JPH1015589A - High-degree purification of organic sewage - Google Patents

High-degree purification of organic sewage

Info

Publication number
JPH1015589A
JPH1015589A JP17658796A JP17658796A JPH1015589A JP H1015589 A JPH1015589 A JP H1015589A JP 17658796 A JP17658796 A JP 17658796A JP 17658796 A JP17658796 A JP 17658796A JP H1015589 A JPH1015589 A JP H1015589A
Authority
JP
Japan
Prior art keywords
tank
sludge
denitrification
ozone
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17658796A
Other languages
Japanese (ja)
Other versions
JP3449862B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP17658796A priority Critical patent/JP3449862B2/en
Publication of JPH1015589A publication Critical patent/JPH1015589A/en
Application granted granted Critical
Publication of JP3449862B2 publication Critical patent/JP3449862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain an extremely high nitrogen removing ratio by oxidizing a part of activated sludge of biological nitrification and denitrification treatment by ozone to subject the same to solidliquid separation and subjecting the separated water to flocculation separation and subsequently supplying the flocculated separated water to a granular filter material packed bed to which denitrifying bacteria are bonded to perform denitrification and SS filtering. SOLUTION: Org. sewage 1 is denitrified and oxidized in a biological nitration and denitrification tank A and a part of the oxidized and nitrated slurry is transferred to a sedimentation tank B as an outflow slurry 2. Herein, the outflow slurry is subjected to solid-liquid separation to be circulated to the denitrification part of the nitration and denitrification tank A as return sludge and a part thereof is transferred to an ozone oxidation tank D. An inorg. flocculant 11 is added to the separated water formed from the soluble sludge 6 oxidized by ozone in the ozone oxidizing tank D and sedimented and separated in a second sedimentation tank E to flocculate phosphorus and these flocs are separated as flocculated sludge 12 in a third sedimentation tank G. Separated sludge 8 is biologically treated in an aeration tank F to be reduced in amt. to elute phosphorus and the remainder is refluxed to the ozone oxidizing tank D as circulating sludge 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水等のアンモニ
ア含有汚水を高度に浄化する技術に関し、特に窒素成分
を従来技術よりも著しく高い除去率で除去可能であり、
かつ余剰汚泥発生量を、処理水の水質を悪化させること
なく、著しく削減できる新技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for highly purifying ammonia-containing wastewater such as sewage, and more particularly to a technique capable of removing nitrogen components at a significantly higher removal rate than conventional techniques.
The present invention also relates to a new technology that can significantly reduce the amount of excess sludge generated without deteriorating the quality of treated water.

【0002】[0002]

【従来の技術】下水等の汚水中の窒素成分を除去する方
法として最も代表的な技術は、硝化液循環型生物学的硝
化脱窒素法である。この技術は、有機性汚水を生物学的
脱窒素部に供給し、その脱窒素液を硝化部に供給してア
ンモニアを硝化し、硝化液の一部を脱窒素部に循環し、
他部を沈殿槽に供給し、活性汚泥を分離し、処理水を得
るものである。
2. Description of the Related Art The most typical technique for removing nitrogen components in wastewater such as sewage is a nitrification liquid circulation type biological nitrification denitrification method. This technology supplies organic wastewater to a biological denitrification unit, supplies the denitrification solution to a nitrification unit to nitrify ammonia, circulates a part of the nitrification solution to the denitrification unit,
The other part is supplied to a sedimentation tank to separate activated sludge and obtain treated water.

【0003】硝化部に硝化菌を固定化したゲル等の粒状
担体を共存する技術も最近実用化されている。この方法
では、下水を処理する場合、窒素除去率80%程度が得
られ、処理水にはアンモニアはほとんど残らず、硝酸性
窒素とSSが少量残留する。この方法では、処理水に硝
酸性窒素が残留(下水処理の場合、硝酸性窒素が10m
g/リットル程度残留)してしまうため、窒素除去率9
0%以上にすることは原理的に不可能であり、放流水域
の富栄養化を防止するには不十分であった。
A technique of coexisting a particulate carrier such as a gel in which nitrifying bacteria are immobilized in a nitrification portion has recently been put to practical use. In this method, when sewage is treated, a nitrogen removal rate of about 80% is obtained, and little ammonia remains and small amounts of nitrate nitrogen and SS remain in the treated water. In this method, nitrate nitrogen remains in the treated water (in the case of sewage treatment, the amount of nitrate nitrogen is 10 m
g / liter), and the nitrogen removal rate is 9
It was impossible in principle to make the content more than 0%, and it was insufficient to prevent eutrophication of the discharge water area.

【0004】従来の方法において、窒素除去率を高める
ためには、硝化部の後に第2脱窒素部を設け、メタノー
ル等の高価な有機炭素源を添加しなければならないが、
槽容積と薬品コストがかなり増加するため実施困難であ
った。また、汚泥発生量が多量であり、汚泥処理・処分
が最大の課題になっていた。
In the conventional method, in order to increase the nitrogen removal rate, a second denitrification section must be provided after the nitrification section, and an expensive organic carbon source such as methanol must be added.
This was difficult to implement because the tank volume and chemical cost increased significantly. In addition, the amount of sludge generated is large, and sludge treatment and disposal has been the biggest issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の硝化
液循環型生物学的硝化脱窒素法の問題点を解決し、メタ
ノール等の有機炭素源を使わずに、安定して極めて高い
窒素除去率を得ることができ、かつ余剰汚泥が発生しな
い有機性汚水浄化の新システムを提供することを課題と
する。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the conventional nitrification liquid circulation type biological nitrification denitrification method, and uses a stable and extremely high nitrogen without using an organic carbon source such as methanol. It is an object of the present invention to provide a new organic sewage purification system that can obtain a removal rate and does not generate excess sludge.

【0006】[0006]

【課題を解決するための手段】本発明者は、従来の硝化
液循環型生物学的硝化脱窒素法のプロセスの構成を変革
し、活性汚泥のオゾン酸化による脱窒素菌のための有機
炭素源(BOD)の生産、粒状ろ材充填層による生物学
的脱窒素を新規な態様で結合することにより前記課題を
達成できることを見いだした。すなわち、(1)下水な
どの有機性汚水を生物学的硝化脱窒素法で処理する方法
において、生物学的硝化脱窒素処理の活性汚泥の一部を
引き抜いてオゾン酸化部でオゾン酸化した後、固液分離
し、該分離水に無機凝集剤を添加して凝集分離し、前記
凝集分離からの分離水を前記生物学的硝化脱窒素処理か
らの分離水に添加して脱窒素菌が付着した粒状ろ材充填
層に供給して脱窒素とSS濾過を行って高度処理水を得
る生物学的処理工程、および前記のオゾン酸化部から出
るオゾン酸化汚泥を固液分離し、その固液分離処理で得
られる分離汚泥を曝気した後、オゾン酸化部に循環する
余剰汚泥減量工程からなることを特徴とする有機性汚水
の高度浄化方法。
Means for Solving the Problems The present inventor has changed the structure of a conventional nitrification liquid circulation type biological nitrification denitrification process, and has proposed an organic carbon source for denitrifying bacteria by ozone oxidation of activated sludge. It has been found that the above object can be achieved by combining the production of (BOD), biological denitrification by a granular filter media packed bed in a novel manner. That is, (1) In a method of treating organic sewage such as sewage by a biological nitrification denitrification method, a part of the activated sludge of the biological nitrification denitrification treatment is withdrawn and ozone oxidized by an ozone oxidation unit. Solid-liquid separation, an inorganic coagulant is added to the separated water to perform coagulation separation, and the separated water from the coagulation separation is added to the separated water from the biological nitrification denitrification treatment, and denitrifying bacteria are attached. The biological treatment step of supplying the granular filter medium packed bed with denitrification and SS filtration to obtain highly treated water, and the solid-liquid separation of the ozone oxidized sludge coming out of the ozone oxidizing section, A method for advanced purification of organic wastewater, comprising a step of reducing excess sludge which is circulated to an ozone oxidation unit after aeration of the obtained separated sludge.

【0007】[0007]

【発明の実施の形態】前記(1)に記載の本発明の有機
性汚水の生物学的硝化脱窒素法の工程のフローを図1に
示し、以下に図1を用いて本発明の構成と作用を説明す
る。図1には生物学的硝化脱窒素槽Aは単一槽として示
されているが脱窒素部と硝化部とからなっている。下水
等の有機性汚水(以下「原水」ともいう)1は、生物学
的硝化脱窒素槽Aの脱窒素部に供給され脱窒素され、続
いて硝化部でアンモニア性窒素が硝酸性窒素に酸化され
る。生物学的硝化部から流出した硝化スラリはその大部
分は脱窒素部に循環されるが、一部は流出スラリ2とし
て沈殿槽Bに移送される。脱窒素部に循環された硝化ス
ラリ中の硝酸性窒素は、汚水1のBODを利用して生物
学的に脱窒素される。硝化脱窒素槽Aの硝化部から第1
沈殿槽Bへ流出した流出スラリ2(硝化スラリの一部の
スラリである。)には、硝酸性窒素が残留しているた
め、必然的に沈殿槽流出水3にも硝酸性窒素が残留す
る。この硝酸性窒素を除去するためと、余剰汚泥の減量
化のために、本発明では以下に説明する処理を行う。す
なわち、
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the flow of the biological nitrification and denitrification process of the organic sewage of the present invention described in (1) above. The operation will be described. Although the biological nitrification denitrification tank A is shown as a single tank in FIG. 1, it is composed of a denitrification section and a nitrification section. Organic wastewater (hereinafter also referred to as “raw water”) 1 such as sewage is supplied to a denitrification section of a biological nitrification denitrification tank A and denitrified, and then the nitrification section oxidizes ammoniacal nitrogen to nitrate nitrogen. Is done. Most of the nitrification slurry flowing out of the biological nitrification section is circulated to the denitrification section, but a part is transferred to the settling tank B as the outflow slurry 2. The nitrate nitrogen in the nitrification slurry circulated to the denitrification section is biologically denitrified using the BOD of the sewage 1. First from the nitrification section of nitrification denitrification tank A
Since nitrate nitrogen remains in the outflow slurry 2 (a part of the nitrification slurry) flowing out to the precipitation tank B, nitrate nitrogen inevitably remains in the outflow water 3 of the precipitation tank. . In order to remove the nitrate nitrogen and reduce the amount of excess sludge, the present invention performs the processing described below. That is,

【0008】硝化脱窒素槽Aの硝化部から第1沈殿槽B
へ流出した流出スラリ2は第1沈殿槽Bにて固液分離さ
れ、分離汚泥は返送汚泥4として硝化脱窒素槽Aの脱窒
素部に循環されるが、硝化脱窒素槽A内に常に所定濃度
範囲のMLSSが維持されているように、返送汚泥4の
一部はオゾン酸化槽Dに移送される。又は、硝化脱窒素
槽A内の余剰汚泥相当量5をオゾン酸化槽Dに移送して
もよい。オゾン酸化槽Dに移送された汚泥はオゾン酸化
槽Dにおいてオゾン酸化して可溶化し、溶解性BOD成
分を溶出させる。オゾン酸化のオゾン適正添加量は汚泥
SS1kgあたり50〜100gオゾンである。オゾン
酸化槽Dから流出した可溶化汚泥6は第2沈殿槽Eで沈
殿分離される。沈殿分離されされた分離水8には脱窒素
菌に利用され易い溶解性BOD(有機炭素源)およびリ
ンが含まれる。この液に無機凝集剤11を添加してリン
等凝集できるものを凝集させ、第3沈殿槽Gで凝集物を
沈殿分離してリン等を凝集スラッジ12として除去す
る。ここで、凝集剤として石灰を用いるとリンを肥料に
利用可能なリン酸カルシウム化合物として回収できる。
[0008] From the nitrification section of the nitrification denitrification tank A to the first settling tank B
The slurry 2 flowing out to the tank is separated into solid and liquid in the first sedimentation tank B, and the separated sludge is circulated to the denitrification part of the nitrification denitrification tank A as the return sludge 4. A part of the returned sludge 4 is transferred to the ozone oxidation tank D so that the MLSS in the concentration range is maintained. Alternatively, the excess sludge amount 5 in the nitrification denitrification tank A may be transferred to the ozone oxidation tank D. The sludge transferred to the ozone oxidation tank D is solubilized by ozone oxidation in the ozone oxidation tank D, and elutes soluble BOD components. The appropriate amount of ozone for ozone oxidation is 50 to 100 g ozone per 1 kg of sludge SS. The solubilized sludge 6 flowing out of the ozone oxidation tank D is settled and separated in the second settling tank E. The separated water 8 that has been separated by precipitation contains soluble BOD (organic carbon source) and phosphorus that are easily used by denitrifying bacteria. An inorganic coagulant 11 is added to this liquid to coagulate what can coagulate, such as phosphorus, and the coagulate is precipitated and separated in the third settling tank G to remove phosphorus and the like as coagulated sludge 12. Here, when lime is used as a coagulant, phosphorus can be recovered as a calcium phosphate compound usable for fertilizer.

【0009】前記第2沈殿槽Eで沈殿分離された分離汚
泥8は曝気槽Fに移送され、可溶化汚泥は好気的生物処
理により減量され、リンが溶出する。残部は循環汚泥7
としてオゾン酸化槽Dに還流される。前記第1沈殿槽B
で沈殿分離された分離水3と前記第3沈殿槽Gで沈殿分
離された分離水10の一部は合流して粒状ろ材充填槽C
に移送される。粒状ろ材充填槽Cには脱窒素菌が付着し
た粒状ろ材が充填されており、また前記オゾン酸化槽D
で可溶化された汚泥からの沈殿分離された分離水10に
は可溶性BODが含まれているので、粒状ろ材充填層を
通過する際に前記分離水3に含まれている硝酸性窒素は
メタノール等の薬品を使うことなく粒状ろ材充填槽C内
で、硝酸性窒素が高速度で生物学的脱窒素され、同時に
前記分離水3や前記分離水10に含まれるSSのろ過も
行われ、その結果窒素、SSが1〜2mg/リットルの
レベルとなった高度処理水13が得られる。以上説明し
たように、汚水処理による余剰汚泥の発生は、前記凝
集スラッジの他殆んどない。メタノール等の薬品を使
うことなく、窒素、SSが1〜2mg/リットルのレベ
ルとなった高度処理水が得られる。というのが本発明の
特徴である。
The separated sludge 8 precipitated and separated in the second settling tank E is transferred to an aeration tank F, and the solubilized sludge is reduced by aerobic biological treatment, and phosphorus is eluted. The rest is circulating sludge 7
Is returned to the ozone oxidation tank D. The first settling tank B
The separated water 3 separated and settled in step 3 and a part of the separated water 10 separated and settled in the third settling tank G merge into a granular filter medium filling tank C.
Is transferred to The granular filter medium filling tank C is filled with a granular filter medium to which denitrifying bacteria have adhered.
Since the separated water 10 separated and settled from the sludge solubilized in the above contains soluble BOD, the nitrate nitrogen contained in the separated water 3 when passing through the granular filter medium packed bed is methanol or the like. The nitrate nitrogen is biologically denitrified at high speed in the granular filter medium filling tank C without using any chemicals, and at the same time, the SS contained in the separation water 3 and the separation water 10 is also filtered. As a result, The highly treated water 13 in which nitrogen and SS are at a level of 1 to 2 mg / liter is obtained. As described above, there is almost no generation of excess sludge due to sewage treatment other than the above-mentioned coagulated sludge. It is possible to obtain highly treated water in which nitrogen and SS are at a level of 1 to 2 mg / liter without using a chemical such as methanol. That is a feature of the present invention.

【0010】粒状ろ材充填槽のろ材粒径は、2〜3m
m、充填層の厚みは2m程度とするのが適切であり、充
填槽の通水速度は100〜200m/日とするのが好適
である。充填ろ材の種類は、アンスラサイト、セラミッ
ク等の沈降性ろ材の他に、発泡スチロール、ポリプロピ
レン、ポリエチレン等の浮上性ろ材を適用できる。本発
明者の実験によれば、オゾン酸化による汚泥からのBO
D溶出量は、活性汚泥1kgあたり40〜60gBOD
であった。オゾンによる汚泥可溶化液の生物処理水に対
する添加流量は、硝酸性窒素量1kgあたりBOD3k
g程度になるように流量を設定すれば良い。
[0010] The particle size of the filter medium in the granular filter medium filling tank is 2-3 m.
m, the thickness of the filling layer is suitably about 2 m, and the water flow rate of the filling tank is preferably 100 to 200 m / day. As the type of the filled filter medium, in addition to a settling filter medium such as anthracite and ceramic, a floating filter medium such as styrene foam, polypropylene, and polyethylene can be used. According to the experiment of the present inventor, BO from sludge by ozone oxidation
D elution amount is 40-60 g BOD per 1 kg of activated sludge.
Met. The addition flow rate of the sludge solubilized solution by ozone to the biologically treated water is 3 kBOD / kg of nitrate nitrogen.
The flow rate may be set to about g.

【0011】さらに、本発明は余剰汚泥発生量の顕著な
減少効果がある。すなわち、余剰汚泥をオゾンによって
可溶化し、生物分解性を高め、再び活性汚泥の基質(微
生物の食料)に変換させた後、曝気する(汚水の生物学
的硝化脱窒素槽とは別個の曝気槽を用いることが重
要。)ことによって、従来は系外に廃棄しなければなら
ない余剰汚泥を曝気槽内で生物学的に炭酸ガス、水に分
解でき、汚泥発生量をゼロにできる。なお、本発明の汚
水の生物処理工程として、脱窒素槽の前に嫌気槽を設け
ることにより、嫌気、好気法による生物脱リン工程を組
み込むことも可能である。
Further, the present invention has a remarkable effect of reducing the amount of excess sludge generated. That is, the excess sludge is solubilized by ozone to enhance biodegradability, converted into activated sludge substrate (microbial food) again, and then aerated (separate from the biological nitrification and denitrification tank of the wastewater). It is important to use a tank.) In this way, the excess sludge that had to be disposed of outside the system can be biologically decomposed into carbon dioxide gas and water in the aeration tank, and the amount of generated sludge can be reduced to zero. In addition, by providing an anaerobic tank in front of the denitrification tank as the biological treatment step of the wastewater of the present invention, it is possible to incorporate a biological phosphorus removal step by an anaerobic or aerobic method.

【0012】[0012]

【実施例】図1の工程に基づいて、下水を対象として、
生物学的硝化脱窒素槽A、オゾン酸化槽D、曝気槽F、
粒状ろ材充填槽C、第1〜第3沈殿槽を用いた有機性汚
水の浄化処理を行った実施例について以下に説明する。
ただし、以下に示す実施例は本発明の1例であり、本発
明を制限するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on the process of FIG.
Biological nitrification denitrification tank A, ozone oxidation tank D, aeration tank F,
An example in which the purification treatment of the organic wastewater using the granular filter medium filling tank C and the first to third settling tanks is described below.
However, the following embodiment is an example of the present invention and does not limit the present invention.

【0013】実施例1 処理に使用した原水(下水)の水質を第1表に示す。Example 1 Table 1 shows the quality of raw water (sewage) used in the treatment.

【0014】[0014]

【表1】 [Table 1]

【0015】前記原水を対象に、以下の処理条件で3ヶ
月の実証試験を行った。生物学的硝化脱窒素槽の型式
は、硝化液循環型である。原水の流量を48リットル/
日とし、脱窒素部滞留時間は2時間、硝化部滞留時間は
4時間の条件で生物処理した時、生物学的硝化脱窒素槽
からの流出スラリの水質は第2表の通りである。
A three-month verification test was conducted on the raw water under the following treatment conditions. The type of the biological nitrification denitrification tank is a nitrification liquid circulation type. The flow rate of raw water is 48 liters /
When the biological treatment was carried out under the conditions of 2 hours in the denitrification section and 4 hours in the nitrification section, the water quality of the slurry discharged from the biological nitrification and denitrification tank is as shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】以下、図1に示したオゾン酸化工程、曝気
工程およびリン除去工程(無機凝集剤による処理条件等
は次の通りである。 ・オゾン酸化工程 生物学的硝化脱窒素槽からオゾン酸化槽への余剰汚泥引
き抜き量は、 余剰汚泥引き抜き量 : 4 gSS/日 オゾン酸化槽へ供給されるオゾン量は、 オゾン供給量 : 1.8 g/日 可溶化された汚泥は第2沈殿槽で固液分離され、分離汚
泥は曝気槽に移送される。 分離汚泥の移送量 : 3.5 g/日 ・曝気工程 曝気槽内のMLSS量は、5500mg/リットルであ
る。可溶化汚泥の曝気部滞留時間は48時間である。 ・リン除去工程 第2沈殿槽からの分離水には無機凝集剤を添加し、リン
を除去する。無機凝集剤には消石灰を使用し、その注入
率は400mg/リットルである。
Hereinafter, the ozone oxidation step, aeration step, and phosphorus removal step (treatment conditions with an inorganic coagulant, etc., shown in FIG. 1 are as follows. Ozone oxidation step: From biological nitrification denitrification tank to ozone oxidation tank The amount of excess sludge withdrawn is: excess sludge withdrawal: 4 g SS / day The amount of ozone supplied to the ozone oxidation tank is: ozone supply: 1.8 g / day The solubilized sludge is solidified in the second sedimentation tank. The separated sludge is transferred to an aeration tank, and the amount of separated sludge transferred: 3.5 g / day • Aeration step The amount of MLSS in the aeration tank is 5500 mg / L. Time is 48 hours Phosphorus removal step An inorganic coagulant is added to the water separated from the second sedimentation tank to remove phosphorus, slaked lime is used as the inorganic coagulant, and the injection rate is 400 mg / liter. It is.

【0018】・脱窒素およびSSろ過工程第1沈殿槽か
らの分離水と第3沈殿槽からの分離水は合流して粒状ろ
材充填槽に送られる。 第1沈殿槽からの分離水量: 48リットル/日 第3沈殿槽からの分離水量: 1リットル/日 粒状ろ材充填槽には脱窒素菌が付着した粒径3mmのア
ンスラサイトが粒状ろ材として充填されており、ここで
分離水は脱窒素されると同時にSSろ過される。粒状ろ
材充填槽の条件は以下の通りである。 充填槽の高さ : 2m ろ過速度 : 200m/日 粒状ろ材充填槽から流出する高度処理水の水質は第3表
の通りである。
Denitrification and SS filtration process The separated water from the first sedimentation tank and the separated water from the third sedimentation tank are combined and sent to the granular filter medium filling tank. The amount of water separated from the first sedimentation tank: 48 liters / day The amount of water separated from the third sedimentation tank: 1 liter / day The granular filter medium filling tank is filled with anthracite having a particle diameter of 3 mm to which denitrifying bacteria are attached as a granular filter medium. Here, the separated water is denitrified and simultaneously subjected to SS filtration. The conditions of the granular filter medium filling tank are as follows. Height of the filling tank: 2 m Filtration speed: 200 m / day The quality of the highly treated water flowing out from the granular filter medium filling tank is as shown in Table 3.

【0019】[0019]

【表3】 [Table 3]

【0020】系外への有機生汚泥の排出量はゼロであ
る。また少量の凝集スラジが系外に排出される。
The amount of organic raw sludge discharged outside the system is zero. Also, a small amount of coagulated sludge is discharged out of the system.

【0021】[0021]

【発明の効果】本発明により下水を対象とし、生物学的
硝化脱窒素法を適用して生物処理するに際して、次のよ
うな優れた効果を奏する。 余剰汚泥をほとんどゼロにすることができる。 生物学的硝化脱窒素法における脱窒素工程においてメ
タノール等の薬品を使用しないでよいので、コストが非
常に低減される。 高度処理水を低いコストで得ることができる。 無機凝集剤を添加して、リンを有用物として回収する
ことができる。
According to the present invention, the following excellent effects are obtained when biological treatment is performed on sewage by applying the biological nitrification denitrification method. Surplus sludge can be reduced to almost zero. Since a chemical such as methanol does not have to be used in the denitrification step in the biological nitrification denitrification method, the cost is greatly reduced. Highly treated water can be obtained at low cost. By adding an inorganic coagulant, phosphorus can be recovered as a useful substance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オゾン酸化槽、粒状ろ材充填槽を配備した本発
明の生物学的硝化脱窒素法の生物処理のフローの1例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a biological treatment flow of a biological nitrification denitrification method of the present invention in which an ozone oxidation tank and a granular filter medium filling tank are provided.

【符号の説明】[Explanation of symbols]

1 原水 2 流出スラリー 3 分離水(第1沈殿槽) 4 返送汚泥 5 余剰汚泥 6 オゾン酸化汚泥 7 循環汚泥 8 分離汚泥 9 分離水(第2沈殿槽) 10 分離水(第3沈殿槽) 11 循環汚泥 12 凝集剤 13 高度処理水 A 生物学的硝化脱窒素槽 B 第1沈殿槽 C 粒状ろ材充填槽 D オゾン酸化槽 E 曝気槽 F 第2沈殿槽 G 第3沈殿槽 DESCRIPTION OF SYMBOLS 1 Raw water 2 Outflow slurry 3 Separation water (1st settling tank) 4 Return sludge 5 Excess sludge 6 Ozone oxidation sludge 7 Circulating sludge 8 Separated sludge 9 Separated water (2nd settling tank) 10 Separated water (3rd settling tank) 11 Circulation Sludge 12 Coagulant 13 Highly treated water A Biological nitrification denitrification tank B First sedimentation tank C Granular filter material filling tank D Ozone oxidation tank E Aeration tank F Second sedimentation tank G Third sedimentation tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下水などの有機性汚水を生物学的硝化脱
窒素法で処理する方法において、生物学的硝化脱窒素処
理の活性汚泥の一部を引き抜いてオゾン酸化部でオゾン
酸化した後、固液分離し、該分離水に無機凝集剤を添加
して凝集分離し、前記凝集分離からの分離水を前記生物
学的硝化脱窒素処理からの分離水に添加して脱窒素菌が
付着した粒状ろ材充填層に供給して脱窒素とSS濾過を
行って高度処理水を得る生物学的処理工程、および前記
のオゾン酸化部から出るオゾン酸化汚泥を固液分離し、
その固液分離処理で得られる分離汚泥を曝気した後、オ
ゾン酸化部に循環する余剰汚泥減量工程からなることを
特徴とする有機性汚水の高度浄化方法。
1. A method of treating organic wastewater such as sewage by a biological nitrification and denitrification method, wherein a part of the activated sludge of the biological nitrification and denitrification treatment is extracted and oxidized with ozone by an ozone oxidizing unit. Solid-liquid separation, an inorganic coagulant is added to the separated water to perform coagulation separation, and the separated water from the coagulation separation is added to the separated water from the biological nitrification denitrification treatment, and denitrifying bacteria are attached. The biological treatment step of supplying the granular filter medium packed bed and performing denitrification and SS filtration to obtain highly treated water, and solid-liquid separation of the ozone oxidized sludge coming out of the ozone oxidizing section,
A method for advanced purification of organic wastewater, comprising a step of reducing excess sludge by aerating separated sludge obtained by the solid-liquid separation treatment and then circulating the sludge to an ozone oxidizing section.
JP17658796A 1996-07-05 1996-07-05 Advanced purification method for organic wastewater Expired - Fee Related JP3449862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17658796A JP3449862B2 (en) 1996-07-05 1996-07-05 Advanced purification method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17658796A JP3449862B2 (en) 1996-07-05 1996-07-05 Advanced purification method for organic wastewater

Publications (2)

Publication Number Publication Date
JPH1015589A true JPH1015589A (en) 1998-01-20
JP3449862B2 JP3449862B2 (en) 2003-09-22

Family

ID=16016178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17658796A Expired - Fee Related JP3449862B2 (en) 1996-07-05 1996-07-05 Advanced purification method for organic wastewater

Country Status (1)

Country Link
JP (1) JP3449862B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005713A1 (en) * 1999-07-15 2001-01-25 Japan Environment Creation Co., Ltd. Method and apparatus for reduction of excess sludge
JP2004261698A (en) * 2003-02-28 2004-09-24 Ebara Corp Cleaning method for seawater and brackish water and apparatus therefor
JP2007252977A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Water treatment process and treatment apparatus containing suspended solid and chromatic component
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
CN105621792A (en) * 2015-12-30 2016-06-01 北京河海清源环保科技有限公司 City watercourse drain outlet sewage treatment method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003559A (en) * 2014-06-23 2014-08-27 重庆市亚太环保工程技术设计研究所有限公司 Integrated water purifying device capable of strengthening pretreatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005713A1 (en) * 1999-07-15 2001-01-25 Japan Environment Creation Co., Ltd. Method and apparatus for reduction of excess sludge
JP2004261698A (en) * 2003-02-28 2004-09-24 Ebara Corp Cleaning method for seawater and brackish water and apparatus therefor
JP2007252977A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Water treatment process and treatment apparatus containing suspended solid and chromatic component
JP2008018309A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Apparatus for treating sludge
JP4666228B2 (en) * 2006-07-11 2011-04-06 株式会社安川電機 Sludge treatment equipment
CN105621792A (en) * 2015-12-30 2016-06-01 北京河海清源环保科技有限公司 City watercourse drain outlet sewage treatment method and device
CN105621792B (en) * 2015-12-30 2018-09-18 北京河海清源环保科技有限公司 City river sewage draining exit sewage water treatment method and processing equipment

Also Published As

Publication number Publication date
JP3449862B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP3672117B2 (en) Organic wastewater treatment method and apparatus
JP3172965B2 (en) Sewage treatment method
JP3385150B2 (en) Wastewater treatment method
JP3473328B2 (en) Biological dephosphorization equipment
JP2723369B2 (en) Sewage septic tank
JP3449862B2 (en) Advanced purification method for organic wastewater
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JPH1157773A (en) Biological dephosphorizing device
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH08318292A (en) Waste water treatment method and apparatus
JP3449868B2 (en) How to reduce organic sludge
JP3355121B2 (en) Organic wastewater treatment method
JP2002102864A (en) Waste water treatment system
JP2000107797A (en) Purification method and apparatus
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JPH09174091A (en) Method for treating organic waste water and apparatus therefor
JPH0999293A (en) Treatment of organic sewage
JPS6052880B2 (en) Biological denitrification and dephosphorization equipment for wastewater
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPS6344040B2 (en)
JP3919455B2 (en) Advanced denitrification method for waste water
JP3392295B2 (en) Method and apparatus for treating organic sewage
JPH0459959B2 (en)
JPS6274496A (en) Method for treating waste water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees