JP2008207064A - Treatment method of organic wastewater - Google Patents

Treatment method of organic wastewater Download PDF

Info

Publication number
JP2008207064A
JP2008207064A JP2007043882A JP2007043882A JP2008207064A JP 2008207064 A JP2008207064 A JP 2008207064A JP 2007043882 A JP2007043882 A JP 2007043882A JP 2007043882 A JP2007043882 A JP 2007043882A JP 2008207064 A JP2008207064 A JP 2008207064A
Authority
JP
Japan
Prior art keywords
sludge
treatment
organic wastewater
tank
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043882A
Other languages
Japanese (ja)
Other versions
JP5174359B2 (en
Inventor
Hisanori Fujimoto
尚則 藤本
Koichi Watanabe
幸一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2007043882A priority Critical patent/JP5174359B2/en
Publication of JP2008207064A publication Critical patent/JP2008207064A/en
Application granted granted Critical
Publication of JP5174359B2 publication Critical patent/JP5174359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel treatment method of organic wastewater capable of markedly reducing the occurrence amount of excess sludge produced by accompanying the biological treatment of the organic wastewater and reducing the effect on the treatment liquid properties of the organic wastewater. <P>SOLUTION: In the treatment method of the organic wastewater wherein the biologically treated mixture, which is obtained after the organic wastewater is biologically treated in a biological treatment tank, is separated into treated water and sludge by a solid-liquid separation method and a part or the whole of the sludge undergoes solubilizing treatment for solubilizing the organic matter in the sludge to return the treated sludge to the biological treatment tank, a trivalent metal is added to a sludge circulating system so as to become a range of 30-2,000 μmol/L with respect to the amount of raw water on a metal basis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性排水を生物処理する方法に関し、さらに詳しくは有機性排水の生物処理に汚泥の可溶化処理を組み込み、発生する余剰汚泥の発生量を低減させることが可能な有機性排水の処理方法に関する。   The present invention relates to a method for biologically treating organic wastewater, and more particularly, organic wastewater that can incorporate sludge solubilization into biological treatment of organic wastewater and reduce the amount of generated excess sludge. It relates to the processing method.

従来、活性汚泥法などの生物処理で発生する余剰汚泥は、脱水、乾燥、焼却などの汚泥処理によって処分されているが、その処分に多大な経費と設備費がかかる点が最大の問題となっている。従来の活性汚泥法の余剰汚泥の発生量は、一般に、除去されるBOD1kg当たり、0.6〜0.8kg・ss(汚泥)であり、非常に多量の余剰汚泥が発生することが良く知られている。しかも、余剰汚泥は質的にも難脱水性であるため、ますますその処分が困難になっている。   Conventionally, surplus sludge generated by biological treatment such as the activated sludge method has been disposed of by sludge treatment such as dehydration, drying, and incineration, but the biggest problem is that the disposal requires significant expenses and equipment costs. ing. The amount of excess sludge generated by the conventional activated sludge method is generally 0.6 to 0.8 kg · ss (sludge) per 1 kg of BOD to be removed, and it is well known that a very large amount of excess sludge is generated. Moreover, since the excess sludge is qualitatively difficult to dehydrate, its disposal becomes increasingly difficult.

余剰汚泥の発生量を低減させる方法として、余剰汚泥を可溶化して生物処理槽(曝気槽)に戻して処理する方法が数多く提案されている。例えば、余剰汚泥をアルカリで処理することで可溶化して生物処理槽に戻す方法(特許文献1参照)、余剰汚泥の超音波、ホモジナイザー、ミキサー、又は急激な圧力変動による破壊や、オゾンガスによる酸化分解をすることにより可溶化して生物処理槽に戻す方法(特許文献2参照)が提案されている。
一方、余剰汚泥の発生を減少させる方法として、有機性排水処理工程に余剰汚泥の一部又は全部を可溶化する可溶化処理手段を設け、その可溶化をアルカリ剤による処理にホモジナイザー、ミキサー等による処理を組み合わせて行う方法も知られている(特許文献3参照)。
これらの処理における、余剰汚泥を可溶化して生物処理槽で処理する方法では、汚泥を再基質化する際、より短時間・低いエネルギーで高い可溶化率が得られた方が有利であり、汚泥をより効率的に可溶化し得る方法が求められていた。
特公昭49−11813号公報 特公昭57−19719号公報 特開2002−113487号公報
As a method for reducing the generation amount of excess sludge, many methods for solubilizing excess sludge and returning them to a biological treatment tank (aeration tank) have been proposed. For example, surplus sludge is solubilized by treating with alkali and returned to the biological treatment tank (see Patent Document 1), surplus sludge is destroyed by ultrasonic, homogenizer, mixer, or rapid pressure fluctuation, or oxidized by ozone gas A method of solubilizing and returning to a biological treatment tank by decomposing has been proposed (see Patent Document 2).
On the other hand, as a method of reducing the generation of surplus sludge, a solubilization means for solubilizing a part or all of the surplus sludge is provided in the organic wastewater treatment process, and the solubilization is treated with an alkaline agent by using a homogenizer, a mixer or the like. A method of combining processing is also known (see Patent Document 3).
In these treatments, the method of solubilizing excess sludge and treating it in a biological treatment tank is advantageous when a high solubilization rate is obtained in a shorter time and with lower energy when sludge is re-substrateed. There has been a demand for a method that can solubilize sludge more efficiently.
Japanese Patent Publication No.49-11813 Japanese Patent Publication No.57-19719 JP 2002-113487 A

本発明は、有機性排水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させることができ、且つ有機性排水の処理液性状への影響が少ない新規な有機性排水の処理方法を提供することを目的とする。   The present invention is a novel organic wastewater treatment method that can remarkably reduce the amount of surplus sludge generated during biological treatment of organic wastewater and that has little effect on the treatment liquid properties of organic wastewater. The purpose is to provide.

本発明者は、斯かる実情に鑑み鋭意研究を行った結果、特定量の三価金属の存在下に、固液分離された汚泥の可溶化処理を行うことで、汚泥の可溶化率が向上し、余剰汚泥の発生量を顕著に減少させることができることを見出し、本発明を完成した。   As a result of intensive studies in view of such circumstances, the present inventor improved the sludge solubilization rate by performing the solid-liquid separated sludge solubilization treatment in the presence of a specific amount of trivalent metal. And it discovered that the generation | occurrence | production amount of excess sludge can be reduced notably and completed this invention.

すなわち、本発明は、生物処理槽において有機性排水を生物処理した後、該生物処理混合物を処理水と汚泥に固液分離し、該汚泥の一部又は全部に対して、その中の有機物を可溶化する可溶化処理を施した後、前記生物処理槽に返送する有機性排水の処理方法において、汚泥が循環する系内に、三価金属を金属基準で、原水量に対して30μmol/L〜2,000μmol/Lの範囲になるように添加することを特徴とする有機性排水の処理方法を提供するものである。   That is, in the present invention, after biologically treating organic wastewater in a biological treatment tank, the biological treatment mixture is subjected to solid-liquid separation into treated water and sludge, and the organic matter in the sludge is partially or completely separated. In the method of treating organic wastewater that is solubilized and then returned to the biological treatment tank, the trivalent metal in the system where the sludge circulates is 30 μmol / L with respect to the amount of raw water on the metal basis. An organic wastewater treatment method is provided, which is added so as to be in a range of ˜2,000 μmol / L.

本発明の有機性排水の処理方法によれば、有機性排水の生物処理に伴って発生する余剰汚泥を効果的に可溶化し得ることで、より少ない投入エネルギーにより余剰汚泥発生量を顕著に減少させることができる。   According to the organic wastewater treatment method of the present invention, surplus sludge generated with biological treatment of organic wastewater can be effectively solubilized, thereby significantly reducing the amount of surplus sludge generated with less input energy. Can be made.

本発明の有機性排水の処理方法は、余剰汚泥を発生する各種の有機性排水の生物処理に適用し得て、この生物処理は、好気性生物処理でも良いし、嫌気性生物処理でも良い。
好気性生物処理としては、活性汚泥法、生物膜法などが挙げられる。活性汚泥法は、有機性排水を活性汚泥の存在下に好気性生物処理する処理法であり、有機性排水を曝気槽で活性汚泥と混合して曝気し、混合液を濃縮装置で濃縮し、濃縮汚泥の一部を曝気槽に返送する標準活性汚泥法が一般的であるが、これを変形した処理法であっても良い。また、生物膜法は、担体に生物膜を形成して好気性下に有機性排水と接触させる処理法である。
嫌気性生物処理としては、所謂嫌気性消化法、高負荷嫌気性処理法などが挙げられる。
上記各種の有機性排水の生物処理の中でも、有機性排水の処理に多用されている活性汚泥法に好適に適用することができる。以下、活性汚泥法を例にとり、添付図面に関連して本発明を詳しく説明する。
The organic wastewater treatment method of the present invention can be applied to biological treatment of various organic wastewaters that generate excess sludge. This biological treatment may be an aerobic biological treatment or an anaerobic biological treatment.
Examples of the aerobic biological treatment include an activated sludge method and a biofilm method. The activated sludge process is an aerobic biological treatment of organic wastewater in the presence of activated sludge. Organic wastewater is mixed with activated sludge in an aeration tank and aerated, and the mixture is concentrated with a concentrator. A standard activated sludge method is generally used in which a part of the concentrated sludge is returned to the aeration tank. However, a modified treatment method may be used. The biofilm method is a treatment method in which a biofilm is formed on a carrier and brought into contact with organic waste water under aerobic conditions.
Examples of the anaerobic biological treatment include a so-called anaerobic digestion method and a high-load anaerobic treatment method.
Among the biological treatments of the above various organic wastewaters, it can be suitably applied to the activated sludge method that is frequently used for the treatment of organic wastewaters. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, taking the activated sludge method as an example.

従来の標準活性汚泥法の処理系の一般的なフローは、図1に示すとおりである。図1の処理系のフローにおいては、ライン1から有機性排水が曝気槽2に供給され、曝気槽2において曝気されて活性汚泥により好気性生物処理を受け、次いでライン3を経て汚泥沈降槽4に送られる。そして、固液分離後、汚泥沈降槽4の上澄み液が処理水としてライン5から排出、放流され、一方、汚泥沈降槽4の沈殿汚泥が返送汚泥としてライン6を経て曝気槽2に戻される。この返送汚泥の一部が分取されて余剰汚泥としてライン7を経て、必要に応じて汚泥濃縮工程8に供給されて固形物濃度が一層高められた後、ライン9を経て汚泥脱水工程10に導かれて脱水され、得られた脱水余剰汚泥11が系外に排出される。   A general flow of a conventional standard activated sludge process system is as shown in FIG. In the flow of the treatment system of FIG. 1, organic waste water is supplied from the line 1 to the aeration tank 2, aerated in the aeration tank 2, subjected to aerobic biological treatment with activated sludge, and then through the line 3 to the sludge settling tank 4 Sent to. After the solid-liquid separation, the supernatant liquid of the sludge settling tank 4 is discharged and discharged from the line 5 as treated water, while the precipitated sludge in the sludge settling tank 4 is returned to the aeration tank 2 via the line 6 as return sludge. A part of this returned sludge is collected and passed through the line 7 as surplus sludge and supplied to the sludge concentration process 8 as necessary to further increase the solids concentration, and then passed through the line 9 to the sludge dewatering process 10. The dehydrated excess sludge 11 that is guided and dehydrated is discharged out of the system.

上記のような従来の標準活性汚泥法に可溶化処理を施し、しかる後、前記生物処理槽に返送する処理系のフローを図示すれば、図2のとおりである。この図2に関連して本発明を説明する。
図2に示す本発明の実施態様例の処理系のフローでは、ライン1から有機性排水が曝気槽2に供給され、曝気槽2において曝気されて活性汚泥により好気性生物処理を受け、次いでライン3を経て汚泥沈降槽4に送られる。そして、固液分離後、汚泥沈降槽4の上澄み液が処理水としてライン5から排出、放流され、一方、汚泥沈降槽4の沈殿汚泥が返送汚泥としてライン6を経て曝気槽2に戻される。そして、前記返送汚泥の一部が分取されて余剰汚泥としてライン7を経て、必要に応じて汚泥濃縮工程8に供給されて固形物濃度を0.5〜5重量%程度に濃縮された後、この余剰汚泥の一部がライン9を経て汚泥脱水工程10に導かれて脱水され、得られた脱水余剰汚泥11が系外に排出される。ここまでのフローは、上記従来の標準活性汚泥法の処理系のフローと同様である。
返送汚泥の一部または濃縮槽で濃縮された汚泥の一部または全部は、ライン12を経て汚泥可溶化槽13に導かれて可溶化処理され、該可溶化処理物がライン14を経て曝気槽2に戻され、活性汚泥によって生物処理される。ただし、返送汚泥から分取された余剰汚泥の固形物濃度が高い場合は、汚泥濃縮工程8を設けて余剰汚泥の濃縮を行う必要はない。
また、この処理系の処理条件を、可溶化処理しない条件での余剰汚泥発生量の約2〜3.5倍の沈殿汚泥を可溶化処理することによって、系外に排出される余剰汚泥をなくすこともできる。
FIG. 2 shows the flow of the treatment system in which the conventional standard activated sludge method as described above is subjected to the solubilization treatment and then returned to the biological treatment tank. The present invention will be described with reference to FIG.
In the flow of the treatment system of the embodiment of the present invention shown in FIG. 2, organic waste water is supplied from the line 1 to the aeration tank 2, aerated in the aeration tank 2, and subjected to aerobic biological treatment with activated sludge, and then the line 3 is sent to the sludge settling tank 4. After the solid-liquid separation, the supernatant liquid of the sludge settling tank 4 is discharged and discharged from the line 5 as treated water, while the precipitated sludge in the sludge settling tank 4 is returned to the aeration tank 2 via the line 6 as return sludge. And after a part of said return sludge is fractionated, it passes through the line 7 as surplus sludge, and is supplied to the sludge concentration process 8 as needed, and solid concentration is concentrated to about 0.5 to 5 weight%. A part of the excess sludge is guided to the sludge dewatering step 10 via the line 9 and dehydrated, and the obtained dehydrated surplus sludge 11 is discharged out of the system. The flow up to this point is the same as the flow of the conventional standard activated sludge process.
A part of the returned sludge or a part or all of the sludge concentrated in the concentration tank is led to the sludge solubilization tank 13 via the line 12 and solubilized, and the solubilized product is passed through the line 14 to the aeration tank. 2 and biologically treated with activated sludge. However, when the solid concentration of the excess sludge separated from the returned sludge is high, it is not necessary to provide the sludge concentration step 8 to concentrate the excess sludge.
In addition, it is possible to eliminate the excess sludge discharged outside the system by solubilizing the treated sludge with about 2 to 3.5 times the amount of surplus sludge generated in the condition where the solubilization treatment is not performed. it can.

本発明において、曝気槽2、汚泥沈降槽4としては従来から用いられているものを適宜用いることができる。また、汚泥濃縮工程8の濃縮手段としても、従来から用いられている濃縮手段、例えば重力沈降分離機、浮上分離機、遠心分離機、膜分離機、スクリュー脱水機等を定義用いることができる。また、汚泥脱水工程10の脱水手段としても、従来から用いられている脱水手段、例えば遠心分離機、ベルトフィルター脱水機、スクリュープレス脱水機等を適宜用いることができる。   In the present invention, conventionally used aeration tank 2 and sludge settling tank 4 can be appropriately used. Further, as the concentration means in the sludge concentration step 8, conventionally used concentration means such as gravity sedimentation separators, flotation separators, centrifuges, membrane separators, screw dehydrators and the like can be defined and used. Further, as the dewatering means of the sludge dewatering step 10, conventionally used dewatering means such as a centrifugal separator, a belt filter dehydrator, a screw press dehydrator and the like can be appropriately used.

本発明において、有機物の可溶化を促進するために添加する三価金属の添加位置としては、汚泥が循環する系内であれば特に限定されない。ここで、汚泥が循環する系内とは、生物処理槽(曝気槽)及び固液分離槽を含む、汚泥が循環する系内であることを意味し、その系内に三価金属が可溶化率向上効果を発揮し得る量存在していればよい。
三価金属の添加位置としては、例えば、図2に示すライン1、曝気槽2、ライン3、汚泥沈降槽4、ライン6、ライン12、汚泥可溶化槽13、ライン14などが挙げられ、汚泥濃縮工程から汚泥可溶化槽に汚泥を送液する場合は、ライン7、汚泥濃縮工程8などが挙げられる。好ましい添加位置は、可溶化率向上の観点から、ライン1、曝気槽2、ライン3、汚泥沈降槽4の位置であり、特に好ましくは、ライン3である。
In the present invention, the addition position of the trivalent metal added to promote solubilization of the organic substance is not particularly limited as long as it is in a system in which sludge is circulated. Here, the system in which the sludge circulates means the system in which the sludge circulates, including the biological treatment tank (aeration tank) and the solid-liquid separation tank, and the trivalent metal is solubilized in the system. It suffices to be present in an amount capable of exhibiting a rate improving effect.
Examples of the trivalent metal addition position include line 1, aeration tank 2, line 3, sludge settling tank 4, line 6, line 12, sludge solubilization tank 13, line 14 and the like shown in FIG. In the case where the sludge is fed from the concentration step to the sludge solubilization tank, a line 7, a sludge concentration step 8, and the like are included. A preferable addition position is the position of the line 1, the aeration tank 2, the line 3, and the sludge settling tank 4 from the viewpoint of improving the solubilization rate, and the line 3 is particularly preferable.

三価金属としては、その金属の形態は特に限定されず、イオンであっても、化合物であってもよい。好ましい三価金属としては、例えばアルミニウム、鉄、コバルト等が挙げられる。具体的には、硫酸アルミニウム(硫酸バンド)、塩化アルミニウム、含鉄硫酸アルミニウム、アルミニウムミョウバン、硫酸アルミニウムカリウム(カリウムミョウバン)、ポリ硫酸アルミニウム、ポリ塩化アルミニウム、硫酸鉄、塩化鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化鉄などが挙げられ、好ましくは、ポリ塩化アルミニウム、塩化鉄、硫酸バンドである。これらは1種又は2種以上を組み合わせて用いてもよい。   As a trivalent metal, the form of the metal is not particularly limited, and may be an ion or a compound. Preferable trivalent metals include aluminum, iron, cobalt, and the like. Specifically, aluminum sulfate (sulfate band), aluminum chloride, iron-containing aluminum sulfate, aluminum alum, potassium aluminum sulfate (potassium alum), polysulfate, polyaluminum chloride, iron sulfate, iron chloride, copper chloride, polyiron sulfate And polyiron chloride, preferably polyaluminum chloride, iron chloride and sulfuric acid band. These may be used alone or in combination of two or more.

三価金属の添加量は、可溶化率向上の観点から、金属基準で、原水量に対して30μmol/L〜2,000μmol/Lの範囲であるが、好ましくは35μmol/L〜1,000μmol/L、さらに好ましくは40μmol/L〜300μmol/L、特に好ましくは100μmol/L〜300μmol/Lである。三価金属の添加量が30μmol/L未満であると、十分な可溶化率向上効果が得られず、他方2,000μmol/Lより多くなると、曝気槽での負荷上昇と処理水への影響が懸念される。なお、排水処理系内に三価金属が含有されている場合は、その量を勘案して、全量として前記添加量の範囲になるように調節して添加すればよい。   The addition amount of the trivalent metal is in the range of 30 μmol / L to 2,000 μmol / L with respect to the amount of raw water on the metal basis from the viewpoint of improving the solubilization rate, but preferably 35 μmol / L to 1,000 μmol / L, More preferably, it is 40 μmol / L to 300 μmol / L, and particularly preferably 100 μmol / L to 300 μmol / L. If the amount of trivalent metal added is less than 30 μmol / L, sufficient effect of improving the solubilization rate cannot be obtained. On the other hand, if it exceeds 2,000 μmol / L, the load in the aeration tank may be increased and the effect on treated water may be affected. Is done. In addition, when the trivalent metal is contained in the waste water treatment system, the amount may be taken into consideration and adjusted so that the total amount falls within the range of the addition amount.

汚泥可溶化槽13における可溶化処理方法は限定されないが、特に、アルカリ剤を用いた可溶化、物理的な破砕による可溶化、アルカリ剤と物理的な破砕を組み合わせた可溶化処理方法が好適である。
アルカリ剤としては、特に限定されないが、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられ、特に水酸化ナトリウムが好ましい。アルカリ剤の添加量は、特に限定されないが、可溶化処理する余剰汚泥に対して0.005〜0.1Nであればよく、好ましくは0.01〜0.05Nである。
物理的な破砕としては、ミキサー、ミル、超音波による破砕が挙げられ、特にミキサー、ミルが好ましい。
The solubilization treatment method in the sludge solubilization tank 13 is not limited, but a solubilization treatment method combining solubilization using an alkali agent, solubilization by physical crushing, and alkali agent and physical crushing is particularly suitable. is there.
Although it does not specifically limit as an alkaline agent, For example, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate etc. are mentioned, Especially sodium hydroxide is preferable. Although the addition amount of an alkali agent is not specifically limited, 0.005-0.1N should just be sufficient with respect to the excess sludge to solubilize, Preferably it is 0.01-0.05N.
Examples of physical crushing include crushing by a mixer, a mill, and an ultrasonic wave, and a mixer and a mill are particularly preferable.

可溶化処理の時間としては、特に限定されないが、1分〜300分が好ましく、特に3分〜250分、更に10分〜200分が好ましい。
可溶化処理後の汚泥可溶化液(以下、「可溶化液」という)は、必要に応じて中和処理又は酸化剤による脱色処理を行ってもよい。脱色処理を行うことによって、余剰汚泥の減容化を行う際に発生する可溶化処理物の着色、それに起因する処理水の色相への悪影響を削減することができる。この脱色処理と中和処理とは併用できるが、その場合、中和処理を行う前に脱色処理を行うことが好ましい。中和処理には、硫酸等の鉱酸、使用済みの廃酸などを使用できる。酸化剤としては、酸化力が強く、そのものが分解後、活性汚泥にとって無害なものに変化する過酸化水素、過酸化ナトリウム、過炭酸ナトリウム等が好ましく、特に過酸化水素が好ましい。
同じ可溶化処理量の場合、可溶化率を高くすることで余剰汚泥発生量の削減率を高くすることが可能となる。
The time for the solubilization treatment is not particularly limited, but is preferably 1 minute to 300 minutes, particularly preferably 3 minutes to 250 minutes, and more preferably 10 minutes to 200 minutes.
The sludge solubilizing solution after the solubilization treatment (hereinafter referred to as “solubilizing solution”) may be subjected to neutralization treatment or decolorization treatment with an oxidizing agent as necessary. By performing the decolorization treatment, it is possible to reduce the adverse effect on the color of the solubilized treatment product generated when the volume of excess sludge is reduced and the hue of the treated water resulting therefrom. Although the decoloring treatment and the neutralization treatment can be used in combination, it is preferable to perform the decoloring treatment before the neutralization treatment. For the neutralization treatment, a mineral acid such as sulfuric acid, a spent waste acid or the like can be used. As the oxidizing agent, hydrogen peroxide, sodium peroxide, sodium percarbonate, etc., which have strong oxidizing power and change itself to be harmless to activated sludge after decomposition, are preferable, and hydrogen peroxide is particularly preferable.
In the case of the same solubilization amount, it is possible to increase the reduction rate of the excess sludge generation amount by increasing the solubilization rate.

本発明の有機性排水の処理方法は、活性汚泥において処理する原水中のカルシウムイオン濃度が、10ppm〜200ppmの範囲、好ましくは20ppm〜100ppmの範囲の原水に対して、特に有用である。   The method for treating organic waste water of the present invention is particularly useful for raw water in which the calcium ion concentration in raw water to be treated in activated sludge is in the range of 10 ppm to 200 ppm, preferably in the range of 20 ppm to 100 ppm.

以下に、実施例を挙げてこの発明を更に具体的に説明するが、この発明の技術的範囲はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

実施例1
工場排水(COD=80〜120mg/L(試験期間平均100mg/L)、Ca濃度30ppm〜50ppm(試験期間平均40ppm))を曝気時間12時間、活性汚泥MLSS=3000mg/Lの40L曝気槽(COD容積負荷0.20(kgCOD/m3・day))に供給した後、20L沈降槽において活性汚泥を沈降分離し、固形物濃度0.5〜1重量%の沈殿汚泥を得た。原水の三価金属量は、1ppm以下であった。
この排水処理において、ポリ塩化アルミニウム(アルミニウム含有率4%)を沈殿槽の入り口に、原水量に対して30ppm(アルミニウム濃度44μmol/L)添加して運転を行った。
上記工場排水処理量において、工場排水処理量を0.08m3/dayとし、沈殿汚泥の1.2〜2.4L/day(dry−base 12.0g/day)を抜き出して、残りの沈殿汚泥は曝気槽に返送した。次に、この抜き出した沈殿汚泥を、回分式タイプの汚泥可溶化槽に導き、インラインミキサー(特殊機化製パイプラインホモミクサーPL-SL)にて、回転数8,000rpmに設定して、苛性ソーダを0.025Nになるように添加して、10分間処理して、汚泥を可溶化した。その可溶化液を前記曝気槽に一定速度で添加して、好気的な生物処理を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は43%であった。さらに、その間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、4g(乾燥重量)であった。
Example 1
Factory wastewater (COD = 80-120mg / L (test period average 100mg / L), Ca concentration 30ppm-50ppm (test period average 40ppm)) aeration time 12 hours, activated sludge MLSS = 3000mg / L 40L aeration tank (COD After supplying to a volumetric load of 0.20 (kgCOD / m3 · day), activated sludge was settled and separated in a 20 L sedimentation tank to obtain a precipitated sludge having a solid concentration of 0.5 to 1% by weight. The amount of trivalent metals in the raw water was 1 ppm or less.
In this waste water treatment, polyaluminum chloride (aluminum content 4%) was added to the inlet of the precipitation tank at 30 ppm (aluminum concentration 44 μmol / L) relative to the amount of raw water.
In the above factory wastewater treatment amount, the factory wastewater treatment amount is set to 0.08 m 3 / day, 1.2 to 2.4 L / day (dry-base 12.0 g / day) of the precipitated sludge is extracted, and the remaining precipitated sludge is returned to the aeration tank. did. Next, this extracted sludge is introduced into a batch-type sludge solubilization tank, and set to a rotation speed of 8,000 rpm with an in-line mixer (a pipeline homomixer made by Special Machine), and caustic soda is added. It was added to 0.025N and treated for 10 minutes to solubilize sludge. The solubilized solution was added to the aeration tank at a constant rate to perform aerobic biological treatment. As a result of continuing the operation according to the above conditions for 30 days, the average of the solubilization rate was 43%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 4 g (dry weight).

実施例2
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を沈殿槽の入り口に、原水量に対して150ppm(アルミニウム濃度220μmol/L)添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は48%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、2g(乾燥重量)であった。
Example 2
In Example 1, the same operation was carried out except that polyaluminum chloride (aluminum content 4%) was added to the precipitation tank at 150 ppm (aluminum concentration 220 μmol / L) with respect to the amount of raw water. It was. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 48%. Furthermore, the total surplus amount of sludge extracted so that the MLSS of the activated sludge tank was kept constant during that period was 2 g (dry weight).

実施例3
実施例2のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)の添加期間を最初の5日間として、その後の25日間は三価金属の添加を行わずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は45%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、5g(乾燥重量)であった。
Example 3
In Example 2, the operation was performed in the same manner except that the addition period of polyaluminum chloride (aluminum content 4%) was the first 5 days, and the subsequent 25 days were operated without the addition of the trivalent metal. went. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 45%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 5 g (dry weight).

実施例4
実施例3のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を沈殿槽の入り口に、原水量に対して1,000ppm(アルミニウム濃度1,500μmol/L)添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は38%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、15g(乾燥重量)であった。
Example 4
The same operation as in Example 3 was performed except that polyaluminum chloride (aluminum content 4%) was added to the inlet of the precipitation tank at 1,000 ppm (aluminum concentration 1,500 μmol / L) with respect to the amount of raw water. Went. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 38%. Furthermore, the total amount of excess sludge extracted so that the MLSS in the activated sludge tank was kept constant during that period was 15 g (dry weight).

実施例5
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)の添加位置を曝気槽の入り口に変更して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は40%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、8g(乾燥重量)であった。
Example 5
The operation was performed in the same manner as in Example 1 except that the operation was performed by changing the addition position of polyaluminum chloride (aluminum content 4%) to the entrance of the aeration tank. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 40%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 8 g (dry weight).

比較例1
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を添加せずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は20%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、68g(乾燥重量)であった。
Comparative Example 1
In Example 1, the operation was performed in the same manner except that the operation was performed without adding polyaluminum chloride (aluminum content 4%). As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 20%. Furthermore, the total amount of excess sludge extracted so that the MLSS of the activated sludge tank was kept constant during that period was 68 g (dry weight).

比較例2
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を沈殿槽の入り口に、原水量に対して10ppm(アルミニウム濃度15μmol/L)添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は25%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、53g(乾燥重量)であった。
Comparative Example 2
In Example 1, the operation was performed in the same manner except that polyaluminum chloride (aluminum content 4%) was added to the inlet of the precipitation tank at 10 ppm (aluminum concentration 15 μmol / L) with respect to the amount of raw water. It was. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 25%. Further, the total amount of excess sludge extracted during this period so that the MLSS in the activated sludge tank was kept constant was 53 g (dry weight).

実施例6
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)に替えて、塩化鉄(鉄含有率13%)を沈殿槽の入り口に、原水量に対して100ppm(鉄濃度230μmol/L)添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は43%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、5g(乾燥重量)であった。
Example 6
In Example 1, instead of polyaluminum chloride (aluminum content 4%), iron chloride (iron content 13%) was added to the inlet of the precipitation tank at 100 ppm (iron concentration 230 μmol / L) relative to the amount of raw water. The operation was performed in the same manner except that the operation was performed. As a result of continuing the operation according to the above conditions for 30 days, the average of the solubilization rate was 43%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 5 g (dry weight).

比較例3
実施例1のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)に替えて、水酸化カルシウム懸濁液(Ca含有率2%)を沈殿槽の入り口に、原水量に対して400ppm(カルシウム濃度200μmol/L)添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は13%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、95g(乾燥重量)であった。
Comparative Example 3
In Example 1, in place of polyaluminum chloride (aluminum content 4%), a calcium hydroxide suspension (Ca content 2%) was added at the inlet of the precipitation tank to 400 ppm (calcium concentration 200 μmol) with respect to the amount of raw water. / L) The operation was performed in the same manner except that the operation was performed with addition. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 13%. Further, during this period, the total surplus amount of sludge extracted from the activated sludge tank so as to be constant was 95 g (dry weight).

実施例7
実施例2のうち、可溶化処理の操作を、苛性ソーダの添加を行わず、回分式タイプの汚泥可溶化槽に導き、インラインミキサー(特殊機化製パイプラインホモミクサーPL-SL)にて、回転数8,000rpmに設定して10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は28%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、48g(乾燥重量)であった。
Example 7
In Example 2, the solubilization treatment operation was led to a batch-type sludge solubilization tank without adding caustic soda, and rotated with an in-line mixer (pipeline homomixer PL-SL made by Special Machine). The operation was performed in the same manner except that the treatment was performed for 10 minutes at a setting of several 8,000 rpm. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 28%. Furthermore, the total amount of excess sludge extracted during this period so that the MLSS in the activated sludge tank was kept constant was 48 g (dry weight).

比較例4
実施例7のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を添加せずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は10%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、102g(乾燥重量)であった。
Comparative Example 4
In Example 7, the operation was performed in the same manner except that the operation was performed without adding polyaluminum chloride (aluminum content 4%). As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 10%. Further, during this period, the total amount of excess sludge extracted from the activated sludge tank so as to be constant was 102 g (dry weight).

実施例8
実施例2のうち、可溶化処理の操作を、インラインミキサーを用いず、苛性ソーダを0.025Nになるように添加した後、10分間スターラーによる攪拌処理して可溶化する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は29%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、46g(乾燥重量)であった。
Example 8
In Example 2, the operation of the solubilization treatment was carried out in the same manner except that caustic soda was added to 0.025 N without using an in-line mixer, and then solubilized by stirring with a stirrer for 10 minutes. It was. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 29%. Furthermore, the amount of surplus sludge extracted so that the MLSS in the activated sludge tank was kept constant during that period was 46 g (dry weight).

比較例5
実施例8のうち、ポリ塩化アルミニウム(アルミニウム含有率4%)を添加せずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は13%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、104g(乾燥重量)であった。
Comparative Example 5
In Example 8, the operation was performed in the same manner except that the operation was performed without adding polyaluminum chloride (aluminum content 4%). As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 13%. Further, during this period, the total surplus amount of sludge extracted from the activated sludge tank so as to be constant was 104 g (dry weight).

実施例9
実施例2のうち、可溶化処理の操作を、インラインミキサーに替えて、インラインミル(IKA製ラボパイロット2000/4)にて、回転数6,000rpmに設定して10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は45%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、5g(乾燥重量)であった。
Example 9
In Example 2, the operation of the solubilization process was changed to an in-line mill (IKA Lab Pilot 2000/4) instead of the in-line mixer, except that the rotation speed was set to 6,000 rpm and the process was performed for 10 minutes in the same manner. Drove. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 45%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 5 g (dry weight).

実施例10
実施例2のうち、可溶化処理の操作を、インラインミキサーに替えて、超音波(超音波発生器、出力100W)にて10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は38%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、16g(乾燥重量)であった。
Example 10
In Example 2, the operation was performed in the same manner except that the solubilization treatment was carried out for 10 minutes with ultrasonic waves (ultrasonic wave generator, output 100 W) instead of the in-line mixer. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 38%. Furthermore, the total amount of excess sludge extracted during this period so that the MLSS in the activated sludge tank was kept constant was 16 g (dry weight).

以上の実施例及び比較例をまとめたものを次表に示す。   The table below summarizes the above examples and comparative examples.

Figure 2008207064
Figure 2008207064

Figure 2008207064
Figure 2008207064

Figure 2008207064
Figure 2008207064

Figure 2008207064
Figure 2008207064

Figure 2008207064
Figure 2008207064

従来の標準活性汚泥法の処理系の一般的なフローシートである。It is a general flow sheet of a conventional standard activated sludge process system. 本発明の実施形態の一例の処理系のフローシートである。It is a flow sheet of a processing system of an example of an embodiment of the present invention.

Claims (4)

生物処理槽において有機性排水を生物処理した後、該生物処理混合物を処理水と汚泥に固液分離し、該汚泥の一部又は全部に対して、その中の有機物を可溶化する可溶化処理を施した後、前記生物処理槽に返送する有機性排水の処理方法において、汚泥が循環する系内に、三価金属を金属基準で、原水量に対して30μmol/L〜2,000μmol/Lの範囲になるように添加することを特徴とする有機性排水の処理方法。   After biological treatment of organic wastewater in a biological treatment tank, the biological treatment mixture is solid-liquid separated into treated water and sludge, and solubilization treatment is performed to solubilize organic matter in part or all of the sludge. In the organic wastewater treatment method to be returned to the biological treatment tank, the trivalent metal is 30 μmol / L to 2,000 μmol / L relative to the amount of raw water on the metal basis in the system where the sludge circulates. A method for treating organic wastewater, which is added so as to fall within a range. 三価金属がアルミニウム化合物又は鉄化合物である請求項1記載の有機性排水の処理方法。   The method for treating organic waste water according to claim 1, wherein the trivalent metal is an aluminum compound or an iron compound. 汚泥中の有機物を可溶化する可溶化処理が、アルカリ添加による処理又は機械的破砕による処理である請求項1又は2記載の有機性排水の処理方法。   The method for treating organic waste water according to claim 1 or 2, wherein the solubilization treatment for solubilizing organic matter in the sludge is treatment by addition of alkali or treatment by mechanical crushing. 有機性排水がカルシウムイオンを10ppm〜200ppm含有するものである請求項1〜3のいずれか1項記載の有機性排水の処理方法。   The organic wastewater treatment method according to any one of claims 1 to 3, wherein the organic wastewater contains 10 ppm to 200 ppm of calcium ions.
JP2007043882A 2007-02-23 2007-02-23 Organic wastewater treatment method Active JP5174359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043882A JP5174359B2 (en) 2007-02-23 2007-02-23 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043882A JP5174359B2 (en) 2007-02-23 2007-02-23 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2008207064A true JP2008207064A (en) 2008-09-11
JP5174359B2 JP5174359B2 (en) 2013-04-03

Family

ID=39783838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043882A Active JP5174359B2 (en) 2007-02-23 2007-02-23 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5174359B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150492A (en) * 1981-03-10 1982-09-17 Ebara Infilco Co Ltd Removing method for phosphorus and nitrogen in waste water
JPH03118891A (en) * 1989-10-02 1991-05-21 Tokyo Metropolis Treatment of organic sewage
JPH09108690A (en) * 1995-10-17 1997-04-28 Ebara Corp Treatment of phosphorus containing sewage
JPH1080698A (en) * 1996-09-06 1998-03-31 Ebara Corp Reforming method of organic sludge
JP2002113487A (en) * 2000-08-03 2002-04-16 Cosmo Oil Co Ltd Method for treating organic wastewater
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
JP2002361277A (en) * 2001-06-08 2002-12-17 Ebara Corp Treating method and treating apparatus for organic contaminated water
JP2003340491A (en) * 2002-05-29 2003-12-02 Kurita Water Ind Ltd Method for treating organic waste
JP2004141746A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Method and apparatus for aerobic treatment
JP2004181349A (en) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd Apparatus and method for sludge treatment
JP2005046697A (en) * 2003-07-31 2005-02-24 Mitsubishi Chemicals Corp Activated sludge treatment method
JP2005137968A (en) * 2003-11-04 2005-06-02 Cosmo Oil Co Ltd Sludge solubilization device and organic wastewater treatment apparatus
JP2005177702A (en) * 2003-12-22 2005-07-07 Mizuho Kogyo Kk Treating method and treating apparatus of organic waste water
JP2006142256A (en) * 2004-11-24 2006-06-08 Hitachi Kiden Kogyo Ltd Treating method of organic waste water
JP2006334593A (en) * 2000-08-03 2006-12-14 Cosmo Oil Co Ltd Method for treating organic waste water
JP2007253004A (en) * 2006-03-22 2007-10-04 Petroleum Energy Center Organic wastewater treatment method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150492A (en) * 1981-03-10 1982-09-17 Ebara Infilco Co Ltd Removing method for phosphorus and nitrogen in waste water
JPH03118891A (en) * 1989-10-02 1991-05-21 Tokyo Metropolis Treatment of organic sewage
JPH09108690A (en) * 1995-10-17 1997-04-28 Ebara Corp Treatment of phosphorus containing sewage
JPH1080698A (en) * 1996-09-06 1998-03-31 Ebara Corp Reforming method of organic sludge
JP2006334593A (en) * 2000-08-03 2006-12-14 Cosmo Oil Co Ltd Method for treating organic waste water
JP2002113487A (en) * 2000-08-03 2002-04-16 Cosmo Oil Co Ltd Method for treating organic wastewater
JP2002263676A (en) * 2001-03-09 2002-09-17 Sumitomo Heavy Ind Ltd Waste water treatment method and facility
JP2002361277A (en) * 2001-06-08 2002-12-17 Ebara Corp Treating method and treating apparatus for organic contaminated water
JP2003340491A (en) * 2002-05-29 2003-12-02 Kurita Water Ind Ltd Method for treating organic waste
JP2004141746A (en) * 2002-10-23 2004-05-20 Kurita Water Ind Ltd Method and apparatus for aerobic treatment
JP2004181349A (en) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd Apparatus and method for sludge treatment
JP2005046697A (en) * 2003-07-31 2005-02-24 Mitsubishi Chemicals Corp Activated sludge treatment method
JP2005137968A (en) * 2003-11-04 2005-06-02 Cosmo Oil Co Ltd Sludge solubilization device and organic wastewater treatment apparatus
JP2005177702A (en) * 2003-12-22 2005-07-07 Mizuho Kogyo Kk Treating method and treating apparatus of organic waste water
JP2006142256A (en) * 2004-11-24 2006-06-08 Hitachi Kiden Kogyo Ltd Treating method of organic waste water
JP2007253004A (en) * 2006-03-22 2007-10-04 Petroleum Energy Center Organic wastewater treatment method

Also Published As

Publication number Publication date
JP5174359B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
EP1615854B1 (en) Method of treating digested sludge
US20130168314A1 (en) Method for Treating Wastewater Containing Copper Complex
JP2004058047A (en) Treatment method and equipment for organic waste liquid
JP3873643B2 (en) Organic wastewater treatment method
US4913826A (en) Fat, oil and grease flotation treatment of poultry and food industry waste water utilizing hydrogen peroxide
JP5118572B2 (en) Sewage treatment method
JP5174360B2 (en) Organic wastewater treatment method
JP5066340B2 (en) Organic wastewater treatment method
JP5174359B2 (en) Organic wastewater treatment method
JP2007061773A (en) Organic sludge treatment method and apparatus
JP5118358B2 (en) Organic wastewater treatment method
JP2006334593A (en) Method for treating organic waste water
JP2006026542A (en) Anaerobic digestion treatment method and apparatus for organic sludge
JP2001079584A (en) Cleaning method of organic waste water
Hussein et al. Comparative study on palm oil mill effluent (POME) treatment by electro-oxidation using catalyst and electrode
JP2016165719A (en) Sludge treatment system and sludge treatment method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2002326078A (en) Treatment process of dredged shellfish and equipment for the same process
JP2001179233A (en) Method for treating jellyfishes
JP2005137968A (en) Sludge solubilization device and organic wastewater treatment apparatus
JP2006326438A (en) Apparatus and method for treating sludge
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JP2010012393A (en) Treatment method for organic sludge, treatment method for inorganic sludge, and treatment method for organic and inorganic sludge
JPH1157791A (en) Method of removing phosphorus from organic sludge
JP2004223351A (en) Method and apparatus for treating aquatic organism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250