JPH1177075A - Fluidized bed type waste water treating apparatus - Google Patents

Fluidized bed type waste water treating apparatus

Info

Publication number
JPH1177075A
JPH1177075A JP9242762A JP24276297A JPH1177075A JP H1177075 A JPH1177075 A JP H1177075A JP 9242762 A JP9242762 A JP 9242762A JP 24276297 A JP24276297 A JP 24276297A JP H1177075 A JPH1177075 A JP H1177075A
Authority
JP
Japan
Prior art keywords
carrier
tank
biofilm
raw water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9242762A
Other languages
Japanese (ja)
Other versions
JP3836576B2 (en
Inventor
Tatsuhiko Suzuki
辰彦 鈴木
Mamoru Minakata
護 皆方
Susumu Ishikawa
進 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP24276297A priority Critical patent/JP3836576B2/en
Publication of JPH1177075A publication Critical patent/JPH1177075A/en
Application granted granted Critical
Publication of JP3836576B2 publication Critical patent/JP3836576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently perform biotreatment by performing efficiently fluidization of a biomembrane-sticked carrier. SOLUTION: The bottom part of a treating tank 13 having a raw water inlet part 11 at the lower part and a treated water outlet part 12 at the upper part is made into a funnel shape and the raw water is discharged toward the funnel-shaped bottom part. A wedge wire screen 14 for separating a carrier is provided at the treated water outlet part 12 and an agitation vane 18 for controlling the amt. of living bodies deposited on the carrier C is provided in the treating tank 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動床式排水処理
装置に関し、詳しくは、生物膜付着担体を用いた流動床
によって下排水の処理を行う流動床式排水処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized-bed wastewater treatment apparatus, and more particularly, to a fluidized-bed wastewater treatment apparatus for treating wastewater by a fluidized bed using a biofilm-adhered carrier.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】流動床
による排水処理法は、生物の保持量が多く、高い撹拌力
が得られることから、処理効率が良好で、コンパクトな
装置で十分な排水処理を行うことが可能である。このた
め、従来から多くの研究が行われているが、産業排水処
理における小規模施設での実用化例はあるものの、公共
の下水処理等の比較的大規模での実用例はほとんど無
い。
2. Description of the Related Art A wastewater treatment method using a fluidized bed has a large amount of living organisms and a high agitation power. It is possible to perform processing. For this reason, many studies have been conducted in the past, but there are examples of practical application in small-scale facilities in industrial wastewater treatment, but few practical examples in relatively large scale such as public sewage treatment.

【0003】図8は、従来の生物膜付着担体を用いた流
動床を示すもので、好気性処理を行う流動床の一例を示
している。この流動床1は、処理槽2の底部に設けられ
た原水流入部3と、槽頂部に設けられた処理水流出部4
と、槽下部に設けられた支持層5及び散気手段6と、槽
上部の大径部2a内に設けられた担体流出防止用の分離
筒7とにより形成されている。処理槽2内に投入された
生物膜付着担体Cは、原水流入部3から処理水流出部4
に向けて上昇する水流によって流動化し、生物反応によ
る浄水処理を行う。
FIG. 8 shows a fluidized bed using a conventional biofilm-adhered carrier, and shows an example of a fluidized bed for performing aerobic treatment. The fluidized bed 1 has a raw water inflow section 3 provided at the bottom of the treatment tank 2 and a treated water outflow section 4 provided at the top of the tank.
And a support layer 5 and a diffuser 6 provided at the lower part of the tank, and a separation tube 7 for preventing carrier outflow provided in the large-diameter portion 2a at the upper part of the tank. The biofilm-adhered carrier C introduced into the treatment tank 2 is supplied from the raw water inflow section 3 to the treated water outflow section 4.
Fluidized by the water flow rising toward the, the water purification treatment by biological reaction.

【0004】上述のような従来の流動床においては、生
物膜付着担体(以下、単に担体という)として、比重が
1.4〜2.7程度で、直径が0.4〜1mm程度のケ
イ砂,粒状活性炭,アンスラサイト等が用いられてい
る。このような比較的比重が大きい担体を用いる場合、
流動化させるための動力を考慮すると、直径が0.5m
m以下の微細なサイズのものを用いる必要があるが、こ
の場合でも、流動化に必要な流速は、500〜800m
/日程度と比較的高速となり、必ずしも反応速度と合致
するものではなかった。例えば、流動床の有効高さを3
m程度とすると、反応時間が2〜5分程度になってしま
うため、循環処理を行ったり、多段階の処理を行ったり
するなどの工夫が必要であった。さらに、槽内に流入す
る原水の上昇流速のみで比重の大きな担体を流動化させ
るため、スケールアップが難しく、処理規模の大きな下
水処理場への適応が困難であった。
In the conventional fluidized bed as described above, a silica sand having a specific gravity of about 1.4 to 2.7 and a diameter of about 0.4 to 1 mm is used as a biofilm-adhering carrier (hereinafter simply referred to as a carrier). , Granular activated carbon, anthracite and the like are used. When using such a carrier having a relatively large specific gravity,
Considering the power for fluidization, the diameter is 0.5m
m or smaller, it is necessary to use a flow rate required for fluidization of 500 to 800 m
/ Day, which was relatively high, and did not always match the reaction rate. For example, if the effective height of the fluidized bed is 3
When the reaction time is about m, the reaction time becomes about 2 to 5 minutes. Therefore, it is necessary to take measures such as performing a circulation treatment or performing a multi-stage treatment. Further, since the carrier having a large specific gravity is fluidized only by the rising flow rate of the raw water flowing into the tank, it is difficult to scale up and it is difficult to adapt to a sewage treatment plant having a large treatment scale.

【0005】また、微細なサイズの担体を用いると、剥
離した生物膜や流入水中の懸濁成分と担体との分離が困
難になるため、下水のように夾雑物を多く含む排水への
適応は困難であり、特に、支持層を用いて担体を支持す
る装置の場合は、支持層の閉塞を招くおそれがあった。
[0005] In addition, if a carrier having a fine size is used, it is difficult to separate the carrier from the suspended biofilm or suspended components in the influent water. Therefore, adaptation to wastewater containing much impurities such as sewage is difficult. This is difficult, and particularly in the case of a device that supports a carrier using a support layer, there is a possibility that the support layer may be blocked.

【0006】しかも、同じ担体を用い、一定の流速とし
た場合でも、担体の流動化率(膨張率)は、水温や担体
への生物の付着量により大きく影響を受け、流動化率が
低過ぎる場合には処理効率が低下し、高過ぎると担体が
処理水と共に流出することがある。特に、高負荷で運転
される流動床の場合は、生物膜が肥大化し易く、最適な
流速範囲が大幅に変化し、例えば、生物が付着する前と
比較して1/3〜1/10になることもある。
In addition, even when the same carrier is used and the flow rate is constant, the fluidization rate (expansion rate) of the carrier is greatly affected by the water temperature and the amount of organisms adhering to the carrier, and the fluidization rate is too low. In such a case, the treatment efficiency is reduced. If the treatment efficiency is too high, the carrier may flow out together with the treated water. In particular, in the case of a fluidized bed operated at a high load, the biofilm is liable to enlarge, and the optimum flow rate range is greatly changed. For example, it is reduced to 1/3 to 1/10 compared to before the organism is attached. It can be.

【0007】したがって、従来の流動床では、流動化率
がある程度高くなっても担体が流出しないようにするた
め、処理槽の上部に十分な余裕高を設けておく必要があ
り、しかも、装置上部に、処理水と担体とを分離するた
めの大掛かりな分離装置を設ける必要もあった。特に、
好気性処理を行うものでは、散気した空気等のガスも分
離する必要があるため、上部の水面積を大きくしなけれ
ばならなかった。このようなことから、従来の流動床式
排水処理装置では、その設置面積が大きくなってしまう
という欠点があった。
Therefore, in the conventional fluidized bed, it is necessary to provide a sufficient height above the processing tank in order to prevent the carrier from flowing out even if the fluidization rate becomes high to some extent. In addition, it was necessary to provide a large-scale separation device for separating the treated water and the carrier. Especially,
In the aerobic treatment, it is necessary to separate gas such as diffused air, so that the upper water area has to be increased. For this reason, the conventional fluidized-bed wastewater treatment apparatus has a disadvantage that its installation area is large.

【0008】そこで本発明は、担体の流動化を効率よく
行うことができ、効率的な生物処理を行うことができる
流動床式排水処理装置を提供することを目的としてい
る。
Accordingly, an object of the present invention is to provide a fluidized-bed wastewater treatment apparatus capable of efficiently fluidizing a carrier and performing efficient biological treatment.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の流動床式排水処理装置は、槽下部に原水流
入部を、槽上部に処理水流出部を、それぞれ有する処理
槽内に生物膜付着担体を投入して下排水の処理を行う流
動床式排水処理装置において、前記処理槽の底部を、上
部が拡開した漏斗状に形成するとともに、前記原水流入
部を、処理槽の底部に向けて原水を吐出するように配置
したことを特徴としている。
In order to achieve the above object, a fluidized bed type wastewater treatment apparatus according to the present invention is provided in a treatment tank having a raw water inflow portion at a lower portion of a tank and a treated water outflow portion at an upper portion of the tank. In a fluidized-bed wastewater treatment apparatus that performs treatment of sewage wastewater by charging a biofilm-adhered carrier, the bottom of the treatment tank is formed in a funnel shape in which an upper part is expanded, and the raw water inflow part is provided in the treatment tank. It is characterized in that it is arranged so as to discharge raw water toward the bottom.

【0010】さらに、本発明の流動床式排水処理装置
は、前記生物膜付着担体の比重が0.9〜1.2であ
り、サイズが3〜20mmであること、前記処理槽の上
部に、処理水流出部から流出する処理水と生物膜付着担
体とを分離するスクリーンを設置したこと、前記処理槽
内に、撹拌手段を設けたこと、また、前記処理槽の上部
に、処理水流出部から流出する処理水と生物膜付着担体
とを分離するスクリーンをリング状に設置し、該リング
状スクリーンの中心に配置した回転軸により回転してス
クリーンに捕捉された生物膜付着担体を取除く担体除去
手段を設けるとともに、前記回転軸に処理槽内の被処理
水を撹拌する撹拌手段を装着したことを特徴とし、前記
撹拌手段を設けた場合は、前記生物膜付着担体の膨張率
を検出する手段を設けるとともに、検出した膨張率によ
って前記撹拌手段の運転を制御する制御手段を設けるこ
と、さらに、前記原水流入部に、原水の逆流防止手段を
備えていることを特徴としている。
Further, in the fluidized bed type wastewater treatment apparatus of the present invention, the biofilm-adhered carrier has a specific gravity of 0.9 to 1.2 and a size of 3 to 20 mm. A screen for separating treated water and a biofilm-adhering carrier flowing out of the treated water outflow section is provided, a stirring means is provided in the treatment tank, and a treated water outflow section is provided above the treatment tank. A screen that separates treated water and biofilm-attached carriers flowing out from the screen is installed in a ring shape, and a carrier that removes the biofilm-attached carriers captured by the screen is rotated by a rotation shaft arranged at the center of the ring-shaped screen. In addition to providing the removing means, the rotating shaft is provided with a stirring means for stirring the water to be treated in the treatment tank. When the stirring means is provided, the expansion coefficient of the biofilm-adhered carrier is detected. Provide means Together, by the detected expansion providing a control means for controlling the operation of said stirring means, further, to the water inlet, is characterized in that it comprises a backflow preventing means of the raw water.

【0011】[0011]

【発明の実施の形態】図1乃至図4は、本発明の流動床
式排水処理装置の一形態例を示すもので、図1は流動床
式排水処理装置の模式図、図2は同じく概略平面図、図
3は要部の縦断面図、図4は原水流入部に設けた逆流防
止手段の一例を示す縦断面図である。
1 to 4 show an embodiment of a fluidized-bed wastewater treatment apparatus according to the present invention. FIG. 1 is a schematic diagram of a fluidized-bed wastewater treatment apparatus, and FIG. FIG. 3 is a plan view, FIG. 3 is a longitudinal sectional view of a main part, and FIG. 4 is a longitudinal sectional view showing an example of a backflow prevention means provided in a raw water inflow section.

【0012】本形態例に示す流動床式排水処理装置は、
下部に原水流入部11を、上部に処理水流出部12をそ
れぞれ有する有底角筒状の処理槽13からなるもので、
該処理槽13の底部は、下部が収斂して上部が拡開した
漏斗状(ホッパー状)に形成されている。原水流入部1
1は、漏斗状底部の下端収斂部に向けて原水を吐出する
ように配置されており、また、処理水流出部12には、
リング状に形成された担体分離用のウェッジワイヤース
クリーン14が設けられている。
The fluidized bed type wastewater treatment apparatus shown in this embodiment is
It is composed of a bottomed rectangular cylindrical treatment tank 13 having a raw water inflow portion 11 at a lower portion and a treated water outflow portion 12 at an upper portion, respectively.
The bottom of the processing tank 13 is formed in a funnel shape (hopper shape) in which the lower part converges and the upper part expands. Raw water inlet 1
1 is disposed so as to discharge raw water toward a lower end converging portion of the funnel-shaped bottom portion.
A ring-shaped carrier separating wedge wire screen 14 is provided.

【0013】さらに、処理槽13の中心軸上には、モー
ター15により駆動される回転軸16が設けられてお
り、この回転軸16に、前記ウェッジワイヤースクリー
ン14に捕捉された担体Cを取除くための担体除去手段
であるスクレーパ17と、処理槽13内を撹拌して担体
Cに付着する生物量を制御するための撹拌手段である撹
拌翼18とが設けられている。
Further, a rotating shaft 16 driven by a motor 15 is provided on a central axis of the processing tank 13, and the carrier C captured by the wedge wire screen 14 is removed by the rotating shaft 16. And a stirring blade 18 as stirring means for stirring the inside of the processing tank 13 and controlling the amount of organisms adhering to the carrier C.

【0014】ウェッジワイヤースクリーン14は、図3
に示すように、リング状に形成した多数のウェッジ形ワ
イヤー14aを、その外周側に位置する複数本のサポー
トロッド14bにより所定間隔で保持したものであっ
て、処理水や汚泥等は、ウェッジ形ワイヤー14a同士
の間を通過して仕切板12a上に流れた後、処理水流出
部12から流出する。このようなウェッジワイヤースク
リーン14は、ウェッジ形ワイヤー14aの間隔を適当
に設定することにより、目詰まりを抑えながら処理水及
び汚泥を効率よく排出できるとともに、担体Cの流出を
確実に防止することができる。
The wedge wire screen 14 is shown in FIG.
As shown in the figure, a large number of wedge-shaped wires 14a formed in a ring shape are held at predetermined intervals by a plurality of support rods 14b located on the outer peripheral side thereof. After flowing between the wires 14a and flowing onto the partition plate 12a, the water flows out of the treated water outflow portion 12. By appropriately setting the distance between the wedge-shaped wires 14a, the wedge wire screen 14 can efficiently discharge treated water and sludge while suppressing clogging, and can reliably prevent the carrier C from flowing out. it can.

【0015】また、回転軸16に支持腕17aを介して
取付けられたスクレーパ17は、ウェッジワイヤースク
リーン14の内周に沿って回転するものであって、ウェ
ッジワイヤースクリーン14の内周面との間には、担体
Cのサイズに応じた適宜な間隔が設けられており、連続
的あるいは間欠的にスクレーパ17を作動させることに
より、ウェッジワイヤースクリーン14が担体Cによっ
て目詰まりすることを確実に防止できる。
The scraper 17 attached to the rotating shaft 16 via the support arm 17a rotates along the inner periphery of the wedge wire screen 14, and is disposed between the scraper 17 and the inner peripheral surface of the wedge wire screen 14. Is provided with an appropriate interval according to the size of the carrier C. By operating the scraper 17 continuously or intermittently, it is possible to reliably prevent the wedge wire screen 14 from being clogged by the carrier C. .

【0016】さらに、原水流入部11の先端(原水吐出
端)には、図4に示すような原水の逆流防止手段が設け
られている。この逆流防止手段は、上部に原水流入口1
9aを有するとともに、弁座19bを有する筒体19
と、該筒体19の弁座19bの下方に上下動可能に収納
されたフロート弁20と、筒体19の下半部外周を覆う
ように設けられたディフューザー21とからなるもの
で、筒体19の中段部には、ディフューザー21内に原
水を噴出する噴出口19cが複数個設けられている。
Further, at the end (raw water discharge end) of the raw water inflow section 11, a backflow preventing means as shown in FIG. 4 is provided. This backflow prevention means has a raw water inlet 1
9a and a cylindrical body 19 having a valve seat 19b.
And a float valve 20 housed vertically below the valve seat 19b of the cylindrical body 19 and a diffuser 21 provided so as to cover the outer periphery of the lower half of the cylindrical body 19. A plurality of outlets 19 c for discharging raw water into the diffuser 21 are provided in the middle part of the diffuser 21.

【0017】原水が流入しているときには、図4に示す
ように、原水の流入エネルギーによりフロート弁20が
弁座19bから離れて下方に移動し、流入する原水は、
筒体19内から噴出口19cを通ってディフューザー2
1内に噴出し、ディフューザー21にガイドされて槽底
部に吐出する。したがって、噴出口19cの位置や大き
さ、ディフューザー21の形状(拡がり角度等)を適当
に設定することにより、原水を槽底部の任意の位置に、
任意の流速で吐出させることができ、槽底部の形状によ
って図1に矢印Aで示すような、処理槽13の全体に渡
る上昇流を形成することができる。これにより、担体C
を効果的に流動化させることができ、効率的な生物反応
を行わせることができる。しかも、従来のような目詰ま
りが発生するおそれがある支持層を設ける必要がないの
で、下水のように夾雑物を多く含む排水の処理も容易に
行うことができる。
When the raw water is flowing, as shown in FIG. 4, the inflow energy of the raw water causes the float valve 20 to move downward away from the valve seat 19b.
The diffuser 2 passes from the inside of the cylindrical body 19 through the ejection port 19c.
1 and is guided by the diffuser 21 and discharged to the bottom of the tank. Therefore, by appropriately setting the position and size of the spout 19c and the shape (spread angle, etc.) of the diffuser 21, the raw water can be placed at an arbitrary position on the bottom of the tank.
Discharge can be performed at an arbitrary flow rate, and ascending flow over the entire processing tank 13 can be formed as shown by an arrow A in FIG. 1 depending on the shape of the tank bottom. Thereby, the carrier C
Can be effectively fluidized, and an efficient biological reaction can be performed. In addition, since there is no need to provide a support layer in which clogging may occur as in the related art, it is possible to easily treat wastewater containing a large amount of impurities such as sewage.

【0018】一方、原水の流入が停止すると、フロート
弁20が浮力により上昇し、図4に想像線で示すように
弁座19bに圧着して流路を閉塞するので、処理槽13
内の水が原水流入部11に逆流することがなくなる。こ
のようなフロート弁20による逆流防止手段を用いるこ
とにより、通常の弁体(逆止弁)に比べて簡単な構造で
逆流を防止できるとともに、流入する原水中の夾雑物に
よる目詰まりもなくなり、しかも、流入原水を効果的に
分散させることができる。
On the other hand, when the inflow of raw water stops, the float valve 20 rises due to buoyancy and presses against the valve seat 19b as shown by the imaginary line in FIG.
The water inside does not flow back to the raw water inflow portion 11. By using such a backflow prevention means using the float valve 20, backflow can be prevented with a simpler structure than a normal valve body (check valve), and clogging due to impurities in the flowing raw water is also eliminated. Moreover, the inflowing raw water can be effectively dispersed.

【0019】処理槽13内に投入される担体Cは、プラ
スチック、例えば、ポリプロピレン(比重約0.9)や
ポリエチレン(比重約0.92)に、比重調整用のシリ
カやカルシウム等の無機物,金属粉を添加したプラスチ
ック製担体であって、シリカ等の添加量を調節すること
によって比重を任意に調整することが可能なものを用い
ている。この担体Cの形状は、球形,パイプ状等、成形
可能な形状ならば任意であるが、その表面は、生物膜が
付着し易い微細な凹凸を有する、ざらざらしたものが好
ましい。さらに、微生物の生息に適した50〜300μ
m程度の空孔を有するものが特に好ましい。
The carrier C put into the treatment tank 13 is made of plastics, for example, polypropylene (specific gravity of about 0.9) or polyethylene (specific gravity of about 0.92), inorganic substances such as silica or calcium for specific gravity adjustment, metals, etc. A plastic carrier to which a powder is added, the specific gravity of which can be arbitrarily adjusted by adjusting the amount of silica or the like, is used. The shape of the carrier C is arbitrary as long as it can be molded, such as a sphere or a pipe. However, the surface is preferably rough and has fine irregularities to which a biofilm can easily adhere. Furthermore, 50-300μ suitable for the inhabitation of microorganisms
Those having about m holes are particularly preferred.

【0020】担体Cの比重や大きさは、流動床の形状,
構成や処理条件に応じて最適な範囲に設定することがで
きるが、比重は0.9〜1.2の範囲、サイズは3〜2
0mmの範囲にすることが好ましい。比重が小さ過ぎる
と、撹拌手段で槽内を撹拌したとしても、そのほとんど
が水面近くに浮上してしまうため、生物膜付着担体とし
て十分に機能せず、一方、比重が大き過ぎると、担体C
を流動化させるために流速を高くしなければならないた
め、流動床内の滞留時間を十分にとることが困難になる
という不都合がある。すなわち、生物反応に必要な処理
時間を考慮して流動床内の滞留時間を設定し、これによ
り処理速度(上昇流速)を求め、この速度域で十分な流
動状態が得られるように担体Cの比重を設定すればよ
い。また、担体の大きさ(サイズ)は、比重や表面積等
に応じて任意に選定することができるので、処理水との
分離性や洗浄性を考慮して従来よりも大きな3〜20m
m程度の大きさにすることができる。さらに、このよう
なプラスチック製担体は、前述のアンスラサイトや粒状
活性炭等と比較して摩耗による損失も少ないという利点
も有している。
The specific gravity and size of the carrier C are determined by the shape of the fluidized bed,
The optimum range can be set according to the configuration and processing conditions, but the specific gravity is in the range of 0.9 to 1.2, and the size is 3 to 2
It is preferable to set the range to 0 mm. If the specific gravity is too small, even if the inside of the tank is agitated by the stirring means, most of it floats near the water surface, so that it does not function sufficiently as a biofilm-adhered carrier.
However, there is a disadvantage that it is difficult to obtain a sufficient residence time in the fluidized bed because the flow rate must be increased in order to fluidize the fluid. That is, the residence time in the fluidized bed is set in consideration of the processing time required for the biological reaction, and thereby the processing speed (upflow velocity) is determined. What is necessary is just to set a specific gravity. Further, the size (size) of the carrier can be arbitrarily selected according to the specific gravity, the surface area, and the like.
m. Further, such a plastic carrier also has an advantage that loss due to abrasion is small as compared with the above-described anthracite, granular activated carbon, and the like.

【0021】したがって、流入原水量に対応した比重及
び大きさの担体Cを用いることが可能となるため、生物
の保持量や撹拌力を最適な状態に設定することができ、
処理効率を大幅に向上させることができる。さらに、比
較的大きな担体Cを用いるとともに、処理水流出部12
にウェッジワイヤースクリーン14を設けて担体を分離
することにより、従来のように、槽上部の水面積を大き
くしたり、散気に伴うガスの分離手段を設ける必要がな
くなり、装置の簡略化やコンパクト化を図ることができ
る。
Therefore, since it is possible to use the carrier C having a specific gravity and a size corresponding to the amount of the inflowing raw water, it is possible to set the holding amount of the organism and the stirring power in an optimum state.
Processing efficiency can be greatly improved. Further, a relatively large carrier C is used, and the treated water outlet 12
By separating the carrier by providing a wedge wire screen 14, it is not necessary to increase the water area at the top of the tank or to provide a means for separating gas due to aeration as in the conventional case. Can be achieved.

【0022】なお、担体の大きさを3mm未満にする
と、ウェッジワイヤースクリーン14の目を細かくしな
ければならず、ウェッジワイヤースクリーン自体の製造
コストが上昇し、また、目詰りの可能性も高くなる。逆
に、担体を20mmを超える大きさにすると、担体の比
表面積(有効面積)が減少することになり、処理効率に
悪影響を与えることになる。このように適当な大きさの
担体Cを用いるとともに、ウェッジワイヤースクリーン
14を用いて担体Cを物理的に分離することにより、流
量変動等によって担体Cが流出することがなくなり、安
定した処理を継続することができる。
If the size of the carrier is less than 3 mm, the size of the wedge wire screen 14 must be reduced, which increases the manufacturing cost of the wedge wire screen itself and increases the possibility of clogging. . Conversely, if the size of the support exceeds 20 mm, the specific surface area (effective area) of the support will decrease, which will adversely affect the processing efficiency. As described above, by using the carrier C having an appropriate size and physically separating the carrier C using the wedge wire screen 14, the carrier C is prevented from flowing out due to a flow rate fluctuation or the like, and a stable process is continued. can do.

【0023】前記撹拌翼18は、処理槽13内を撹拌す
ることによる水流エネルギーと撹拌翼18自体の機械的
なエネルギーとによって担体Cに付着した生物膜を剥離
し、担体Cの生物膜付着量を最適な状態に制御するもの
である。
The agitating blade 18 separates the biofilm adhered to the carrier C by the water flow energy by stirring the inside of the processing tank 13 and the mechanical energy of the agitating blade 18 itself. Is controlled to an optimal state.

【0024】すなわち、流動床においては、一般的に、
担体Cに生物膜が付着していない運転開始時に、20〜
30%程度の流動化率となるように通水速度を設定する
が、生物膜が形成されるのに伴って流動化率は増加して
くる。効率的な処理を行うためには、流動化率を100
〜200%程度に維持することが必要である。
That is, in a fluidized bed, generally,
At the start of operation when the biofilm is not attached to the carrier C, 20 to 20
The water flow rate is set so as to have a fluidization rate of about 30%, but the fluidization rate increases as a biofilm is formed. For efficient processing, the fluidization rate should be 100
It is necessary to maintain it at about 200%.

【0025】担体Cの流動化に必要なエネルギーは、5
0%程度の流動化率までは、流速の上昇に従って上昇す
るが、その後は略一定であり、流動化率は担体Cへの生
物膜付着量によって左右されることになる。すなわち、
100〜200%の流動化率においては、流速による流
動化エネルギーは一定であり、流動化層の単位容積に対
する投入エネルギーは、流動化率に逆比例するように減
少することを意味している。したがって、原水流入部1
1から流入する原水の流速に伴う撹拌力のみによって生
物膜付着量を制御することは困難であり、流動化率を所
定範囲に維持することはできない。そして、生物膜が肥
大化するのに伴って流動化率は更に増加し、ついには、
処理水と共に担体Cが流出してしまうことになる。
The energy required for fluidizing the carrier C is 5
The fluidization rate increases as the flow rate increases up to a fluidization rate of about 0%, but thereafter remains substantially constant, and the fluidization rate depends on the amount of biofilm attached to the carrier C. That is,
At a fluidization rate of 100 to 200%, the fluidization energy depending on the flow velocity is constant, and the input energy per unit volume of the fluidized bed decreases in inverse proportion to the fluidization rate. Therefore, the raw water inflow section 1
It is difficult to control the amount of biofilm attached only by the stirring force associated with the flow rate of the raw water flowing from 1, and the fluidization rate cannot be maintained within a predetermined range. And, as the biofilm grows, the fluidization rate further increases, and eventually
The carrier C flows out together with the treated water.

【0026】上述のように、担体Cは、生物膜付着量が
多くなるのに伴って処理槽13の上部にまで上昇するよ
うになるので、処理槽13の適当な位置に撹拌手翼18
を設けて機械的な撹拌力を与えることにより、担体Cに
付着した生物膜を適度に剥離することができ、生物膜を
剥離した担体Cは、浮上力を失い沈降速度が増して流動
床の下層部へ戻ることになる。特に、撹拌翼18を流動
床の上層部に設置することにより、上層部の肥大化した
生物膜のみを効率よく剥離することができる。このと
き、過度の撹拌力を与えて生物膜を剥離し過ぎたとして
も、上層部に上昇したものだけであるため、装置全体の
生物保持量が大きく変化することはなく、処理水質への
影響もほとんどない。また、従来行われていた担体の洗
浄を行う必要がなくなるので、連続運転が可能となり、
処理効率を更に向上させることができる。
As described above, the carrier C rises to the upper part of the processing tank 13 as the amount of biofilm attached increases, so that the stirring wings 18 are placed at an appropriate position in the processing tank 13.
By providing mechanical agitation by providing a biofilm, the biofilm adhered to the carrier C can be appropriately peeled off, and the carrier C from which the biofilm has been peeled loses buoyancy and the sedimentation velocity increases, thereby increasing the fluidized bed. It will return to the lower part. In particular, by installing the stirring blade 18 in the upper layer of the fluidized bed, only the enlarged biofilm in the upper layer can be efficiently separated. At this time, even if an excessive agitation force is applied to remove the biofilm too much, only the biofilm that has risen to the upper layer will not significantly change the biological retention amount of the entire device, and will affect the treated water quality. There is almost no. In addition, since it is not necessary to perform the conventional cleaning of the carrier, continuous operation is possible,
Processing efficiency can be further improved.

【0027】したがって、上記撹拌翼18の運転時間や
撹拌力(回転数や翼の形状等)を適切に設定することに
より、担体Cの生物膜付着量を制御することが可能とな
り、処理槽13内を、最も効果的な流動化率(膨張率)
に管理することができ、例えば、流動化率を常に100
〜200%の範囲に維持して高効率の処理を行うことが
できる。また、汚泥界面計等のように担体の膨張率を検
出する手段を設けて槽内の流動化状態を測定し、検出し
た膨張率によって撹拌翼18の運転状態を制御する制御
手段を設けることにより、更に効果的な運転を自動的に
行うことができる。
Therefore, by appropriately setting the operation time and the stirring power (the number of revolutions, the shape of the blades, etc.) of the stirring blade 18, it is possible to control the amount of the biofilm adhering to the carrier C. Inside, the most effective fluidization rate (expansion rate)
For example, the fluidization rate is always 100
High-efficiency processing can be performed while maintaining the range of ~ 200%. Further, by providing a means for detecting the expansion rate of the carrier, such as a sludge interface meter, and measuring the fluidized state in the tank, and by providing a control means for controlling the operating state of the stirring blade 18 based on the detected expansion rate. In addition, more effective driving can be automatically performed.

【0028】さらに、担体Cの生物膜付着量を適当な範
囲に制御することにより、担体Cが処理水流出部12ま
で上昇することがほとんどなくなるので、従来のよう
に、槽上部の水面積を大きくしたり、散気に伴うガスの
分離手段を設けたりする必要がなくなり、装置の簡略化
やコンパクト化を図ることができる。
Further, by controlling the amount of the biofilm adhering to the carrier C to an appropriate range, the carrier C hardly rises to the treated water outflow portion 12, so that the water area at the upper part of the tank is reduced as in the related art. It is not necessary to increase the size or to provide a means for separating gas accompanying the air diffusion, so that the apparatus can be simplified and downsized.

【0029】なお、処理槽13は円筒形でもよく、上述
の流動床式排水処理装置で好気性処理を行う場合は、槽
底部の適当な位置に散気装置を設ければよい。さらに、
前記ウェッジワイヤースクリーン14は、部分的、例え
ば適当な高さの仕切壁の一部にウェッジワイヤースクリ
ーンに設けることもでき、回転式のスクレーパ17に代
えて他の担体除去手段、例えば空洗や逆洗等を使用すれ
ば、任意の形状に形成することができる。また、一般的
なスクリーンを使用してもよい。
The treatment tank 13 may have a cylindrical shape, and when aerobic treatment is performed by the above-described fluidized-bed wastewater treatment apparatus, a diffuser may be provided at an appropriate position at the bottom of the tank. further,
The wedge wire screen 14 can be partially provided on the wedge wire screen, for example, on a part of a partition wall having an appropriate height. Instead of the rotary scraper 17, other carrier removing means, for example, empty washing or reverse washing can be used. If washing is used, it can be formed into an arbitrary shape. Further, a general screen may be used.

【0030】さらに、前記撹拌翼18を流動化層の上下
全体にわたって設け、流動床全体を撹拌するようにして
もよい。この場合、上方の撹拌翼と下方の撹拌翼とにお
ける形状や枚数,上下の配置間隔等を変えることもで
き、撹拌翼の形状としては、図1に示すようなパドルタ
イプの他、ピケットフェンス状のものなど、肥大した生
物膜を剥離できるものならば任意の形状のものを用いる
ことができる。また、撹拌手段としては、撹拌翼以外に
循環ポンプ等を利用することも可能である。
Further, the agitating blades 18 may be provided over the entire upper and lower portions of the fluidized bed to agitate the entire fluidized bed. In this case, the shape and the number of the upper and lower stirring blades, the spacing between the upper and lower stirring blades, and the like can be changed. The shape of the stirring blade can be a paddle type as shown in FIG. Any shape can be used as long as it can remove the enlarged biofilm. In addition, a circulation pump or the like can be used as the stirring means other than the stirring blade.

【0031】さらに、撹拌翼18のような撹拌手段で担
体Cの過度の上昇を確実に防止できれば、前記担体分離
用のウェッジワイヤースクリーン14を省略することも
できる。逆に、曝気による担体Cの洗浄等を行うことに
よって生物膜付着量を適当な範囲に制御するようにした
ときは、撹拌手段を省略するようにしてもよい。
Furthermore, if the stirring means such as the stirring blade 18 can surely prevent the carrier C from excessively rising, the wedge wire screen 14 for separating the carrier can be omitted. Conversely, when the amount of biofilm attached is controlled to an appropriate range by washing the carrier C by aeration or the like, the stirring means may be omitted.

【0032】また、図5の模式図に示すように、処理槽
13の容積(底面積)が大きい場合等には、底部を複数
の漏斗状部分13aに分割し、各漏斗状部分13aに原
水流入部11aをそれぞれ設けるようにすることができ
る。これにより、スケールアップを容易に行うことがで
き、処理規模の大きな下水処理場にも適応可能となる。
同様に、処理水流出部12のウェッジワイヤースクリー
ン14や撹拌翼18を複数に分割して設けることもでき
る。なお、前記図1に示した形態例における構成要素と
同一の構成要素には同一符号を付して詳細な説明は省略
する。
As shown in the schematic diagram of FIG. 5, when the volume (bottom area) of the treatment tank 13 is large, the bottom is divided into a plurality of funnel-shaped portions 13a, and raw water is added to each funnel-shaped portion 13a. Each of the inflow portions 11a can be provided. As a result, scale-up can be easily performed, and the system can be adapted to a large-scale sewage treatment plant.
Similarly, the wedge wire screen 14 and the stirring blade 18 of the treated water outflow portion 12 can be divided into a plurality of parts. The same components as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted.

【0033】図6は、本発明の流動床式排水処理装置を
用いた排水処理設備の一例を示すものであって、前記図
1に示した構造を有する処理槽13を脱窒槽(嫌気処理
槽)として用い、その後段に浮遊型硝化槽31と最終沈
殿池32とを設け、BOD,SSの処理に加えて窒素の
処理も行うようにしたものである。
FIG. 6 shows an example of a wastewater treatment facility using the fluidized bed wastewater treatment apparatus of the present invention. The treatment tank 13 having the structure shown in FIG. 1 is replaced with a denitrification tank (anaerobic treatment tank). ), A floating type nitrification tank 31 and a final sedimentation tank 32 are provided at the subsequent stage, and nitrogen treatment is performed in addition to BOD and SS treatment.

【0034】流入下水(原水)は、最初沈殿池による沈
殿処理等の前処理が行われた後、経路33を介して返送
される浮遊型硝化槽31からの硝化液及び経路34を介
して返送される最終沈殿池32からの返送汚泥と混合
し、原水流入部11から処理槽13の底部に流入する。
処理槽13に流入した原水は、担体Cに付着した生物膜
(微生物)によって嫌気的浄化処理、主に脱窒処理され
た後、処理水流出部12から浮遊型硝化槽31に流入す
る。浮遊型硝化槽31には、硝化菌を包括固定化した担
体が投入されており、槽底部に設けられた散気装置35
からの散気により好気的浄化処理、主に硝化反応が行わ
れ、原水中の窒素の硝化が行われる。
The inflow sewage (raw water) is returned through the path 33 after returning to the nitrification liquid from the floating type nitrification tank 31 and returned through the path 33 after pretreatment such as settling treatment in the first settling tank. The sludge is mixed with the returned sludge from the final sedimentation basin 32 and flows into the bottom of the treatment tank 13 from the raw water inflow section 11.
The raw water flowing into the treatment tank 13 is subjected to an anaerobic purification treatment, mainly a denitrification treatment by a biofilm (microorganism) attached to the carrier C, and then flows into the floating nitrification tank 31 from the treated water outlet 12. In the floating type nitrification tank 31, a carrier in which nitrifying bacteria are comprehensively immobilized is charged, and an air diffuser 35 provided at the bottom of the tank is provided.
Aerobic purification treatment, mainly a nitrification reaction, is performed by the aeration from the nitrogen, and nitrification of nitrogen in raw water is performed.

【0035】浮遊型硝化槽31からの硝化処理水(硝化
液)は、担体分離用スクリーン36を経て経路37に流
出し、その一部(原水量に対して100〜300%)が
ポンプ38,経路33を介して処理槽13に戻され、残
部が最終沈殿池32に流入する。この最終沈殿池32で
汚泥を分離した処理水は、経路39から処理水槽等を経
て河川等に放流される。また、最終沈殿池32で発生し
た汚泥は、一部が返送汚泥としてポンプ40,経路34
を通って処理槽13に戻され、残部が余剰汚泥としてポ
ンプ41,経路42により汚泥貯留槽に送られて処理さ
れる。
Nitrified water (nitrification liquid) from the floating type nitrification tank 31 flows out of a path 37 through a carrier separation screen 36, and a part thereof (100 to 300% of the raw water amount) is pumped by a pump 38, It is returned to the treatment tank 13 via the path 33, and the remainder flows into the final sedimentation basin 32. The treated water from which the sludge has been separated in the final sedimentation basin 32 is discharged from a path 39 to a river or the like via a treated water tank or the like. A part of the sludge generated in the final sedimentation basin 32 is returned to the pump 40 and the route 34 as returned sludge.
The remaining part is sent to the sludge storage tank by the pump 41 and the path 42 as surplus sludge and processed there.

【0036】このように硝化液を処理槽13に戻す場合
は、流入下水の流量変動等によって原水の流量が少なく
なった場合や原水の流入がなくなった場合でも、硝化液
のみの流量で担体Cを流動化できるようにしておくこと
が好ましい。
When the nitrifying liquid is returned to the treatment tank 13 as described above, even if the flow rate of the raw water decreases due to fluctuations in the flow rate of the inflowing sewage or the flow of the raw water stops, the carrier C is maintained at the flow rate of the nitrifying liquid alone. Is preferably made fluidizable.

【0037】図7は、本発明の流動床式排水処理装置を
用いた排水処理設備の他の構成例を示すものであって、
前記図1に示した構造を有する処理槽13を、前記同様
に脱窒槽(嫌気処理槽)として用い、その後段に無薬注
加圧浮上分離装置51と好気性ろ床52とを設けたもの
である。
FIG. 7 shows another example of the construction of wastewater treatment equipment using the fluidized-bed wastewater treatment apparatus of the present invention.
A treatment tank 13 having the structure shown in FIG. 1 is used as a denitrification tank (anaerobic treatment tank) in the same manner as described above, and a non-chemical injection pressurized flotation device 51 and an aerobic filter bed 52 are provided at the subsequent stage. It is.

【0038】原水は、経路53を介して返送される好気
性ろ床52からの硝化液と混合して原水流入部11から
処理槽13の底部に流入し、担体Cに付着した生物膜に
より嫌気的浄化処理(主に脱窒反応)が行われる。
The raw water mixes with the nitrification liquid from the aerobic filter bed 52 returned via the channel 53 and flows into the bottom of the treatment tank 13 from the raw water inflow section 11, and becomes anaerobic due to the biofilm attached to the carrier C. Purification treatment (mainly denitrification reaction) is performed.

【0039】嫌気処理された処理水(嫌気処理水)は、
処理槽13から処理水流出部12を経て経路54から供
給される加圧空気溶解水と混合した後、加圧浮上分離装
置51に流入する。加圧浮上分離装置51では、前記加
圧空気溶解水から発生する微細気泡に前記嫌気処理水中
の懸濁成分を付着させて見掛けの比重を小さくすること
により浮上させるもので、浮上した浮上汚泥(フロス)
は、掻取機55により掻取られて経路56から汚泥貯留
槽に送られる。また、底部に沈殿した汚泥も汚泥貯留槽
に送られる。このときの汚泥濃度は3〜5%であり、従
来の汚泥濃縮槽における重力濃縮に比較して高濃度であ
る。
The anaerobic treated water (anaerobic treated water)
After mixing with the pressurized air dissolving water supplied from the treatment tank 13 through the treated water outflow portion 12 through the passage 54, the mixture flows into the pressurized flotation device 51. In the pressurized flotation separation device 51, suspended components in the anaerobic treated water are attached to microbubbles generated from the pressurized air-dissolved water to reduce the apparent specific gravity, thereby causing them to float. Floss)
Is scraped by the scraper 55 and sent to the sludge storage tank from the path 56. Sludge settled at the bottom is also sent to the sludge storage tank. The sludge concentration at this time is 3 to 5%, which is higher than gravity concentration in a conventional sludge concentration tank.

【0040】加圧浮上分離装置51で固液分離処理され
た水(加圧浮上処理水)の一部は、出口側で経路57に
抜取られて圧縮空気と混合した後、加圧空気溶解水とし
て前記経路54から嫌気処理水に供給混合される。ま
た、加圧浮上処理水の残部は、経路58から好気性ろ床
52に流入する。
A part of the water subjected to the solid-liquid separation treatment by the pressurized flotation device 51 (pressurized flotation water) is withdrawn from the outlet 57 through the passage 57 and mixed with the compressed air. Is supplied to the anaerobic treated water from the passage 54 and mixed. The remaining part of the pressurized flotation treatment water flows into the aerobic filter bed 52 from the path 58.

【0041】好気性ろ床52は、好気性微生物を保持す
る槽上部の接触材充填部59と、ろ材を充填した槽下部
のろ材充填部60と、槽底部の散気装置61等を有する
もので、好気性ろ床52に流入した加圧浮上処理水は、
散気装置61からの散気により好気状態に維持されてい
る接触材充填部59及びろ材充填部60を通過すること
により、好気的浄化処理(主に硝化反応)及びろ過処理
が行われ、槽底部の処理水流出経路62に流出する。こ
の処理水の一部は、ポンプ63,経路53を通り、硝化
液として処理槽13に戻される。また、処理水の残部
は、経路64から処理水槽等を経て河川等に放流され
る。
The aerobic filter bed 52 has a contact material filling section 59 at the top of the tank for holding aerobic microorganisms, a filter material filling section 60 at the bottom of the tank filled with the filter medium, and a diffuser 61 at the bottom of the tank. The pressurized levitation treated water flowing into the aerobic filter bed 52 is
The aerobic purification processing (mainly nitrification reaction) and the filtration processing are performed by passing through the contact material filling section 59 and the filter medium filling section 60 which are maintained in an aerobic state by the air diffuser 61. Flows out to the treated water outflow path 62 at the bottom of the tank. A part of the treated water passes through the pump 63 and the path 53 and is returned to the treatment tank 13 as a nitrification liquid. The remaining portion of the treated water is discharged from the route 64 to a river or the like via a treated water tank or the like.

【0042】前記加圧浮上分離装置51は、通常の沈殿
処理に比べて懸濁成分の除去率が高いため、後段の好気
性ろ床52への流入負荷を少なくでき、その分の容量を
小さくすることが可能になる。また、浮上処理では、髪
の毛、油分、スカム等の浮上し易い成分を、略完全に除
去することができるため、好気性ろ床52の閉塞やスカ
ムの発生が少なくなる。
Since the pressure flotation device 51 has a higher removal rate of suspended components as compared with the ordinary sedimentation treatment, the inflow load to the aerobic filter bed 52 at the subsequent stage can be reduced, and the volume of the device can be reduced. It becomes possible to do. In the floating treatment, components that easily float, such as hair, oil, and scum, can be almost completely removed, so that the clogging of the aerobic filter bed 52 and the occurrence of scum are reduced.

【0043】したがって、本発明の流動床式排水処理装
置と無薬注加圧浮上分離装置とを組合わせることによ
り、排水処理設備の処理効率を大幅に向上させることが
でき、設備の小型化を図ることができる。さらに、好気
性ろ床52の洗浄排水を原水に戻して混合し、再び加圧
浮上分離処理を行うことにより、汚泥発生箇所の一本化
と高濃度化とを図ることができ、汚泥発生量がランニン
グコストに大きく影響する比較的小規模な下排水処理施
設では、そのランニングコストを大幅に低減させること
ができる。
Therefore, by combining the fluidized-bed type wastewater treatment apparatus of the present invention with the chemical-free injection pressurized flotation apparatus, the treatment efficiency of the wastewater treatment equipment can be greatly improved, and the equipment can be miniaturized. Can be planned. Further, the washing wastewater from the aerobic filter bed 52 is returned to the raw water, mixed, and subjected to pressurized flotation treatment again, thereby making it possible to unify the sludge generation location and increase the concentration thereof, thereby reducing the amount of sludge generation. However, in a relatively small sewage treatment facility that greatly affects running costs, the running costs can be significantly reduced.

【0044】[0044]

【発明の効果】以上説明したように、本発明の流動床式
排水処理装置によれば、流入原水による上昇流で効果的
に担体を流動化させることができ、効率的な生物処理を
行うことができる。特に、比較的小さな比重で、比較的
大きなサイズの担体を用いることにより、流動床におけ
る処理効率を向上できるとともに、処理水と担体との分
離を容易に行うことができる。さらに、処理水流出部に
ウェッジワイヤースクリーンを設置することにより、担
体の分離を確実に行うことができる。また、撹拌手段を
設けて担体に付着する生物量を制御することにより、最
も効果的な流動化率で排水処理を行うことができる。
As described above, according to the fluidized-bed wastewater treatment apparatus of the present invention, the carrier can be effectively fluidized by the ascending flow of the inflowing raw water, and efficient biological treatment can be performed. Can be. In particular, by using a carrier having a relatively small specific gravity and a relatively large size, treatment efficiency in a fluidized bed can be improved, and separation of treated water and a carrier can be easily performed. Furthermore, by installing a wedge wire screen at the treated water outlet, the carrier can be reliably separated. Further, by providing a stirring means to control the amount of organisms attached to the carrier, wastewater treatment can be performed at the most effective fluidization rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の流動床式排水処理装置の一形態例を
示す模式図である。
FIG. 1 is a schematic view showing one embodiment of a fluidized-bed wastewater treatment apparatus according to the present invention.

【図2】 同じく概略平面図である。FIG. 2 is a schematic plan view similarly.

【図3】 要部の縦断面図である。FIG. 3 is a longitudinal sectional view of a main part.

【図4】 原水流入部に設けた逆流防止手段の一例を示
す縦断面図である。
FIG. 4 is a longitudinal sectional view showing an example of a backflow prevention means provided in a raw water inflow portion.

【図5】 流動床式排水処理装置の他の形態例を示す模
式図である。
FIG. 5 is a schematic view showing another embodiment of a fluidized bed type wastewater treatment apparatus.

【図6】 本発明の流動床式排水処理装置を用いた排水
処理設備の一例を示す系統図である。
FIG. 6 is a system diagram showing an example of a wastewater treatment facility using the fluidized-bed wastewater treatment apparatus of the present invention.

【図7】 同じく排水処理設備の他の構成例を示す系統
図である。
FIG. 7 is a system diagram showing another configuration example of the wastewater treatment facility.

【図8】 従来の流動床式排水処理装置の一例を示す模
式図である。
FIG. 8 is a schematic view showing an example of a conventional fluidized bed type wastewater treatment apparatus.

【符号の説明】[Explanation of symbols]

11…原水流入部、12…処理水流出部、13…処理
槽、14…ウェッジワイヤースクリーン、15…モータ
ー、16…回転軸、17…スクレーパ、18…撹拌翼、
19…筒体、19b…弁座、20…フロート弁、21…
ディフューザー、31…浮遊型硝化槽、32…最終沈殿
池、51…加圧浮上分離装置、52…好気性ろ床
Reference numeral 11: raw water inlet, 12: treated water outlet, 13: treatment tank, 14: wedge wire screen, 15: motor, 16: rotating shaft, 17: scraper, 18: stirring blade,
19 ... cylindrical body, 19b ... valve seat, 20 ... float valve, 21 ...
Diffuser, 31: Floating nitrification tank, 32: Final sedimentation basin, 51: Pressurized flotation separator, 52: Aerobic filter bed

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 槽下部に原水流入部を、槽上部に処理水
流出部を、それぞれ有する処理槽内に生物膜付着担体を
投入して下排水の処理を行う流動床式排水処理装置にお
いて、前記処理槽の底部を、上部が拡開した漏斗状に形
成するとともに、前記原水流入部を、処理槽の底部に向
けて原水を吐出するように配置したことを特徴とする流
動床式排水処理装置。
1. A fluidized bed wastewater treatment apparatus for treating a wastewater by charging a biofilm-adhering carrier into a treatment tank having a raw water inflow part at a lower part of a tank and a treated water outflow part at an upper part of the tank. A fluidized bed type wastewater treatment, wherein the bottom of the treatment tank is formed in a funnel shape with an open top, and the raw water inflow portion is arranged to discharge raw water toward the bottom of the treatment tank. apparatus.
【請求項2】 前記生物膜付着担体は、比重が0.9〜
1.2であり、サイズが3〜20mmであることを特徴
とする請求項1記載の流動床式排水処理装置。
2. The biofilm-adhered carrier has a specific gravity of 0.9 to 2.0.
The fluidized-bed wastewater treatment apparatus according to claim 1, wherein the size is 1.2 to 3 mm.
【請求項3】 前記処理槽の上部に、処理水流出部から
流出する処理水と生物膜付着担体とを分離するスクリー
ンを設置したことを特徴とする請求項1記載の流動床式
排水処理装置。
3. A fluidized bed type wastewater treatment apparatus according to claim 1, wherein a screen for separating treated water flowing out from a treated water outflow portion and a biofilm-adhered carrier is provided above the treatment tank. .
【請求項4】 前記処理槽内に、撹拌手段を設けたこと
を特徴とする請求項1記載の流動床式排水処理装置。
4. The fluidized-bed wastewater treatment apparatus according to claim 1, wherein a stirring means is provided in the treatment tank.
【請求項5】 前記処理槽の上部に、処理水流出部から
流出する処理水と生物膜付着担体とを分離するスクリー
ンをリング状に設置し、該リング状スクリーンの中心に
配置した回転軸により回転してスクリーンに捕捉された
生物膜付着担体を取除く担体除去手段を設けるととも
に、前記回転軸に処理槽内の被処理水を撹拌する撹拌手
段を装着したことを特徴とする請求項1記載の流動床式
排水処理装置。
5. A screen for separating treated water flowing out of a treated water outlet from a biofilm-attached carrier is provided in a ring shape on an upper portion of the treatment tank, and a rotating shaft arranged at the center of the ring-shaped screen is provided. 2. A carrier removing means for removing a biofilm-adhered carrier which has been captured by a screen while being rotated, and a stirring means for stirring water to be treated in a treatment tank is provided on the rotating shaft. Fluid bed wastewater treatment equipment.
【請求項6】 前記生物膜付着担体の膨張率を検出する
手段を設けるとともに、検出した膨張率によって前記撹
拌手段の運転を制御する制御手段を設けたことを特徴と
する請求項4又は5記載の流動床式排水処理装置。
6. The apparatus according to claim 4, further comprising means for detecting the expansion rate of the biofilm-adhered carrier, and control means for controlling the operation of the stirring means based on the detected expansion rate. Fluid bed wastewater treatment equipment.
【請求項7】 前記原水流入部は、原水の逆流防止手段
を備えていることを特徴とする請求項1記載の流動床式
排水処理装置。
7. The fluidized-bed wastewater treatment apparatus according to claim 1, wherein the raw water inflow section includes a backflow preventing means for the raw water.
JP24276297A 1997-09-08 1997-09-08 Fluidized bed wastewater treatment equipment Expired - Fee Related JP3836576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24276297A JP3836576B2 (en) 1997-09-08 1997-09-08 Fluidized bed wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24276297A JP3836576B2 (en) 1997-09-08 1997-09-08 Fluidized bed wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH1177075A true JPH1177075A (en) 1999-03-23
JP3836576B2 JP3836576B2 (en) 2006-10-25

Family

ID=17093904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24276297A Expired - Fee Related JP3836576B2 (en) 1997-09-08 1997-09-08 Fluidized bed wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3836576B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307549A (en) * 2006-04-21 2007-11-29 Maezawa Ind Inc Filtration device, and waste water treatment apparatus using this filtration device
JP2011240342A (en) * 2006-04-21 2011-12-01 Maezawa Ind Inc Wastewater treatment apparatus
KR101156056B1 (en) 2010-03-25 2012-06-27 대한민국 Water purifying device
WO2012093691A1 (en) * 2011-01-07 2012-07-12 栗田工業株式会社 Fluidized bed-type biological treatment apparatus
WO2013062057A1 (en) * 2011-10-28 2013-05-02 株式会社クラレ Screen device for wastewater treatment tank and wastewater treatment method
JP2013193046A (en) * 2012-03-21 2013-09-30 Kurita Water Ind Ltd Dehydrating method and device of pressure floating sludge
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method
CN118026417A (en) * 2024-04-11 2024-05-14 四川发展环境科学技术研究院有限公司 Urban sewage treatment device with coupling of nitrification and anaerobic ammonia oxidation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307549A (en) * 2006-04-21 2007-11-29 Maezawa Ind Inc Filtration device, and waste water treatment apparatus using this filtration device
JP2011240342A (en) * 2006-04-21 2011-12-01 Maezawa Ind Inc Wastewater treatment apparatus
JP2011245483A (en) * 2006-04-21 2011-12-08 Maezawa Ind Inc Filtration device
KR101156056B1 (en) 2010-03-25 2012-06-27 대한민국 Water purifying device
WO2012093691A1 (en) * 2011-01-07 2012-07-12 栗田工業株式会社 Fluidized bed-type biological treatment apparatus
WO2013062057A1 (en) * 2011-10-28 2013-05-02 株式会社クラレ Screen device for wastewater treatment tank and wastewater treatment method
JP2013193046A (en) * 2012-03-21 2013-09-30 Kurita Water Ind Ltd Dehydrating method and device of pressure floating sludge
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method
CN118026417A (en) * 2024-04-11 2024-05-14 四川发展环境科学技术研究院有限公司 Urban sewage treatment device with coupling of nitrification and anaerobic ammonia oxidation

Also Published As

Publication number Publication date
JP3836576B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US5126042A (en) Floating media biofilter
US9758402B2 (en) Method and reactor for biological purification of waste water
US6531058B1 (en) Biological fluidized bed apparatus
JP6630054B2 (en) Wastewater treatment method and wastewater treatment device
PL174456B1 (en) Biological treatment reactor
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
EP0007783B1 (en) Fluidized-bed reactor having excess growth control system
JP5158523B2 (en) Denitrification processing equipment
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
US4250033A (en) Excess-growth control system for fluidized-bed reactor
KR101192174B1 (en) Plants for advanced treatment of wastewater
JP3947589B2 (en) Wastewater treatment facility
JP3729585B2 (en) Wastewater treatment facility
JP2579122B2 (en) Wastewater treatment equipment
EP1205443A1 (en) Biological anaerobic fluidised bed apparatus
JP3947588B2 (en) Wastewater treatment equipment
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
JPH10202281A (en) Waste water treating device
JPS5857238B2 (en) Wastewater treatment method
JPH0910787A (en) Fluidized bed type waste water treatment method and apparatus
KR0142581B1 (en) Wastewater Biofiltration Treatment Apparatus and Method Using Biofiltration Material
RU2351549C2 (en) Denitrification flotating plant
KR200252228Y1 (en) Air dissolving device
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees