JPH02229595A - Water treatment by biological active carbon - Google Patents

Water treatment by biological active carbon

Info

Publication number
JPH02229595A
JPH02229595A JP1050162A JP5016289A JPH02229595A JP H02229595 A JPH02229595 A JP H02229595A JP 1050162 A JP1050162 A JP 1050162A JP 5016289 A JP5016289 A JP 5016289A JP H02229595 A JPH02229595 A JP H02229595A
Authority
JP
Japan
Prior art keywords
active carbon
activated carbon
particle density
water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1050162A
Other languages
Japanese (ja)
Other versions
JPH0474076B2 (en
Inventor
Yuichi Fuchu
裕一 府中
Shigeo Yasutake
安武 重雄
Eiji Tochikubo
栃久保 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1050162A priority Critical patent/JPH02229595A/en
Publication of JPH02229595A publication Critical patent/JPH02229595A/en
Publication of JPH0474076B2 publication Critical patent/JPH0474076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To enhance the bioregeneration effect of active carbon by passing polluted water from the layer of the active carbon having the particle density of a low specific numerical value to the layer of the active carbon of the particle density of a high specific numerical value in this order. CONSTITUTION:The polluted water, such as the secondary treated water of sewerage, is put into a treating tank 2 from above and passes through the layer of the active carbon A of the particle density as low as 0.3 to 0.6g/cc formed in the upper part thereof then through the layer of the active carbon B of the particle density as high as 0.6 to 1.0g/cc formed in the lower part in this order. Since bacteria are liable to propagate in the active carbon A, the bioeffect is sufficiently executed and the active carbon B has the large adsorption amt. of the polluting components. The bacteria which decompose the polluting materials are included in the bacteria groups sticking in a large amt. on the active carbon A and, therefore, the decomposing enzyme is secreted and while a part of the enzyme is used in the active carbon A, the other part arrives together with the polluted water at the inside of the active carbon B to make up the deficiency of the number of the bacteria in the active carbon B. The bioregeneration effect is, therefore, greatly improved. The feeding of an oxygen- contg. gas 6 from an air diffusion pipe 5 disposed in the lower part is a good practice to maintain the entire area of the active carbon packed bed in an aerobic state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水2次処理水、産業廃水や有機性汚染の進
行した上水用源水のような汚染水を生物の付着した活性
炭によって、汚染水中の微量有機物や臭気成分、アンモ
ニア性窒素(NH.−N)などを好気状態で生物分解す
る水処理方法に関する. 〔従来の技術〕 上水道分野では水源の汚染が進行しており、特に有機性
汚染が著しくなっているが、この水源の汚染に対応して
従来とは異なった浄化技術が研究開発されている.その
一つが生物活性炭処理の技術であり、この処理方法は、
溶存酸素を含む汚染水を活性炭層に通水すると、汚染水
中の汚濁物質が活性炭に吸着されるとともに生物学的分
解などの生物学的除去作用を受けるため、活性炭が理論
的に吸着できる量よりも多くの汚濁物質が除去されると
いうものである.〔黒沢ら「水質汚濁研究」第11巻第
9号590〜598頁(1988))。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to treating contaminated water, such as secondary treated sewage water, industrial wastewater, and water source water with advanced organic contamination, using activated carbon with attached living organisms. , relates to a water treatment method that biodegrades trace organic matter, odor components, ammonia nitrogen (NH.-N), etc. in contaminated water under aerobic conditions. [Conventional technology] In the water supply field, water sources are becoming increasingly contaminated, with organic pollution becoming particularly significant. In response to this water source pollution, research and development are being carried out on purification technologies that are different from conventional ones. One of these is biological activated carbon treatment technology, and this treatment method is
When contaminated water containing dissolved oxygen is passed through an activated carbon layer, the pollutants in the contaminated water are adsorbed by the activated carbon and subjected to biological removal effects such as biological decomposition. Many pollutants are also removed. [Kurosawa et al., Water Pollution Research, Vol. 11, No. 9, pp. 590-598 (1988)].

ここでは、活性炭が吸着した汚濁物質が生物学的除去作
用によってなくなり、あたかも活性炭の吸着能力が回復
するようにみえるところから、この生物学的除去作用は
生物再生作用と呼ばれている.活性炭は高価であり、生
物再生効果がなければ、これは単なる吸着材となり、頻
繁な交換が必要になるため、経済的でない.したがって
、交換頻度の少ない、生物再生効果の期待できる生物活
性炭処理方法は、今後の発展が期待されている。
Here, the pollutants adsorbed by the activated carbon are removed by biological removal, and it appears as if the activated carbon's adsorption capacity is restored, so this biological removal is called biological regeneration. Activated carbon is expensive, and without bioregeneration effects, it becomes a mere adsorbent and requires frequent replacement, making it uneconomical. Therefore, a biological activated carbon treatment method that requires less frequent replacement and is expected to have a biological regeneration effect is expected to be developed in the future.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の生物活性炭処理方法は、′“活性
炭吸着塔を設置したところ、生物活性炭効果がたまたま
認められた”という程度であり、生物再生の面からみる
と、十分な効果が引き出されているとはいいがたい. 本発明は、汚染水を生物の付着した活性炭によって好気
状態で浄化する水処理方法において、活性炭における生
物再生作用を最大限に発揮させることを目的とするもの
である。
However, with conventional biological activated carbon treatment methods, the effect of biological activated carbon was only observed by chance when an activated carbon adsorption tower was installed, and from the perspective of biological regeneration, sufficient effects have not been achieved. That's hard to say. The present invention aims to maximize the biological regeneration effect of activated carbon in a water treatment method in which contaminated water is purified in an aerobic state using activated carbon to which living organisms are attached.

〔諜題を解決するための手段〕[Means for solving intelligence problems]

本発明は、汚染水を生物の付着した活性炭によって好気
状態で浄化する水処理方法において、汚染水を粒子密度
0.3〜0.6g/ccの活性炭の層、粒子密度0. 
 6〜1.0g/ccの活性炭の層の順に通すことを特
徴とする水処理方法によって、前記の課題を根本的に解
決した. 以下、本発明を図面を参照しながら詳細に説明する. 第1図は、本発明の一実施態様を示したものであり、下
水2次処理水などの汚染水1は処理槽2の上部から入る
。処理槽2では活性炭(A)3と活性炭(B)4が固定
床に充填され、活性炭(A)3の層は処理槽2の上部に
、また活性炭(B)4の層は処理槽2の下部に形成され
ている.本発明で最も重要なことは、汚染水を粒子密度
0.3〜0.6g/ccの活性炭八の層、粒子密度0.
6〜1.0g/ccの活性炭Bの層の順に通すことであ
る. 従来、生物活性炭の処理効果については、そのミクロポ
ア(細孔)、とりわけ半径数十人の細孔の量に着目され
てきた。これは、水中に溶存する汚濁成分の大きさは数
十人程度であるため、孔径が数十人のミクロボアを多く
有する活性炭がこれらの汚濁成分に対する吸着量が多く
、したがってその吸着量が多いだけ生物再生作用が大き
くなるという考え方に基づいたものである。もっとも、
活性炭の吸着作用については、被吸着物質の大きさに関
する分子ふるい効果だけでなく、親水、疎水性や電位の
問題があるため、被吸着物質の大きさだけで論ずること
はできないが、それはかなりの影響力があるので、最も
影響の強い作用といわれている. しかし、発明者らは、生物再生作用は活性炭自体の吸着
能力ばかりでなく、微生物の保持量にも大きな関係があ
ると考えて実験したところ、微生物の保持量は活性炭の
粒子密度に依存することがわかった.すなわち、活性炭
はその粒子密度の低いものは微生物の保持量が大きいが
、その粒子密度の高いものは微生物の保持量が小さい.
これは、一般に粒子密度の低い活性炭は10μm(10
’入)オーダのマクロボアの比率が高く、数μmオーダ
である細菌が繁殖し易いためと思われる。
The present invention is a water treatment method in which contaminated water is purified in an aerobic state using activated carbon to which living organisms are attached.
The above problem was fundamentally solved by a water treatment method characterized by passing through layers of activated carbon at a concentration of 6 to 1.0 g/cc in sequence. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows one embodiment of the present invention, in which contaminated water 1 such as secondary treated sewage water enters a treatment tank 2 from the top. In the treatment tank 2, activated carbon (A) 3 and activated carbon (B) 4 are packed in a fixed bed, with the layer of activated carbon (A) 3 at the top of the treatment tank 2 and the layer of activated carbon (B) 4 at the top of the treatment tank 2. It is formed at the bottom. The most important thing in the present invention is that the contaminated water is treated with a layer of activated carbon having a particle density of 0.3 to 0.6 g/cc.
6 to 1.0 g/cc of activated carbon B is passed in this order. Conventionally, the treatment effects of biological activated carbon have focused on its micropores, particularly the amount of pores with a radius of several tens of people. This is because the size of the pollutant components dissolved in water is about a few dozen, so activated carbon, which has many micropores with a pore size of several dozen, can adsorb a large amount of these pollutants. This is based on the idea that biological regeneration effects will be enhanced. However,
Regarding the adsorption effect of activated carbon, there are not only molecular sieving effects related to the size of the adsorbed substance, but also hydrophilicity, hydrophobicity, and potential issues, so it cannot be discussed only based on the size of the adsorbed substance, but it is a significant Because of its influence, it is said to be the most influential effect. However, the inventors believed that the biological regeneration effect is largely related not only to the adsorption capacity of activated carbon itself, but also to the amount of microorganisms retained, and through experiments, they found that the amount of microorganisms retained depends on the particle density of activated carbon. I found out. In other words, activated carbon with a low particle density retains a large amount of microorganisms, but one with a high particle density retains a small amount of microorganisms.
Generally speaking, activated carbon with a low particle density is 10 μm (10
It is thought that this is because the ratio of macropores on the order of 10 μm is high, making it easy for bacteria on the order of several μm to proliferate.

さらに、粒子密度の低い活性炭は、マクロボアの比率が
高いため、汚濁物質を吸着する数十人オーダのミクロポ
アが若干少なくなるという欠点があり、粒子密度の低い
活性炭だけを用いても、生物再住作用については大きな
改善は期待できず、かえって場合によっては生物再生作
用が低下することがある. そこで、粒子密度の異なる活性炭について、その活性炭
の細孔半径細孔容積などの性状との関連性やそれらと生
物再生作用との関係について検討したところ、それらの
粒子密度と細孔半径、細孔容積などとの関連性は、その
一例を挙げると第1表に示すようであった。
Furthermore, activated carbon with a low particle density has a high ratio of macropores, which has the disadvantage that there are slightly fewer micropores on the order of tens of people that adsorb pollutants. No significant improvement can be expected in terms of effectiveness; in some cases, the bioregenerative action may actually decrease. Therefore, we investigated the relationship between the activated carbon's pore radius, pore volume, and other properties of activated carbon with different particle densities, and the relationship between these and biological regeneration effects. An example of the relationship with volume etc. is shown in Table 1.

第1表 活性炭の性状 第1表からもわかるように、粒子密度の高い活性炭は1
0μm(10’人)オーダのマクロボアの比率が少なく
、数十人オーダのミクロポアの比率が若干高いものであ
る。このため、この活性炭は汚濁成分の吸着量が多いの
で、従来から汚濁成分の吸着剤として使用されている. これに対し、粒子密度の低い活性炭は、1μm以上のマ
クロポアが多いため汚濁物質を吸着する数十人オーダの
ミクロボアが少なくなる.そして、このような粒子密度
が異なった活性炭を用いて様々な実験を繰り返したとこ
ろ、粒子密度0.  3〜0.6g/ccの活性炭Aに
汚染水を通した後、粒子密度0.6〜1.0g/ccの
活性炭Bを通すと、生物再生効果が著しく増大すること
を発見した. 具体的には、活性炭Aと活性炭Bとを汚染水の流れ方゛
向に直列に充填配備して、それに汚染水を通す.例えば
、第1図に示されるように、活性炭Bの層の上に活性炭
八の層を形成し、活性炭A層の上方から汚染水を流下さ
せる形式を取ってもよい。
Table 1 Properties of activated carbon As can be seen from Table 1, activated carbon with a high particle density has a
The ratio of macropores on the order of 0 μm (10′) is small, and the ratio of micropores on the order of several tens of pores is slightly high. For this reason, activated carbon has a large adsorption capacity for pollutant components, and has traditionally been used as an adsorbent for pollutant components. On the other hand, activated carbon, which has a low particle density, has many macropores of 1 μm or more, so there are fewer micropores on the order of a few dozen that adsorb pollutants. When various experiments were repeated using activated carbon with different particle densities, the particle density was 0. It was discovered that when contaminated water was passed through activated carbon A with a particle density of 3 to 0.6 g/cc and then through activated carbon B with a particle density of 0.6 to 1.0 g/cc, the biological regeneration effect was significantly increased. Specifically, activated carbon A and activated carbon B are packed and arranged in series in the direction of flow of contaminated water, and contaminated water is passed through them. For example, as shown in FIG. 1, a layer of activated carbon 8 may be formed on a layer of activated carbon B, and contaminated water may be allowed to flow down from above the activated carbon layer A.

活性炭Aの粒子密度が余り小さ過ぎると、こわれ易くな
るので0.3g/cc以上であることが必要で、実用上
は、材質によっても異なるが、0.4〜0.6g/cc
程度が好ましい.活性炭Bの粒子密度は、0.6〜1.
0g/ccの範囲であるが、数十人オーダのミクロボア
が最も多いものが良い.活性炭Bは粒子密度が大き過ぎ
ると、活性炭の賦活度が低下するためミクロボアが少な
くなって好ましくない.このため、活性炭Bは、粒子密
度を0.7〜0.9g/ccとするのが好ましい.また
、生物活性炭を用いる汚染水の処理技術においては、そ
の生物作用を十分に行わせるためには、好気状態を良好
に維持することが重要である.比較的汚濁の少ない汚染
水であれば、それが処理槽2に入る前に汚染水に十分な
溶解酸素を付加するだけで良いが、そうでない場合には
、第1図に示すように、活性炭充填層全域を好気状態に
維持するための手段として、活性炭Bliよりも下部に
配備した散気管5より酸素含有ガス6を送入する方法を
採ってもよい。酸素含有ガスとしては、空気、酸素など
を使用する. その際、第1図に示すように、汚染水を下向流で通水す
ると、気液向流効果のため、接触効率が向上し、送気量
が節約でき、省エネルギーになる。
If the particle density of activated carbon A is too small, it will easily break, so it needs to be 0.3 g/cc or more, and in practical terms it is 0.4 to 0.6 g/cc, although it varies depending on the material.
The degree is preferable. The particle density of activated carbon B is 0.6 to 1.
The range is 0g/cc, but the one with the largest number of micropores on the order of several dozen is best. If the particle density of activated carbon B is too large, the degree of activation of the activated carbon will decrease and the number of micropores will decrease, which is undesirable. Therefore, it is preferable that activated carbon B has a particle density of 0.7 to 0.9 g/cc. In addition, in the treatment of contaminated water using biological activated carbon, it is important to maintain good aerobic conditions in order to fully perform its biological effects. If the contaminated water is relatively clean, it is sufficient to add sufficient dissolved oxygen to the contaminated water before it enters the treatment tank 2, but if this is not the case, as shown in Figure 1, activated carbon As a means for maintaining the entire area of the packed bed in an aerobic state, a method may be adopted in which oxygen-containing gas 6 is introduced through a diffuser pipe 5 disposed below the activated carbon Bli. Air, oxygen, etc. are used as the oxygen-containing gas. At this time, as shown in FIG. 1, when the contaminated water is passed in a downward flow, the contact efficiency is improved due to the gas-liquid countercurrent effect, and the amount of air supplied can be saved, resulting in energy savings.

汚染水は上向流として流してもかまわない.この場合に
は、活性炭(A)3の層は下部層となる.また、汚染水
を下向流に通水し、活性炭八〇粒径を活性炭Bの粒径よ
りも大きくすると、複層濾過効果によって活性炭充填層
の目詰まりを防止することができるため、凝集沈澱設備
などの前処理を省略できる. 前記したように、活性炭(A)3と活性炭(B)4を通
過することによって汚染水1は浄化されて処理水8とな
り,処理水管7を通って排出される.なお、活性炭Aの
層と活性炭Bの層は直接積層させずに、別々に設けても
よい。
Contaminated water may flow upward. In this case, the layer of activated carbon (A) 3 becomes the lower layer. In addition, if contaminated water is passed in a downward flow and the activated carbon 80 particle size is made larger than the particle size of activated carbon B, the multi-layer filtration effect can prevent clogging of the activated carbon packed bed, resulting in coagulation and sedimentation. Pretreatment of equipment, etc. can be omitted. As described above, contaminated water 1 is purified by passing through activated carbon (A) 3 and activated carbon (B) 4 to become treated water 8, which is discharged through treated water pipe 7. Note that the layer of activated carbon A and the layer of activated carbon B may be provided separately without being directly laminated.

〔作用〕[Effect]

本発明で用いる粒子密度が0.  3〜0.6g/CC
の活性炭(A)は、1μm以上のマクロボアの比率が高
く、かつ10μmオーダのマクロボアの比率が高いため
,大きさが数μmオーダである細菌が繁殖し易いため生
物作用が十分に行われる.また、粒子密度が0.  6
〜1.0g/ccと高い活性炭(B)は、1参μm以上
の74クロボアの比率が少なく、数十人のミクロボアの
比率が若干高いため、汚濁成分の吸着量が多い. そして、汚染水をこれらの活性炭Aと活性炭Bを順に通
すと、生物再生効果が著しく増大する理由は、明らかで
はないが、おそらく次のようなことであろうと推測され
る.活性炭Aには前記したように細菌が多量に付着する
が、その細菌群のなかには被吸着物質である汚濁物質を
分解する細菌も含まれるため、分解酵素を分泌し、一部
の酵素は活性炭A内で使用されるが、一部は汚染水とと
もに活性炭B内に至り、活性戻Bでの細菌数の不足を補
っているのではないかと考えられる。
The particle density used in the present invention is 0. 3-0.6g/CC
Activated carbon (A) has a high ratio of macropores of 1 μm or more and a high ratio of macropores on the order of 10 μm, so bacteria with a size on the order of several μm can easily proliferate, so that the biological effect is sufficiently performed. In addition, the particle density is 0. 6
Activated carbon (B), which has a high concentration of ~1.0 g/cc, has a small proportion of 74 clobores of 1 μm or more, and a slightly high proportion of micropores of several tens of micropores, so it adsorbs a large amount of pollutant components. The reason why the biological regeneration effect increases markedly when contaminated water is passed through activated carbon A and activated carbon B in order is not clear, but it is likely to be as follows. As mentioned above, a large amount of bacteria adheres to activated carbon A, but since the bacterial group includes bacteria that decompose pollutants that are adsorbed substances, they secrete degrading enzymes, and some of the enzymes are attached to activated carbon A. However, it is thought that some of the activated carbon B enters the activated carbon B together with the contaminated water and compensates for the lack of bacteria in the activated carbon B.

〔実施例〕〔Example〕

以下、実施例によって本発明を具体的に説明する.ただ
し、本発明はこの実施例のみに限定されるものではない
. 実施例 下水2次処理水を被処理水として本発明に従って処理し
た.また、比較例として別の処理方法によって同じ被処
理水を処理した. 実験装置は径160mmX高さ5 5 0 0mmOカ
ラムを用いた.第2表に実験に使用した活性炭の仕様を
示し、また第3表に実験条件を示す.第3表に見えるよ
うに、比較例1は活性炭A単独を使用した場合であり、
比較例2は活性炭B単独を使用した場合であり、比較例
3は活性炭B、活性炭Aの順に充填した場合である. 第2表 活性炭の仕様 TOC除去率30%を破過とみなしたときの、交換まで
の活性炭使用可能期間と汚泥発生量を求めた.その結果
を第4表に示す. 第4表 処理効果 *  水質については運転開始後6ケ月後の値である. ** 逆洗は濾過圧力が100c11上昇した時点で行
った. 処理水SSは、運転初期からあまり変わらないが、処理
水TOCは経過日数とともに徐々に上昇する.本発明は
、比較例1,  2.  3に比べ、最も良好な水質の
処理水が得られた. 一方、本発明は、交換までの活性炭使用可能期間が比較
例の場合の1.5〜2倍程度延びている.また、汚泥発
生量は、活性炭A単独(比較例l)の場合とほとんど同
じであり、粒子密度の低い活性炭Aを全量用いなくとも
全量用いた場合とほぼ同様な効果が期待できる。
The present invention will be specifically explained below using Examples. However, the present invention is not limited to this example. EXAMPLE Secondary treated sewage water was treated according to the present invention as water to be treated. In addition, as a comparative example, the same treated water was treated using a different treatment method. The experimental equipment used was an O column with a diameter of 160 mm and a height of 5,500 mm. Table 2 shows the specifications of the activated carbon used in the experiment, and Table 3 shows the experimental conditions. As can be seen in Table 3, Comparative Example 1 is a case where activated carbon A alone was used,
Comparative Example 2 is a case where activated carbon B alone was used, and Comparative Example 3 is a case where activated carbon B and activated carbon A were filled in this order. Table 2: Activated carbon specifications When a TOC removal rate of 30% is considered as breakthrough, the usable period of activated carbon until replacement and the amount of sludge generated were determined. The results are shown in Table 4. Table 4: Treatment effect* Water quality is the value 6 months after the start of operation. ** Backwashing was performed when the filtration pressure increased by 100c11. The treated water SS does not change much from the beginning of operation, but the treated water TOC gradually increases as days pass. The present invention is based on Comparative Examples 1, 2. Compared to No. 3, treated water with the best quality was obtained. On the other hand, in the present invention, the usable period of activated carbon before replacement is approximately 1.5 to 2 times longer than in the comparative example. Further, the amount of sludge generated is almost the same as that of activated carbon A alone (Comparative Example 1), and even if activated carbon A with a low particle density is not used in its entirety, almost the same effect as when the entire amount is used can be expected.

〔発明の効果〕〔Effect of the invention〕

本発明は、粒子密度の低い活性炭と粒子密度の高い活性
炭とを直列に組み合わせることにより、生物再生作用が
増大し、それに伴い、活性炭の逆洗頻度が従来方法に比
べて少なくてすみ、また活性炭の交換までの使用期間が
従来方法の1.5倍程度まで延長することができたので
通水可能期間が著しく延長された.また、汚泥発生量に
ついても、粒子密度の低い活性炭を単独で行なった場合
とほぼ同様にすることができる. さらに、活性炭充填層下部に散気管を配備することによ
って、充填層全域を好気状態に維持することができるの
で、下水2次処理水のように酸素要求量の高い汚染水に
ついても有効に処理することができる.その際、被処理
水を下向流で通水すると、気液向流効果が発揮されるた
め、送気量の節約ができ、省エネルギーになる。
By combining activated carbon with a low particle density and activated carbon with a high particle density in series, the present invention increases the biological regeneration effect, and accordingly, the frequency of backwashing of the activated carbon is reduced compared to conventional methods. The period of use before replacement was extended by approximately 1.5 times compared to the conventional method, which significantly extended the period during which water could pass through. Furthermore, the amount of sludge generated can be almost the same as when activated carbon with low particle density is used alone. Furthermore, by installing an aeration pipe at the bottom of the activated carbon packed bed, the entire packed bed can be maintained in an aerobic state, making it possible to effectively treat contaminated water with a high oxygen demand, such as secondary treated sewage water. can do. At this time, when the water to be treated is passed in a downward flow, a gas-liquid countercurrent effect is exhibited, so the amount of air supplied can be saved, resulting in energy savings.

また、被処理水を下向流で通水し、かつ上層にある粒子
密度の低い活性炭の粒径を粒子密度の高い活性炭の粒径
よりも大きくすると、複層濾過効果によって活性炭の目
詰まりを防止することができるため、凝集沈澱設備など
の前処理を省略できる.
In addition, if the water to be treated is passed in a downward flow and the particle size of the activated carbon with a low particle density in the upper layer is made larger than the particle size of the activated carbon with a high particle density, the clogging of the activated carbon can be prevented due to the multilayer filtration effect. Since it is possible to prevent this, pretreatment such as coagulation and sedimentation equipment can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を行うための装置の模式図
を示す. 符号の説明 1・・・汚染水     2・・・処理槽3・・・活性
炭A    4・・・活性炭B5・・・散気管    
 6・・・酸素含有ガス7・・・処理水管    8・
・・処理水手 続 ネfli 正 書 事件の表示 平成1年特許願第501 62号 発明の名称 生物活性炭による水処理方法 補正をする者 事件との関係: 特許出願人 名称: (040)荏原インフィルコ株式会社(ほか1
名)
Figure 1 shows a schematic diagram of an apparatus for carrying out one embodiment of the present invention. Explanation of symbols 1... Contaminated water 2... Treatment tank 3... Activated carbon A 4... Activated carbon B5... Aeration pipe
6... Oxygen-containing gas 7... Treated water pipe 8.
...Treatment water procedure Nefli Display of official case 1999 Patent Application No. 501 62 Name of invention Person who amends water treatment method using biological activated carbon Relationship to case: Name of patent applicant: (040) Ebara Infilco Stock Company (and 1 other
given name)

Claims (1)

【特許請求の範囲】[Claims] 汚染水を生物の付着した活性炭によって好気状態で浄化
する水処理方法において、汚染水を粒子密度0.3〜0
.6g/ccの活性炭の層、粒子密度0.6〜1.0g
/ccの活性炭の層の順に通すことを特徴とする水処理
方法。
In a water treatment method that purifies contaminated water in an aerobic state using activated carbon with attached organisms, the contaminated water is purified with a particle density of 0.3 to 0.
.. 6g/cc activated carbon layer, particle density 0.6-1.0g
A water treatment method characterized by passing through layers of activated carbon in order of /cc.
JP1050162A 1989-03-03 1989-03-03 Water treatment by biological active carbon Granted JPH02229595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050162A JPH02229595A (en) 1989-03-03 1989-03-03 Water treatment by biological active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050162A JPH02229595A (en) 1989-03-03 1989-03-03 Water treatment by biological active carbon

Publications (2)

Publication Number Publication Date
JPH02229595A true JPH02229595A (en) 1990-09-12
JPH0474076B2 JPH0474076B2 (en) 1992-11-25

Family

ID=12851502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050162A Granted JPH02229595A (en) 1989-03-03 1989-03-03 Water treatment by biological active carbon

Country Status (1)

Country Link
JP (1) JPH02229595A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695722A1 (en) 1994-08-03 1996-02-07 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
US5599443A (en) * 1993-11-08 1997-02-04 Sharp Kabushiki Kaisha Apparatus for waste water treatment using charcoal biologically activated
US5702604A (en) * 1995-09-06 1997-12-30 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing granular sludge
US6056876A (en) * 1996-05-28 2000-05-02 Sharp Kabushiki Kaisha Method and apparatus for wastewater treatment
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
JP2010234370A (en) * 2010-06-03 2010-10-21 Nippon Kensetsu Gijutsu Kk Water cleaning method and water cleaning device
WO2011108478A1 (en) * 2010-03-05 2011-09-09 栗田工業株式会社 Water treatment method and process for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197081A (en) * 1981-05-28 1982-12-03 Akira Kakumoto Treatment of waste water
JPS6071081A (en) * 1983-09-26 1985-04-22 Unitika Ltd Removal of organic compound in water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197081A (en) * 1981-05-28 1982-12-03 Akira Kakumoto Treatment of waste water
JPS6071081A (en) * 1983-09-26 1985-04-22 Unitika Ltd Removal of organic compound in water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599443A (en) * 1993-11-08 1997-02-04 Sharp Kabushiki Kaisha Apparatus for waste water treatment using charcoal biologically activated
US5676836A (en) * 1993-11-08 1997-10-14 Sharp Kabushiki Kaisha Method for waste water treatment using charcoal biologically activated
EP0695722A1 (en) 1994-08-03 1996-02-07 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
US5702604A (en) * 1995-09-06 1997-12-30 Sharp Kabushiki Kaisha Apparatus and method for waste water treatment utilizing granular sludge
US6056876A (en) * 1996-05-28 2000-05-02 Sharp Kabushiki Kaisha Method and apparatus for wastewater treatment
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
WO2011108478A1 (en) * 2010-03-05 2011-09-09 栗田工業株式会社 Water treatment method and process for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
CN102781850A (en) * 2010-03-05 2012-11-14 栗田工业株式会社 Water treatment method and process for producing ultrapure water
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP2010234370A (en) * 2010-06-03 2010-10-21 Nippon Kensetsu Gijutsu Kk Water cleaning method and water cleaning device
JP4657372B2 (en) * 2010-06-03 2011-03-23 日本建設技術株式会社 Water purification method and water purification device

Also Published As

Publication number Publication date
JPH0474076B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
KR100712643B1 (en) Apparatus for treating organic material and nitrogen of wastewater by using air floatation type biofilter, and treatment method using the same
JPH0137992B2 (en)
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
KR100827641B1 (en) Contact oxidation tank for waste water treatment
JPH07256281A (en) Waste water purifying method and tank
JPH02229595A (en) Water treatment by biological active carbon
CN1931750B (en) Petrochemical effluent treating and reusing process
CN216935423U (en) Ultraviolet series aeration biological activated carbon filter suitable for steam maintenance waste gas treatment
KR100343257B1 (en) Combination purifier tank
BE1010340A6 (en) Method and apparatus for the purification of contaminated water.
KR100436981B1 (en) Water-treatment apparatus
CN112591999A (en) Method and system for synchronously removing organic matters and ammonia nitrogen in wastewater
JPH03118891A (en) Treatment of organic sewage
JPH05192677A (en) Microorganism treating device for waste water
JPS59105894A (en) Purification of water containing organic substance and apparatus therefor
JPH04322799A (en) Method and device for treating oil-containing waste water
JP2554560B2 (en) Method and apparatus for biological regeneration of activated carbon
CN213327205U (en) Integrated biological filter sewage treatment equipment
JPH07124555A (en) Water purifying and activating method and apparatus
JP3925394B2 (en) Wastewater treatment method
KR20180060190A (en) Sewage treatment device and sewage treatment method
JP2006175369A (en) Water treatment method and water treatment apparatus
JPH0338290A (en) Biologically activated carbon water-treatment apparatus
JPH0568983A (en) Cod treatment method and apparatus using ozone
JPH05185080A (en) Biological membrane filter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 17