JP2002361277A - Treating method and treating apparatus for organic contaminated water - Google Patents

Treating method and treating apparatus for organic contaminated water

Info

Publication number
JP2002361277A
JP2002361277A JP2001174214A JP2001174214A JP2002361277A JP 2002361277 A JP2002361277 A JP 2002361277A JP 2001174214 A JP2001174214 A JP 2001174214A JP 2001174214 A JP2001174214 A JP 2001174214A JP 2002361277 A JP2002361277 A JP 2002361277A
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
separated
liquid
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001174214A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Toshihiro Tanaka
俊博 田中
Kiyomi Arakawa
清美 荒川
Takuya Kobayashi
琢也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001174214A priority Critical patent/JP2002361277A/en
Publication of JP2002361277A publication Critical patent/JP2002361277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a biological treating method for organic waste water which enables a high degree phosphor removal, does not cause the deterioration of COD of the treated water, recovers phosphor resources and greatly reduces the amount of generation of excessive sludge. SOLUTION: In the biological treating method of organic contaminated water and an apparatus therefor, the organic contaminated water is subjected to the biological treatment by using an iron or aluminium hydroxide or oxide-coexisting activated sludge and, at the same time, a part of the metallic hydroxide-containing activated sludge of the biological treatment process is extracted, is subjected to sludge solubilizing treatment, and is thereafter returned to the biological treatment process. Therein, at the same time, the other part of metallic hydroxide containing sludge in the biological treatment process is subjected to alkali treatment by the addition of a caustic alkali and, thereafter, is separated into separated sludge and separated liquid in a solid-liquid separation process, the separated sludge is returned to the biological treatment process, the separated liquid of the solid-liquid separation process is guided to a chemical phosphor deposition process under alkaline conditions and phosphor is deposited and separated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水などのリン含
有有機性汚水を高度に浄化する技術に関し、特にリン、
CODを高度に除去可能で、リンを資源回収でき、かつ
余剰生物汚泥発生量を著しく減少できる新規な有機性汚
水処理技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for highly purifying phosphorus-containing organic sewage such as sewage.
The present invention relates to a novel organic sewage treatment technology capable of highly removing COD, recovering phosphorus as a resource, and significantly reducing the amount of excess biological sludge generated.

【0002】[0002]

【従来の技術】下水などの有機性汚水のリンを除去する
方法として、最も代表的な技術は生物学的脱リン法であ
る。この技術は、有機性汚水を嫌気槽に供給して、返送
汚泥中の活性汚泥(脱リン菌が共存している)からリン
を吐き出させた後、好気槽に供給し脱リン菌にリン摂取
を行わせた後、活性汚泥を沈殿分離し、沈殿汚泥を嫌気
槽にリサイクルするものである。
2. Description of the Related Art The most typical technique for removing phosphorus from organic wastewater such as sewage is a biological phosphorus removal method. In this technology, organic sewage is supplied to an anaerobic tank to discharge phosphorus from activated sludge (in which dephosphorylated bacteria coexist) in returned sludge, and then supplied to an aerobic tank to remove phosphorus from dephosphorized bacteria. After ingestion, the activated sludge is precipitated and separated, and the precipitated sludge is recycled to the anaerobic tank.

【0003】しかし、上記の従来の生物脱リン法は、次
の欠点があった。 (1)処理水リン濃度を0.5mg/リットル以下にで
きず、リン除去効果が不十分である。 (2)原水のBOD/P比が減少すると、嫌気槽におけ
る脱リン菌からのリン吐き出しが不十分になり、その結
果、好気槽における脱リン菌へのリン摂取も悪化する。 (3)リンは生物汚泥に取り込まれる以外の形では除去
されないので、リンを取り込んだ汚泥を系外に排出しな
い限りリンの物質収支が成立せず、従って難脱水性の余
剰生物汚泥発生量が多く、汚泥処理が負担になる。すな
わち、余剰汚泥生成量を削減することが原理的に難し
い。
However, the above-mentioned conventional biological dephosphorization method has the following disadvantages. (1) The phosphorus concentration in the treated water cannot be reduced to 0.5 mg / liter or less, and the phosphorus removing effect is insufficient. (2) When the BOD / P ratio of the raw water decreases, the discharge of phosphorus from the dephosphorylated bacteria in the anaerobic tank becomes insufficient, and as a result, the intake of phosphorus to the dephosphorylated bacteria in the aerobic tank also worsens. (3) Since phosphorus is not removed except in the form of being taken up by biological sludge, the material balance of phosphorus cannot be established unless the sludge containing phosphorus is discharged out of the system. In many cases, sludge treatment becomes a burden. That is, it is difficult in principle to reduce the amount of excess sludge generated.

【0004】また、従来の余剰汚泥発生量削減法とし
て、汚水の活性汚泥処理系から活性汚泥の一部(余剰汚
泥生成量よりも多い量)を引き抜き、オゾン酸化処理を
行った後、汚水処理系の曝気槽に供給し、可溶化汚泥を
生物分解させることによって、余剰汚泥発生量を削減す
る方式を取る「有機性排液の好気性処理方法」が公知で
ある。しかし、この技術を適用すると、余剰汚泥が発生
しなくなるので、原理的に汚水の活性汚泥処理のリン除
去率がゼロになるという重大な欠点があり、リンの高度
除去が強く望まれている現今の時代要求に逆行する。し
かもこの従来技術では、可溶化処理工程及び可溶化汚泥
を生物学的に分解する過程で、難生分解性のCODが不
可避的に生成し、処理水のCODを悪化させ、処理水C
OD悪化の度合いは、余剰汚泥生成量を減少させるほど
増加するという大きい欠点があった。
[0004] As a conventional method for reducing the amount of excess sludge generated, a part of the activated sludge (an amount larger than the amount of excess sludge generated) is extracted from the activated sludge treatment system of sewage, subjected to ozone oxidation treatment, and then to sewage treatment. An “aerobic treatment method for organic wastewater” is known, in which a system is supplied to a system aeration tank to biodegrade solubilized sludge to reduce the amount of excess sludge generated. However, when this technology is applied, surplus sludge is not generated, so there is a serious drawback that the phosphorus removal rate of activated sludge treatment of wastewater becomes zero in principle, and the advanced removal of phosphorus is now strongly desired. Go against the demands of the times. Moreover, in this conventional technique, in the solubilization treatment step and the process of biologically decomposing the solubilized sludge, hardly biodegradable COD is inevitably generated, and the COD of the treated water is deteriorated.
There was a major drawback that the degree of OD deterioration increased as the amount of surplus sludge decreased.

【0005】リンを活性汚泥処理工程で除去する方法と
して、凝集剤添加活性汚泥法という技術が実用化されて
いるが、この技術は、常に凝集剤を添加しつづけない限
り、リンが除去できないため、きわめて難脱水性の金属
水酸化物汚泥が大量に発生し、汚泥処理・処分が困難で
あるという大きな欠点があった。
As a method of removing phosphorus in the activated sludge treatment step, a technique called an activated sludge method with a flocculant has been put into practical use. However, this technique cannot remove phosphorus unless the flocculant is constantly added. However, there is a major drawback in that extremely hard-to-dehydrate metal hydroxide sludge is generated in large quantities, making sludge treatment and disposal difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来のオゾ
ン、超音波などの汚泥可溶化による余剰汚泥削減技術の
欠点を解決した新技術を確立し、高度のリン除去が可能
で、処理水CODが悪化せず、リン資源が回収でき、し
かも余剰汚泥発生量を著しく少なくできる新システムを
提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has established a new technology which has solved the drawbacks of the conventional technology for reducing excess sludge by solubilizing sludge such as ozone and ultrasonic waves. It is an object of the present invention to provide a new system capable of recovering a phosphorus resource without deteriorating COD and reducing the amount of generated excess sludge.

【0007】[0007]

【課題を解決するための手段】本発明は、次の手段によ
り上記の課題を解決することができた。 (1)有機性汚水を、鉄又はアルミニウム水酸化物もし
くは酸化物共存活性汚泥によって生物処理するととも
に、該生物処理工程の金属水酸化物含有活性汚泥の一部
を引き抜いて汚泥可溶化処理を行った後、前記生物処理
工程に返送するとともに、該生物処理工程における金属
水酸化物含有汚泥の他の一部に苛性アルカリを添加して
アルカリ処理後、固液分離工程で分離汚泥と分離液に分
離し、前記分離汚泥を前記生物処理工程に返送し、前記
固液分離工程の分離液をアルカリ性条件で化学的リン析
出工程に導いて、リンを析出分離させることを特徴とす
る有機性汚水の処理方法。 (2)有機性汚水を、鉄又はアルミニウム水酸化物もし
くは酸化物共存活性汚泥によって生物処理するととも
に、該生物処理工程の金属水酸化物含有活性汚泥の一部
を引き抜いて汚泥可溶化処理を行った後、前記生物処理
工程に返送するとともに、前記生物処理工程における金
属水酸化物含有汚泥の他の一部に苛性アルカリを添加し
てアルカリ処理後、化学的リン析出工程に導きリンを析
出分離し、リンが除去された汚泥を前記生物処理工程に
返送することを特徴とする有機性汚水の処理方法。 (3)前記(1)における化学的リン析出工程後の固液
分離工程から流出するアルカリ性分離液を、前記汚泥可
溶化工程又はアルカリ処理工程に返送することを特徴と
する有機性汚水の処理方法。
The present invention has solved the above-mentioned problems by the following means. (1) Organic sludge is biologically treated with activated sludge coexisting with iron or aluminum hydroxide or oxide, and a part of the activated sludge containing metal hydroxide in the biological treatment step is withdrawn to perform a solubilization treatment. After returning to the biological treatment step, the caustic alkali is added to another part of the metal hydroxide-containing sludge in the biological treatment step, alkali treatment is performed, and the separated sludge and the separated liquid are separated in the solid-liquid separation step. Separating, returning the separated sludge to the biological treatment step, guiding the separated liquid of the solid-liquid separation step to a chemical phosphorus precipitation step under alkaline conditions, and separating and separating phosphorus by organic wastewater. Processing method. (2) Biological treatment of organic sewage with activated sludge coexisting with iron or aluminum hydroxide or oxide, and a part of the activated sludge containing metal hydroxide in the biological treatment step is subjected to sludge solubilization treatment. After returning to the biological treatment step, the caustic alkali is added to another part of the metal hydroxide-containing sludge in the biological treatment step, and alkali treatment is performed. And returning the sludge from which phosphorus has been removed to the biological treatment step. (3) A method for treating organic sewage, comprising returning the alkaline separated liquid flowing out of the solid-liquid separation step after the chemical phosphorus precipitation step in (1) to the sludge solubilization step or the alkali treatment step. .

【0008】(4)有機性汚水を、鉄又はアルミニウム
水酸化物もしくは酸化物共存活性汚泥によって生物処理
法で浄化する曝気槽と、曝気槽の後段の微生物を汚泥と
して沈殿回収する沈殿槽とを有し、前記曝気槽に対し
て、前記沈殿槽から引き抜いた汚泥の一部を直接返送汚
泥として供給する返送系、前記の引き抜いた汚泥の別の
一部を汚泥可溶化処理槽に導入し、汚泥可溶化処理後、
これを前記曝気槽へ供給する返送系、前記の引き抜いた
汚泥の更に別の一部をアルカリ処理槽に導入し苛性アル
カリで処理し、次いで固液分離装置で固液分離し、得ら
れた分離汚泥を前記曝気槽へ供給する返送系、前記固液
分離装置で分離したリン酸イオン含有分離液をリン回収
装置へ送り、Caイオン又はMgイオンの添加により生
成した沈殿を回収する系、及びリン回収装置からの分離
液を前記アルカリ処理槽へ戻す返送系を設けたことを特
徴とする有機汚水の処理装置。
(4) An aeration tank for purifying organic sewage by a biological treatment method using activated sludge coexisting with iron or aluminum hydroxide or oxide, and a sedimentation tank for sedimenting and collecting microorganisms at the latter stage of the aeration tank as sludge. Having a return system for directly supplying a part of the sludge extracted from the sedimentation tank as return sludge to the aeration tank, introducing another part of the extracted sludge into the sludge solubilization treatment tank, After sludge solubilization treatment,
A return system for supplying this to the aeration tank, another part of the extracted sludge is introduced into an alkali treatment tank, treated with caustic alkali, and then subjected to solid-liquid separation by a solid-liquid separation device to obtain the obtained separation. A return system for supplying sludge to the aeration tank, a system for sending a phosphate ion-containing separated solution separated by the solid-liquid separator to a phosphorus recovery device, and recovering a precipitate formed by addition of Ca ions or Mg ions; and An apparatus for treating organic sewage, comprising a return system for returning a separated liquid from a recovery apparatus to the alkaline treatment tank.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて詳細に説明する。図1は、本発明の構成例を示すブ
ロック図である。すなわち、有機性汚水(簡単のために
以下「原水」ともいう)1を供給し、その槽内では鉄又
はアルミニウム水酸化物もしくは酸化物から選ばれる無
機凝集剤3が添加されることにより、無機凝集剤共存活
性汚泥によって生物処理法で浄化する曝気槽2と、曝気
槽2の後段の微生物固液分離工程である沈殿槽5とを組
み込み、処理水6を系外へ排出する有機性汚水の処理装
置において、上記沈殿槽5から引き抜いた沈殿汚泥7の
一部を返送汚泥8として直接曝気槽2へ返送する配管
と、上記沈殿汚泥の別の一部9を可溶化処理槽11へ導
入する配管と、可溶化処理後の可溶化汚泥12を上記返
送汚泥8の曝気槽2への返送配管中へ導入供給する配管
と、上記沈殿汚泥7の更に別の一部10をアルカリ処理
槽13へ導入する配管と、次いでアルカリ処理汚泥14
の固液分離装置15での分離汚泥17の可溶化汚泥返送
配管への導入供給管と、リン酸イオン含有液16のリン
回収装置18への導入配管と、リン回収装置18におい
てリン酸カルシウム又はリン酸マグネシウムアンモニウ
ムを回収リン19として回収する排出管と、リン回収装
置18からの強アルカリ性分離液20を上記沈殿汚泥の
一部10のアルカリ処理槽13への導入管中へ導入、供
給する導管を設けることにより、前記した各物質の流れ
と反応が起きるように構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of the present invention. That is, an organic sewage (hereinafter also referred to as “raw water”) 1 is supplied for simplicity, and an inorganic coagulant 3 selected from iron or aluminum hydroxide or oxide is added in the tank, whereby inorganic water is added. An aeration tank 2 that purifies by a biological treatment method using activated sludge coexisting with a flocculant, and a sedimentation tank 5 that is a microbial solid-liquid separation step at the subsequent stage of the aeration tank 2 are incorporated, and organic wastewater that discharges treated water 6 outside the system In the treatment apparatus, a pipe for returning a part of the settled sludge 7 extracted from the settling tank 5 directly to the aeration tank 2 as return sludge 8 and another part 9 of the settled sludge are introduced into the solubilization treatment tank 11. A pipe, a pipe for introducing and supplying the solubilized sludge 12 after the solubilization treatment into the return pipe for returning the returned sludge 8 to the aeration tank 2, and another part 10 of the settled sludge 7 to the alkali treatment tank 13. Piping to be introduced, then Al Li sludge 14
And a supply pipe for introducing the separated sludge 17 into the solubilized sludge return pipe in the solid-liquid separation device 15, a supply pipe for introducing the phosphate ion-containing liquid 16 to the phosphorus recovery device 18, and calcium phosphate or phosphoric acid in the phosphorus recovery device 18. A discharge pipe for recovering magnesium ammonium as recovered phosphorus 19 and a conduit for introducing and supplying the strongly alkaline separated liquid 20 from the phosphorus recovery apparatus 18 into the pipe for introducing a part 10 of the settled sludge into the alkali treatment tank 13 are provided. Thereby, the flow and the reaction of the respective substances described above are configured to occur.

【0010】図1の活性汚泥処理(通常の活性汚泥法、
生物学的硝化脱窒素法、生物脱リン法、担体添加法など
の任意の生物処理を適用して良い)の生物処理槽に、運
転開始後しばらくの期間だけ、硫酸アルミニウム、PA
C、塩化第2鉄、硫酸鉄などの無機凝集剤を添加し、金
属水酸化物を活性汚泥と共存させて、リンとCODを凝
集又は吸着除去しつつ生物処理する。無機凝集剤の添加
は運転初期だけでよい。なお、無機凝集剤の添加によっ
て生物処理槽内に水酸化物を生成させる代わりに、運転
開始に先立ってリン吸着性酸化鉄、酸化アルミニウム微
粒子を生物処理工程に、1000から5000mg/リ
ットル程度添加しておいても良い。
The activated sludge treatment shown in FIG. 1 (normal activated sludge method,
Any biological treatment such as a biological nitrification denitrification method, a biological dephosphorization method, and a carrier addition method may be applied).
C, an inorganic coagulant such as ferric chloride or iron sulfate is added, and a metal hydroxide is made to coexist with the activated sludge, and a biological treatment is performed while coagulating or adsorbing and removing phosphorus and COD. The addition of the inorganic coagulant may be performed only at the beginning of operation. Instead of generating a hydroxide in the biological treatment tank by adding an inorganic flocculant, phosphorus-adsorbing iron oxide and aluminum oxide fine particles are added to the biological treatment step at a rate of about 1000 to 5000 mg / liter before starting the operation. You can keep it.

【0011】しかる後、生物処理工程の金属水酸化物共
存活性汚泥を沈殿、膜分離、ダイナミックろ過などの固
液分離手段で水酸化アルミニウム、水酸化鉄共存活性汚
泥を固液分離し、清澄な処理水6と分離汚泥を得る。図
1においては沈殿槽5を使用しているので、分離汚泥は
沈殿汚泥7である。分離汚泥の大部分は、返送汚泥8と
して生物処理槽に返送される。
Thereafter, the activated sludge coexisting with metal hydroxide in the biological treatment step is solid-liquid separated by solid-liquid separation means such as sedimentation, membrane separation, and dynamic filtration. Obtain treated water 6 and separated sludge. Since the sedimentation tank 5 is used in FIG. 1, the separated sludge is the sedimentation sludge 7. Most of the separated sludge is returned to the biological treatment tank as return sludge 8.

【0012】分離汚泥の残りの一部9は、オゾン酸化、
超音波処理、ミル磨り潰し、加熱処理、高温好気性微生
物等の汚泥可溶化手段を適用した可溶化処理槽11に導
かれ、水酸化鉄又は水酸化アルミニウム共存活性汚泥の
中の活性汚泥が可溶化され、活性汚泥の生分解性が著し
く向上する。
The remaining part 9 of the separated sludge is ozone oxidized,
It is led to a solubilization tank 11 to which a means for solubilizing sludge such as ultrasonic treatment, mill grinding, heat treatment, and high-temperature aerobic microorganisms is applied, and activated sludge in the activated sludge coexisting with iron hydroxide or aluminum hydroxide is removed. It is solubilized and the biodegradability of the activated sludge is significantly improved.

【0013】なお、可溶化手段にオゾンを適用すると、
水酸化鉄、水酸化アルミニウムフロックが吸着している
難生分解性のCOD成分も、オゾン酸化によって低分子
化され生分解性が向上し、生物処理槽において生物学的
に除去される。可溶化処理汚泥を活性汚泥処理工程(曝
気槽)に返送すると、微生物及び凝集除去されていたC
ODの生分解性が向上しているため、生物分解を受けて
余剰活性汚泥の生成量が減少し、かつ水酸化鉄、水酸化
アルミニウムフロックのCOD除去能力が回復する。
When ozone is applied to the solubilizing means,
The hardly biodegradable COD component to which iron hydroxide and aluminum hydroxide flocs are adsorbed is also degraded by ozone oxidation to improve biodegradability, and is biologically removed in the biological treatment tank. When the solubilized sludge is returned to the activated sludge treatment step (aeration tank), microorganisms and C
Since the biodegradability of OD is improved, the amount of surplus activated sludge generated by biodegradation is reduced, and the ability of iron hydroxide and aluminum hydroxide floc to remove COD is restored.

【0014】一方、金属水酸化物共存活性汚泥の他の一
部10にNaOHなどの苛性アルカリを添加し、汚泥の
pHを11.5以上にして攪拌すると、水酸化鉄、水酸
化アルミニウムに吸着されていたリン酸イオンが、水酸
イオンとイオン交換して液側に溶出する。この時、同時
に活性汚泥もアルカリによる加水分解によって可溶化さ
れ、生物分解性が向上する。次に、アルカリ処理汚泥1
4を固液分離する。固液分離装置15で得た分離汚泥1
7は曝気槽2に返送され、生物分解を受けて減少する。
また、リンが溶出した金属水酸化物は、リン吸着能力が
回復しているので、原水中のリンを吸着除去することが
できる。
On the other hand, when a caustic alkali such as NaOH is added to the other portion 10 of the activated sludge coexisting with metal hydroxide, and the pH of the sludge is increased to 11.5 or more, the sludge is adsorbed on iron hydroxide and aluminum hydroxide. The phosphate ions that have been exchanged with hydroxide ions elute to the liquid side. At this time, the activated sludge is simultaneously solubilized by hydrolysis with alkali, and biodegradability is improved. Next, alkali-treated sludge 1
4 is subjected to solid-liquid separation. Separated sludge 1 obtained by solid-liquid separator 15
7 is returned to the aeration tank 2 and undergoes biodegradation and decreases.
Further, since the metal hydroxide from which phosphorus has been eluted has recovered its phosphorus adsorption ability, it can adsorb and remove phosphorus in raw water.

【0015】次に、リンが溶出した液にCaイオン又は
Mgイオンを添加し、リン酸カルシウム又はリン酸マグ
ネシウムアンモニウムの沈殿を生成させ、これを回収す
る。リン回収装置18からの強アルカリ性分離液20
は、pH12程度の強アルカリ性であるので、これをア
ルカリ処理槽13にリサイクルすると、NaOH添加量
を削減できる。リン回収装置18からの強アルカリ性分
離液20をオゾン、超音波照射などによる汚泥可溶化槽
11に添加すると、アルカリ可溶化効果がプラスされる
ので、汚泥可溶化効果が向上するので好適である。
Next, Ca ions or Mg ions are added to the solution from which phosphorus has been eluted to precipitate calcium phosphate or magnesium ammonium phosphate, and the precipitate is recovered. Strongly alkaline separation liquid 20 from phosphorus recovery device 18
Is strongly alkaline, having a pH of about 12, and is recycled to the alkali treatment tank 13 so that the amount of NaOH added can be reduced. It is preferable to add the strong alkaline separation liquid 20 from the phosphorus recovery device 18 to the sludge solubilization tank 11 by ozone, ultrasonic irradiation, or the like, because the alkali solubilization effect is added and the sludge solubilization effect is improved.

【0016】なお、アルカリ処理汚泥14を固液分離せ
ずにそのままリン酸カルシウム、リン酸マグネシウムア
ンモニウム晶析槽(図示せず)に供給し、生成したリン
酸カルシウム、リン酸マグネシウムアンモニウム結晶の
沈降速度が、生物汚泥のそれよりも格段に大きいことを
利用して分級後、生物汚泥を生物処理槽に供給するよう
にしても良い。
The alkali-treated sludge 14 is supplied to a calcium phosphate / magnesium ammonium phosphate crystallization tank (not shown) without solid-liquid separation, and the sedimentation rate of the generated calcium phosphate / magnesium ammonium phosphate crystals is reduced by biological The biological sludge may be supplied to the biological treatment tank after classification using the fact that the sludge is much larger than that of the sludge.

【0017】上記の本発明の工程によって、原水のリ
ン、COD、BOD、SSなどが永続的に除去され、ま
た余剰活性汚泥発生がほとんどなくなる。リンも肥料と
して利用しやすい形態で資源回収できる。
According to the above-mentioned process of the present invention, phosphorus, COD, BOD, SS and the like of raw water are permanently removed, and the generation of excess activated sludge is almost eliminated. Phosphorus can also recover resources in a form that can be easily used as fertilizer.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例により何等制限されるも
のではない。
The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 図1の工程にしたがって下水(平均水質を第1表に示
す)を対象に、本発明の実証試験を行った。第2表に試
験条件を示す。
Example 1 A verification test of the present invention was performed on sewage (average water quality is shown in Table 1) according to the process shown in FIG. Table 2 shows the test conditions.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】実験の結果、処理開始後2か月後に、処理
状況が安定状態になってからの、沈殿槽からの処理水水
質の平均は、第3表のように高度にリン、BODが除去
されていた。また1年間の余剰汚泥引き抜き量は、12
リットルと微量であったが、活性汚泥曝気槽のMLVS
Sは、3500〜4000mg/リットル以下を維持し
た。この結果から、余剰活性汚泥の発生量は無視し得る
程度に少ないものであることが判明した。
As a result of the experiment, the average of the quality of the treated water from the sedimentation tank after two months from the start of the treatment and after the treatment state became stable was as shown in Table 3 in which phosphorus and BOD were highly removed. It had been. The amount of excess sludge withdrawn per year is 12
MLVS of activated sludge aeration tank
S was maintained at 3500 to 4000 mg / liter or less. From this result, it was found that the amount of surplus activated sludge generated was negligibly small.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】本発明によれば、下記の(1)〜(4)
の効果が得られる。 (1)オゾンなどによる活性汚泥可溶化作用、アルカリ
処理による金属水酸化物からのリン酸イオンの脱着作
用、アルカリ処理による活性汚泥の加水分解作用を、新
規な思想で結合した結果、余剰活性汚泥の発生量がほと
んど無視できるほどに少なくなり、かつ、リン、COD
除去が安定して行われ、リン資源も回収できる。 (2)この結果、従来の余剰汚泥発生量減少型活性汚泥
法におけるリン除去ができないこと、処理水CODが悪
化することという重大な欠点を根本的に解決できる。 (3)アルカリ処理に使用したアルカリ剤を再利用でき
るので、苛性アルカリ所要量が減少する。 (4)3次処理設備を設けずに、2次処理設備を活用し
て、上記効果を得ることができるので設備費、設置面積
が大きく節約できる。
According to the present invention, the following (1) to (4)
The effect of is obtained. (1) Combining activated sludge solubilization by ozone, desorption of phosphate ions from metal hydroxide by alkali treatment, and hydrolysis of activated sludge by alkali treatment based on a new concept, resulting in surplus activated sludge. Generation is almost negligible, and phosphorus, COD
Removal is stable and phosphorus resources can be recovered. (2) As a result, it is possible to fundamentally solve the serious drawbacks that the conventional activated sludge method of reducing the amount of generated excess sludge cannot remove phosphorus and the COD of treated water deteriorates. (3) Since the alkali agent used in the alkali treatment can be reused, the required amount of caustic is reduced. (4) The above effects can be obtained by utilizing the secondary processing equipment without providing the tertiary processing equipment, so that the equipment cost and the installation area can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水の処理方法における一実施
例のブロック図である。
FIG. 1 is a block diagram of one embodiment of the method for treating organic wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 有機性排水(原水) 2 曝気槽(生物処理槽) 3 無機凝集剤 4 凝集活性汚泥混合液 5 沈殿槽 6 処理水 7 沈殿汚泥 8 返送汚泥 9 沈殿汚泥の一部 10 沈殿汚泥の他の一部 11 可溶化処理槽 12 可溶化汚泥 13 アルカリ処理槽 14 アルカリ処理汚泥 15 固液分離装置 16 リン酸イオン含有液 17 分離汚泥 18 リン回収装置 19 回収リン 20 強アルカリ性分離液 Reference Signs List 1 organic wastewater (raw water) 2 aeration tank (biological treatment tank) 3 inorganic coagulant 4 coagulation activated sludge mixed liquid 5 sedimentation tank 6 treated water 7 settled sludge 8 returned sludge 9 part of settled sludge 10 other settled sludge Part 11 Solubilization tank 12 Solubilized sludge 13 Alkaline treatment tank 14 Alkaline treated sludge 15 Solid-liquid separator 16 Phosphate ion-containing liquid 17 Separated sludge 18 Phosphorus recovery device 19 Recovered phosphorus 20 Strong alkaline separation liquid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 11/00 C02F 11/00 J ZAB ZABZ (72)発明者 荒川 清美 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 小林 琢也 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D024 AA04 AB12 BA13 BA14 BC04 DA06 DA07 DB03 DB05 DB06 DB10 DB12 DB15 DB20 DB21 DB24 4D028 AA08 AB00 AC01 AC03 BC17 BD11 BD17 4D038 AA08 AB45 AB48 BA04 BB06 BB17 BB18 BB19 4D059 AA05 AA19 BC02 BE49 BF02 BF14 BK11 BK12 BK22 CA21 CA28 DA01 DA43 EB05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 11/00 C02F 11/00 J ZAB ZABZ (72) Inventor Kiyomi Arakawa 11th Asahimachi Haneda-cho, Ota-ku, Tokyo No. 1 Inside EBARA CORPORATION (72) Inventor Takuya Kobayashi 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in EBARA CORPORATION (Reference) 4D024 AA04 AB12 BA13 BA14 BC04 DA06 DA07 DB03 DB05 DB06 DB10 DB12 DB15 DB20 DB21 DB24 4D028 AA08 AB00 AC01 AC03 BC17 BD11 BD17 4D038 AA08 AB45 AB48 BA04 BB06 BB17 BB18 BB19 4D059 AA05 AA19 BC02 BE49 BF02 BF14 BK11 BK12 BK22 CA21 CA28 DA01 DA43 EB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水を、鉄又はアルミニウム水酸
化物もしくは酸化物共存活性汚泥によって生物処理する
とともに、該生物処理工程の金属水酸化物含有活性汚泥
の一部を引き抜いて汚泥可溶化処理を行った後、前記生
物処理工程に返送するとともに、該生物処理工程におけ
る金属水酸化物含有汚泥の他の一部に苛性アルカリを添
加してアルカリ処理後、固液分離工程で分離汚泥と分離
液に分離し、前記分離汚泥を前記生物処理工程に返送
し、前記固液分離工程の分離液をアルカリ性条件で化学
的リン析出工程に導いて、リンを析出分離させることを
特徴とする有機性汚水の処理方法。
1. An organic wastewater is subjected to biological treatment with activated sludge coexisting with iron or aluminum hydroxide or oxide, and a part of the activated sludge containing metal hydroxide in the biological treatment step is withdrawn to solubilize the sludge. And then return to the biological treatment step, add caustic to another part of the metal hydroxide-containing sludge in the biological treatment step, add alkali treatment, and separate the sludge from the separated sludge in the solid-liquid separation step. Separating the liquid into liquid, returning the separated sludge to the biological treatment step, guiding the separated liquid from the solid-liquid separation step to a chemical phosphorus precipitation step under alkaline conditions, and separating and separating phosphorus. Wastewater treatment method.
【請求項2】 有機性汚水を、鉄又はアルミニウム水酸
化物もしくは酸化物共存活性汚泥によって生物処理する
とともに、該生物処理工程の金属水酸化物含有活性汚泥
の一部を引き抜いて汚泥可溶化処理を行った後、前記生
物処理工程に返送するとともに、前記生物処理工程にお
ける金属水酸化物含有汚泥の他の一部に苛性アルカリを
添加してアルカリ処理後、化学的リン析出工程に導きリ
ンを析出分離し、リンが除去された汚泥を前記生物処理
工程に返送することを特徴とする有機性汚水の処理方
法。
2. An organic wastewater is subjected to biological treatment with activated sludge coexisting with iron or aluminum hydroxide or oxide, and a part of the activated sludge containing metal hydroxide in the biological treatment step is withdrawn to solubilize the sludge. After returning to the biological treatment step, the caustic alkali is added to another part of the metal hydroxide-containing sludge in the biological treatment step, and alkali treatment is performed. A method for treating organic wastewater, comprising returning sludge from which phosphorus has been removed by separation to the biological treatment step.
【請求項3】 請求項1における化学的リン析出工程後
の固液分離工程から流出するアルカリ性分離液を、前記
汚泥可溶化工程又はアルカリ処理工程に返送することを
特徴とする有機性汚水の処理方法。
3. The treatment of organic sewage, wherein the alkaline separation liquid flowing out of the solid-liquid separation step after the chemical phosphorus precipitation step according to claim 1 is returned to the sludge solubilization step or the alkali treatment step. Method.
【請求項4】 有機性汚水を、鉄又はアルミニウム水酸
化物もしくは酸化物共存活性汚泥によって生物処理法で
浄化する曝気槽と、曝気槽の後段の微生物を汚泥として
沈殿回収する沈殿槽とを有し、前記曝気槽に対して、前
記沈殿槽から引き抜いた汚泥の一部を直接返送汚泥とし
て供給する返送系、前記の引き抜いた汚泥の別の一部を
汚泥可溶化処理槽に導入し、汚泥可溶化処理後、これを
前記曝気槽へ供給する返送系、前記の引き抜いた汚泥の
更に別の一部をアルカリ処理槽に導入し苛性アルカリで
処理し、次いで固液分離装置で固液分離し、得られた分
離汚泥を前記曝気槽へ供給する返送系、前記固液分離装
置で分離したリン酸イオン含有分離液をリン回収装置へ
送り、Caイオン又はMgイオンの添加により生成した
沈殿を回収する系、及びリン回収装置からの分離液を前
記アルカリ処理槽へ戻す返送系を設けたことを特徴とす
る有機性汚水の処理装置。
4. An aeration tank for purifying organic sewage by a biological treatment method using activated sludge coexisting with iron or aluminum hydroxide or oxide, and a sedimentation tank for sedimenting and collecting microorganisms at a later stage of the aeration tank as sludge. A return system for directly supplying a part of the sludge extracted from the sedimentation tank to the aeration tank as return sludge; introducing another part of the extracted sludge to a sludge solubilization treatment tank; After solubilization treatment, a return system for supplying this to the aeration tank, another part of the extracted sludge is introduced into an alkali treatment tank, treated with caustic alkali, and then subjected to solid-liquid separation with a solid-liquid separation device. , A return system for supplying the obtained separated sludge to the aeration tank, a phosphate ion-containing separation solution separated by the solid-liquid separation device to a phosphorus recovery device, and recovery of a precipitate formed by addition of Ca ions or Mg ions. System And a return system for returning a separated liquid from the phosphorus recovery device to the alkali treatment tank.
JP2001174214A 2001-06-08 2001-06-08 Treating method and treating apparatus for organic contaminated water Pending JP2002361277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174214A JP2002361277A (en) 2001-06-08 2001-06-08 Treating method and treating apparatus for organic contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174214A JP2002361277A (en) 2001-06-08 2001-06-08 Treating method and treating apparatus for organic contaminated water

Publications (1)

Publication Number Publication Date
JP2002361277A true JP2002361277A (en) 2002-12-17

Family

ID=19015531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174214A Pending JP2002361277A (en) 2001-06-08 2001-06-08 Treating method and treating apparatus for organic contaminated water

Country Status (1)

Country Link
JP (1) JP2002361277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207064A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2010069413A (en) * 2008-09-18 2010-04-02 Cosmo Oil Co Ltd Organic waste water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207064A (en) * 2007-02-23 2008-09-11 Petroleum Energy Center Treatment method of organic wastewater
JP2010069413A (en) * 2008-09-18 2010-04-02 Cosmo Oil Co Ltd Organic waste water treatment method

Similar Documents

Publication Publication Date Title
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JPH09108690A (en) Treatment of phosphorus containing sewage
JPH0839096A (en) Treatment of organic sewage
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JP3516309B2 (en) Method and apparatus for treating phosphorus-containing organic wastewater
JP2001276851A (en) Drain treatment equipment
JP2928569B2 (en) Water purification method
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JP2002361277A (en) Treating method and treating apparatus for organic contaminated water
JP2003062591A (en) Method for purifying organic waste water
JP2002316192A (en) Method and apparatus for treating organic foul water
JP3511430B2 (en) Organic wastewater treatment method
JP2002143883A (en) Method for treating organic polluted water containing phosphorus
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP2003300095A (en) Method and apparatus for sewage treatment
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP2003071487A (en) Method and apparatus for treating organic wastewater
JP3526140B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JP2002263676A (en) Waste water treatment method and facility
JP3449855B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JP2003211186A (en) Treatment method for sewage containing nitrogen and phosphorus and treatment apparatus therefor
JPH09108692A (en) Treatment of organic waste water and device therefor
JP2002292399A (en) Organic wastewater disposal equipment