JPH03118891A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPH03118891A
JPH03118891A JP1255269A JP25526989A JPH03118891A JP H03118891 A JPH03118891 A JP H03118891A JP 1255269 A JP1255269 A JP 1255269A JP 25526989 A JP25526989 A JP 25526989A JP H03118891 A JPH03118891 A JP H03118891A
Authority
JP
Japan
Prior art keywords
water
org
sewage
matter
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1255269A
Other languages
Japanese (ja)
Other versions
JPH0677730B2 (en
Inventor
Takeshi Minami
南 武
Yoshiaki Suzuki
義明 鈴木
Izumi Hirasawa
泉 平沢
Hiroshi Nakamura
弘志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Metropolitan Government
Original Assignee
Ebara Infilco Co Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd, Tokyo Metropolitan Government filed Critical Ebara Infilco Co Ltd
Priority to JP25526989A priority Critical patent/JPH0677730B2/en
Publication of JPH03118891A publication Critical patent/JPH03118891A/en
Publication of JPH0677730B2 publication Critical patent/JPH0677730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To effectively and stably remove an org. matter and phosphorus hard to decompose in org. sewage by adjusting the sewage to specified pH and bringing the sewage into contact with a granular filter medium having org. matter adsorptivity under aerobic conditions. CONSTITUTION:An aq. mineral acid soln. 3 is injected into a pH regulating tank 2 in association with the pH value of a pH electrode 4, and the pH is regulated to 3.0-6.0. The pH-regulated water passes downward through the packed bed 7 of the granular filter medium 7' having org. matter adsorptivity in a reaction vessel 5, and the bed 7 is kept aerobic. When the water is continuously passes through the vessel 5, a microbial membrane is formed on the surface of the medium 7', hence the org. matter adsorbed and concentrated on the medium 7' is decomposed, and the org. matter is adsorbed by the microbe. Consequently, the org. matter hard to decompose in the org. sewage is efficiently and stably removed by the extremely convenient operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水二次処理水、各種産業排水等の有機性汚
水中に存在する色度成分などの難分解性有機物やリンを
除去する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention removes persistent organic substances such as chromaticity components and phosphorus present in organic wastewater such as secondary treated sewage water and various industrial wastewater. It is about the method.

〔従来の技術〕[Conventional technology]

公共用水域に排水される排水のCOD、、の総量規制が
一部で実施されるとともに、下水その他の有機性汚水の
処理水を再利用するというニーズが高まりつつあり、除
去対象の有機物も生物易分解性から難分解性へと移行し
てきている。難分解性の有機物の除去方法としては、吸
着法、凝集沈殿法、酸化剤等による分解法が提案されて
いる。
Regulations on the total amount of COD in wastewater discharged into public water bodies have been implemented in some areas, and there is a growing need to reuse treated sewage and other organic wastewater, and the organic matter to be removed is also a biological substance. There has been a shift from easily degradable to difficult to decompose. As methods for removing difficult-to-decompose organic substances, adsorption methods, coagulation-precipitation methods, decomposition methods using oxidizing agents, etc. have been proposed.

また、水中のリンを除去する方法としては、凝集沈殿法
、生物脱リン法、接触脱リン法などがある。これらのう
ち、接触脱リン法は、カルシウム及びアルカリの存在下
でリン除去能力を有する粒状物(リン鉱石、骨炭、 M
gOなど)と接触させて水中のリンを除去する方法で、
リン除去の過程でいわゆる難脱水性の汚泥が出ない点で
注目されている。
Furthermore, methods for removing phosphorus from water include a coagulation-sedimentation method, a biological dephosphorization method, and a catalytic dephosphorization method. Among these, the catalytic dephosphorization method uses granular materials (phosphate rock, bone char, M
This method removes phosphorus from water by contacting it with water (e.g. gO).
It is attracting attention because it does not produce sludge that is difficult to dewater during the phosphorus removal process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、従来の難分解性の有機物の除去方法のうち、
吸着法は吸着剤の穎繁な交換あるいは再生を必要とし、
水処理に要する費用を著しく高めることになる。また、
凝集剤を用いる凝集沈殿法は、除去率が10〜30%と
小さく、高い除去能が期待できない、また、03.II
□OZ+ Chなどの酸化剤を用いる分解法は、高い除
去率を得るために酸化剤の多量の注入を必要とするばか
りか、酸化分解後の液を再度生物処理する必要があった
By the way, among the conventional methods for removing persistent organic matter,
Adsorption methods require frequent replacement or regeneration of the adsorbent;
This will significantly increase the cost of water treatment. Also,
The coagulation-sedimentation method using a coagulant has a small removal rate of 10 to 30%, and high removal performance cannot be expected. II
The decomposition method using an oxidizing agent such as □OZ+ Ch not only requires injection of a large amount of oxidizing agent in order to obtain a high removal rate, but also requires biological treatment of the liquid after oxidative decomposition.

一方、接触脱リン法は、水中に難分解性の有機物が含有
されていると、長期間のうちにこれらの有機物が粒状物
表面を被覆し、リン除去性能が低下する問題があった。
On the other hand, the catalytic dephosphorization method has a problem in that when persistent organic substances are contained in water, these organic substances coat the surface of the particulate matter over a long period of time, resulting in a decrease in phosphorus removal performance.

これを解消する方法として、有機物で被覆された粒状物
を酸やアルカリ溶液に浸漬することが行われていたが、
再生廃液の処理や結晶化したリン酸カルシウムの溶解な
どが問題となっていた。
One way to solve this problem was to immerse granular materials coated with organic matter in acid or alkaline solutions.
Problems such as the treatment of recycled waste fluid and the dissolution of crystallized calcium phosphate have arisen.

本発明は、前記従来の問題点を解決し、有機性汚水中の
難分解性の有機物やリンを効率的かつ安定的に除去する
方法を捉供することを目的とするものである。
An object of the present invention is to solve the above-mentioned conventional problems and provide a method for efficiently and stably removing recalcitrant organic matter and phosphorus from organic wastewater.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、有機性汚水のpHを3.0〜6.0に調整し
た後、好気的条件下において有機物吸着能力を有する粒
状ろ材に接触せしめることを特徴とする有機性汚水の処
理方法である。
The present invention is a method for treating organic sewage, which comprises adjusting the pH of organic sewage to 3.0 to 6.0 and then bringing it into contact with a granular filter medium having an ability to adsorb organic matter under aerobic conditions. be.

また本発明は、前記処理を行った有機性lη水を、さら
にカルシウム及びアルカリの存在下でリン除去能力を有
する粒状物と接触せしめることをも特徴としている。
The present invention is also characterized in that the treated organic lη water is further brought into contact with granular materials having phosphorus removal ability in the presence of calcium and alkali.

さらに本発明は、有機性lη水のpnを8.5〜9.5
に調整した後、好気的条件下において有機物吸着能力を
有する粒状ろ材に接触せしめることを特徴とする有機性
汚水の処理方法であり、また、水中の炭酸成分を可及的
に除去した有機性汚水のpHを8.5〜9.5に調整し
た後、好気的条件下において有機物吸着能力を有する粒
状ろ材に接触せしめ、さらにカルシウム及びアルカリの
存在下でリン除去能力を有する粒状物と接触せしめるこ
とをも特徴としている。
Furthermore, in the present invention, the pn of organic lη water is 8.5 to 9.5.
This is a method for treating organic wastewater, which is characterized in that it is brought into contact with a granular filter medium that has the ability to adsorb organic matter under aerobic conditions after being adjusted to After adjusting the pH of the wastewater to 8.5 to 9.5, the wastewater is brought into contact with a granular filter medium having the ability to adsorb organic matter under aerobic conditions, and further brought into contact with granules having the ability to remove phosphorus in the presence of calcium and alkali. It is also characterized by forcing.

〔作 用〕[For production]

本発明の作用を実施態様の一例を示す図面を参照しなが
ら以下に説明する。
The operation of the present invention will be explained below with reference to the drawings showing an example of the embodiment.

第1図において、原水1である下水二次処理水をpH調
整槽2に導入し、po電極4のpH値に連動させつつ鉱
酸溶液3を注入し、pHを3.0〜6.0、好ましくは
3.0〜5.5に調整する。鉱酸溶液3の注入量を減ら
すためには、前段の下水二次処理工程内で生物学的硝化
作用を進行させ、M−アルカリ度成分を低下させると良
い。
In FIG. 1, secondary treated sewage water, which is raw water 1, is introduced into a pH adjustment tank 2, and a mineral acid solution 3 is injected in conjunction with the pH value of a PO electrode 4 to adjust the pH to 3.0 to 6.0. , preferably adjusted to 3.0 to 5.5. In order to reduce the amount of injected mineral acid solution 3, it is preferable to allow biological nitrification to proceed in the preceding secondary sewage treatment step to reduce the M-alkalinity component.

このpH調整水を流入管6より反応槽5に流入させるが
、反応槽5内には、有機物吸着能力を有する粒状ろ材7
′の充填層7が下部の砂利層8で支持されており、流入
したp It 2m整水がこれらを下向流で通水する間
に充填N7内を好気的状態に保持する。
This pH-adjusted water flows into the reaction tank 5 through the inflow pipe 6. Inside the reaction tank 5, a granular filter material 7 having an ability to adsorb organic matter is provided.
The packed bed 7 of ' is supported by the lower gravel layer 8, and the inside of the packed N7 is maintained in an aerobic state while the inflow p It 2m regulated water flows through these in a downward flow.

充填N7内を好気的状態に保持する手段としては、充填
層7に空気あるいは酸素を少なくとも含有するガスを吹
き込むか、又は原水l中に直接空気等を吹き込んで酸素
を溶解する方法や原水1に酸を供給して曝気後に充填層
7に通水する方法、あるいはそれらの併用等があげられ
、特に限定されるものではない。充taN7に空気等を
吹き込むタイプでは、充填層7の種々のレベルから吹き
込むことができるが、充填層7よりも下部から吹き込む
ことが好ましい0例えば図示例のように、充填層7を支
持する砂利層8中に、送風機10に連なる散気管9を配
備し、充填N7全体への酸素の均一な配分を効率的に行
い、充填層7全体を常に好気的状態に保持することがで
きる。散気管9の位置は、図示例のように、充填層7よ
り下部が好ましいが、充填層7内でもかまわない。また
、充填N7を支持する砂利層8に代え、多孔板等の支持
板13(第20参照)でも良く、その場合の散気管9の
位置は支持板より上方でも下方でもかまわない。
As a means of maintaining the inside of the packed bed 7 in an aerobic state, there are methods of blowing air or a gas containing at least oxygen into the packed bed 7, or blowing air directly into the raw water 1 to dissolve oxygen, or a method of dissolving oxygen by blowing air or the like directly into the raw water 1. Examples include a method in which acid is supplied to the container and then water is passed through the packed bed 7 after aeration, or a combination thereof is used, and the method is not particularly limited. In the case of the type in which air or the like is blown into the packed bed 7, the air can be blown from various levels of the packed bed 7, but it is preferable to blow air from below the packed bed 7. A diffuser pipe 9 connected to a blower 10 is provided in the layer 8 to efficiently uniformly distribute oxygen throughout the packed layer 7 and to maintain the entire filled layer 7 in an aerobic state at all times. As shown in the illustrated example, the diffuser pipe 9 is preferably located below the packed bed 7, but may also be located within the packed bed 7. Further, instead of the gravel layer 8 supporting the filling N7, a support plate 13 (see No. 20) such as a perforated plate may be used, and in that case, the position of the aeration pipe 9 may be above or below the support plate.

このようにして反応槽5での通水を継続すると、粒状ろ
材7′の表面に微生物膜が生成し、粒状ろ材7′に吸着
濃縮された有機物が分解されるとともに、有機物が微生
物に吸着され、処理水は処理水流出管11から槽外に流
出する。このような反応は、pH3,0〜6.0という
特異な条件下で効率的に進行する。
When water continues to flow through the reaction tank 5 in this way, a microbial film is formed on the surface of the granular filter medium 7', and the organic matter adsorbed and concentrated on the granular filter medium 7' is decomposed, and the organic matter is adsorbed by the microorganisms. The treated water flows out of the tank from the treated water outflow pipe 11. Such reactions proceed efficiently under specific conditions of pH 3.0 to 6.0.

なお、前記pH3ll整水の充填層7への通水方向は、
前述のように下向流とする代わりに上向流とすることも
できる。
In addition, the water flow direction to the packed bed 7 of the pH 3ll regulated water is as follows:
Instead of the downward flow as described above, the upward flow can also be used.

このような処理を長時間継続すると充填N7内で目詰ま
りが生じ、通水抵抗が増大する。一定の通水抵抗に達し
た時には、砂利層8内下部より空気洗浄管12から洗浄
空気を、処理水流出管11から洗浄水を流出させ、充填
層7中に捕捉されたSSの除去及び微生物膜の一部の剥
離を行う。
If such processing continues for a long time, clogging will occur in the filling N7, and water flow resistance will increase. When a certain water flow resistance is reached, cleaning air is discharged from the air cleaning pipe 12 from the lower part of the gravel layer 8, and cleaning water is discharged from the treated water outflow pipe 11 to remove SS trapped in the packed bed 7 and to remove microorganisms. Part of the membrane is peeled off.

また、前記粒状ろ材7′としては、活性炭、骨炭、ゼオ
ライトなどの比表面積の大きい(好ましくは100n(
/g以上)吸着材が使用できるが、活性炭、骨炭が最も
好ましい。このような粒状ろ材を用いると、前記操作の
pH域(3,0〜6.0)では重金属も除去することが
できる。
The granular filter medium 7' may be made of activated carbon, bone charcoal, zeolite, or the like having a large specific surface area (preferably 100n).
/g or more) can be used, but activated carbon and bone char are most preferred. When such a granular filter medium is used, heavy metals can also be removed in the pH range (3.0 to 6.0) of the above operation.

第2図例においては、有機物吸着能力を有する粒状ろ材
7′として粒径の大きいものを使用し、この充填N7を
多孔板等の支持板13上に支持したものである。空気は
送風機10から支持板13より下方の水面上に直接吹き
込み、その作用は第1図の場合とほとんど変わるところ
がないが、反応槽5の下部から循環ポンプ14により、
処理水を反応槽5の上部に循環させることによって処理
効率を高めることができる。
In the example shown in FIG. 2, a granular filter medium 7' with a large particle size is used as the granular filter medium 7' having an ability to adsorb organic matter, and this packed material N7 is supported on a support plate 13 such as a perforated plate. Air is blown from the blower 10 directly onto the water surface below the support plate 13, and its action is almost the same as in the case shown in FIG.
By circulating the treated water to the upper part of the reaction tank 5, the treatment efficiency can be increased.

また、第3図は、原水1中のCOD□のみならず、リン
をも効果的に除去する一実施態様を示すものである。第
3図においては、下水二次処理水である原水1を鉱酸溶
液3でpo3.o〜6.0に調整し、空気吹込等で好気
状態に保持して反応槽5にて粒状ろ材に接触させて処理
することは、前述した第1図又は第2図の処理方式と同
じであるが、このようにして処理すると原水中のCOD
□が除去されると同時に炭酸物質も除去される。これら
の物質は、リン鉱石などを使用した接触脱リン法におけ
るリン除去反応を阻害する物質として知られているが、
前述のように既に除去されているから、反応槽5からの
処理水にカルシウム及びアルカリ15を添加して調整槽
16にて調整後、接触脱リン槽17に導いて水中のリン
を除去する。
Moreover, FIG. 3 shows an embodiment in which not only COD□ but also phosphorus in the raw water 1 is effectively removed. In FIG. 3, raw water 1, which is secondary treated sewage water, is treated with mineral acid solution 3 to a po3. The method of adjusting the temperature to 0 to 6.0, maintaining it in an aerobic state by blowing air, etc., and contacting it with a granular filter medium in the reaction tank 5 is the same as the treatment method shown in Fig. 1 or Fig. 2 described above. However, when treated in this way, COD in raw water
At the same time as □ is removed, carbonic substances are also removed. These substances are known to inhibit the phosphorus removal reaction in the catalytic dephosphorization method using phosphate rock, etc.
Since the water has already been removed as described above, calcium and alkali 15 are added to the treated water from the reaction tank 5, and after adjustment in the adjustment tank 16, the water is led to the catalytic dephosphorization tank 17 to remove phosphorus from the water.

さらに、第1図及び第2図に示したような処理において
、原水1中に注入する鉱酸溶液3に代えて、アルカリ溶
液を注入して原水1のpl+を8.5〜9.5に調整し
た後、好気的条件下において有機物吸着能力を有する粒
状ろ材に接触させることも有効である。このようなアル
カリ性下における処理は、前述の酸性下(pH3,0〜
6.0)における処理に比べるとやや効率が悪いものの
、従来行われている通常のpl+範囲の生物活性炭処理
に比べるとCOD□の除去率が良好であった。
Furthermore, in the treatment shown in FIGS. 1 and 2, instead of the mineral acid solution 3 injected into the raw water 1, an alkaline solution is injected to bring the pl+ of the raw water 1 to 8.5 to 9.5. After adjustment, it is also effective to contact a granular filter medium having an ability to adsorb organic matter under aerobic conditions. Such treatment under alkaline conditions is similar to the above-mentioned treatment under acidic conditions (pH 3.0~
Although the efficiency was slightly lower than the treatment in 6.0), the removal rate of COD□ was better than the conventional biological activated carbon treatment in the pl+ range.

このアルカリ性下でのCOD□除去に接触脱リン法を組
み合わせる場合、第4図のような組合せとなる。即ち第
4図において、原水lに鉱酸溶液3を添加して脱炭酸槽
18で空気吹込等によって炭酸物質を除去したのち(こ
の時同時に原水中にDOが供給される)、調整槽16で
カルシウム及びアルカリ15によって、カルシウム濃度
を調整すると同時にpNを8.5〜9.5に調整後、活
性炭を充填した反応槽5に通水してCOD□を除去し、
次いで接触脱リン槽17に導いて水中のリンを除去する
When the catalytic dephosphorization method is combined with this COD□ removal under alkaline conditions, the combination is as shown in FIG. 4. That is, in FIG. 4, after adding mineral acid solution 3 to raw water l and removing carbonated substances by air blowing etc. in decarbonation tank 18 (DO is simultaneously supplied into the raw water at this time), in adjustment tank 16 After adjusting the calcium concentration and at the same time adjusting the pN to 8.5 to 9.5 with calcium and alkali 15, water is passed through a reaction tank 5 filled with activated carbon to remove COD□,
Next, the water is introduced into a catalytic dephosphorization tank 17 to remove phosphorus from the water.

この場合、活性炭充填層を曝気すると、水中の炭酸物質
が再吸入されるので、反応槽5での曝気は行わない。
In this case, when the activated carbon packed bed is aerated, carbonic substances in the water are re-inhaled, so aeration in the reaction tank 5 is not performed.

また、第5図のように反応槽5と接触脱リン槽17を一
つにし、リン鉱石充填層の上に活性炭充填層を積層して
COO,リン除去槽19とした時は、装置ならびに工程
の簡略化を図ることができる。
In addition, when the reaction tank 5 and the catalytic dephosphorization tank 17 are combined into one as shown in Fig. 5, and an activated carbon packed bed is laminated on top of the phosphate ore packed bed to form a COO, phosphorus removal tank 19, the equipment and process can be simplified.

〔実施例〕〔Example〕

実施例 1 有効径0.8 amの活性炭21を充填し、底部に敗気
球を設けた内径50mmX高さ3000鶴の円筒カラム
に、下水二次処理水を原水としてこれに1%硫酸又はN
aOH1%溶液を添加し、そのpllを2.0.3.5
4.5. 5.5. 6.5. 7.5. 8.5. 
9.0. 9.5゜10.0にそれぞれ調整したものを
下向流にて33cc/分で通水し、同時に散気法からカ
ラム内に0.11/分にて空気を供給した。この時の各
通水時のpHと水中のCOD□の除去能は表−1に示す
通りであった。
Example 1 Secondary treated sewage water was used as raw water and 1% sulfuric acid or N
Add aOH 1% solution and reduce its pll to 2.0.3.5
4.5. 5.5. 6.5. 7.5. 8.5.
9.0. Water was adjusted to 9.5° and 10.0° in a downward flow at a rate of 33 cc/min, and at the same time, air was supplied into the column at a rate of 0.11/min using an aeration method. At this time, the pH during each water flow and the ability to remove COD□ in water were as shown in Table 1.

なお、原水水質は、 C0Ds、     10.0〜15.0 (■/l1
)S S        1.5〜3.0(■/N)M
−アルカリ度 100〜150 (■/1)Ca   
     60〜80 (mir/jりであった。
In addition, the raw water quality is C0Ds, 10.0-15.0 (■/l1
)SS 1.5~3.0(■/N)M
-Alkalinity 100-150 (■/1)Ca
It was 60-80 (mir/j).

以下余白 表−1から明らかなように、本発明のpHでは、下水二
次処理水中のCOD□の除去率が著しく高く、処理水の
GODH−濃度(平均値)を4.0mg/l以下にする
ことができ、また活性炭の再生は1年間の実験期間中不
要であった。
As is clear from Table 1 below, at the pH of the present invention, the removal rate of COD Activated carbon regeneration was not necessary during the one-year experimental period.

実施例 2 有効径0.80の活性炭、骨炭、ゼオライトをそれぞれ
21充填し、底部に散気法を設けた内径50n×高さ3
000 mの各円筒カラムに、次に示す水質の原水のp
llを4.5として下向流にて33cc/分で通水を行
った結果は、表−2に示す通りであった。
Example 2 Filled with 21 pieces each of activated carbon, bone charcoal, and zeolite with an effective diameter of 0.80, and equipped with an aeration method at the bottom, inner diameter 50n x height 3
000 m of raw water of the following quality is added to each cylindrical column.
The results of water flow at 33 cc/min in a downward flow with 1 liter of 4.5 are as shown in Table 2.

原水水質: COD□     9.8〜17.0(曙/りS S 
       1.6〜3.5(■/N)M−アルカリ
度  98〜120(■/It)Ca        
60〜80 (If/J)以下余白 表 注  処理水水質は年平均値である。
Raw water quality: COD□ 9.8-17.0 (Akebono/Ri SS
1.6-3.5 (■/N) M-alkalinity 98-120 (■/It) Ca
60-80 (If/J) Below margin table note Treated water quality is the annual average value.

実施例 3 実施例1のpH4,5の処理水に、消石灰及び塩化カル
シウムを添加し、pH9,0、Ca70〜90*/ 7
!に調整したものを、有効径0.45mのリン鉱石11
を充填した内径50龍×高さ3000mmの円筒カラム
に下向流にて30ee/分で通水したところ、約1年間
にわたり、リン除去率85%(原水リン濃度1.0可/
l、流出水リン濃度0.15■/ l ) 、 coo
、4M除去率87.5%が得られた。
Example 3 Slaked lime and calcium chloride were added to the treated water of Example 1 with a pH of 4.5 to give a pH of 9.0 and a Ca of 70 to 90*/7.
! Phosphate rock 11 with an effective diameter of 0.45 m was adjusted to
When water was passed through a cylindrical column with an inner diameter of 50mm and a height of 3000mm filled with water at a rate of 30ee/min in a downward flow for about one year, the phosphorus removal rate was 85% (raw water phosphorus concentration 1.0%/min).
l, effluent water phosphorus concentration 0.15■/l), coo
, a 4M removal rate of 87.5% was obtained.

一方、比較例として、実施例1の原水(下水二次処理水
)を、滞留時間15分の脱炭酸槽でpl+4.5の条件
で曝気CG/L=5)処理した後、消石灰及び塩化カル
シウムを添加し、pH9,0、Ca60〜80owr/
βに調整し、前記と同様に円筒カラムに通水したところ
、流出水のリン濃度はやや上昇する傾向がみられ、リン
除去率が年平均609A(原水リン濃度1.0■/1.
流出水リン濃度0.4■/1)COD□除去率10%と
なった。
On the other hand, as a comparative example, the raw water (secondary treated sewage water) of Example 1 was treated with aeration CG/L=5) in a decarbonation tank with a residence time of 15 minutes under the condition of pl+4.5, and then treated with slaked lime and calcium chloride. was added, pH 9.0, Ca 60-80owr/
When the water was adjusted to β and passed through the cylindrical column in the same manner as above, the phosphorus concentration in the effluent tended to rise slightly, and the annual average phosphorus removal rate was 609A (raw water phosphorus concentration 1.0/1.
Effluent water phosphorus concentration was 0.4■/1) COD□ removal rate was 10%.

実施例 4 実施例1の原水(下水二次処理水)を、滞留時間15分
の脱炭酸槽において、pH4,5の条件で曝気(G/L
=5)処理した後、消石灰及び塩化カルシウムを添加し
、pl+9.0 、 Ca70〜90mg/ 1に調整
した。その後、これを有効径0.8■1の活性炭を24
充填した内径50tix高さ3000龍の円筒カラムは
、上向流にて33cc/分で通水した。
Example 4 The raw water (secondary treated sewage water) of Example 1 was aerated (G/L
=5) After the treatment, slaked lime and calcium chloride were added to adjust the pl+9.0 and Ca70 to 90 mg/1. Then, add 24 pieces of activated carbon with an effective diameter of 0.8
A packed cylindrical column with an inner diameter of 50 tix and a height of 3000 mm was passed with water at 33 cc/min in an upward flow.

この処理水を有効径0.450のリン鉱石を11充填し
た内径50鰭×高さ3000mの円筒カラムに上向流に
て30cc/分で通水したところ、約1年間にわたり、
リン除去率70%(原水リン濃度1.0曙/1.流出水
リン濃度0.3■//)、COD□除去率75%が得ら
れた。
When this treated water was passed in an upward flow at 30 cc/min through a cylindrical column with an inner diameter of 50 fins and a height of 3,000 m packed with 11 phosphate rocks with an effective diameter of 0.450, the water flowed upward at a rate of 30 cc/min for about 1 year.
A phosphorus removal rate of 70% (raw water phosphorus concentration 1.0/1. effluent water phosphorus concentration 0.3//) and a COD□ removal rate of 75% were obtained.

一方、比較例として、同様の原水を、前記と同様に脱炭
酸、 pHl!整した後、有効径0.8 mの砂を21
充填した内径50龍×高さ3000mmの円筒カラムへ
上向流通水した。この処理水を、有効径0.45 as
のリン鉱石を11充填した内径50龍×高さ3000n
+の円筒カラムに上向流にて30cc/分で通水したと
ころ、流出水のリン濃度はやや上昇する傾向があり、リ
ン除去率が年平均50%(原水リン濃度1.0曙/l、
流出水リン濃度0.5■/1)、COD□除去率10%
となった。
On the other hand, as a comparative example, the same raw water was decarboxylated and pHl! After leveling, 21 pieces of sand with an effective diameter of 0.8 m were
Water was allowed to flow upward into a filled cylindrical column with an inner diameter of 50 mm and a height of 3000 mm. This treated water was collected using an effective diameter of 0.45 as
Inner diameter 50mm x height 3000n filled with 11 pieces of phosphate rock
When water was passed through a positive cylindrical column at a rate of 30 cc/min in an upward flow, the phosphorus concentration in the effluent tended to rise slightly, and the phosphorus removal rate was on average 50% per year (raw water phosphorus concentration 1.0/l). ,
Effluent water phosphorus concentration 0.5■/1), COD□ removal rate 10%
It became.

C発明の効果〕 以上述べたように本発明によれば、有機性汚水のρ11
を最適範囲に調整するのみで好気的条件下において有機
物吸着能力を有する粒状ろ材に接触させるという極めて
簡易な操作によって、有機性汚水中の難分解性有機物を
効率よくかつ安定して除去することができると共に、接
触脱リン工程を後続させることにより、効率的なリン除
去も期待できるものである。
C Effect of the invention] As described above, according to the present invention, the ρ11 of organic wastewater
To efficiently and stably remove recalcitrant organic matter from organic sewage through an extremely simple operation of simply adjusting the water to an optimal range and bringing it into contact with a granular filter medium that has the ability to adsorb organic matter under aerobic conditions. In addition to this, efficient phosphorus removal can also be expected by following the catalytic dephosphorization process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はそれぞれ本発明の実施Li様を示す説
明図である。 1・・・原水、2・・・pH調整槽、3・・・鉱酸溶液
、4・・・pH電極、5・・・反応槽、6・・・流入管
、7・・・充填層、7′・・・粒状ろ材、8・・・砂利
層、9・・・散気管、10・・・送風機、11・・・処
理水流出管、12・・・空気洗浄管、13・・・支持板
、14・・・循環ポンプ、15・・・カルシウム及びア
ルカリ剤、16・・・調整槽、17・・・接触脱リン槽
、1B・・・脱炭酸槽、19・・・con。 リン除去槽。
FIG. 1 to FIG. 5 are explanatory diagrams each showing a mode of implementation of the present invention. DESCRIPTION OF SYMBOLS 1... Raw water, 2... pH adjustment tank, 3... Mineral acid solution, 4... pH electrode, 5... Reaction tank, 6... Inflow pipe, 7... Filled bed, 7'... Granular filter material, 8... Gravel layer, 9... Air diffuser pipe, 10... Air blower, 11... Treated water outflow pipe, 12... Air cleaning pipe, 13... Support Plate, 14... Circulation pump, 15... Calcium and alkali agent, 16... Adjustment tank, 17... Catalytic dephosphorization tank, 1B... Decarbonation tank, 19... Con. Phosphorus removal tank.

Claims (4)

【特許請求の範囲】[Claims] (1)有機性汚水のpHを3.0〜6.0に調整した後
、好気的条件下において有機物吸着能力を有する粒状ろ
材に接触せしめることを特徴とする有機性汚水の処理方
法。
(1) A method for treating organic sewage, which comprises adjusting the pH of the organic sewage to 3.0 to 6.0 and then bringing it into contact with a granular filter medium having an ability to adsorb organic matter under aerobic conditions.
(2)有機性汚水のpHを3.0〜6.0に調整した後
、好気的条件下において有機物吸着能力を有する粒状ろ
材に接触せしめ、さらにカルシウム及びアルカリの存在
下でリン除去能力を有する粒状物と接触せしめることを
特徴とする有機性汚水の処理方法。
(2) After adjusting the pH of organic wastewater to 3.0 to 6.0, it is brought into contact with a granular filter medium that has the ability to adsorb organic matter under aerobic conditions, and the phosphorus removal ability is further improved in the presence of calcium and alkali. A method for treating organic wastewater, which comprises bringing it into contact with particulate matter.
(3)有機性汚水のpHを8.5〜9.5に調整した後
、好気的条件下において有機物吸着能力を有する粒状ろ
材に接触せしめることを特徴とする有機性汚水の処理方
法。
(3) A method for treating organic sewage, which comprises adjusting the pH of the organic sewage to 8.5 to 9.5, and then bringing the organic sewage into contact with a granular filter medium having an ability to adsorb organic matter under aerobic conditions.
(4)水中の炭酸成分を可及的に除去した有機性汚水の
pHを8.5〜9.5に調整した後、好気的条件下にお
いて有機物吸着能力を有する粒状ろ材に接触せしめ、さ
らにカルシウム及びアルカリの存在下でリン除去能力を
有する粒状物と接触せしめることを特徴とする有機性汚
水の処理方法。
(4) After removing as much carbonic acid from the water as possible and adjusting the pH of the organic wastewater to 8.5 to 9.5, it is brought into contact with a granular filter medium capable of adsorbing organic matter under aerobic conditions, and then A method for treating organic wastewater, which comprises bringing it into contact with granules having phosphorus removal ability in the presence of calcium and alkali.
JP25526989A 1989-10-02 1989-10-02 Organic wastewater treatment method Expired - Lifetime JPH0677730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25526989A JPH0677730B2 (en) 1989-10-02 1989-10-02 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25526989A JPH0677730B2 (en) 1989-10-02 1989-10-02 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03118891A true JPH03118891A (en) 1991-05-21
JPH0677730B2 JPH0677730B2 (en) 1994-10-05

Family

ID=17276401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25526989A Expired - Lifetime JPH0677730B2 (en) 1989-10-02 1989-10-02 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0677730B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
WO2006027820A1 (en) * 2004-09-03 2006-03-16 Kyowa Exeo Corporation Method of water treatment
JP2008207066A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2008207065A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2008207064A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
CN105060570A (en) * 2015-08-28 2015-11-18 尚鼎炉业科技(扬州)有限公司 Process for sewage treatment by means of activated carbon adsorption equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
WO2006027820A1 (en) * 2004-09-03 2006-03-16 Kyowa Exeo Corporation Method of water treatment
JP2008207066A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2008207065A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2008207064A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
CN105060570A (en) * 2015-08-28 2015-11-18 尚鼎炉业科技(扬州)有限公司 Process for sewage treatment by means of activated carbon adsorption equipment

Also Published As

Publication number Publication date
JPH0677730B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US3773659A (en) System for processing wastes
JPH09314163A (en) Method and apparatus for treating waste water
CN110451718A (en) Advanced waste treatment apparatus based on ozone and biofilm particles sewage sludge reactor
JPH03118891A (en) Treatment of organic sewage
JP3575047B2 (en) Wastewater treatment method
JP2584386B2 (en) Biological filtration method and device
JP3095952B2 (en) Simultaneous treatment of kitchen wastewater and garbage
JPH05337492A (en) Biological treatment of sewage
JPH02229595A (en) Water treatment by biological active carbon
JPH06142668A (en) Purifying treatment device for organic sewage
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH0671284A (en) High-level purifying device for organic polluted water
JPH0576897A (en) Water purifying treatment method and apparatus
JP3555812B2 (en) Advanced treatment method for organic wastewater
JP4181501B2 (en) Biofilm filtration apparatus and method
JPS6321554B2 (en)
JPH11147088A (en) Dephosphorization of waste water
JPH0811233B2 (en) Method for purifying eutrophied raw water
JP2003170189A (en) Treatment equipment
JPH05277475A (en) Treatment method for water containing organic substance
JPH07116683A (en) Silicate adding activated sludge method
JP2657712B2 (en) How to regenerate activated carbon
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JP2952125B2 (en) Surfactant-containing water treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

EXPY Cancellation because of completion of term