JP2535267B2 - Purification method of wastewater containing organic substances - Google Patents

Purification method of wastewater containing organic substances

Info

Publication number
JP2535267B2
JP2535267B2 JP3233653A JP23365391A JP2535267B2 JP 2535267 B2 JP2535267 B2 JP 2535267B2 JP 3233653 A JP3233653 A JP 3233653A JP 23365391 A JP23365391 A JP 23365391A JP 2535267 B2 JP2535267 B2 JP 2535267B2
Authority
JP
Japan
Prior art keywords
wastewater
biocatalyst
phenol
treatment
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3233653A
Other languages
Japanese (ja)
Other versions
JPH04363194A (en
Inventor
幾敏 松村
信一郎 北岡
豊彦 川村
民男 斎藤
紘雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP3233653A priority Critical patent/JP2535267B2/en
Publication of JPH04363194A publication Critical patent/JPH04363194A/en
Application granted granted Critical
Publication of JP2535267B2 publication Critical patent/JP2535267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機物類含有廃水、特に
石油精製プラント等から排出されるフェノール含有廃水
を生体触媒を充填した流動床型バイオリアクターで浄化
処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying an organic matter-containing wastewater, particularly a phenol-containing wastewater discharged from a petroleum refining plant, in a fluidized bed bioreactor filled with a biocatalyst.

【0002】[0002]

【従来の技術】従来の活性汚泥法による処理の問題点を
列記すると、次のとおりである。石油精製プラント等
から排出されるフェノール含有廃水のフェノール濃度は
40〜500ppmで、活性汚泥法による処理では90
〜98%の除去率でこれ以上除去は困難である。ばっ
気工程と生物反応で発生する汚泥の沈降分離工程の切り
替え処理のために連続処理が難しい。余剰汚泥の発生
が非常に多く、後続する処理工程に負担が掛かると共に
余剰汚泥を産業廃棄物として処理する場合はコストがか
かりすぎる。原因不明の処理不調が発生しやすく、活
性汚泥(バクテリア)の活性を正常な状態に回復させる
には1〜6ケ月以上の長時間を要することがある。一
般に活性汚泥法による生物反応は比較的に遅く、そのた
めに反応槽を大きくする必要があり、設置面積が必然的
に大きくなる。従来の活性汚泥法による廃水処理では
臭気の発生が著しく、臭気対策が困難である。
2. Description of the Related Art The problems of treatment by the conventional activated sludge method are listed below. The phenol concentration of the phenol-containing wastewater discharged from petroleum refining plants, etc. is 40 to 500 ppm, which is 90 when treated by the activated sludge method.
With a removal rate of ~ 98%, further removal is difficult. Continuous treatment is difficult due to the switching process between the aeration process and the sedimentation and separation process of sludge generated by biological reaction. Excessive sludge is generated so much that it imposes a burden on the subsequent treatment process and the cost is too high when the excess sludge is treated as industrial waste. A process disorder of unknown cause is likely to occur, and it may take a long time of 1 to 6 months or more to restore the activity of activated sludge (bacteria) to a normal state. In general, the biological reaction by the activated sludge method is relatively slow, which necessitates a large reaction tank, which inevitably requires a large installation area. In the conventional wastewater treatment by the activated sludge method, odor is remarkably generated, and it is difficult to control the odor.

【0003】次に、これらの問題点についてさらに詳細
に説明する。まず、フェノール除去率が90〜98%で
これ以上の除去率を期待できないのは活性汚泥(バクテ
リア)は一種の雑菌の集まり(混合菌)であり、特定の
環境下においても対象物を100%分解する菌体のみが
菌相を形成することはなく、そのためばっ気用空気、栄
養分、接触時間(反応時間)等の調整を行っても上述の
ような除去率以上とはならない。活性汚泥法ではばっ気
工程で十分にばっ気し、生物反応を行わせた後一旦通水
を停止し、生物反応により発生した汚泥を沈降分離し、
しかるのち上澄水を後続の処理工程に流し、沈降分離さ
れた汚泥は産業廃棄物として処理する。この活性汚泥法
ではしばしば発生した余剰汚泥が十分に沈降分離せずに
後続の処理工程に入る場合があり排水処理装置の運転が
不能となる。従って連続処理が困難であり、処理能力に
は限界がある。この対策として同一の装置を2基建設し
たり、2段方式で処理する等の対応策が考えられるが、
経済的に極めて不利なことは明らかである。
Next, these problems will be described in more detail. First, the phenol removal rate is 90 to 98%, and the removal rate cannot be expected to be higher than this because activated sludge (bacteria) is a group of mixed bacteria (mixed bacteria), and even in a specific environment, 100% target Since only the degrading bacterial cells do not form a bacterial phase, even if the aeration air, nutrients, contact time (reaction time), etc. are adjusted, the above removal rate will not be exceeded. In the activated sludge method, the aeration process is sufficiently aerated, the biological reaction is performed, and then the water flow is temporarily stopped, and the sludge generated by the biological reaction is settled and separated,
After that, the supernatant water is allowed to flow to the subsequent treatment step, and the sludge that has been settled and separated is treated as industrial waste. In this activated sludge method, excess sludge often generated may not be sufficiently settled and separated, and may enter the subsequent treatment step, so that the operation of the wastewater treatment equipment becomes impossible. Therefore, continuous processing is difficult and the processing capacity is limited. As a countermeasure for this, it is possible to construct two identical devices or treat them in a two-stage system.
Clearly, it is extremely economically disadvantageous.

【0004】次に、活性汚泥(バクテリア)はしばしば
原因不明の処理不調の状態が発生する。これは廃水の状
態(性状)が急激に変化した場合、つまり石油精製プラ
ント等の運転状態が不調の場合は排水中のアンモニア性
窒素、硫黄イオン(S2−)等が急激に増加し、そのた
めこれら物質のために活性汚泥(バクテリア)の活性が
著しく阻害され、殆どフェノールが除去されない場合が
ある。
[0004] Next, activated sludge (bacteria) often has a treatment failure state of unknown cause. This is because when the state (property) of the wastewater changes rapidly, that is, when the operating conditions of the oil refining plant and the like are poor, ammonia nitrogen, sulfur ions ( S2- ), etc. in the wastewater increase sharply, and therefore Due to these substances, the activity of activated sludge (bacteria) is significantly impaired, and phenol is hardly removed in some cases.

【0005】活性汚泥(バクテリア)の活性が著しく阻
害され活性が低下した場合は、その回復には時間を要
し、前述したように1〜6ケ月の時間がかかり自然回復
に期待せざるを得ない。従って、活性汚泥法による処理
は限定されたものとならざるをえない。
When the activity of activated sludge (bacteria) is remarkably inhibited and the activity is lowered, it takes a long time to recover, and as described above, it takes 1 to 6 months to expect a natural recovery. Absent. Therefore, treatment by the activated sludge method must be limited.

【0006】さらに活性汚泥(バクテリア)の活性度は
低く、馴化・培養期間を含め除去率を一定に維持するた
めには必然的に反応槽が大きくなり、従って設置面積も
大きくならざるをえない。また、従来活性汚泥(バクテ
リア)による廃水の処理に際しては悪臭を発生する代表
的な発生源であり、特になんらかの原因で汚泥が異常に
大量発生した場合等は悪臭発生が著しい。活性汚泥法は
一般に地上に処理槽に設置するか、あるいは半地下式処
理槽で処理するため悪臭対策は不十分とならざるをえな
い。
Furthermore, the activity of activated sludge (bacteria) is low, and in order to maintain a constant removal rate including the acclimation / culturing period, the reaction tank must be large and therefore the installation area must be large. . Further, it is a typical source of generating a bad odor in the treatment of wastewater with activated sludge (bacteria), and particularly when a large amount of sludge is generated for some reason, the bad odor is remarkably generated. The activated sludge method is generally installed on the ground in a treatment tank or treated in a semi-underground treatment tank.

【0007】[0007]

【発明が解決しようとする課題】本発明は有機物類含有
廃水中のフェノールを高効率で除去すること、有機物類
を分解する菌体の活性維持に必要な溶存酸素量を効果的
にコントロールすること、浄化処理時において発生する
余剰汚泥の量を少なくすること、臭気の発生を少なくす
ることができる有機物類含有廃水の浄化方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides highly efficient removal of phenol in wastewater containing organic substances, and effective control of the amount of dissolved oxygen required for maintaining the activity of cells degrading organic substances. Another object of the present invention is to provide a method for purifying organic matter-containing wastewater capable of reducing the amount of excess sludge generated during purification treatment and reducing the generation of odor.

【0008】[0008]

【課題を解決するための手段】本発明者らは有機物類含
有廃水を浄化処理する方法について鋭意研究した結果、
特定の生体触媒を充填した流動床型バイオリアクターで
浄化処理することにより有機物類含有廃水中のフェノー
ルを高効率で除去できることを見い出し、この知見に基
づいて本発明を達成することができた。
[Means for Solving the Problems] As a result of intensive studies on the method for purifying the organic matter-containing wastewater, the present inventors have found that
It was found that phenol in the organic matter-containing wastewater can be removed with high efficiency by performing purification treatment in a fluidized bed bioreactor filled with a specific biocatalyst, and the present invention could be achieved based on this finding.

【0009】すなわち、本発明は有機物類を分解する菌
体を、微細粒子に付着させることなく、ケン化度95モ
ル%以上、粘度平均重合度1500以上のポリビニール
アルコールおよび多糖類またはタンパク質を含有し、網
目巾2〜3μmの均一な微細網目構造を有するケン化度
95モル%以上、粘度平均重合度1500以上のポリビ
ニールアルコールおよび多糖類またはタンパク質を含有
し、網目巾2〜3μmの均一な微細網目構造を有するポ
リビニールアルコールゲルに包括固定した平均径が3〜
15mmのサイコロ状または粒状の生体触媒を充填率が
5〜60vol%の範囲になるように充填し、孔径が
0.5〜5mmφおよび開孔率が0.3〜20%の分散
板を設置した塔高/塔径が3〜9の流動床型バイオリア
クターに有機物類含有廃水と廃水量(m−廃水/h)
に対して10〜150(Nm−空気/h/m−廃水
/h)のばっ気用空気量を連続的に供給してばっ気用空
気、有機物類含有廃水および生体触媒を接触させてなる
有機物類含有廃水の浄化方法を提供する。
That is, the present invention contains a polyvinyl alcohol and a polysaccharide or a protein having a saponification degree of 95 mol% or more and a viscosity average degree of polymerization of 1500 or more, without adhering bacterial cells decomposing organic substances to fine particles. However, it contains a polyvinyl alcohol and a polysaccharide or protein having a saponification degree of 95 mol% or more and a viscosity average degree of polymerization of 1500 or more, which has a uniform fine network structure having a mesh width of 2 to 3 μm, and has a uniform mesh width of 2 to 3 μm. An average diameter of 3 to 100 is entrapped and fixed in a polyvinyl alcohol gel having a fine mesh structure.
A 15 mm dice-like or granular biocatalyst was filled so that the filling rate was in the range of 5 to 60 vol%, and a dispersion plate having a pore diameter of 0.5 to 5 mmφ and an opening rate of 0.3 to 20% was installed. Wastewater containing organic substances and amount of wastewater (m 3 −wastewater / h) in a fluidized bed type bioreactor with a tower height / tower diameter of 3 to 9
To 10 to 150 (Nm 3 −air / h / m 3 −wastewater / h) for continuous supply of aeration air, organic matter- containing wastewater and biocatalyst Provided is a method for purifying wastewater containing organic substances.

【0010】本発明の有機物類含有廃水とは各種工場廃
水、生活廃水等中に有機物類が含有する廃水で、例えば
COD、BOD濃度が10mg/l以上、好ましくは1
00〜500mg/l、その他油分を含有する廃水であ
る。本発明では特にフェノール類が40〜500ppm
含有する廃水、具体的には石油精製プラントの流動接触
分解または流動接触分解製品貯蔵タンクからのフェノー
ル類含有廃水を有効に浄化できる。
The organic matter-containing wastewater of the present invention means various industrial wastes
Wastewater containing organic substances in water, domestic wastewater, etc.
COD and BOD concentration is 10 mg / l or more, preferably 1
Waste water containing 0 to 500 mg / l and other oils
It Particularly in the present invention, phenols are 40 to 500 ppm
It is possible to effectively purify the contained wastewater, specifically, the wastewater containing phenols from the fluid catalytic cracking of the oil refinery plant or the fluid catalytic cracking product storage tank.

【0011】本発明の生体触媒とは有機物類を分解する
菌体をポリビニールアルコールゲルに包括固定化した触
媒である。例えば、特開平1−281195号公報に記
載の生体触媒が好ましく用いられる。有機物類を分解す
る菌体(微生物)としてはフェノールおよびクレゾール
等のフェノール類を分解できる菌体であればその種類は
特に限定されない。例えば、バクテリア、酵母等を使用
することができる。好ましくは粒径が約1〜3μmのバ
クテリア等を有効に用いることができる。
The biocatalyst of the present invention is a catalyst in which cells that decompose organic substances are entrapped and immobilized in polyvinyl alcohol gel. For example, the biocatalyst described in JP-A-1-281195 is preferably used. The type of microorganism (microorganism) that decomposes organic substances is not particularly limited as long as it is a microorganism that can decompose phenols such as phenol and cresol. For example, bacteria, yeast and the like can be used. Preferably, bacteria or the like having a particle size of about 1 to 3 μm can be effectively used.

【0012】ポリビニールアルコールゲル(PVAゲル
と称する)としては特開平1−281195号公報に記
載の(1)ケン化度95モル%以上、粘度平均重合度1
500以上のPVA5〜25wt%および(2)多糖類
またはタンパク質0.01〜5wt%を含有し、網目巾
2〜3μmの均一な微細網目構造を有するPVAゲルが
用いられる。生体触媒の形状は平均径は約1〜30m
m、好ましくは3〜15mmのサイコロ状または粒状
ものが用いられる。
[0012] polyvinyl (referred to as PVA gel) alcohol gel as the described in Japanese Patent Laid-Open No. 1-281195 (1) degree of saponification 95 mol% or more, the viscosity average polymerization degree of 1
A PVA gel containing 500 to 25 wt% of PVA of 5 or more and (2) 0.01 to 5 wt% of polysaccharide or protein, and having a uniform fine network structure with a mesh width of 2 to 3 μm.
Used. The shape of the biocatalyst flat Hitoshi径about 1~30m
m, preferably dice-shaped or granular 3~15mm
Things are used.

【0013】本発明の生体触媒の充填率はバイオリアク
ターの容積に対して5〜60vol%、好ましくは15
〜50vol%の範囲になるように充填する。充填率が
5vol%未満であると生体触媒がバイオリアクター内
で偏流を起こし、微生物反応の効率が低下する。充填率
が60vol%を越えると生体触媒の流動が著しく制限
されて、生体触媒が局部的に流動しなかったり、あるい
はばっ気用空気が合一して不安定な流動状態を生じる。
The filling rate of the biocatalyst of the present invention is 5 to 60 vol% with respect to the volume of the bioreactor, preferably 15
It is filled so as to be in the range of ˜50 vol%. When the filling rate is less than 5 vol%, the biocatalyst causes a nonuniform flow in the bioreactor, which reduces the efficiency of the microbial reaction. When the filling rate exceeds 60 vol%, the flow of the biocatalyst is significantly restricted, the biocatalyst does not flow locally, or the aeration air is united to cause an unstable flow state.

【0014】本発明のバイオリアクターはリアクターの
下部に分散板を設置した流動床型バイオリアクターであ
る。バイオリアクターの塔高/塔径は3〜9、好ましく
は5〜7の範囲である。塔高/塔径が3未満であるとバ
イオリアクター内の中央部の生体触媒のみが流動し、バ
イオリアクター壁面付近の生体触媒が殆ど流動しないた
め、スライムが発生する。塔高/塔径が9を越えるとバ
イオリアクターの塔底部から塔頂部にわたって生体触媒
およびばっ気用空気に分布が生じ、均一な流動状態がえ
られない。分散板は孔径0.5〜5mmφ、好ましくは
1.5〜3.5mmφの孔が複数設けてあり、開孔率が
0.3〜20%、好ましくは3〜15%である。孔径が
0.5mmφ未満であると廃水中に含まれる微細な浮遊
物質により目詰りを生じると共に、分散板表面で空気泡
の合一が発生する。孔径が5mmφを越えると8〜10
mmφの空気泡が生じ、溶存酸素量が著しく低下する。
開孔率が0.3%未満であるとばっ気用空気が著しく制
限されるため、溶存酸素量が著しく低下するばかりでな
く、分散板の孔が少なくなるため、生体触媒の流動が局
部的に悪くなる。開孔率が20%を越えると孔と孔の間
隔が極端に狭くなり、ばっ気用空気の気泡の合一が著し
くなると共に分散板の製作の時に強度を保つことができ
なくなる。
The bioreactor of the present invention is a fluidized bed type bioreactor in which a dispersion plate is installed at the bottom of the reactor. The tower height / tower diameter of the bioreactor is in the range of 3 to 9, preferably 5 to 7. When the tower height / tower diameter is less than 3, only the biocatalyst in the central portion of the bioreactor flows, and the biocatalyst near the wall surface of the bioreactor hardly flows, so slime is generated. If the tower height / tower diameter exceeds 9, the biocatalyst and the air for aeration are distributed from the bottom to the top of the bioreactor, and a uniform flow state cannot be obtained. The dispersion plate is provided with a plurality of holes having a hole diameter of 0.5 to 5 mmφ, preferably 1.5 to 3.5 mmφ, and the open area ratio is 0.3 to 20%, preferably 3 to 15%. If the pore diameter is less than 0.5 mmφ, the fine floating substances contained in the wastewater cause clogging and coalescence of air bubbles occurs on the surface of the dispersion plate. 8-10 when the hole diameter exceeds 5mmφ
Air bubbles of mmφ are generated, and the amount of dissolved oxygen is significantly reduced.
If the porosity is less than 0.3%, the amount of dissolved oxygen is significantly reduced because the air for aeration is significantly limited, and the pores of the dispersion plate are reduced, so that the flow of the biocatalyst is locally reduced. Get worse. When the open area ratio exceeds 20%, the distance between the holes becomes extremely narrow, the coalescence of air bubbles for aeration is remarkable, and the strength cannot be maintained during the production of the dispersion plate.

【0015】本発明において有機物類含有廃水と接触さ
せるばっ気用空気の供給量は廃水量(m−廃水/h)
に対して10〜150(Nm−空気/h/m−廃水
/h)、好ましくは30〜130(Nm−空気/h/
−廃水/h)の範囲である。ばっ気用空気の供給量
が10(Nm−空気/h/m−廃水/h)未満であ
ると生体触媒の活性が著しく低下し、フェノール類の除
去率が低下する。ばっ気用空気の供給量が150(Nm
−空気/h/m−廃水/h)を越えるとばっ気用空
気が過剰となり、経済的に不利になる。有機物類含有廃
水の滞留時間(HRT)は0.5〜5時間(hr)が好
ましい。LHSV(1/時間)は0.1〜2が好まし
い。有機物類含有廃水、ばっ気用空気および生体触媒の
接触温度は特に限定されないが、好ましくは20〜40
℃の範囲である。
The supply amount of the aeration air contacting the organic compound-containing waste water in the present invention is waste water amount (m 3 - Wastewater / h)
With respect to 10 to 150 (Nm 3 −air / h / m 3 −waste water / h), preferably 30 to 130 (Nm 3 −air / h /
m 3 −waste water / h). When the supply amount of the aeration air is less than 10 (Nm 3 −air / h / m 3 −waste water / h), the activity of the biocatalyst is remarkably lowered and the removal rate of phenols is lowered. Aeration air supply is 150 (Nm
If 3- ( air / h / m 3 −waste water / h) is exceeded, aeration air becomes excessive, which is economically disadvantageous. The retention time (HRT) of the organic matter-containing wastewater is preferably 0.5 to 5 hours (hr). The LHSV (1 / hour) is preferably 0.1 to 2. The contact temperature of the organic matter-containing wastewater, the air for aeration and the biocatalyst is not particularly limited, but is preferably 20 to 40.
It is in the range of ° C.

【0016】本発明において前記条件の場合には生体触
媒の流動状態は極めて良好で、かつ気泡の合一もほとん
どなく、気泡の分布も均一な状態となる。本発明のバイ
オリアクターのプロセスフローは図6に示す。このプロ
セスフローに基づいて有機物類含有廃水の処理方法を述
べる。 1.廃水ストリッパー処理水(廃水)を廃水槽に貯留
する。 2.廃水槽の廃水およびばっ気用空気を予め生体触媒
を充填したバイオリアクターの下部から分散板を経
て供給する。 (バイオリアクターには予め廃水を張込んでおき、生
体触媒を所定量充填し、ばっ気状態にしておく) 3.バイオリアクターに廃水および空気を供給するこ
とにより生体触媒は流動状態を形成し、生体触媒中の菌
体により廃水中の有機物類がCO,HOに分解され
る。 4.バイオリアクターで生体触媒中の菌体により処理
された廃水はピットに流入し、サンドフィルターを
経て処理水槽に入れ、その後放流する。 5.バイオリアクター内のばっ気用空気はバイオリア
クターの上部から排出される。
In the present invention, under the above conditions, the flow state of the biocatalyst is extremely good, there is almost no coalescence of bubbles, and the distribution of bubbles is uniform. The process flow of the bioreactor of the present invention is shown in FIG. Based on this process flow, the method for treating organic matter-containing wastewater will be described. 1. Wastewater Stripper Treated water (wastewater) is stored in a wastewater tank. 2. Waste water from the waste water tank and air for aeration are supplied from the lower part of the bioreactor previously filled with the biocatalyst through the dispersion plate. (Wastewater is pre-filled in the bioreactor, and a predetermined amount of biocatalyst is filled therein to keep it in an aeration state). By supplying wastewater and air to the bioreactor, the biocatalyst forms a fluidized state, and the organic substances in the wastewater are decomposed into CO 2 and H 2 O by the bacteria in the biocatalyst. 4. The wastewater treated by the cells in the biocatalyst in the bioreactor flows into the pit, passes through the sand filter, enters the treated water tank, and is then discharged. 5. Aeration air in the bioreactor is exhausted from the top of the bioreactor.

【0017】[0017]

【実施例】以下の実施例で用いた生体触媒はメタノバク
テリウム属の菌体50wt%をケン化度99.85モル
%、粘度平均重合度1750のポリビニールアルコール
14.5wt%、寒天粉末0.5wt%を含有し、網目
巾2〜3μmの均一な微細網目構造を有するポリビニー
ルアルコールゲルに包括固定化した平均径が8mmのサ
イコロ状の生体触媒である。 またバイオリアクターは孔
径が3mmおよび開孔率が10%の分散板を設置した流
動床型バイオリアクターである。 『実施例1』容量0.5l(塔高=25cm,塔径=6
cm)のバイオリアクターを用いて、処理実験を行っ
た。この場合のフェノール含有廃水(人工水)性状及び
処理条件を下表に示す。
EXAMPLES The biocatalyst used in the following examples is methanobac
50 wt% of terium cells is saponified to 99.85 mol.
%, Viscosity average polymerization degree 1750 polyvinyl alcohol
Contains 14.5 wt% and agar powder 0.5 wt%,
Polyvinyl with a uniform fine network structure with a width of 2-3 μm
A support with an average diameter of 8 mm, entrapped and immobilized in alcohol gel.
It is a dolphin-shaped biocatalyst. Also, the bioreactor has holes
Flow with a dispersion plate with a diameter of 3 mm and a porosity of 10%
It is a moving bed type bioreactor. "Example 1" Volume 0.5 l (Tower height = 25 cm, Tower diameter = 6
cm) bioreactor was used to perform processing experiments. The properties and treatment conditions of the phenol-containing wastewater (artificial water) in this case are shown in the table below.

【0018】[0018]

【表1】 [Table 1]

【0019】図1にフェノール含有廃水の処理結果を示
す。これによると廃水中のフェノールはほぼ完全に除去
されることが明かとなった。なお、この実験はフェノー
ル含有廃水として人工水を用いたものであり、約90日
間の連続処理実験では上記処理条件が有効であることが
明かである。図1に示した結果は生体触媒充填率が30
vol%の場合であるが、生体触媒充填率がそれぞれ2
0,50vol%の場合も同様な結果を示した。生体触
媒の流動を最適な状態に維持するには生体触媒充填率が
20〜30vol%の場合が良く、従ってフェノール除
去率と流動特性の両面から考慮し、生体触媒充填率が3
0%程度が最良と考えられる。
FIG. 1 shows the treatment results of phenol-containing wastewater. According to this, it was revealed that the phenol in the wastewater was almost completely removed. In this experiment, artificial water was used as the phenol-containing wastewater, and it is clear that the above treatment conditions are effective in the continuous treatment experiment for about 90 days. The results shown in FIG. 1 show that the biocatalyst packing rate is 30.
In the case of vol%, the filling rate of biocatalyst is 2 each
Similar results were shown in the case of 0,50 vol%. In order to maintain the flow of the biocatalyst in an optimum state, the biocatalyst packing rate is preferably 20 to 30 vol%. Therefore, considering both the phenol removal rate and the flow characteristics, the biocatalyst packing rate should be 3%.
About 0% is considered to be the best.

【0020】『実施例2』容量0.5l(塔高=25c
m,塔径=6cm)のバイオリアクターを用いて、処理
実験を行なった。原水として石油精製プラントから排出
されたフェノール含有廃水にフェノールを添加してフェ
ノール濃度を300ppm程度に調製した廃水を用いて
実験に供した。廃水性状及び処理条件を下表に示す。
Example 2 Volume 0.5 l (Tower height = 25 c
m, tower diameter = 6 cm), a treatment experiment was performed using a bioreactor. An experiment was conducted using wastewater prepared by adding phenol to the phenol-containing wastewater discharged from a petroleum refining plant as raw water to adjust the phenol concentration to about 300 ppm. The state of waste water and the treatment conditions are shown in the table below.

【0021】[0021]

【表2】 [Table 2]

【0022】図2にフェノール含有廃水の処理結果を示
す。これによると廃水中のフェノールはほぼ完全に除去
されることが明かとなった。約300日間の連続処理実
験の結果であり、生体触媒の活性低下が殆ど無く、ま
た、余剰汚泥の発生も殆ど無かった。フェノール,CO
D,BOD等の除去率は下記のとおりである。
FIG. 2 shows the result of treating the phenol-containing wastewater. According to this, it was revealed that the phenol in the wastewater was almost completely removed. The result of the continuous treatment experiment for about 300 days showed almost no decrease in the activity of the biocatalyst and almost no generation of excess sludge. Phenol, CO
The removal rates of D, BOD, etc. are as follows.

【0023】[0023]

【表3】 [Table 3]

【0024】『実施例3』容量10l(塔高=60c
m,塔径=15cm)のバイオリアクターを用いて、廃
水の処理実験を行なった。実施例1,実施例2では基礎
実験として0.5lの実験装置を用いたが、今回は容量
が20倍の10lのバイオリアクターで、廃水として石
油精製プロセス廃水を用いて処理条件を検討した。
[Example 3] Volume 10 l (tower height = 60 c
m, tower diameter = 15 cm), a wastewater treatment experiment was conducted using a bioreactor. In Examples 1 and 2, a 0.5 l experimental apparatus was used as a basic experiment, but this time, the treatment conditions were examined using a petroleum refining process waste water as a waste water in a 10 l bioreactor having a capacity of 20 times.

【0025】[0025]

【表4】 [Table 4]

【0026】図3にフェノール含有廃水の処理結果を示
した。実施例1,2の処理条件を検討し、HRT:30
分〜2時間,LHSV(1/時間):0.5〜2.0,
処理温度(℃):20〜40,生体触媒充填率(vol
%):20〜35で実験を行なった結果である。約1年
間にわたる連続処理実験で、生体触媒の活性低下、担体
であるPVAゲルの崩壊等はまったく認められず、フェ
ノールをほぼ100%除去できた。また、余剰汚泥の発
生はほとんどなく、本処理方式は非常に効果があること
が明かとなった。今回の実験結果から最適処理条件は、
下表のとおりである。
FIG. 3 shows the treatment results of phenol-containing wastewater. Examining the processing conditions of Examples 1 and 2, HRT: 30
Minute to 2 hours, LHSV (1 / hour): 0.5 to 2.0,
Treatment temperature (° C): 20-40, biocatalyst filling rate (vol)
%): It is the result of conducting the experiment at 20-35. In a continuous treatment experiment for about 1 year, the activity of the biocatalyst was not reduced, the PVA gel as the carrier was not disintegrated at all, and almost 100% of the phenol could be removed. In addition, it was revealed that the surplus sludge was hardly generated and this treatment method was very effective. From the results of this experiment, the optimum processing conditions are
It is as shown in the table below.

【0027】[0027]

【表5】 [Table 5]

【0028】『実施例4』容量10l(塔高=60c
m,塔径=15cm)のバイオリアクターを用いて、廃
水の処理実験を行なった。実施例3の結果を検討し、原
水として石油精製プロセス廃水にフェノールを添加して
フェノール濃度を300ppm程度に調製し、実施例3
の処理条件を基に連続処理実験を行なった。フェノール
含有廃水の性状を下表に示す。
Example 4 Volume 10 l (Tower height = 60 c
m, tower diameter = 15 cm), a wastewater treatment experiment was conducted using a bioreactor. Examining the results of Example 3, phenol was added to petroleum refining process wastewater as raw water to adjust the phenol concentration to about 300 ppm, and Example 3 was used.
A continuous treatment experiment was carried out based on the treatment conditions. The properties of phenol-containing wastewater are shown in the table below.

【0029】[0029]

【表6】 [Table 6]

【0030】図4の結果からフェノール分300ppm
という高濃度フェノール含有廃水の場合でも、下表の運
転条件で処理し、ほぼ完全にフェノールを除去できるこ
とが明かとなった。実施例3の場合と同様に約100日
の連続処理でも生体触媒の活性低下、担体であるPVA
ゲルの崩壊等は認められず、本処理方式は非常に効果が
あることが明かとなった。
From the results shown in FIG. 4, the phenol content is 300 ppm.
Even in the case of wastewater containing high-concentration phenol, it was revealed that the phenol can be removed almost completely by treating it under the operating conditions shown in the table below. As in the case of Example 3, even after continuous treatment for about 100 days, the activity of the biocatalyst was reduced and PVA as the carrier was used.
No disintegration of the gel was observed and it was revealed that this treatment method was very effective.

【0031】[0031]

【表7】 [Table 7]

【0032】『実施例5』容量200l(塔高=300
cm,塔径=30cm)のバイオリアクターを用いて、
廃水の処理実験を行なった。実施例4の結果を検討し、
原水として石油精製プロセス廃水にフェノールを添加し
てフェノール濃度を300ppm程度に調製し、実施例
4の処理条件参考にして連続処理実験を行なった。フェ
ノール含有廃水の性状を下表に示す。
[Embodiment 5] Capacity 200 l (Tower height = 300)
cm, tower diameter = 30 cm) using a bioreactor
A wastewater treatment experiment was conducted. Considering the results of Example 4,
Phenol was added to the petroleum refining process wastewater as raw water to adjust the phenol concentration to about 300 ppm, and a continuous treatment experiment was conducted with reference to the treatment conditions of Example 4. The properties of phenol-containing wastewater are shown in the table below.

【0033】[0033]

【表8】 [Table 8]

【0034】本実験はベンチプラント規模の装置を用い
たフェノール含有廃水の処理であり、約7ケ月間の連続
処理実験を行なった結果を図5に示す。本実験において
も生体触媒の活性低下、担体であるPVAゲルの崩壊等
は起こらず、本処理方式が優れていることは明かとなっ
た。この場合の最適処理条件は下表の通りである。
This experiment is a treatment of phenol-containing wastewater using a bench plant scale apparatus, and the results of a continuous treatment experiment for about 7 months are shown in FIG. Also in this experiment, the activity of the biocatalyst was not decreased, the PVA gel as the carrier was not collapsed, and it was revealed that the present treatment method is excellent. The optimum processing conditions in this case are as shown in the table below.

【0035】[0035]

【表9】 [Table 9]

【0036】『実施例6』フェノール濃度が500pp
mのフェノール含有廃水を、LHSV=0.6(HRT
=1時間40分、その他の処理条件は実施例5と同様)
で約3ケ月間処理した結果、フェノールをほぼ完全に除
去できた。この結果からフェノール分500ppmでも
本処理方式で十分対処出来ることが明かとなった。
Example 6 Phenol concentration is 500 pp
m phenol-containing wastewater, LHSV = 0.6 (HRT
= 1 hour 40 minutes, other processing conditions are the same as in Example 5)
As a result of the treatment for about 3 months, the phenol could be removed almost completely. From this result, it was clarified that this treatment method can sufficiently cope with the case where the phenol content is 500 ppm.

【0037】『比較例1』本バイオリアクター方式の有
効性を立証するために、従来法である活性汚泥法と比較
した。フェノール含有廃水は石油精製プラントの廃水に
フェノールを添加し、フェノール濃度300ppm程度
に調製した廃水を用いた。
Comparative Example 1 In order to prove the effectiveness of this bioreactor system, a comparison was made with the conventional activated sludge process. As the phenol-containing wastewater, wastewater prepared by adding phenol to wastewater of a petroleum refining plant to prepare a phenol concentration of about 300 ppm was used.

【0038】[0038]

【表10】 [Table 10]

【0039】上記処理条件でバイオリアクター法と活性
汚泥法を比較したところ次表に示すような結果を得た。
この実験結果からバイオリアクター法では活性汚泥法に
比較して処理水量フェノール負荷,フェノール除去率,
菌体馴養期間,余剰汚泥の発生等で極めて優れているこ
とが明かとなった。
When the bioreactor method and the activated sludge method were compared under the above treatment conditions, the results shown in the following table were obtained.
From the results of this experiment, compared with the activated sludge method, the amount of treated water, phenol load, phenol removal rate,
It was revealed that it is extremely excellent in terms of acclimation of bacterial cells and generation of excess sludge.

【0040】[0040]

【表11】 [Table 11]

【0041】[0041]

【発明の効果】1.菌体(微生物)の活性維持に必要な
溶存酸素量を効果的にコントロールできる。 2.廃水処理時において発生する余剰汚泥の量を従来法
である活性汚泥法に比べて1/5〜1/10に制御でき
る。 3.生体触媒中のフェノール類分解菌はPVAゲルとい
う極めて強度的にも強く、耐酸性、耐アルカリ性があ
り、かつ化学反応、生物反応にも強い担体に包括固定化
され、保護された状態にあるために原因不明の処理不調
が発生しても直接影響を受けず活性低下を阻止できると
共に長期間連続処理運転を実施しても新規な生体触媒を
補充することなく活性を維持できる。4.石油精製プラ
ント等から排出されるフェノール類含有廃水中のフェノ
ール類をほぼ100%除去でき、生体触媒中のフェノー
ル類分解菌は自己消化力の極めて強い菌体であるため余
剰汚泥の発生は極めて少ないため余剰汚泥処理を必要と
せず、かつ活性汚泥法のような浮遊物の沈降分離装置を
必要とせず、さらに臭気の発生は少なく臭気対策が容易
にできるため必然的に設置面積を小さくできる極めてコ
ンパクトであるので経済的に極めて有利である。5.従
来法である活性汚泥法はバッチ式であるのに対して本発
明の方式は連続的に廃水処理できる。6.生体触媒中の
フェノール類分解菌は活性が極めて高く、同一条件で比
較した場合、活性汚泥法の5〜10倍の活性度を有して
いる。そのために処理装置の規模をコンパクトに製作で
き、従って設置面積を活性汚泥法に比べて1/3〜1/
2に縮小できる。
Effect of the Invention It is possible to effectively control the amount of dissolved oxygen required for maintaining the activity of bacterial cells (microorganisms). 2. The amount of excess sludge generated during wastewater treatment can be controlled to 1/5 to 1/10 of that of the conventional activated sludge method. 3. Phenol-decomposing bacteria in the biocatalyst are in a state of being protected by being comprehensively immobilized on a carrier called PVA gel, which is extremely strong in acid resistance, alkali resistance, and resistant to chemical reactions and biological reactions. Even if a treatment disorder of unknown cause occurs, the activity is not directly affected and a decrease in activity can be prevented, and the activity can be maintained without supplementing with a new biocatalyst even if a long-term continuous treatment operation is performed. 4. Almost 100% of phenols in phenol-containing wastewater discharged from petroleum refining plants can be removed. Phenol-degrading bacteria in biocatalysts have extremely strong self-digestion power, and therefore, excessive sludge generation is extremely low. Therefore, it does not require excess sludge treatment and does not require a sedimentation and separation device for suspended matter, such as the activated sludge method. Furthermore, it does not generate odors and can easily control odors. Therefore, it is economically extremely advantageous. 5. The activated sludge method which is a conventional method is a batch method, whereas the method of the present invention can continuously treat wastewater. 6. The activity of the phenol-decomposing bacteria in the biocatalyst is extremely high, and the activity is 5 to 10 times that of the activated sludge method when compared under the same conditions. Therefore, the scale of the treatment equipment can be made compact, and therefore the installation area is 1/3 to 1 / compared with the activated sludge method.
It can be reduced to 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水 ●:処理水
1 shows the treatment results of phenol-containing wastewater obtained according to Example 1. FIG. ○: Waste water ●: Treated water

【図2】実施例2に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水 ●:処理水
2 shows the treatment results of phenol-containing wastewater obtained according to Example 2. FIG. ○: Waste water ●: Treated water

【図3】実施例3に従って得られたフェノール含有廃水
の処理結果を示す。 ○:廃水 ●:処理水
FIG. 3 shows the treatment results of phenol-containing wastewater obtained according to Example 3. ○: Waste water ●: Treated water

【図4】実施例4に従って得られた結果を示す。FIG. 4 shows the results obtained according to Example 4.

【図5】ベンチプラント規模の装置を用いたフェノール
含有廃水の処理結果を示す。 ○:廃水 ●:処理水
FIG. 5 shows the results of treating phenol-containing wastewater using a bench plant scale device. ○: Waste water ●: Treated water

【図6】本発明のバイオプロセスフローを示す。FIG. 6 shows a bioprocess flow of the present invention.

【符号の説明】[Explanation of symbols]

1 廃水槽 2 バイオリアクター 3 分散板 4 ピット 5 サンドフィルター 6 処理水槽 1 Waste water tank 2 Bioreactor 3 Dispersion plate 4 Pit 5 Sand filter 6 Treated water tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 紘雄 神奈川県川崎市中原区小杉町2−228− 1031 (56)参考文献 特開 昭63−158194(JP,A) 特開 平1−281195(JP,A) 特開 昭60−197295(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroo Takeda 2-228-1031 Kosugicho, Nakahara-ku, Kawasaki-shi, Kanagawa (56) References JP-A-63-158194 (JP, A) JP-A-1-281195 ( JP, A) JP 60-197295 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機物類を分解する菌体を、微細粒子に
付着させることなく、ケン化度95モル%以上、粘度平
均重合度1500以上のポリビニールアルコールおよび
多糖類またはタンパク質を含有し、網目巾2〜3μmの
均一な微細網目構造を有するケン化度95モル%以上、
粘度平均重合度1500以上のポリビニールアルコール
および多糖類またはタンパク質を含有し、網目巾2〜3
μmの均一な微細網目構造を有するポリビニールアルコ
ールゲルに包括固定した平均径が3〜15mmのサイコ
ロ状または粒状の生体触媒を充填率が5〜60vol%
の範囲になるように充填し、孔径が0.5〜5mmφお
よび開孔率が0.3〜20%の分散板を設置した塔高/
塔径が3〜9の流動床型バイオリアクターに有機物類含
有廃水と廃水量(m−廃水/h)に対して10〜15
0(Nm−空気/h/m−廃水/h)のばっ気用空
気量を連続的に供給してばっ気用空気、有機物類含有廃
水および生体触媒を接触させてなる有機物類含有廃水の
浄化方法。
1. Micro- organisms that decompose microorganisms that decompose organic substances
95 mol of a saponification degree of 95 mol% or more, a polyvinyl alcohol having a viscosity average degree of polymerization of 1500 or more and a polysaccharide or a protein, and a uniform fine network structure having a mesh width of 2 to 3 μm without adhering. %that's all,
Containing polyvinyl alcohol and a polysaccharide or protein with a viscosity average degree of polymerization of 1500 or more, and a mesh width of 2-3
Packing rate of dice-like or granular biocatalyst having an average diameter of 3 to 15 mm, which is entrapped and fixed in polyvinyl alcohol gel having a uniform fine network structure of μm, is 5 to 60 vol%.
Tower height / hole size of 0.5 to 5 mmφ and a porosity of 0.3 to 20%.
In a fluidized bed type bioreactor with a tower diameter of 3 to 9, 10 to 15 with respect to organic matter- containing wastewater and wastewater amount (m 3 −wastewater / h)
0 (Nm 3 −air / h / m 3 −wastewater / h) for supplying aeration air continuously, and contacting aeration air, organic matter- containing wastewater and biocatalyst, organic matter-containing wastewater Purification method.
JP3233653A 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances Expired - Lifetime JP2535267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233653A JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233653A JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Publications (2)

Publication Number Publication Date
JPH04363194A JPH04363194A (en) 1992-12-16
JP2535267B2 true JP2535267B2 (en) 1996-09-18

Family

ID=16958422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233653A Expired - Lifetime JP2535267B2 (en) 1991-06-07 1991-06-07 Purification method of wastewater containing organic substances

Country Status (1)

Country Link
JP (1) JP2535267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073917A (en) * 2013-10-07 2015-04-20 株式会社クラレ Oil-containing wastewater treatment method
CN108314176A (en) * 2017-01-17 2018-07-24 中国石化集团四川维尼纶厂 A kind of polyvinyl alcohol immobilized microorganism Gel Treatment sewage aerator and aeration method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158194A (en) * 1985-08-28 1988-07-01 Kobe Steel Ltd Biological treatment of organic sewage
JPH067338B2 (en) * 1986-12-23 1994-01-26 ヤマハ株式会社 Waveform data forming circuit for tone synthesis
JPH0773702B2 (en) * 1988-04-30 1995-08-09 日本石油精製株式会社 PVA high water content gel, microbial embedding high water content gel, and purification method of wastewater containing organic substances

Also Published As

Publication number Publication date
JPH04363194A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
EP1542932B1 (en) Method for the treatment of waste water with sludge granules
AU2008343823B2 (en) Suspended media granular activated carbon membrane biological reactor system and process
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JPH0133235B2 (en)
CN102134145B (en) Sewage treatment device
CN107698037B (en) Method for deeply treating reverse osmosis concentrated water of landfill leachate by three-dimensional electrochemical coupling three-dimensional electrobiology
JP3323040B2 (en) Ultrapure water production equipment
Al-Khalid et al. Organic contaminants in refinery wastewater: characterization and novel approaches for biotreatment
JP2535267B2 (en) Purification method of wastewater containing organic substances
KR100603182B1 (en) Method for advanced treatment of wastewater
CN111762969A (en) Low-concentration degradation-resistant chemical wastewater treatment method and system
CN105254123B (en) Coking advanced waste treatment system and its reuse technology
EP0644857B1 (en) Method for treating water
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
JPS6211596A (en) Treatment of waste water by microbe and apparatus therefor
KR970002486B1 (en) Apparatus and method for waste water treatment
CN111606524A (en) Chemical sewage treatment process
CN111333270A (en) Treatment method of oil field fracturing fluid wastewater
KR100360561B1 (en) A treatment methods for organic sewage
JP4596533B2 (en) Wastewater treatment method
WO2004028983A1 (en) A method of processing organic wastewater
KR100422238B1 (en) Biological nutrient removal method using the separated currents of the anaerobic and anoxic tank and its device
JPH0768282A (en) Wastewater treatment apparatus
KR200250140Y1 (en) A waste water disposal plant
EP1036039A1 (en) Method for liberating, in aqueous phase, substances which are impossible or difficult to biodegrade from a compounded material which is not soluble in water