で充填層容積の
100%充填し、その空隙に固形粒子を充填した
(レツシング状充填物を40充填し、その空間を
固形粒子でうめる)。充填物を層高さ1300mm(充
填容積40)に充填する。この処理塔を使用し、
ペプトンを主体とするBOD成分200ppmの合成下
水を下記の条件で処理し、BOD成分の除去率を
調べた。 処理水量: 1m2/日 LV:32m/日 処理水温:25℃ SV:1 1/h BOD負荷: 5Kg/m2・日 空気量:1.7Nm2/日 逆洗回数: 2回/日 結果を第1表に示す。
The present invention relates to an aerobic biological treatment device for wastewater, and in particular to a wastewater treatment device that biologically purifies wastewater under aerobic conditions using a biofilm. Biological methods are generally used to purify organic wastewater containing nitrogen compounds and other organic substances. In biological methods, organic substances, especially BOD components, whose BOD is indicated by indicators such as COD, are oxidized and removed by microorganisms. In other words, ammonia nitrogen is oxidized (nitrified) to nitrate nitrogen or nitrite nitrogen by nitrifying bacteria under aerobic conditions, and then reduced to nitrogen gas (denitrification) by denitrifying bacteria under anaerobic conditions. removed. By the way, an activated sludge method using suspended sludge is known as a biological treatment method for removing BOD components and nitrifying under aerobic conditions. in this way,
After oxidizing the treated water and floating sludge by bringing them into contact with each other while aerating in the treatment tank, the mixture of treated water and suspended sludge is transferred to a settling tank, where the sludge is allowed to settle and is separated from the treated water. The treated water is either discharged as is or introduced into the next treatment tank, the settled sludge is pulled out and a portion is returned to the original treatment tank for reuse, and the rest is disposed of as surplus sludge. This method has an extremely slow processing speed and requires a long time to process, so large-capacity equipment is required to treat a large amount of wastewater. In addition, a phenomenon called bulking occurs, which worsens the sedimentation of the sludge, causing the sludge to flow out together with the treated water, reducing the quality of the treated water.In severe cases, the sludge in the treatment tank may disappear, resulting in biological treatment itself. There is also the problem that it stops progressing. Furthermore, it has been pointed out that since the oxygen absorption efficiency is low, a large amount of air must be blown in to maintain aerobic conditions, which increases power costs. On the other hand, as a biological treatment method other than the activated sludge method, there is a generated membrane method, and methods for applying a layer to this method include a sprinkle bed method, a soaked bed method, a rotating disk method, and the like. These include plastic fillings, honeycomb tubes, and
This method purifies wastewater using a microbial film attached to the surface of solid particles or disks. Unlike the activated sludge method, there is no need to return sludge, and since bulking does not occur, maintenance is easy. There are advantages such as However, these methods have relatively small biofilm area per tank volume and low treatment capacity.
There are drawbacks such as the need for a separate solid-liquid separation operation because the SS components in the treated water and the microbial film detached from the biofilm medium flow out of the tank together with the treated water. The present invention has been completed as a result of intensive research focusing on the above-mentioned circumstances and in order to solve the problems of treatment capacity and treated water quality that have been pointed out in the biofilm method. A wastewater biological treatment device consisting of a treatment tank with an inlet and a treated water discharge part at the bottom, the treatment tank has a packed bed and a support layer for the packed bed, and the bottom of the support layer. is provided with a treated water collection device and an air introduction device, and the packed bed is filled with a uniform mixture of solid particles with a particle size of 0.2 to 10 mm and a filler sufficiently larger than the solid particles. The gist is something. The structure and effects of the present invention will be explained below based on the drawings showing the embodiments. However, the following are representative examples and do not limit the present invention, and only within the scope that can comply with the spirit of the above and below. It is free to change the shape and structure of the treatment tank body, the configuration of the treated water collection device and air introduction device, or the piping for the treated water, etc., and all of these are included in the scope of the technology of the present invention. . FIG. 1 is an explanatory diagram conceptually showing the treatment apparatus of the present invention, and FIG. 2 is a cutaway diagram of the main parts of the treatment apparatus, in which 1 is a treatment tank, 2 is a treated water storage tank, 3 is a packed bed, 4 is a support layer, 5 is a water collection/air introduction device that collects treated water and introduces air for aeration (details will be described later), 6 is a raw water introduction pipe, 7 is an air pipe, 8 and 9 are treated water Each piping is shown. The bottom of treatment tank 1 not only collects treated water, but also carries backwash water and air to treatment tank 1.
A water collection/air introduction device 5 for dispersing the water throughout is arranged, a support layer 4 is arranged above it, and a packed bed 3, which is the most characteristic feature of the present invention, is arranged above the support layer 4. An abyss 14 is formed at a suitable location at the bottom of the treatment tank 1, and a treated water outlet 15 is provided on the lower wall surface of the abyss 14, and an air pipe 7 for supplying air to the water collection/air introduction device 5 is arranged. do.
In FIG. 1, reference numeral 10 indicates a backwash pump used when backwashing the packed bed 3, 13 indicates a valve, and 11 indicates a discharge pipe for backwash water. FIG. 3 is an enlarged cutaway diagram showing the water collection/air introduction device 5, in which two reinforcing plates 5b are inserted into the rectangular cylindrical body 5a, and the upper wall of the rectangular cylindrical body 5a and the reinforcing plate 5b are arranged. A large number of through holes 5c are bored in the rectangular cylinder body 5.
The water collection/air introduction device 5 is constructed by laying a large number of wafers a on the bottom surface of the treatment tank 1 as shown in FIG. Therefore, as will be described later, the treated water that has been purified while passing through the packed bed 3 and the support layer 4 enters the rectangular cylinder 5a through the through hole 5c, flows along the bottom surface in the direction of the rim 14, and is discharged from the discharge port 15 into the tank. Expelled outside. Moreover, the air sent into the rectangular cylinder 5a from the air pipe 7 is dispersed and rises from the entire lower surface of the processing tank 1 through the through hole 5c. Wastewater treatment using such a device is carried out as follows. First, wastewater containing BOD components, nitrogen components, etc. is made to flow into the treatment tank 1 from the raw water pipe 2, and air is sent into the tank 1 from the pipe 7 through the water collection/air introduction device 5, and the packed bed 3 is Create a moody atmosphere. During the process of wastewater passing through the packed bed 3, BOD components in the wastewater adhere to and grow on the surface of the packing material, forming an aerobic microbial film such as BOD component oxidizing bacteria and nitrifying bacteria, which sequentially flows down inside the packed bed 3. BOD components and the like in the wastewater are decomposed and removed by the action of the aerobic microbial membrane, and ammonia nitrogen and organic nitrogen are oxidized to NO 3 -N and NO 2 -N. The treated water purified in this manner is taken out through the water collection/air introduction device 5 and the discharge port 15. By the way, in order to efficiently proceed with the biological purification described above, it is necessary to increase the effective contact area of the aerobic microbial film formed on the surface of each filling material in the packed bed 3 with the wastewater, and to also It is necessary to rise while dispersing the air evenly and create an aerobic atmosphere throughout. Moreover, as the growth of the microbial film progresses, it falls off the surface of the packing and reduces the cleanliness of the treated water, so in order to prevent such problems, it is necessary to give the packing bed 3 itself an overactive effect. be. However, in the conventional packed bed used in this type of equipment, the particle size of the packed material is too large and the effective area of the aerobic microbial membrane cannot be made large enough, resulting in insufficient biological purification effects. There are problems such as excessive heat, or the particle size of the packing material is too small, which prevents the air from rising evenly through the entire packed bed, creating an anaerobic atmosphere in some parts of the bed, reducing the purification effect. I couldn't say that it was. In contrast, in the present invention, the purification effect is significantly enhanced by adjusting the particle size structure of the filler constituting the packed bed. In other words, as a filler, the particle size is
A homogeneous mixture of relatively fine solid particles of 0.2 to 10 mm, particularly preferably 0.4 to 7 mm, and fillers that are significantly larger than the solid particles must be used;
The purpose cannot be achieved with a filler having a substantially single particle size as in the conventional example. However, the inventors have observed through experiments that in the case of only the filling, the rise of the sky is uniform throughout the packed bed, but because the surface area is small, the effective area of the microbial membrane is sufficiently large. Moreover, since the porosity of the packed bed is large, the bubbles tend to grow into large particles during the rising process, which tends to slow down the activity of microorganisms, and the removal effect of microbial membrane debris is poor. On the other hand, in the case of only microfilling, the effective area of the microbial membrane can be increased because the surface area is large, and the removal effect of microbial membrane debris is also high, but the porosity of the filling is small, so air is filled. The entire bed is not raised evenly, and an anaerobic atmosphere is formed locally, reducing the purification effect.The packed bed is likely to become clogged, and backwashing must be performed frequently. However, when a homogeneous mixture of fillers and fine fillers is used, the advantages of both are taken advantage of and the disadvantages are eliminated, resulting in an excellent purifying effect. The reason why the particle size of the solid particles was set at 0.2 to 10 mm is because of the diffusibility of air, the effective surface area of the microbial film, the treatment efficiency,
This is to simultaneously satisfy the overefficiency, etc. If the particle size is less than 0.2 mm, the air diffusivity and treatment efficiency will decrease, and if it exceeds 10 mm, the effective surface area of the microbial film will be insufficient and the overefficiency will also be poor. In either case, the purpose of the present invention cannot be achieved. Further, the filler has the effect of increasing air diffusivity and increasing processing efficiency and backwashing efficiency, and it is sufficient that the filler is sufficiently larger than the solid particles, and it is difficult to specify the particle size. However, the most practical particle size is 25-300mm.
Particularly preferred is 60 to 300 mm, and it is preferable to select from the above particle size range, taking into consideration the size of the treatment tank and the particle size of the solid particles used together. It is essential that the solid particles and filler be mixed uniformly when filling. If the mixing is insufficient, air and raw water will concentrate in uneven parts of the filler, and the purification effect will be extremely reduced. At the same time, the backwashing efficiency also decreases. Also, the blending ratio of both is not particularly limited, but
The apparent volume of the filler is 50 to 100% of the packed bed volume.
Filling is preferred. The porosity of the packed bed 3 varies depending on the blending ratio of the two, but it is approximately 50% for solid particles (sand) alone and 70-95% for the filler alone.
Therefore, the porosity is set to a value between the above-mentioned individual porosity, taking into consideration air diffusivity, biological treatment effect, excess effect, etc. The actual filling method is
It is difficult to form a packed layer all at once, so the process of filling the voids of the filler material with solid particles and adjusting the filling uniformly with water or air is performed in stages to form a layer of a certain height. A method of forming is preferred. The solid particles mentioned above include sand, anthracite,
All conventionally known filling materials such as blast furnace slag and plastic particles can be used, and the shape is not limited to spherical shapes, but can also be used such as pellets, short columns, and irregular shapes that are still crushed. Can be used. In addition, various types of fillers such as Raschig rings and dressings used in gas-liquid contact devices, pipes, spheres, irregularly shaped gravel, and various lattice-shaped containers can all be used. . The support layer disposed below the packed bed is provided to prevent fine solid particles in the packed bed from leaking out from the through holes 5c of the water collection/air introduction device 5. Gravel, etc. with a diameter slightly larger than that is used. In addition, as the water collection/air introduction device 5, an A/W type Leopold block type device developed by Shinko Feudler Co., Ltd. is shown, which has the advantage of being able to feed air from the entire bottom surface of the treatment tank. The most effective methods include, but are not limited to, the perforated block type, perforated pipe type, perforated plate type, boiler type, and T.
Water collection devices such as mold block type and strainer type can also be used. It is also possible to provide a separate air blowing pipe in the support layer or the like to supply aeration air from a location different from the water collection device. The present invention is generally constructed as described above, but the point is that by using a uniform mixture of fine solid particles and fillers as the filling material of the packed bed, it has a high purification effect as listed below. We were able to obtain a wastewater treatment device. (1) Due to the presence of the filler, aeration air is uniformly supplied to the entire packed bed, so the entire bed can be maintained in an aerobic atmosphere, increasing the biological treatment effect. Furthermore, the entire packed bed can be made to have an appropriate porosity, and the efficiency of wastewater treatment and backwashing can also be improved. (2) The presence of fine solid particles expands the effective surface area of the microbial membrane and also promotes the formation of fine bubbles in the aeration air, further increasing biological treatment efficiency. In addition, the solid particle-filled section also exerts a superfluous effect on microbial film droplets and SS components in wastewater, increasing the cleanliness of the treated water. Next, examples will be given to clarify the effects of the present invention. Example 1 A treatment tower with a diameter of 200 mm and a height of 3500 mm was used for the experiment, and a water collection and air introduction device was placed at the bottom.
On top of that, gravel with a grain size ranging from 2 to 20 mmφ was filled according to the grain size to form a supporting layer. In this upper layer, sand with a particle size of 0.4 to 3 mmφ is added as solid particles, and 25 mm is added as a filler.
A mmφ magnetic sphere and a 25mmφ dressing-like filler were used, and the apparent volume of the filler was equal to the packed bed volume.
It was filled 100% and the voids were filled with solid particles (40 dressings were filled to fill the spaces with solid particles). The filling is filled to a bed height of 1300 mm (filling volume 40). Using this processing tower,
Synthetic sewage with a BOD component of 200 ppm, mainly peptone, was treated under the following conditions, and the removal rate of BOD components was investigated. Processed water volume: 1m2 /day LV: 32m/day Processed water temperature: 25℃ SV: 1 1/h BOD load: 5Kg/ m2 /day Air volume: 1.7Nm2 /day Backwash frequency: 2 times/day Results Shown in Table 1.

【表】 第1表からも明らかな様に、固形粒子としての
砂を単独で使用した場合のBOD除去率は低いが、
砂と充填物を混合使用することによつてBOD除
去率を大幅に高めることができる。 実施例 2 充填物として25mm径のレツシング状充填物、固
形粒子としての0.4〜3mm径の高炉水砕スラグ、
砂又はアンスラサイトを使用した他は実施例1と
同様にして充填層を形成し、下記の条件で下水1
次処理水の処理を行なつた。 処理水量:1.73m2/日 LV:55m/日 SV:1.8 1/h BOV負荷:4.6〜7.1Kg/m3・日 空気吹込量:2.2Nm2/日 空気量/処理水量:1.3 処理水温:17〜21℃ 逆洗回数: 3回/日 結果を第2表に示す。
[Table] As is clear from Table 1, the BOD removal rate when using sand alone as solid particles is low;
By using a mixture of sand and filler, the BOD removal rate can be significantly increased. Example 2 A dressing-like filling with a diameter of 25 mm as a filler, granulated blast furnace slag with a diameter of 0.4 to 3 mm as solid particles,
A packed bed was formed in the same manner as in Example 1 except that sand or anthracite was used, and sewage 1 was treated under the following conditions.
Next, the treated water was treated. Processed water volume: 1.73m2 /day LV: 55m/day SV: 1.8 1/h BOV load: 4.6-7.1Kg/m 3 -day air blowing volume: 2.2Nm2 /day air volume/processed water volume: 1.3 Processed water temperature: 17-21°C Number of backwashing: 3 times/day The results are shown in Table 2.

【表】 第2表からも明らかな様に何れの混合充填物を
使用した場合でも、処理水のBOD値は20ppm以
下、SS含有量は15ppm以下となり、高い浄化効
果を得ることができる。また固形粒子として高炉
水砕スラグ及び砂を使用したものについては、
BOD負荷を8.5〜10Kg/m2・日及び7.5〜8Kg/
m3・日に夫々高めて処理を行なつたが、何れの場
合もBOD値が20ppm以下の処理水を得ることが
できた。 実施例 3 直径600mm、高さ4000mmの処理塔の下部に集
水・空気導入装置を配置し、その上に粒径2〜20
mmφの砂利を充填して支持層とした。この上層部
に、70mm径のレツシング状充填物と0.4〜3mmφ
の高炉水砕スラグを夫々使用し、充填材を見かて
容積で充填層容積の100%充填し、その空隙に固
形粒子を充填した(レツシング状充填物を40充
填しその空間を固形粒子で埋める)。この処理塔
を用い、原水として、安水をベンゾール抽出によ
り脱フエノールした排水を冷却水等の雑排水で5
倍に希釈したものを使用し、下記の条件で浄化処
理を行なつた。 処理水量:4.6m2/日 LV:16m/日 SV:0.5 1/h BOD負荷:9.6Kg/m2・日 空気吹込量:33Nm3/日 空気量/処理水量: 7 処理水温:23〜25℃ 逆洗回数: 2回/日 結果を第3表に示す。
[Table] As is clear from Table 2, no matter which mixed filler is used, the BOD value of the treated water is 20 ppm or less, the SS content is 15 ppm or less, and a high purification effect can be obtained. In addition, for those using granulated blast furnace slag and sand as solid particles,
BOD load 8.5~10Kg/ m2・day and 7.5~8Kg/
Although the treatment was carried out at a higher concentration of m3 /day, treated water with a BOD value of 20 ppm or less could be obtained in all cases. Example 3 A water collection/air introduction device was placed at the bottom of a treatment tower with a diameter of 600 mm and a height of 4000 mm, and a particle size of 2 to 20 mm was placed above it.
The supporting layer was filled with gravel of mmφ. In this upper layer, a dressing-like filling with a diameter of 70 mm and a diameter of 0.4 to 3 mm are added.
Using granulated blast furnace slag, the filling material was filled to 100% of the volume of the packed bed, and the voids were filled with solid particles (40 pieces of dressing-like filling were filled, and the spaces were filled with solid particles). fill in). Using this treatment tower, the waste water obtained by dephenolating ammonium water by benzol extraction is used as raw water, and the waste water is treated with miscellaneous water such as cooling water.
Purification treatment was carried out under the following conditions using a diluted product. Processed water volume: 4.6m2 /day LV: 16m/day SV: 0.5 1/h BOD load: 9.6Kg/ m2 /day air blowing volume: 33Nm3 /day air volume/processed water volume: 7 Processed water temperature: 23-25 °C Number of backwashing: 2 times/day The results are shown in Table 3.

【表】 第3表からも明らかな様に、BOD負荷が9.6
Kg/m2・日という高負荷でも、BOD及びフエノ
ールを極めて効率良く除去し得ることが分かる。 実施例 4 充填物として25mm径のレツシング状充填物、固
形粒子として0.4〜3mmφの高炉水砕スラグを使
用した他は実施例1と同様にして処理塔を作製
し、下記の条件で下水2次処理水の浄化を行なつ
た、尚処理に当つては、充填層内のPH低下を防止
する為処理塔内にPH電極を配置し、PHが7.0とな
る様にNaOH水溶液を添加した。 処理水量:1.2m2/日 LV:38m/日 SV:1.25 1/h BOD負荷:0.4Kg/m2・日 NH3−N負荷:0.6Kg/m2・日 空気吹込量:1.2Nm2/日 処理水温:25℃ 逆洗回数: 1回/日 結果を第4表に示す。
[Table] As is clear from Table 3, the BOD load is 9.6
It can be seen that BOD and phenol can be removed extremely efficiently even under a high load of Kg/m 2 ·day. Example 4 A treatment tower was prepared in the same manner as in Example 1, except that a 25 mm diameter dressing-like packing material and 0.4 to 3 mm diameter granulated blast furnace slag were used as solid particles. The treated water was purified. During the treatment, a PH electrode was placed in the treatment tower to prevent a drop in PH in the packed bed, and an aqueous NaOH solution was added so that the PH was 7.0. Processed water amount: 1.2m 2 /day LV: 38m / day SV: 1.25 1 / h BOD load: 0.4Kg/m 2・day NH 3 -N load: 0.6Kg/m 2・day Air blowing amount: 1.2Nm 2 / Daily treatment water temperature: 25°C Number of backwashing: 1 time/day The results are shown in Table 4.

【表】 第4表からも明らかな様に、この処理でNH3
−Nは99%以上除去され、BOD及びSS成分も効
率良く除去することができる。 実施例 5 固形粒子として、NaOHでPH12に調整したリ
ン酸塩溶液で含浸処理し脱燐機能を持たせた0.4
〜3mmφの高炉水砕スラグを使用した他は、実施
例4と同様にして処理塔を作製し、下水2次処理
水の浄化を行なつた。尚処理に当り、塔内のPHは
NaOH水溶液によつて9に調整し、Ca源として
別途CaCl2水溶液を塔内に添加し、その他の処理
条件は実施例4と同一とした。尚Ca添加量は
100ppmとした。 結果は第5表に示す通りであり、固形粒子に脱
燐性付与処理を施こしておけば、硝化と同時に燐
も効率良く除去することができる。
[Table] As is clear from Table 4, NH 3
-99% or more of N is removed, and BOD and SS components can also be removed efficiently. Example 5 0.4 solid particles were impregnated with a phosphate solution adjusted to pH 12 with NaOH to have a dephosphorizing function.
A treatment tower was prepared in the same manner as in Example 4, except that granulated blast furnace slag with a diameter of ~3 mm was used, and secondary treated sewage water was purified. During treatment, the pH inside the tower is
The concentration was adjusted to 9 with a NaOH aqueous solution, and a CaCl 2 aqueous solution was separately added into the column as a Ca source, and the other treatment conditions were the same as in Example 4. The amount of Ca added is
It was set to 100ppm. The results are shown in Table 5, and if the solid particles are subjected to dephosphorization treatment, phosphorus can be efficiently removed at the same time as nitrification.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理装置を例示する概略全体
図、第2図は処理槽の一部破断見取り図、第3図
は集水・空気導入装置を拡大して示す一部破断見
取り図である。 1……処理槽、2……処理水貯槽、3……充填
層、4……支持層、5……集水・空気導入装置、
6……原水(廃水)導入管、7……空気配管、
8,9……処理水配管、10……逆洗用ポンプ、
15……処理水排出口、14……淵部。
FIG. 1 is a schematic overall view illustrating the processing apparatus of the present invention, FIG. 2 is a partially cutaway sketch of the treatment tank, and FIG. 3 is a partially cutaway sketch showing an enlarged water collection/air introduction device. 1... Treatment tank, 2... Treated water storage tank, 3... Filled layer, 4... Support layer, 5... Water collection/air introduction device,
6... Raw water (waste water) introduction pipe, 7... Air piping,
8, 9... Treated water piping, 10... Backwash pump,
15... Treated water outlet, 14... Deepwater.

Claims (1)

【特許請求の範囲】[Claims] 1 上部に廃水導入部、下部に処理水排出部を設
けた処理槽よりなる廃水の生物学的処理装置であ
つて、処理槽内には充填層と該充填層の支持層を
設け、該支持層の下側に処理水集水装置及び空気
導入装置を設けてなり、前記充填層は、粒径が
0.2〜10mmの固形粒子と該固形粒子よりも十分に
大きな充填材を均一に混合して充填したものであ
ることを特徴とする廃水の好気性生物学的処理装
置。
1 A biological treatment device for wastewater consisting of a treatment tank with a wastewater inlet in the upper part and a treated water discharge part in the lower part, in which a packed bed and a support layer for the packed bed are provided, A treated water collection device and an air introduction device are provided below the bed, and the packed bed has a particle size of
1. An aerobic biological treatment device for wastewater, characterized in that it is filled with a uniform mixture of solid particles of 0.2 to 10 mm and a filler that is sufficiently larger than the solid particles.
JP56151133A 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes Granted JPS5851986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151133A JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151133A JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Publications (2)

Publication Number Publication Date
JPS5851986A JPS5851986A (en) 1983-03-26
JPS644834B2 true JPS644834B2 (en) 1989-01-26

Family

ID=15512084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151133A Granted JPS5851986A (en) 1981-09-24 1981-09-24 Apparatus for biologically purifying waste water with aerobes

Country Status (1)

Country Link
JP (1) JPS5851986A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209089A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Method and apparatus for treating organic waste water
JPH0724830B2 (en) * 1985-10-08 1995-03-22 清水建設株式会社 Wastewater treatment equipment
JPS6342796A (en) * 1986-08-06 1988-02-23 Nippon Steel Corp Continuous activated sludge treatment of sewerage by using blast furnace granulated slag as carrier for immobilizing activated sludge
JPH0773706B2 (en) * 1987-03-17 1995-08-09 新日本製鐵株式会社 Wastewater treatment method
JPH02152596A (en) * 1988-12-01 1990-06-12 Hitachi Plant Eng & Constr Co Ltd Biological treatment of waste water in fixed bed
JP2002001372A (en) * 2000-06-28 2002-01-08 Pekku:Kk Sewage cleaning apparatus
CN112824329B (en) * 2019-11-20 2022-05-17 南京大学 Water and gas distribution device for modular filter tank and system and application method thereof

Also Published As

Publication number Publication date
JPS5851986A (en) 1983-03-26

Similar Documents

Publication Publication Date Title
US4009099A (en) Apparatus and process for removing ammonia nitrogen from waste water
US3846289A (en) Waste treatment process
US4182675A (en) Waste treatment process
US4009105A (en) Waste treatment apparatus
US3709364A (en) Method and apparatus for denitrification of treated sewage
US4009098A (en) Waste treatment process
US4415454A (en) Nitrification treatment of wastewater
US7022233B2 (en) Biologically active reactor system and method for treating wastewater
US5288407A (en) Denitrification system
JPH01135592A (en) Biological purification of waste water
US3956129A (en) Waste treatment apparatus
IL46494A (en) Adsorption - biooxidation treatment of waste waters to remove contaminants therefrom
CA1057430A (en) Apparatus and process for removing ammonia nitrogen from waste water
WO1998050311A1 (en) Liquid waste treatment bioreactor process and apparatus
JPS644834B2 (en)
JPS644835B2 (en)
EP2307323B1 (en) Plant and process for the purification of wastewaters
Fang et al. Removal of COD and nitrogen in wastewater using sequencing batch reactor with fibrous packing
JP2584386B2 (en) Biological filtration method and device
US3915854A (en) Wastewater treatment
US5395528A (en) Method of biologically purifying liquids contaminated with impurities
JP3136900B2 (en) Wastewater treatment method
CN106698665A (en) Multilevel distributed oyster-shell ceramsite biologic filter column wastewater treatment process and device
JPH0160317B2 (en)
JP2006075815A (en) Molding for denitrifying/dephosphorizing and method for denitrifying/dephosphorizing sewage or waste water