JPH09108692A - Treatment of organic waste water and device therefor - Google Patents

Treatment of organic waste water and device therefor

Info

Publication number
JPH09108692A
JPH09108692A JP7273054A JP27305495A JPH09108692A JP H09108692 A JPH09108692 A JP H09108692A JP 7273054 A JP7273054 A JP 7273054A JP 27305495 A JP27305495 A JP 27305495A JP H09108692 A JPH09108692 A JP H09108692A
Authority
JP
Japan
Prior art keywords
organic wastewater
nitrification
activated carbon
tank
iron chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7273054A
Other languages
Japanese (ja)
Other versions
JP3377346B2 (en
Inventor
Takao Okura
孝雄 大倉
Yoshio Okuno
芳男 奥野
Kazuhiko Tanaka
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP27305495A priority Critical patent/JP3377346B2/en
Publication of JPH09108692A publication Critical patent/JPH09108692A/en
Application granted granted Critical
Publication of JP3377346B2 publication Critical patent/JP3377346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating organic waste water in which nitrogen compounds, phosphorus compounds and organic materials are stably, effectively, easily and highly reduced by simple constitution. SOLUTION: Night soil base sewage is caused to flow in a high load reaction tank 1 and is aerated to subject easily decomposable organic materials and nitrogen compounds to biological nitrification and denitrification treatment by microorganisms of returned sludge. In a nitrification and denitrification tank 4, the easily decomposable organic materials and nitrogen compounds remaining at >=0.5mg/l DO and -100-50mV ORP lower than that in the high load reaction tank 1 are highly removed by the microorganisms of the returned sludge. Corresponding to the phosphate concentration and COD concentration in organic waste water flowing in the nitrification and denitrification tank 4, iron chloride and powdery activated carbon are added. The iron chloride makes phosphoric acid ions react with insoluble iron phosphate, and is secondarily flocculated and adsorbed with high molecular soluble organic materials. The powdery activated carbon adsorbs hydrophobic low molecular organic materials to make them insoluble. Membrane separation is performed by a UF membrane separator 7 to return sludge to the high load reaction tank 1 and the nitrification and denitrification tank 4, and filtrate is discharged as treated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒素化合物やリン
化合物を含有する有機性廃水を浄化処理する有機性廃水
の処理方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic wastewater treatment method and apparatus for purifying organic wastewater containing nitrogen compounds and phosphorus compounds.

【0002】[0002]

【従来の技術】従来、この種の有機性廃水の処理方法と
しては、例えば特公平3−24280号公報に記載の構
成が知られている。
2. Description of the Related Art Conventionally, as a method of treating this type of organic wastewater, for example, a structure disclosed in Japanese Patent Publication No. 3-24280 is known.

【0003】この特公平3−24280号公報に記載の
有機性廃水の処理方法は、生物学的BOD除去および窒
素除去にて得られたBOD酸化菌、硝化菌および脱窒菌
を含む返送汚泥とともに有機性廃水を高負荷反応槽に流
入させ、空気を適宜曝気して好気性生物によるBODの
低減および硝化菌や脱窒菌による窒素化合物の低減を行
った後、硝化脱窒槽に流入させて残留するBODおよび
窒素化合物を硝化菌および脱窒菌にて生物学的硝化反応
および生物学的内生呼吸型脱窒反応により窒素ガスおよ
び炭酸ガスなどとして高度に除去し、さらに沈殿池にて
硝化脱窒槽で発生する汚泥を固液分離して、分離した汚
泥を高負荷反応槽に返送し、濾液は処理水として後工程
の処理に搬送する構成が採られている。
The method for treating organic wastewater described in this Japanese Patent Publication No. 3-24280 discloses a method for treating organic wastewater with returned sludge containing BOD-oxidizing bacteria, nitrifying bacteria and denitrifying bacteria obtained by biological BOD removal and nitrogen removal. Wastewater is introduced into a high-load reaction tank, air is appropriately aerated to reduce BOD by aerobic organisms and nitrogen compounds by nitrifying bacteria and denitrifying bacteria, and then flow into the nitrifying and denitrifying tank to remain BOD. And nitrogen compounds are highly removed as nitrogen gas and carbon dioxide gas by nitrifying bacteria and denitrifying bacteria by biological nitrification reaction and biological endogenous respiratory denitrification reaction, and further generated in the nitrification denitrification tank in the sedimentation tank. The sludge is subjected to solid-liquid separation, the separated sludge is returned to the high-load reaction tank, and the filtrate is transported to the subsequent process as treated water.

【0004】しかしながら、上記特公平3−24280
号公報に記載の従来の有機性廃水の処理方法において、
BOD酸化菌、硝化菌および脱窒菌にて有機性廃水中に
含まれるリン酸イオンや溶解している生物難分解性の有
機物による化学的酸素要求量(COD)を高度に低減で
きない。さらに、有機性廃水はし尿や浄化槽汚泥など窒
素化合物が高濃度に含有されているため、窒素化合物を
安定して除去できず、浮遊物質(SS)、BOD、CO
Dなどを安定して低減するのが困難である。このため、
これらBOD酸化菌、硝化菌および脱窒菌にて除去でき
ないリン酸イオンや生物難分解性の有機物を除去すべ
く、沈殿池の代わりに膜分離を行うことが考えられる
が、単に膜分離する手段を付加したのみでは、高負荷反
応槽および硝化脱窒槽で発生する汚泥および難分解性有
機物などにより膜が短時間で閉塞して効率よく処理でき
ない。
However, the above Japanese Patent Publication No. 3-24280.
In the conventional method for treating organic wastewater described in Japanese Patent Publication,
BOD oxidizing bacteria, nitrifying bacteria, and denitrifying bacteria cannot highly reduce the chemical oxygen demand (COD) due to the phosphate ions contained in the organic wastewater and dissolved bio-hardly degradable organic substances. Furthermore, since nitrogen compounds such as organic wastewater night soil and septic tank sludge are contained at a high concentration, the nitrogen compounds cannot be removed stably, and suspended solids (SS), BOD, CO
It is difficult to stably reduce D and the like. For this reason,
Membrane separation may be performed instead of the sedimentation basin in order to remove phosphate ions and organic substances that are hardly biodegradable, which cannot be removed by BOD-oxidizing bacteria, nitrifying bacteria, and denitrifying bacteria. If only added, the membrane is clogged in a short time due to sludge and hardly decomposable organic matter generated in the high-load reaction tank and the nitrification / denitrification tank, and the treatment cannot be performed efficiently.

【0005】そこで、例えば、凝集剤にて脱水された被
処理水を生物処理し、この処理水を下流側の反応槽で粉
末活性炭が添加され、さらに下流側の反応槽で凝集剤が
添加されて、凝集物を沈殿分離除去する方法が知られて
いる。
Therefore, for example, the water to be treated that has been dehydrated with a coagulant is biologically treated, and the treated water is added with powdered activated carbon in a downstream reaction tank and further with a coagulant in a downstream reaction tank. Then, a method of separating and removing aggregates by precipitation is known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の粉末活性炭および凝集剤を添加する方法では、生物
処理を行う槽と、粉末活性炭を添加する槽と、凝集剤を
添加する槽とを必要とし、構成が複雑で設備が大型化
し、広い設置スペースを必要とする問題がある。
However, the above-mentioned conventional method of adding powdered activated carbon and a flocculant requires a tank for biological treatment, a tank for adding powdered activated carbon, and a tank for adding a flocculant. However, there is a problem that the structure is complicated, the equipment is large, and a large installation space is required.

【0007】本発明は、上記問題点に鑑みなされたもの
で、簡単な構成で安定して効率よく容易に窒素化合物、
リン化合物および有機物を高度に低減できる有機性廃水
の処理方法およびその装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned problems, and it is stable, efficient, and easy to use a nitrogen compound with a simple structure.
It is an object of the present invention to provide a method for treating an organic wastewater capable of highly reducing phosphorus compounds and organic substances and an apparatus therefor.

【0008】[0008]

【課題を解決するための手段】請求項1記載の有機性廃
水の処理方法は、窒素化合物およびリン化合物を含有す
る有機性廃水を生物学的に処理する有機性廃水の処理方
法において、前記有機性廃水に粉末活性炭および塩化鉄
を添加するとともに、この粉末活性炭および塩化鉄が添
加された有機性廃水を溶存酸素を0.5mg/l以下に維持
しつつ酸素を接触させてこの有機性廃水を微生物にて生
物学的硝化脱窒処理した後、膜分離するもので、1つの
槽で、微生物により有機性廃水を生物学的硝化脱窒処理
するとともに、添加される塩化鉄にて溶解するリン化合
物を不溶性のリン酸鉄に反応させつつ残留する高分子溶
解性有機物を副次的に凝集吸着させ、粉末活性炭にて残
留する難分解性の疎水性低分子有機物を吸着除去し、こ
れらの処理後に膜分離するので、簡単な構成で膜面に例
えばゲル層を形成する化学的酸素要求量に起因する溶解
性の有機物が膜分離の前で高度に除去され、膜分離の負
荷が低減し、効率のよい処理が可能となる。また、有機
性廃水の溶存酸素が0.5mg/lより高くなると脱窒菌に
よる脱窒が生じなくなり、窒素化合物が残留してしまう
ため、効率よく窒素化合物を除去すべく、有機性廃水の
溶存酸素を0.5mg/l以下に設定する。
A method for treating organic wastewater according to claim 1, wherein the organic wastewater containing nitrogen compounds and phosphorus compounds is treated biologically, wherein the organic wastewater is treated organically. Powdered activated carbon and iron chloride are added to the organic wastewater, and the organic wastewater to which the powdered activated carbon and iron chloride is added is kept in contact with oxygen while maintaining the dissolved oxygen at 0.5 mg / l or less to remove the organic wastewater. Membrane separation after biological nitrification and denitrification treatment by microorganisms. Phosphorus dissolved in iron chloride to be added to the organic wastewater by microorganisms is biologically nitrification and denitrification treatment in one tank. While reacting the compound with insoluble iron phosphate, the residual high-molecular-weight organic compounds are coagulated and adsorbed, and the residual hard-to-decompose hydrophobic low-molecular-weight organic compounds are adsorbed and removed with powdered activated carbon, and these treatments are performed. After film Since it is separated, soluble organic substances due to chemical oxygen demand that forms a gel layer on the membrane surface with a simple structure are highly removed before the membrane separation, reducing the load of the membrane separation and reducing the efficiency. Good processing is possible. Further, when the dissolved oxygen of the organic waste water is higher than 0.5 mg / l, denitrification by the denitrifying bacteria does not occur and the nitrogen compound remains, so that the dissolved oxygen of the organic waste water should be removed efficiently in order to remove the nitrogen compound. Is set to 0.5 mg / l or less.

【0009】請求項2記載の有機性廃水の処理装置は、
窒素化合物およびリン化合物を含有する有機性廃水に酸
素を接触させてこの有機性廃水を微生物にて生物学的硝
化脱窒処理して前記有機性廃水を第1処理水とする生物
処理手段と、この生物処理手段に接続されこの生物処理
手段に前記有機性廃水を流入させる原水流入手段と、前
記生物処理手段に接続されこの生物処理手段から流出す
る前記第1処理水を膜分離する膜分離手段と、前記原水
流入手段および前記生物処理手段の少なくともにいずれ
か一方に接続され前記有機性廃水に粉末活性炭および塩
化鉄を添加する処理剤添加手段とを具備したもので、微
生物による有機性廃水の生物学的硝化脱窒処理と、添加
される塩化鉄にて溶解するリン化合物を不溶性のリン酸
鉄に反応させ、かつ、残留する高分子溶解性有機物を副
次的に凝集吸着させる処理と、粉末活性炭にて残留する
難分解性の疎水性低分子有機物を吸着除去する処理とが
1つの槽で行われ、簡単な構成で膜面に例えばゲル層を
形成する化学的酸素要求量に起因する溶解性の有機物が
膜分離の前で高度に除去され、膜分離の負荷が低減し、
効率のよい処理が可能となる。
The treatment apparatus for organic wastewater according to claim 2 is
A biological treatment means in which oxygen is brought into contact with an organic wastewater containing a nitrogen compound and a phosphorus compound, and the organic wastewater is subjected to biological nitrification denitrification treatment by a microorganism to use the organic wastewater as a first treated water. Raw water inflow means connected to the biological treatment means for flowing the organic wastewater into the biological treatment means, and membrane separation means for membrane separation of the first treated water connected to the biological treatment means and flowing out of the biological treatment means. And a treatment agent adding means for adding powdered activated carbon and iron chloride to the organic wastewater, which is connected to at least one of the raw water inflow means and the biological treatment means, and the organic wastewater by microorganisms Biological nitrification and denitrification treatment, the phosphorus compound that dissolves in the added iron chloride is reacted with the insoluble iron phosphate, and the residual polymer soluble organic matter is secondarily aggregated and adsorbed. And a process of adsorbing and removing the persistent low-degradability hydrophobic low-molecular organic matter with powdered activated carbon are performed in one tank, and a chemical oxygen demand for forming a gel layer on the membrane surface with a simple structure is required. Soluble organic substances due to the amount are highly removed before membrane separation, reducing the load on membrane separation,
Efficient processing is possible.

【0010】[0010]

【発明の実施の形態】以下、本発明の有機性廃水の処理
方法の実施の一形態の構造を図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of one embodiment of the method for treating organic wastewater of the present invention will be described below with reference to the drawings.

【0011】図1において、1は生物処理手段としての
高負荷反応槽で、この高負荷反応槽1には、し尿や浄化
槽汚泥などの有機性廃水を流入させる原水流入手段とし
ての原水管2が接続されるとともに、空気を曝気する図
示しない曝気装置が配設されている。さらに、この高負
荷反応槽1には、搬送管3を介して生物処理手段として
の硝化脱窒槽4が接続されている。そして、この硝化脱
窒槽4には、塩化鉄および粉末活性炭を所定量添加する
処理剤添加手段としての塩化鉄添加装置5および処理剤
添加手段としての粉末活性炭添加装置6とが接続されて
いる。なお、粉末活性炭は、必要以上の攪拌や曝気動力
が不要である真比重が1.9〜2.2で粒径が150μ
m以下のものを用いる。さらに、硝化脱窒槽4には、膜
分離手段である膜分離を行う、例えば限外濾過(UF:
Ultrafiltration )膜を用いたUF膜分離装置7が、輸
送管8を介して接続されている。そして、このUF膜分
離装置7にて分離除去された汚泥は、高負荷反応槽1お
よび硝化脱窒槽4に返送され、一部は脱水工程に搬送さ
れて処理される。また、濾過された濾液は、処理水とし
て河川に放水したり、後工程にてさらに浄化される。
In FIG. 1, reference numeral 1 is a high-load reaction tank as a biological treatment means. In this high-load reaction tank 1, there is a raw water pipe 2 as a raw water inflow means for inflowing organic wastewater such as human waste and septic tank sludge. An aeration device (not shown) for aerating air is provided while being connected. Further, a nitrification denitrification tank 4 as a biological treatment means is connected to the high load reaction tank 1 via a carrier pipe 3. The nitrification and denitrification tank 4 is connected to an iron chloride addition device 5 as a treatment agent addition means for adding a predetermined amount of iron chloride and powdered activated carbon and a powdered activated carbon addition apparatus 6 as a treatment agent addition means. The powdered activated carbon does not require unnecessary stirring or aeration power, and has a true specific gravity of 1.9 to 2.2 and a particle size of 150 μm.
Use m or less. Further, in the nitrification / denitrification tank 4, for example, ultrafiltration (UF:
An UF membrane separation device 7 using an ultrafiltration membrane is connected via a transport pipe 8. Then, the sludge separated and removed by the UF membrane separation device 7 is returned to the high load reaction tank 1 and the nitrification denitrification tank 4, and a part of the sludge is transported to the dehydration step for treatment. Further, the filtered filtrate is discharged to a river as treated water or further purified in a post process.

【0012】次に、上記実施の一形態の作用を示す。Next, the operation of the above embodiment will be described.

【0013】まず、有機性廃水は、原水管2を介して高
負荷反応槽1に流入され、図示しない曝気装置にて、酸
化還元電位(ORP)を0〜300mVに維持して曝気す
る。この曝気により、有機性廃水中の生化学的酸素要求
量(BOD)にかかわる易分解性の有機物が返送される
汚泥中に含まれる微生物により生物学的硝化脱窒処理、
すなわち、返送される汚泥中の微生物であるBOD酸化
菌にて好気的分解されるとともに、返送される汚泥中の
微生物である硝化菌および脱窒菌による窒素化合物の硝
化脱窒の際の有機物の消費により、BODが低減する。
なお、ORPが300mVより高く設定しても易分解性有
機物の分解性にほとんど差がなく曝気のための運転コス
トが増大するので300mV以下に設定する。また、OR
Pが0mVより低くなると、還元性となりBOD酸化菌に
より好気的分解が行われなくなるとともに、硝化菌およ
び脱窒菌の機能も低下する。このため、ORPを0〜3
00mVに設定する。
First, the organic wastewater is introduced into the high load reaction tank 1 through the raw water pipe 2 and aerated by an aerator (not shown) while maintaining the redox potential (ORP) at 0 to 300 mV. By this aeration, biological nitrification and denitrification treatment by microorganisms contained in sludge, which returns easily decomposable organic matter related to biochemical oxygen demand (BOD) in organic wastewater,
That is, it is aerobically decomposed by BOD oxidizing bacteria, which are microorganisms in the returned sludge, and organic substances at the time of nitrifying and denitrifying nitrogen compounds by nitrifying bacteria and denitrifying bacteria, which are microorganisms in the returning sludge. BOD is reduced by consumption.
Even if the ORP is set higher than 300 mV, there is almost no difference in degradability of easily decomposable organic matter and the operating cost for aeration increases, so the value is set to 300 mV or less. Also, OR
When P is lower than 0 mV, it becomes reductive and aerobic decomposition is not performed by BOD-oxidizing bacteria, and the functions of nitrifying bacteria and denitrifying bacteria also deteriorate. Therefore, ORP is 0 to 3
Set to 00 mV.

【0014】そして、この曝気されてBOD酸化菌、硝
化菌および脱窒菌にて有機物および窒素化合物が生物学
的硝化脱窒処理された有機性廃水を、搬送管3を介して
硝化脱窒槽4に流入させる。この硝化脱窒槽4に流入し
た有機性廃水を、溶存酸素(DO)が0.5mg/l以下
で、かつ、ORPを−100〜50mVで高負荷反応槽1
のORPより低く制御する。これにより、有機性廃水中
の残留する易分解性有機物やアンモニア(NH4 )など
の窒素化合物を返送される汚泥中に含まれる微生物とし
ての硝化菌および亜硝化菌にて硝酸イオンおよび亜硝酸
イオンに硝化するとともに、返送汚泥中の微生物である
脱窒菌にて硝酸イオンおよび亜硝酸イオンを内生呼吸に
より窒素ガスや炭酸ガスなどに還元して放出する。な
お、高負荷反応槽1のORPが硝化脱窒槽4のORPよ
り低いと、硝化脱窒槽4に流入する有機性廃水は還元性
となり、硝化脱窒槽4のORPを所定値に維持しようと
すると硝化脱窒槽4で多量の曝気による酸化が必要にな
る。この多量の曝気によりDOを0.5mg/lの低い値に
調整することは困難である。このため、高負荷反応槽1
のORPを硝化脱窒槽4のORPより高く設定すれば硝
化脱窒槽4でほとんど曝気せずに容易にDOを0.5mg
/lの低い値に調整できるため、硝化脱窒槽4のORPを
高負荷反応槽1のORPより低く制御、すなわち高負荷
反応槽1のORPを高くする。
The aerated organic wastewater in which the organic substances and nitrogen compounds have been biologically nitrified and denitrified by the BOD oxidizing bacteria, nitrifying bacteria and denitrifying bacteria is transferred to the nitrifying and denitrifying tank 4 via the carrier pipe 3. Inflow. The organic wastewater flowing into the nitrification / denitrification tank 4 has a dissolved oxygen (DO) of 0.5 mg / l or less and an ORP of -100 to 50 mV.
Control below the ORP of. As a result, nitrate ions and nitrite ions are generated by nitrifying bacteria and nitrite bacteria as microorganisms contained in sludge that returns nitrogen compounds such as easily decomposable organic matter and ammonia (NH 4 ) remaining in organic wastewater. In addition to nitrification, nitrate denitrifying bacteria, which are microorganisms in the returned sludge, reduce nitrate ions and nitrite ions to nitrogen gas and carbon dioxide gas by endogenous respiration and release them. If the ORP of the high load reaction tank 1 is lower than the ORP of the nitrification denitrification tank 4, the organic wastewater flowing into the nitrification denitrification tank 4 becomes reductive, and if the ORP of the nitrification denitrification tank 4 is kept at a predetermined value, nitrification will occur. Oxidation by a large amount of aeration is required in the denitrification tank 4. Due to this large amount of aeration, it is difficult to adjust DO to a low value of 0.5 mg / l. Therefore, the high-load reaction tank 1
If the ORP of is set higher than the ORP of the nitrification / denitrification tank 4, the nitrification / denitrification tank 4 can easily do 0.5 mg of DO without aeration.
Since it can be adjusted to a low value of / l, the ORP of the nitrification denitrification tank 4 is controlled to be lower than the ORP of the high load reaction tank 1, that is, the ORP of the high load reaction tank 1 is increased.

【0015】さらに、硝化脱窒槽4内の有機性廃水に、
塩化鉄添加装置5および粉末活性炭添加装置6にて適宜
塩化鉄および粉末活性炭を添加する。なお、塩化鉄は、
硝化脱窒槽4に流入した有機性廃水中のリン酸塩の濃度
と当量添加する。また、粉末活性炭の添加量は、 粉末活性炭の添加量=処理水のCOD/粉末活性炭のC
OD吸着量 から算出される。ここで、粉末活性炭のCOD吸着量
は、図2に示す粉末活性炭の吸着等温線から求める。こ
こで、有機性廃水がし尿や浄化槽汚泥などのし尿系汚水
の場合、リン化合物の濃度は300mg/l、COD濃度は
500mg/lを越えることはほとんどない。このため、図
3および図4に示すように、塩化鉄の添加量は1500
mg/l以下、粉末活性炭の添加量は3000mg/l以下の範
囲で添加すればよい。
Furthermore, in the organic wastewater in the nitrification denitrification tank 4,
Iron chloride and powdered activated carbon are appropriately added by the iron chloride addition device 5 and the powdered activated carbon addition device 6. In addition, iron chloride is
An equivalent amount of phosphate is added to the organic wastewater flowing into the nitrification / denitrification tank 4. Further, the amount of powdered activated carbon added is as follows: The amount of powdered activated carbon added = COD of treated water / C of powdered activated carbon
It is calculated from the OD adsorption amount. Here, the COD adsorption amount of the powdered activated carbon is obtained from the adsorption isotherm of the powdered activated carbon shown in FIG. Here, when the organic wastewater is human waste or human wastewater-type wastewater such as septic tank sludge, the concentration of the phosphorus compound hardly exceeds 300 mg / l and the COD concentration hardly exceeds 500 mg / l. Therefore, as shown in FIGS. 3 and 4, the addition amount of iron chloride is 1500
The amount of activated carbon powder added may be 3000 mg / l or less.

【0016】そして、適宜添加された塩化鉄は、有機性
廃水中のリン酸イオンと反応して不溶性のリン酸鉄を生
成する。また、塩化鉄は、有機性廃水中の高分子溶解性
有機物と副次的に凝集吸着し、有機性廃水のCODを低
減させる。さらに、添加された粉末活性炭は、高負荷反
応槽1で微生物が分解困難な有機性廃水中に溶解するC
ODに起因する難分解性有機物である疎水性の低分子有
機物を吸着して不溶化させ、有機性廃水のCODを低減
する。
The iron chloride, which is added appropriately, reacts with the phosphate ions in the organic waste water to produce insoluble iron phosphate. In addition, iron chloride is secondarily coagulated and adsorbed with the polymer-soluble organic matter in the organic waste water to reduce the COD of the organic waste water. Furthermore, the powdered activated carbon added is dissolved in the organic wastewater in which the microorganisms are difficult to decompose in the high load reaction tank 1 C
It absorbs and insolubilizes hydrophobic low molecular weight organic substances, which are difficult-to-decompose organic substances due to OD, and reduces the COD of organic wastewater.

【0017】なお、硝化脱窒槽4のORPが−100mV
より低いと還元状態となり、硝化脱窒槽4に流入した有
機性廃水中の溶解するリン酸の量と塩化鉄の添加量とが
当量で等しい場合、図5に示すように、リン酸が再び溶
出してしまう。また、硝化脱窒槽4のORPが50mVよ
り高くなると、アンモニアなどの窒素化合物の酸化によ
る硝化が進行して硝酸および亜硝酸の濃度が高くなり、
脱窒菌の内生呼吸による脱窒速度では硝酸および亜硝酸
を脱窒しきれず残留してしまう。さらに、高濃度に硝酸
および亜硝酸が残留すると、pHが低くなって酸性とな
りアンモニアなどの窒素化合物の酸化による除去の阻害
となる。このため、硝化脱窒槽4のORPを−100〜
50mVに調整することにより、リンが溶出せず良好に窒
素化合物を除去できる。また、硝化脱窒槽4のORPを
−100〜50mVに調整することにより、後工程のUF
膜分離装置7の膜面に沈着して膜透過性を低下させる鉄
イオンの溶出も防止できる。
The ORP of the nitrification / denitrification tank 4 is -100 mV.
When it is lower than the above, the reducing state is brought about, and when the amount of dissolved phosphoric acid in the organic wastewater flowing into the nitrification denitrification tank 4 is equal to the added amount of iron chloride, the phosphoric acid is eluted again as shown in FIG. Resulting in. Further, when the ORP of the nitrification denitrification tank 4 becomes higher than 50 mV, nitrification due to the oxidation of nitrogen compounds such as ammonia progresses, and the concentration of nitric acid and nitrite increases,
Nitric acid and nitrous acid cannot be completely denitrified at the rate of denitrification by endogenous respiration of denitrifying bacteria and remain. Further, if nitric acid and nitrous acid remain at a high concentration, the pH becomes low and becomes acidic, which hinders the removal of nitrogen compounds such as ammonia by oxidation. Therefore, the ORP of the nitrification denitrification tank 4 is set to -100 to
By adjusting to 50 mV, nitrogen compounds can be removed well without phosphorus elution. In addition, by adjusting the ORP of the nitrification / denitrification tank 4 to -100 to 50 mV, the UF of the subsequent process
It is also possible to prevent the elution of iron ions that deposit on the membrane surface of the membrane separation device 7 and reduce the membrane permeability.

【0018】そして、硝化脱窒槽4で残留する易分解性
有機物や窒素化合物と生物学的硝化脱窒処理では処理さ
れず塩化鉄および粉末活性炭により難分解性有機物やリ
ン酸イオンとが除去された有機性廃水は、UF膜分離装
置7にて膜分離され、汚泥の一部は脱水工程にて脱水さ
れ残りは高負荷反応槽1および硝化脱窒槽4に返送され
る。また、濾液は処理水として河川などに放水された
り、さらに高度に浄化処理される。
The easily decomposable organic substances and nitrogen compounds remaining in the nitrification and denitrification tank 4 and the biologically nitrifying and denitrifying treatment were not treated, and iron chloride and powdered activated carbon removed the hardly decomposable organic substances and phosphate ions. The organic wastewater is subjected to membrane separation in the UF membrane separation device 7, a part of the sludge is dehydrated in the dehydration step, and the rest is returned to the high load reaction tank 1 and the nitrification denitrification tank 4. Further, the filtrate is discharged as treated water to rivers or the like, or is further highly purified.

【0019】ここで、実施の一形態の装置を用いて、塩
化鉄のみ添加した場合、塩化鉄および粉末活性炭の双方
を添加しない場合について、UF膜分離装置7の透過性
について測定した結果を図6に示す。
Here, the results of measurement of the permeability of the UF membrane separation device 7 using the apparatus of the first embodiment in the case of adding only iron chloride and the case of not adding both iron chloride and powdered activated carbon are shown in FIG. 6 shows.

【0020】この図6に示す結果から、塩化鉄および粉
末活性炭の双方とも添加しない場合には、透過速度の低
下が早く、膜を約1回/月で洗浄しないと透過速度の低
下による処理水の処理速度が低下するが、塩化鉄のみを
添加した場合には透過速度が早くなり透過速度の低下が
緩やかで、約3か月に1回の洗浄で済む。さらに、本実
施の一形態の塩化鉄および粉末活性炭を添加した場合に
は、透過速度がさらに早くなることがわかる。
From the results shown in FIG. 6, when neither iron chloride nor powdered activated carbon was added, the permeation rate declined quickly, and the treated water due to the permeation rate declined unless the membrane was washed about once / month. However, when only iron chloride is added, the permeation rate is increased and the permeation rate is gradually decreased, and the cleaning can be performed about once every three months. Furthermore, it can be seen that the permeation rate is further increased when the iron chloride and powdered activated carbon according to the present embodiment are added.

【0021】ところで、UF膜分離装置7への流入する
有機性廃水の溶解性の有機物によるCOD濃度と透過速
度との関係は、溶解性の有機物が膜面にゲル状の層を形
成するため、図7に示すように、COD濃度が高くなる
に従って膜透過速度が低下する。このため、COD濃度
にかかわる溶解性の有機物を吸着する粉末活性炭を添加
することにより、膜面に形成するゲル状の層の成長が抑
制され、透過速度が早くなることがわかる。
By the way, the relationship between the COD concentration and the permeation rate of the soluble organic matter flowing into the UF membrane separator 7 is that the soluble organic matter forms a gel layer on the membrane surface. As shown in FIG. 7, the membrane permeation rate decreases as the COD concentration increases. Therefore, it is understood that the addition of the powdered activated carbon that adsorbs the soluble organic matter related to the COD concentration suppresses the growth of the gel-like layer formed on the film surface and increases the permeation rate.

【0022】上記実施の一形態によれば、高負荷反応槽
1にてBOD酸化菌、硝化菌および脱窒菌により有機性
廃水の易分解性有機物および窒素化合物を生物学的硝化
脱窒処理した後、硝化脱窒槽4にて残留する易分解性有
機物および窒素化合物を硝化脱窒して高度に除去すると
ともに、塩化鉄を添加してリン酸イオンを不溶性のリン
酸鉄に反応させつつ高負荷反応槽1で酸化分解されない
高分子溶解性有機物を副次的に凝集吸着させ、粉末活性
炭を添加してBOD酸化菌にて酸化分解されず塩化鉄に
て凝集吸着されない難分解性の疎水性低分子有機物を吸
着除去し、さらに膜分離装置にて残留する窒素化合物や
有機質を膜分離して高負荷反応槽1および硝化脱窒槽4
に返送して再び処理するので、膜面でゲル層などを形成
する化学的酸素要求量に起因する溶解性の有機物を膜分
離の前で高度に除去でき、膜分離の負荷を低減でき、効
率のよく処理できる。
According to the above embodiment, after the easily decomposable organic matter and the nitrogen compound of the organic wastewater are biologically nitrified and denitrified by the BOD oxidizing bacteria, nitrifying bacteria and denitrifying bacteria in the high load reaction tank 1. , Nitrogen denitrification tank 4 easily removes easily decomposable organic substances and nitrogen compounds remaining in the nitrification denitrification tank 4, and iron chloride is added to react the phosphate ion with the insoluble iron phosphate, and high load reaction Polymer-dissolved organic substances that are not oxidatively decomposed in tank 1 are secondarily aggregated and adsorbed, and powdered activated carbon is added to them, and they are non-degradable hydrophobic low molecules that are not oxidatively decomposed by BOD oxidizing bacteria and are not aggregated and adsorbed by iron chloride. The high-load reaction tank 1 and the nitrification denitrification tank 4 are obtained by adsorbing and removing organic substances and further separating the remaining nitrogen compounds and organic substances into membranes by a membrane separator
Since it is returned to the membrane and treated again, the soluble organic substances due to the chemical oxygen demand forming the gel layer on the membrane surface can be highly removed before the membrane separation, the load of the membrane separation can be reduced, and the efficiency can be reduced. Can handle well.

【0023】なお、上記実施の一形態において、高負荷
反応槽1と硝化脱窒槽4とが1つの槽内に連通して区画
形成されたものなどでもできる。
In the above embodiment, the high-load reaction tank 1 and the nitrification / denitrification tank 4 may be divided into one tank so as to communicate with each other.

【0024】また、硝化脱窒槽4に処理剤添加手段とし
ての塩化鉄添加装置5および処理剤添加手段としての粉
末活性炭添加装置6を設けて説明したが、高負荷反応槽
1や原水管2に直接設けても同様の効果が得られる。そ
して、これら塩化鉄および粉末活性炭を適宜混合してお
き、この塩化鉄および粉末活性炭の混合物を添加するよ
うにしてもできる。なお、高負荷反応槽1による処理後
に硝化脱窒槽4で硝化脱窒を行うとともに塩化鉄および
粉末活性炭を添加する構成にすることにより、塩化鉄お
よび粉末活性炭の添加量を最小限にすることができ、処
理コストを低減できる。
Further, the nitric denitrification tank 4 is provided with the iron chloride addition device 5 as a treatment agent addition means and the powdered activated carbon addition device 6 as a treatment agent addition means, but the high load reaction tank 1 and the raw water pipe 2 are provided. Even if it is provided directly, the same effect can be obtained. Then, the iron chloride and the powdered activated carbon may be appropriately mixed, and the mixture of the iron chloride and the powdered activated carbon may be added. The amount of iron chloride and powdered activated carbon added can be minimized by performing nitrification and denitrification in the nitrification and denitrification tank 4 and adding iron chloride and powdered activated carbon after the treatment in the high-load reaction tank 1. Therefore, the processing cost can be reduced.

【0025】[0025]

【実施例】上記実施の一形態の構成の装置を用いて、有
機性廃水の浄化処理を行った実験について説明する。な
お、比較例として、従来の塩化鉄および粉末活性炭を使
用せず沈殿池にて固液分離する装置にて同様に有機性廃
水の浄化処理を行った。その結果を表1に示す。
EXAMPLE An experiment in which the organic wastewater is purified by using the apparatus having the configuration of the above-described embodiment will be described. As a comparative example, the organic wastewater was similarly purified by a conventional apparatus for solid-liquid separation in a sedimentation tank without using iron chloride and powdered activated carbon. Table 1 shows the results.

【0026】[0026]

【表1】 まず、有機性廃水として、し尿が40重量%、浄化槽汚
泥が60重量%の混合物であるし尿系汚水を用いる。な
お、この有機性廃水の性状を表1に示す。そして、この
有機性廃水1kl/日の投入量で高負荷反応槽1に流入さ
せ、ORPを0〜300mVに維持して曝気して1日滞留
した後に硝化脱窒槽4に流入させ、DOを0.5mg/l以
下、ORPを−100〜50mVで高負荷反応槽1のOR
Pより低く制御して1日滞留させる。この硝化脱窒槽4
で滞留中に、硝化脱窒槽4に流入する有機性廃水中の溶
解性のリン酸塩の固形化に相当する量である530ppm
の塩化鉄を添加するとともに、後工程の膜分離で濾過さ
れた処理水の残存CODを観測して残存CODの増減に
伴って粉末活性炭の添加量を増減する。なお、粉末活性
炭の添加量の平均値は300ppm であった。そして、1
日滞留後、UF膜分離装置7にて固液分離し、汚泥は高
負荷反応槽1および硝化脱窒槽4に返送し、濾液は処理
水として最終放流水となり放流する。この処理水の性状
を表1に示す。
[Table 1] First, as the organic wastewater, human waste sewage, which is a mixture of human waste of 40% by weight and septic tank sludge of 60% by weight, is used. The properties of this organic wastewater are shown in Table 1. Then, the organic wastewater was introduced into the high-load reaction tank 1 at a rate of 1 kl / day, aerated while maintaining the ORP at 0 to 300 mV and retained for one day, and then introduced into the nitrification denitrification tank 4, and DO was reduced to 0. 0.5 mg / l or less, ORP of -100 to 50 mV, OR of high load reaction tank 1
It is controlled to be lower than P and allowed to stay for 1 day. This nitrification denitrification tank 4
530 ppm, which is an amount equivalent to the solidification of the soluble phosphate in the organic wastewater flowing into the nitrification and denitrification tank 4 during the retention
The amount of powdered activated carbon added is increased / decreased as the residual COD is increased / decreased while observing the residual COD of the treated water filtered in the membrane separation in the subsequent step. The average amount of powdered activated carbon added was 300 ppm. And 1
After staying for a day, solid-liquid separation is performed by the UF membrane separation device 7, sludge is returned to the high load reaction tank 1 and nitrification denitrification tank 4, and the filtrate is discharged as final treated water as treated water. The properties of this treated water are shown in Table 1.

【0027】また、比較例としては、表1に示す性状の
有機性廃水を同様に1kl/日の投入量で高負荷反応槽に
流入させて1日滞留曝気させた後、硝化脱窒槽で1日滞
留させ、沈殿池で固液分離し、表1に示す性状の処理水
を得る。
As a comparative example, an organic wastewater having the properties shown in Table 1 was similarly introduced into the high-load reaction tank at an input rate of 1 kl / day, and was aerated for one day, and then was aerated in a nitrification denitrification tank. The solution is allowed to stay for a day and solid-liquid separated in a sedimentation tank to obtain treated water having the properties shown in Table 1.

【0028】この表1に示す結果から、比較例に比して
特にCOD、リンおよび浮遊物質(SS)が高度に除去
されていることが分かる。
From the results shown in Table 1, it can be seen that particularly COD, phosphorus and suspended solids (SS) are highly removed as compared with the comparative example.

【0029】[0029]

【発明の効果】請求項1記載の有機性廃水の処理方法に
よれば、1つの槽で、微生物により有機性廃水を生物学
的硝化脱窒処理するとともに、添加される塩化鉄にて溶
解するリン化合物を不溶性のリン酸鉄に反応させつつ残
留する高分子溶解性有機物を副次的に凝集吸着させ、粉
末活性炭にて残留する難分解性の疎水性低分子有機物を
吸着除去した後、膜分離するので、簡単な構成で膜面に
例えばゲル層を形成する化学的酸素要求量に起因する溶
解性の有機物を膜分離の前で高度に除去でき、膜分離の
負荷が低減し、効率よく処理できる。
According to the method for treating organic wastewater according to the first aspect, the organic wastewater is biologically nitrified and denitrified by microorganisms and dissolved in iron chloride added in one tank. After reacting the phosphorus compound with the insoluble iron phosphate, the residual polymer soluble organic matter is secondarily aggregated and adsorbed, and the residual hard-to-decompose hydrophobic low molecular weight organic matter is adsorbed and removed with powdered activated carbon, and then the membrane is formed. Since it is separated, a soluble organic substance due to a chemical oxygen demand that forms a gel layer on the membrane surface can be highly removed before membrane separation with a simple structure, reducing the load of membrane separation and efficiently. It can be processed.

【0030】請求項2記載の有機性廃水の処理装置によ
れば、1つの槽で微生物による好気的分解・硝化脱窒す
る処理と、塩化鉄によるリン化合物の不溶化および残留
する高分子溶解性有機物を副次的に凝集吸着させる処理
と、粉末活性炭による残留する難分解性の疎水性低分子
有機物の吸着除去処理とができ、構成が簡単にでき、膜
面に例えばゲル層を形成する化学的酸素要求量に起因す
る溶解性の有機物を膜分離の前で高度に除去でき、膜分
離の負荷が低減し、効率よく処理できる。
According to the organic wastewater treatment apparatus of claim 2, treatment for aerobic decomposition / nitrification denitrification by microorganisms in one tank, insolubilization of phosphorus compounds by iron chloride and residual polymer solubility Chemistry for secondary coagulation and adsorption of organic substances, and adsorption and removal of persistent non-decomposable hydrophobic low-molecular organic substances by powdered activated carbon, which can be simplified in structure and forms, for example, a gel layer on the film surface. The soluble organic substances due to the specific oxygen demand can be highly removed before the membrane separation, the load of the membrane separation can be reduced, and the treatment can be efficiently performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性廃水の処理方法の実施の一形態
を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of a method for treating organic wastewater according to the present invention.

【図2】同上粉末活性炭の吸着等温線を示すグラフであ
る。
FIG. 2 is a graph showing an adsorption isotherm of the above powdered activated carbon.

【図3】同上COD濃度と粉末活性炭の添加量との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the COD concentration and the amount of powdered activated carbon added.

【図4】同上リン濃度と塩化鉄の添加量との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the phosphorus concentration and the amount of iron chloride added.

【図5】同上リン濃度とORPとの関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between phosphorus concentration and ORP.

【図6】同上添加剤による膜透過速度の変化を示すグラ
フである。
FIG. 6 is a graph showing changes in membrane permeation rate due to the additive.

【図7】同上膜分離装置へ流入する溶解性COD濃度と
膜透過速度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the soluble COD concentration flowing into the membrane separation device and the membrane permeation rate.

【符号の説明】[Explanation of symbols]

1 生物処理手段としての高負荷反応槽 2 原水流入手段としての原水管 4 生物処理手段としての硝化脱窒槽 5 処理剤添加手段としての塩化鉄添加装置 6 処理剤添加手段としての粉末活性炭添加装置 7 膜分離手段であるUF膜分離装置 1 High-load reaction tank as biological treatment means 2 Raw water pipe as raw water inflow means 4 Nitrification denitrification tank as biological treatment means 5 Iron chloride addition device as treatment agent addition means 6 Activated carbon addition device as treatment agent addition means 7 UF membrane separation device which is a membrane separation means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 502 C02F 9/00 502E 502H 502P 504 504A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 9/00 502 C02F 9/00 502E 502H 502P 504 504A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素化合物およびリン化合物を含有する
有機性廃水を生物学的に処理する有機性廃水の処理方法
において、 前記有機性廃水に粉末活性炭および塩化鉄を添加すると
ともに、 この粉末活性炭および塩化鉄が添加された有機性廃水を
溶存酸素を0.5mg/l以下に維持しつつ酸素を接触させ
てこの有機性廃水を微生物にて生物学的硝化脱窒処理し
た後、膜分離することを特徴とする有機性廃水の処理方
法。
1. A method for treating an organic wastewater containing a nitrogen compound and a phosphorus compound, which biologically treats the organic wastewater, wherein powdered activated carbon and iron chloride are added to the organic wastewater, and the powdered activated carbon and The organic wastewater to which iron chloride has been added is contacted with oxygen while maintaining the dissolved oxygen at 0.5 mg / l or less, and the organic wastewater is subjected to biological nitrification and denitrification treatment by microorganisms and then subjected to membrane separation. A method for treating organic wastewater, comprising:
【請求項2】 窒素化合物およびリン化合物を含有する
有機性廃水に酸素を接触させてこの有機性廃水を微生物
にて生物学的硝化脱窒処理して前記有機性廃水を第1処
理水とする生物処理手段と、 この生物処理手段に接続されこの生物処理手段に前記有
機性廃水を流入させる原水流入手段と、 前記生物処理手段に接続されこの生物処理手段から流出
する前記第1処理水を膜分離する膜分離手段と、 前記原水流入手段および前記生物処理手段の少なくとも
にいずれか一方に接続され前記有機性廃水に粉末活性炭
および塩化鉄を添加する処理剤添加手段とを具備したこ
とを特徴とする有機性廃水の処理装置。
2. An organic wastewater containing a nitrogen compound and a phosphorus compound is contacted with oxygen, and the organic wastewater is subjected to biological nitrification and denitrification treatment by a microorganism to make the organic wastewater the first treated water. Biological treatment means, raw water inflow means connected to the biological treatment means for flowing the organic wastewater into the biological treatment means, and the first treated water connected to the biological treatment means and flowing out of the biological treatment means into a membrane Membrane separation means for separating, and comprising at least one of the raw water inflow means and the biological treatment means, a treatment agent addition means for adding powdered activated carbon and iron chloride to the organic wastewater, Treatment equipment for organic wastewater.
JP27305495A 1995-10-20 1995-10-20 Organic wastewater treatment method and apparatus Expired - Lifetime JP3377346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27305495A JP3377346B2 (en) 1995-10-20 1995-10-20 Organic wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27305495A JP3377346B2 (en) 1995-10-20 1995-10-20 Organic wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH09108692A true JPH09108692A (en) 1997-04-28
JP3377346B2 JP3377346B2 (en) 2003-02-17

Family

ID=17522515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27305495A Expired - Lifetime JP3377346B2 (en) 1995-10-20 1995-10-20 Organic wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3377346B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2015221424A (en) * 2014-05-23 2015-12-10 水ing株式会社 Organic wastewater treatment method and apparatus
CN108083565A (en) * 2017-12-15 2018-05-29 浩蓝环保股份有限公司 A kind of biochemical tailrace advanced treatment process of chemical industry
WO2019064889A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Liquid treatment system
CN114057285A (en) * 2021-11-19 2022-02-18 天津凯英科技发展股份有限公司 Method for forming film by nitrosobacteria, film forming filler device and application
CN115038671A (en) * 2021-05-28 2022-09-09 麦王环境技术股份有限公司 Deep purification device and process for strong brine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2015221424A (en) * 2014-05-23 2015-12-10 水ing株式会社 Organic wastewater treatment method and apparatus
WO2019064889A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Liquid treatment system
CN108083565A (en) * 2017-12-15 2018-05-29 浩蓝环保股份有限公司 A kind of biochemical tailrace advanced treatment process of chemical industry
CN115038671A (en) * 2021-05-28 2022-09-09 麦王环境技术股份有限公司 Deep purification device and process for strong brine
CN114057285A (en) * 2021-11-19 2022-02-18 天津凯英科技发展股份有限公司 Method for forming film by nitrosobacteria, film forming filler device and application
CN114057285B (en) * 2021-11-19 2023-12-26 天津凯英科技发展股份有限公司 Nitrosation bacterium film forming method, film forming filler device and application

Also Published As

Publication number Publication date
JP3377346B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP2716348B2 (en) Sewage return water treatment method
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP3382766B2 (en) Method and apparatus for treating human wastewater
JP3449862B2 (en) Advanced purification method for organic wastewater
JPH08318292A (en) Waste water treatment method and apparatus
KR100470350B1 (en) Method for disposing of livestock waste water
JP3358388B2 (en) Treatment method for selenium-containing water
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP3526143B2 (en) Advanced wastewater treatment method
JP3139337B2 (en) Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds
JP3819457B2 (en) Biological denitrification of wastewater
JP3257943B2 (en) Wastewater treatment method
JP3392295B2 (en) Method and apparatus for treating organic sewage
JP3837763B2 (en) Method for treating selenium-containing water
JP3229806B2 (en) Human wastewater treatment equipment
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
KR100228739B1 (en) Disposal method of organic wastewater using oxygen
JP2607030B2 (en) Wastewater treatment method and apparatus
JPH01194995A (en) Biological denitrification method
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPH03202195A (en) Waste water treatment method and apparatus
JP2002361284A (en) Method and apparatus for treating organic waste water
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically
JPH10328695A (en) Method for removing nitrogen from waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term