JP2013193046A - Dehydrating method and device of pressure floating sludge - Google Patents
Dehydrating method and device of pressure floating sludge Download PDFInfo
- Publication number
- JP2013193046A JP2013193046A JP2012063865A JP2012063865A JP2013193046A JP 2013193046 A JP2013193046 A JP 2013193046A JP 2012063865 A JP2012063865 A JP 2012063865A JP 2012063865 A JP2012063865 A JP 2012063865A JP 2013193046 A JP2013193046 A JP 2013193046A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- pressurized
- dewatering
- dehydrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 113
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229920000642 polymer Polymers 0.000 claims abstract description 27
- 238000005188 flotation Methods 0.000 claims abstract description 23
- 150000002505 iron Chemical class 0.000 claims abstract description 13
- 238000004062 sedimentation Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims description 12
- 238000005339 levitation Methods 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims 1
- 230000001112 coagulant Effects 0.000 abstract description 4
- 239000000701 coagulant Substances 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 4
- 230000001464 adherent Effects 0.000 abstract 1
- 239000000178 monomer Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 229940048053 acrylate Drugs 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- -1 dimethylaminoethyl Chemical group 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- FRVAAJHKPLKCGZ-UHFFFAOYSA-N 5-(dimethylamino)-2-methylidenepentanamide;hydrochloride Chemical compound Cl.CN(C)CCCC(=C)C(N)=O FRVAAJHKPLKCGZ-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K Iron(III) chloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H Iron(III) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N Methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229940047670 SODIUM ACRYLATE Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M Sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial Effects 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229940032950 ferric sulfate Drugs 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Abstract
Description
本発明は、加圧浮上槽からの有機性汚泥を脱水機で脱水処理する加圧浮上汚泥の脱水処理方法及び装置に係り、特に汚泥を低含水率にまで脱水することができる加圧浮上汚泥の脱水処理方法及び装置に関する。 The present invention relates to a dewatering method and apparatus for pressurized flotation sludge that dehydrates organic sludge from a pressurized flotation tank using a dehydrator, and in particular, pressurized flotation sludge capable of dehydrating sludge to a low water content. The present invention relates to a dehydration processing method and apparatus.
加圧浮上槽で浮上分離された有機性汚泥を脱水処理する方法及び装置として、特許文献1に、加圧浮上槽からの汚泥を凝集撹拌槽へ導入し、高分子凝集剤を添加して混和し、粒径の大きなフロック状とした後、脱水機へ供給して脱水処理することが記載されている。 As a method and apparatus for dewatering organic sludge that has been floated and separated in a pressurized flotation tank, the sludge from the pressurized flotation tank is introduced into a coagulation agitation tank, and a polymer flocculant is added and mixed in Patent Document 1. In addition, it is described that the floc shape having a large particle size is supplied to a dehydrator and dehydrated.
上記特許文献1では、加圧浮上槽からの有機性汚泥を高分子凝集剤で粒径の大きなフロック状とするので、高分子凝集剤を添加しない場合に比べて脱水効率は向上すると推察されるが、有機性汚泥に高分子凝集剤を添加した後、この汚泥の全量を脱水機に供給するため、脱水機にかかる負荷が大きく、また脱水後の汚泥の含水率も低下しにくい。 In the above-mentioned Patent Document 1, since the organic sludge from the pressurized flotation tank is made into a floc form having a large particle size with a polymer flocculant, it is presumed that the dewatering efficiency is improved as compared with the case where the polymer flocculant is not added. However, after the polymer flocculant is added to the organic sludge, the entire amount of the sludge is supplied to the dehydrator. Therefore, the load on the dehydrator is large, and the moisture content of the sludge after dehydration is difficult to decrease.
本発明は、加圧浮上槽からの有機性汚泥を低含水率となるように容易に脱水処理することができる加圧浮上汚泥の脱水処理方法及び装置を提供することを目的とする。 An object of the present invention is to provide a method and an apparatus for dewatering pressurized floating sludge that can easily dehydrate organic sludge from a pressurized flotation tank so as to have a low water content.
本発明の加圧浮上汚泥の脱水処理方法は、加圧浮上槽からの有機性汚泥に両性ポリマー凝集剤を添加する工程と、該両性ポリマー凝集剤が添加された汚泥を沈降槽内に導入し、撹拌機によって撹拌して汚泥から気泡を分離し、汚泥を沈降させる工程と、沈降槽からの沈降汚泥を脱水機で脱水する工程とを有するものである。 The method of dewatering a pressurized flotation sludge according to the present invention includes a step of adding an amphoteric polymer flocculant to the organic sludge from the pressure flotation tank, and introducing the sludge to which the amphoteric polymer flocculant has been added into the settling tank. , A step of stirring with a stirrer to separate bubbles from sludge and settling the sludge, and a step of dewatering the settling sludge from the settling tank with a dehydrator.
本発明の加圧浮上汚泥の脱水処理装置は、加圧浮上槽からの有機性汚泥に両性ポリマー凝集剤を添加するポリマー凝集剤添加手段と、該両性ポリマー凝集剤が添加された汚泥を受け入れ、撹拌機によって撹拌して汚泥から気泡を分離し、汚泥を沈降させる撹拌機付き沈降槽と、該沈降槽からの沈降汚泥を脱水処理する脱水機とを有するものである。 The dewatering apparatus for pressurized flotation sludge of the present invention accepts a polymer flocculant addition means for adding an amphoteric polymer flocculant to the organic sludge from the pressure flotation tank, and sludge to which the amphoteric polymer flocculant is added, It has a settling tank with a stirrer which stirs with a stirrer, isolate | separates bubbles from sludge, and makes sludge settle, and a dehydrator which dehydrates the settled sludge from the settling tank.
本発明では、加圧浮上槽に導入される被処理水は、有機性排水を担体式生物処理手段で処理した生物処理液であることが好ましい。 In this invention, it is preferable that the to-be-processed water introduce | transduced into a pressurized levitation tank is the biological treatment liquid which processed the organic waste_water | drain with the carrier-type biological treatment means.
また、本発明では、沈降槽からの沈降汚泥に鉄塩系凝集剤を添加した後、前記脱水機で脱水することが好ましい。 Moreover, in this invention, after adding an iron salt type flocculant to the sedimentation sludge from a sedimentation tank, it is preferable to spin-dry | dehydrate with the said dehydrator.
本発明の加圧浮上汚泥の脱水処理方法及び装置において、加圧浮上槽からの有機性汚泥に両性ポリマー凝集剤を添加すると、有機性汚泥の荷電が中和されると共に、有機性汚泥に付着していた気泡(マイクロエアー)が離脱し易くなる。この荷電中和により、有機性汚泥粒子同士が付着して粒成長し易くなる。また、気泡が離脱することにより、造粒された汚泥が沈降し易いものとなる。そのため、両性ポリマー凝集剤を添加した汚泥を沈降槽に導入して撹拌することにより、気泡が抜けて沈降し易い造粒汚泥が生成し、この造粒汚泥が沈降槽底部に沈降する。沈降した汚泥は、粒径の大きい脱水され易いものとなっていると共に、沈降によって濃縮されているので、この沈降汚泥を脱水機で脱水することにより、含水率の低い脱水汚泥が効率よく得られる。 In the dewatering method and apparatus for pressurized flotation sludge of the present invention, when an amphoteric polymer flocculant is added to the organic sludge from the pressurized flotation tank, the charge of the organic sludge is neutralized and adheres to the organic sludge Air bubbles (micro air) that have been removed are easily removed. This charge neutralization makes it easy for organic sludge particles to adhere to each other and grow. Moreover, when the bubbles are detached, the granulated sludge is likely to settle. Therefore, the sludge to which the amphoteric polymer flocculant is added is introduced into the settling tank and stirred, thereby generating granulated sludge that is easy to settle due to bubbles being discharged, and this granulated sludge settles at the bottom of the settling tank. The settled sludge is easily dehydrated with a large particle size and is concentrated by sedimentation. By dehydrating the settled sludge with a dehydrator, a dehydrated sludge having a low water content can be obtained efficiently. .
なお、沈降汚泥に鉄塩系凝集剤を添加することにより、有機性汚泥の粘着性が低下し、有機性汚泥が脱水機の機器内面、濾布などに付着しにくいものとなり、脱水機での脱水処理効率が向上する。 By adding an iron salt flocculant to the settled sludge, the stickiness of the organic sludge decreases, making it difficult for the organic sludge to adhere to the inner surface of the dehydrator, filter cloth, etc. Dewatering efficiency is improved.
以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明では、加圧浮上槽に、有機性汚泥含有水と加圧水とを混合した被処理水を導入して有機性汚泥を浮上分離する。 In the present invention, to-be-treated water in which organic sludge-containing water and pressurized water are mixed is introduced into the pressurized flotation tank, and the organic sludge is floated and separated.
有機性汚泥含有水としては、有機物含有水を生物処理したものが好適である。特に、生物処理の菌体を含み、それ故に汚泥の粘着性が高いものとなっている生物処理水が好適である。 As organic sludge containing water, what biologically treated organic substance containing water is suitable. In particular, biologically treated water that contains biologically treated cells and therefore has high sludge adhesiveness is preferred.
このような生物処理水としては、液晶など電子部品製造工程排水(特に、BOD50〜5000mg/Lとりわけ100〜1000mg/L程度の電子部品製造工程排水が好適である。)を担体式生物処理槽、特にスポンジなどの浮遊担体式生物処理槽に通水して生物処理した生物処理水が挙げられる。この担体式生物処理槽に原水を通水すると、担体の生物膜が次第に成長する。そして、成長した生物膜が剥離して菌体含有汚泥として生物処理槽から流出する。 As such biological treatment water, an electronic component production process wastewater such as liquid crystal (especially, an electronic component production process wastewater having a BOD of 50 to 5000 mg / L, particularly about 100 to 1000 mg / L is suitable), a carrier-type biological treatment tank, In particular, biologically treated water which is biologically treated by passing it through a floating carrier type biological treatment tank such as a sponge can be mentioned. When raw water is passed through the carrier-type biological treatment tank, the biofilm of the carrier gradually grows. Then, the grown biofilm is peeled off and flows out from the biological treatment tank as a bacterial cell-containing sludge.
この生物処理水のMLVSS濃度は、20〜2000mg/L特に50〜500mg/L程度が好適であるが、これに限定されない。 The MLVSS concentration of this biologically treated water is preferably about 20 to 2000 mg / L, particularly about 50 to 500 mg / L, but is not limited thereto.
生物処理水に添加する加圧水は、空気を加圧溶解させた水であり、その生物処理水への添加量は通常の生物処理水の加圧浮上分離時と同様とすればよく、また、原水性状に応じて実験的に定めればよい。 The pressurized water added to the biologically treated water is water in which air is dissolved under pressure, and the amount added to the biologically treated water may be the same as that used in the normal flotation separation of the biologically treated water. What is necessary is just to determine experimentally according to a property.
加圧浮上槽の構成は、特に限定されるものではなく、槽内で汚泥に気泡が付着し、汚泥が浮上して分離されるものであれば、各種のものを用いることができる。 The configuration of the pressurized levitation tank is not particularly limited, and various types can be used as long as bubbles adhere to the sludge in the tank and the sludge floats and is separated.
図1に示す実施の形態では、加圧浮上槽1はフィードウェル1aに加圧水含有被処理水が導入され、この加圧水含有被処理水はディストリビュータ1bによって内槽1d内の上部に供給される。浮上した汚泥(スカム)はスカムボックス1cから移送配管2によって取り出され、後述のスカム受槽3に移送される。 In the embodiment shown in FIG. 1, in the pressurized levitation tank 1, pressurized water-containing treated water is introduced into the feed well 1a, and this pressurized water-containing treated water is supplied to the upper part in the inner tank 1d by the distributor 1b. The sludge that floats (scum) is taken out from the scum box 1c by the transfer pipe 2 and transferred to the scum receiving tank 3 described later.
浮上汚泥が分離された水は、内槽1d内を下降し、内槽1dの下端を回り込み、内槽1dと外槽1eとの間を通って上昇し、処理水トラフ1fから槽外に取り出される。なお、ディストリビュータ1bはモータ1gによって旋回回転する。ただし、加圧浮上槽1の型式はこれに限定されない。また、加圧浮上槽1は並列に複数個設置されてもよい。 The water from which the floating sludge has been separated descends in the inner tank 1d, wraps around the lower end of the inner tank 1d, rises between the inner tank 1d and the outer tank 1e, and is taken out from the treated water trough 1f to the outside of the tank. It is. The distributor 1b is rotated by a motor 1g. However, the type of the pressurized levitation tank 1 is not limited to this. A plurality of pressurized levitation tanks 1 may be installed in parallel.
加圧浮上槽1で浮上分離された有機性汚泥(スカム)のSS濃度は、通常は0.6〜2wt%程度である。この有機性汚泥を、好ましくはスカム受槽3に導入し、薬液タンク及び薬注ポンプ等よりなる添加手段4によって両性ポリマー凝集剤を添加し、撹拌機3aによって、有機性汚泥(スカム)が崩壊しない程度の撹拌強度で撹拌する。この両性ポリマー凝集剤としては、アニオン・カチオン比が1:1(アニオン比50%)のものよりもアニオンが多い、いわゆるアニオンリッチタイプの両性ポリマー凝集剤が好適であり、具体的にはアニオン・カチオン比が1:0.95〜1:0.4特に1:0.93〜1:0.7程度のものが好適である。 The SS concentration of the organic sludge (scum) that has been levitated and separated in the pressurized flotation tank 1 is usually about 0.6 to 2 wt%. This organic sludge is preferably introduced into the scum receiving tank 3, and the amphoteric polymer flocculant is added by the addition means 4 comprising a chemical tank and a chemical injection pump, and the organic sludge (scum) is not destroyed by the agitator 3a. Stir with moderate stirring intensity. As this amphoteric polymer flocculant, a so-called anion-rich type amphoteric polymer flocculant having more anions than those having an anion-cation ratio of 1: 1 (anion ratio 50%) is preferable. A cation ratio of about 1: 0.95 to 1: 0.4, particularly about 1: 0.93 to 1: 0.7 is preferred.
このような両性ポリマー凝集剤としては、例えばアニオン性のモノマー成分とカチオン性のモノマー成分の共重合体、アニオン性のモノマー成分、カチオン性のモノマー成分及びノニオン性のモノマー成分の共重合体、あるいはアニオン性のモノマー成分とノニオン性のモノマー成分の共重合体のマンニッヒ変性物又はホフマン分解物などを挙げることができる。 Examples of such an amphoteric polymer flocculant include a copolymer of an anionic monomer component and a cationic monomer component, an anionic monomer component, a copolymer of a cationic monomer component and a nonionic monomer component, or Examples thereof include Mannich-modified products or Hoffmann degradation products of copolymers of anionic monomer components and nonionic monomer components.
ここでアニオン性のモノマー成分としては、例えばアクリル酸(AA)、アクリル酸ナトリウム(NaA)、メタクリル酸、メタクリル酸ナトリウムなどを挙げることができる。 Examples of the anionic monomer component include acrylic acid (AA), sodium acrylate (NaA), methacrylic acid, and sodium methacrylate.
カチオン性のモノマーの成分としては、例えばジメチルアミノエチルアクリレート、ジメチルアミノエチル(メタ)アクリレート(DAM),ジメチルアミノプロピル(メタ)アクリレート、及びそれらの四級化物などを挙げることができる。四級化物としては、具体的にはジメチルアミノエチルアクリレート四級化物(DAA)などを挙げることができる。また、ジメチルアミノプロピルアクリルアミドの塩酸塩(DAPAAm)を用いても良い。 Examples of the cationic monomer component include dimethylaminoethyl acrylate, dimethylaminoethyl (meth) acrylate (DAM), dimethylaminopropyl (meth) acrylate, and quaternized products thereof. Specific examples of the quaternized product include dimethylaminoethyl acrylate quaternized product (DAA). Further, dimethylaminopropylacrylamide hydrochloride (DAPAAm) may be used.
ノニオン性のモノマー成分としては、例えばアクリルアミド(AAm)、メタアクリルアミド、N,N−ジメチル(メタ)アクリルアミドなどを挙げることができる。 Examples of the nonionic monomer component include acrylamide (AAm), methacrylamide, N, N-dimethyl (meth) acrylamide, and the like.
両性ポリマー凝集剤の添加量は、加圧浮上槽からの有機性汚泥(スカム)に対してds当たり0.3〜1.5重量%特に0.5〜1.0重量%程度が好適である。 The amount of amphoteric polymer flocculant added is preferably about 0.3 to 1.5% by weight, especially about 0.5 to 1.0% by weight per ds, based on the organic sludge (scum) from the pressurized flotation tank. .
この両性ポリマー凝集剤の添加により、有機性汚泥の荷電が中和されると共に、付着していた気泡が離脱し、汚泥が会合して粒成長し、また比重が大きくなって沈降し易い性質を帯びるようになる。 The addition of this amphoteric polymer flocculant neutralizes the charge of the organic sludge, dissociates the attached air bubbles, associates the sludge and grows particles, and increases the specific gravity and tends to settle. Become tinged.
この両性ポリマー凝集剤を添加した有機性汚泥をポンプ5及び配管6によって汚泥沈降槽7に導入し、撹拌機7aにより汚泥を崩壊させない程度の撹拌強度で撹拌し、汚泥の会合及び気泡離脱を促進させ、汚泥を沈降させる。なお、このときの撹拌強度G値は70〜150sec−1程度が好適であり、汚泥沈降槽7の滞留時間は1200〜2500sec程度が好適であり、G・T値は14×104〜25×104程度が好適である。 The organic sludge to which this amphoteric polymer flocculant is added is introduced into the sludge settling tank 7 by the pump 5 and the pipe 6, and stirred with a stirring strength sufficient to prevent the sludge from collapsing by the stirrer 7a, thereby promoting sludge association and bubble separation. And let the sludge settle. The stirring strength G value at this time is preferably about 70 to 150 sec −1 , the residence time of the sludge settling tank 7 is preferably about 1200 to 2500 sec, and the G · T value is 14 × 10 4 to 25 ×. About 10 4 is preferable.
このG値は、撹拌勾配のことであり、撹拌強度の指標であり、次式で表わされる。
G=(Pg/μ)1/2 [1/s]
Pは流体単位体積当りに加えられた動力[kg・m/m3/s]、μは粘性係数[kg/m/s]、gは重力換算係数[m/s2]である。
This G value is a stirring gradient and is an index of stirring intensity, and is expressed by the following equation.
G = (Pg / μ) 1/2 [1 / s]
P is the power [kg · m / m 3 / s] applied per unit volume of fluid, μ is the viscosity coefficient [kg / m / s], and g is the gravity conversion coefficient [m / s 2 ].
この汚泥沈降槽7では、汚泥濃度を1.5〜7倍特に2〜3倍に濃縮することが好ましい。 In the sludge settling tank 7, it is preferable to concentrate the sludge concentration 1.5 to 7 times, particularly 2 to 3 times.
汚泥沈降槽7の上澄水は、分離液取出管7bを介して槽外に取り出される。汚泥沈降槽7内で沈降した濃縮汚泥を、ポンプ9及び配管10を介して汚泥貯槽11に導入し、鉄塩系凝集剤を添加手段12によって添加すると共に撹拌機11aにより汚泥を崩壊させない程度の撹拌強度で撹拌する。この鉄塩系凝集剤の添加により、汚泥の粘着性が低下し、後段での脱水機の濾布、機器内面等への付着性が低下し、汚泥のハンドリング性が向上する。 The supernatant water of the sludge settling tank 7 is taken out of the tank through the separated liquid take-out pipe 7b. The concentrated sludge settled in the sludge settling tank 7 is introduced into the sludge storage tank 11 through the pump 9 and the pipe 10, and the iron salt-based flocculant is added by the adding means 12 and the sludge is not destroyed by the stirrer 11a. Stir with stirring intensity. By adding this iron salt-based flocculant, the stickiness of the sludge is lowered, the adhesion to the filter cloth of the dehydrator in the latter stage, the inner surface of the equipment and the like is lowered, and the handling property of the sludge is improved.
鉄塩系凝集剤としては、ポリ硫酸鉄、塩化第二鉄、硫酸第二鉄などが挙げられるが、特にポリ硫酸鉄が好適である。鉄塩系凝集剤の添加量は、汚泥沈降槽7からの濃縮汚泥1L当り300〜1500mg/L特に500〜1000mg/L程度が好適である。なお、鉄塩系凝集剤の代わりに、又は鉄塩系凝集剤と共に、アルミ系凝集剤や、カチオン性ポリマー凝集剤を添加してもよいが、凝集効果及びコストの点から鉄塩系凝集剤のみを添加することが好ましい。 Examples of the iron salt-based flocculant include polyiron sulfate, ferric chloride, and ferric sulfate, and polyiron sulfate is particularly preferable. The addition amount of the iron salt-based flocculant is preferably about 300 to 1500 mg / L, particularly about 500 to 1000 mg / L per liter of concentrated sludge from the sludge settling tank 7. An aluminum flocculant or a cationic polymer flocculant may be added instead of or together with the iron salt flocculant. It is preferable to add only.
この鉄塩系凝集剤等の凝集剤を添加した汚泥を脱水機13に導入して脱水する。脱水機としては、フィルタープレス脱水機、ベルトプレス脱水機、遠心脱水機、電気浸透脱水機など各種のものを用いることができるが、動力コストが低いところから、フィルタープレス脱水機が好適である。 Sludge to which a coagulant such as an iron salt coagulant is added is introduced into the dehydrator 13 and dehydrated. As the dehydrator, various types such as a filter press dehydrator, a belt press dehydrator, a centrifugal dehydrator, and an electroosmotic dehydrator can be used, but a filter press dehydrator is preferable because of low power cost.
以下、実施例及び比較例について説明する。 Hereinafter, examples and comparative examples will be described.
図2に示す装置を用いて電子部品製造工程排水(BOD20mg/L、SS300mg/L)を処理した。図2に示す装置は、図1の装置において、移送配管2に分岐ライン20を接続し、加圧浮上槽1からの汚泥(スカム)の一部を該分岐ライン20を介して直接的に遠心脱水機へ送ることを可能としたものであり、その他の構成は図1と同様である。 The electronic component manufacturing process waste water (BOD 20 mg / L, SS 300 mg / L) was treated using the apparatus shown in FIG. The apparatus shown in FIG. 2 has a branch line 20 connected to the transfer pipe 2 in the apparatus shown in FIG. 1, and a part of sludge (scum) from the pressurized flotation tank 1 is directly centrifuged through the branch line 20. It is possible to send it to the dehydrator, and other configurations are the same as those in FIG.
主な条件は次の通りである。
被処理水流量:453m3/day
加圧水添加量:80m3/day
スカム受槽3の容量:4m3
両性ポリマー凝集剤:
アニオン・カチオン比=1:0.93のアクリレート系両性ポリマー
重量平均分子量=600万
添加量=0.5重量%(対スカム)
汚泥沈降槽7の容量:20m3
汚泥貯槽11の容量:15m3
鉄塩系凝集剤:ポリ硫酸鉄(添加量:750ppm(対濃縮汚泥))
脱水機13:フィルタープレス脱水機
The main conditions are as follows.
Processed water flow rate: 453 m 3 / day
Pressurized water addition amount: 80 m 3 / day
Capacity of scum receiving tank 3: 4 m 3
Amphoteric polymer flocculants:
Acrylate amphoteric polymer with anion-cation ratio = 1: 0.93
Weight average molecular weight = 6 million
Addition amount = 0.5 wt% (vs. scum)
Capacity of the sludge settling tank 7: 20 m 3
Capacity of the sludge storage tank 11: 15 m 3
Iron salt-based flocculant: iron polysulfate (added amount: 750 ppm (vs. concentrated sludge))
Dehydrator 13: Filter press dehydrator
分岐ライン20への汚泥(浮上スカム)の分岐流量Bを335〜95m3/dayの範囲で変えてスカム受槽3への汚泥(浮上スカム)流入量Aを100〜340m3/day
の範囲で変化させた。汚泥沈降槽7の撹拌機7の回転数を表1の通りとした。汚泥沈降槽7で沈降し、汚泥貯槽11へ送られる沈降汚泥濃度Y(%)、脱水機13からの脱水汚泥(ケーキ)含水率Z(%)と、評価結果を表1に示す。
Sludge (floating scum) branch flow B to branch line 20 is changed within the range of 335 to 95 m 3 / day, and sludge (floating scum) inflow A to scum receiving tank 3 is 100 to 340 m 3 / day.
The range was changed. Table 1 shows the number of rotations of the agitator 7 in the sludge settling tank 7. Table 1 shows the sedimentation sludge concentration Y (%) sent in the sludge sedimentation tank 7 and sent to the sludge storage tank 11, the dewatered sludge (cake) moisture content Z (%) from the dehydrator 13, and the evaluation results.
表1の通り、汚泥沈降槽7の撹拌機7aの撹拌強度G値(sec−1)と滞留時間T(sec)との積G・T値を14×104〜25×104としたNo.2,3,4では、汚泥沈降槽7の沈降汚泥(濃縮汚泥)濃度が高く、脱水機13で安定して脱水処理を行うことができた。また、No.2,3,4では、汚泥沈降槽7の分離液は細かいSSで濁っていなかった。 As Table 1, No stirring intensity G value agitator 7a of the sludge settling tank 7 (sec -1) and the product G · T value of the residence time T (sec) and 14 × 10 4 ~25 × 10 4 . In 2, 3, and 4, the sedimentation sludge (concentrated sludge) concentration in the sludge sedimentation tank 7 was high, and the dehydrator 13 was able to perform the dehydration process stably. No. In 2, 3, and 4, the separation liquid in the sludge settling tank 7 was not turbid with fine SS.
Claims (6)
該両性ポリマー凝集剤が添加された汚泥を沈降槽内に導入し、撹拌機によって撹拌して汚泥から気泡を分離し、汚泥を沈降させる工程と、
沈降槽からの沈降汚泥を脱水機で脱水する工程と
を有する加圧浮上汚泥の脱水処理方法。 Adding an amphoteric polymer flocculant to the organic sludge from the pressurized flotation tank;
Introducing the sludge to which the amphoteric polymer flocculant has been added into a settling tank, stirring the mixture with a stirrer to separate bubbles from the sludge, and settling the sludge;
A method for dewatering pressurized floating sludge, comprising the step of dewatering sedimented sludge from a sedimentation tank with a dehydrator.
該両性ポリマー凝集剤が添加された汚泥を受け入れ、撹拌機によって撹拌して汚泥から気泡を分離し、汚泥を沈降させる撹拌機付き沈降槽と、
該沈降槽からの沈降汚泥を脱水処理する脱水機と
を有する加圧浮上汚泥の脱水処理装置。 A polymer flocculant addition means for adding an amphoteric polymer flocculant to the organic sludge from the pressurized flotation tank;
Accepting the sludge to which the amphoteric polymer flocculant has been added, separating the bubbles from the sludge by stirring with a stirrer,
A dewatering apparatus for pressurized floating sludge, comprising a dehydrator for dewatering the settled sludge from the settling tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012063865A JP5974570B2 (en) | 2012-03-21 | 2012-03-21 | Dewatering method and apparatus for pressurized floating sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012063865A JP5974570B2 (en) | 2012-03-21 | 2012-03-21 | Dewatering method and apparatus for pressurized floating sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013193046A true JP2013193046A (en) | 2013-09-30 |
JP5974570B2 JP5974570B2 (en) | 2016-08-23 |
Family
ID=49392641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012063865A Active JP5974570B2 (en) | 2012-03-21 | 2012-03-21 | Dewatering method and apparatus for pressurized floating sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5974570B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104445737A (en) * | 2014-11-28 | 2015-03-25 | 浙江万龙机械有限公司 | Sewage treatment system |
CN105507419A (en) * | 2016-01-08 | 2016-04-20 | 徐州远大科技发展有限公司 | Sludge dredging processing equipment and method for urban sewer line |
CN109264893A (en) * | 2018-11-15 | 2019-01-25 | 上海蓝魂环保科技有限公司 | A kind of EGCS sewage treatment equipment |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3932282A (en) * | 1972-09-05 | 1976-01-13 | Tenco Hydro/Aerosciences, Inc. | Dissolved air floatation system |
JPH07204640A (en) * | 1994-01-25 | 1995-08-08 | Hitachi Kiden Kogyo Ltd | Scum treatment |
JPH07303882A (en) * | 1994-05-13 | 1995-11-21 | Saitama Pref Gov Gesuido Koushiya | Scum removing and treating equipment |
JPH09141258A (en) * | 1995-11-24 | 1997-06-03 | Maezawa Ind Inc | Scum treating device |
JPH1177075A (en) * | 1997-09-08 | 1999-03-23 | Maezawa Ind Inc | Fluidized bed type waste water treating apparatus |
JP2000225398A (en) * | 1999-02-02 | 2000-08-15 | Nichiriku Co Ltd | Treatment apparatus of livestock urine sewage |
JP2002086146A (en) * | 2000-09-13 | 2002-03-26 | Sekisui Chem Co Ltd | Device for preventing generation of scum |
JP2002321000A (en) * | 2001-04-26 | 2002-11-05 | Asahi Tec Corp | Method for treating scum and device therefor |
JP2005125215A (en) * | 2003-10-23 | 2005-05-19 | Hymo Corp | Dehydration method for oil-containing organic sludge |
JP2012045441A (en) * | 2010-08-24 | 2012-03-08 | Swing Corp | Method and apparatus for dewatering organic sludge |
-
2012
- 2012-03-21 JP JP2012063865A patent/JP5974570B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3932282A (en) * | 1972-09-05 | 1976-01-13 | Tenco Hydro/Aerosciences, Inc. | Dissolved air floatation system |
JPH07204640A (en) * | 1994-01-25 | 1995-08-08 | Hitachi Kiden Kogyo Ltd | Scum treatment |
JPH07303882A (en) * | 1994-05-13 | 1995-11-21 | Saitama Pref Gov Gesuido Koushiya | Scum removing and treating equipment |
JPH09141258A (en) * | 1995-11-24 | 1997-06-03 | Maezawa Ind Inc | Scum treating device |
JPH1177075A (en) * | 1997-09-08 | 1999-03-23 | Maezawa Ind Inc | Fluidized bed type waste water treating apparatus |
JP2000225398A (en) * | 1999-02-02 | 2000-08-15 | Nichiriku Co Ltd | Treatment apparatus of livestock urine sewage |
JP2002086146A (en) * | 2000-09-13 | 2002-03-26 | Sekisui Chem Co Ltd | Device for preventing generation of scum |
JP2002321000A (en) * | 2001-04-26 | 2002-11-05 | Asahi Tec Corp | Method for treating scum and device therefor |
JP2005125215A (en) * | 2003-10-23 | 2005-05-19 | Hymo Corp | Dehydration method for oil-containing organic sludge |
JP2012045441A (en) * | 2010-08-24 | 2012-03-08 | Swing Corp | Method and apparatus for dewatering organic sludge |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104445737A (en) * | 2014-11-28 | 2015-03-25 | 浙江万龙机械有限公司 | Sewage treatment system |
CN105507419A (en) * | 2016-01-08 | 2016-04-20 | 徐州远大科技发展有限公司 | Sludge dredging processing equipment and method for urban sewer line |
CN105507419B (en) * | 2016-01-08 | 2018-01-09 | 徐州远大科技发展有限公司 | One kind is used for urban sewage pipeline dredging sludge processing equipment and method |
CN109264893A (en) * | 2018-11-15 | 2019-01-25 | 上海蓝魂环保科技有限公司 | A kind of EGCS sewage treatment equipment |
Also Published As
Publication number | Publication date |
---|---|
JP5974570B2 (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107108289B (en) | Improved ballasted purge system | |
CN101784490B (en) | Sludge dewatering method | |
CN1319870C (en) | Method for treatment of sludge from waterworks and wastewater treament plants | |
JP5974570B2 (en) | Dewatering method and apparatus for pressurized floating sludge | |
AU2013298635B2 (en) | Concentration of suspensions | |
JP6626888B2 (en) | Wastewater clarification method | |
JP5239167B2 (en) | Concentration method of sludge | |
CN203373214U (en) | Discharge water treatment device | |
JP4535419B2 (en) | Coagulation sedimentation equipment | |
JP2017159213A (en) | Flocculation treatment method and apparatus | |
JPH0924362A (en) | Floating separation method and device therefor | |
JP3714283B2 (en) | Sludge dewatering method | |
KR101852005B1 (en) | An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof | |
JP2014028365A (en) | Method of treating paper industry sewage | |
Powar et al. | A case study on common effluent treatment plant at five star MIDC, Kagal | |
KR20140036162A (en) | Sludge-concentrating method and apparatus | |
JP2005007246A (en) | Treatment method for organic waste water | |
KR200228813Y1 (en) | Waste water treating system | |
JP4405286B2 (en) | Fishery processing wastewater scum treatment method | |
JPH0852486A (en) | Sludge returning method for anaerobic waste water treatment | |
JP2018153730A (en) | Water purification sludge treatment agent, water purification sludge treatment method, and water purification sludge treatment device | |
JP3299936B2 (en) | Sludge treatment method and system | |
JP4160882B2 (en) | Flocculant for wastewater treatment | |
JP4996516B2 (en) | Reclaimed water production method | |
JP2019195768A (en) | Method for treating biomass digested liquid and device for treating waste water thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5974570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |