JP2590474B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP2590474B2
JP2590474B2 JP8717387A JP8717387A JP2590474B2 JP 2590474 B2 JP2590474 B2 JP 2590474B2 JP 8717387 A JP8717387 A JP 8717387A JP 8717387 A JP8717387 A JP 8717387A JP 2590474 B2 JP2590474 B2 JP 2590474B2
Authority
JP
Japan
Prior art keywords
tank
reaction tank
sludge
treatment
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8717387A
Other languages
Japanese (ja)
Other versions
JPS63252591A (en
Inventor
裕二 吉井
辰夫 武智
公明 伊藤
俊明 局
保典 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP8717387A priority Critical patent/JP2590474B2/en
Publication of JPS63252591A publication Critical patent/JPS63252591A/en
Application granted granted Critical
Publication of JP2590474B2 publication Critical patent/JP2590474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、汚水の生物学的処理方法に関する。The present invention relates to a biological treatment method for sewage.

〔従来の技術〕[Conventional technology]

汚水の生物学的処理方法は、処理反応槽内における生
物の存在様式によって、浮遊生物法と固着生物法とに大
別される。浮遊生物法における代表例としては、活性汚
泥法を挙げることができる。また固着生物法における代
表例としては、散水濾床法、接触酸化法等を挙げること
ができる。なお、固着生物法に準ずる方法として、微生
物を天然の多糖類(寒天、K−カラギーナン等)や合成
高分子(アクリルアミド、ポリビニルアルコール等)に
包括固定化し、処理反応槽内に充填して微生物を作用さ
せる固定化微生物法があり、この方法は近年注目されて
いる。
The biological treatment method of sewage is roughly classified into a floating organism method and a fixed organism method according to the existence mode of organisms in a treatment reaction tank. A typical example of the floating organism method is an activated sludge method. Typical examples of the sticking organism method include a trickling filter method and a catalytic oxidation method. In addition, as a method according to the sticking organism method, microorganisms are entrapped and immobilized on natural polysaccharides (agar, K-carrageenan, etc.) or synthetic polymers (acrylamide, polyvinyl alcohol, etc.), and the microorganisms are filled in a treatment reaction tank. There is an immobilized microbial method to work, which has been receiving attention in recent years.

浮遊生物法においては、反応槽内の微生物濃度を維持
するために、反応槽から流出する汚泥混合液を重力沈殿
により固液分離し、分離した汚泥の少なくとも一部を、
反応槽へ返送する。この場合、重力沈殿分離によって得
られる返送汚泥の浮遊物濃度は、10,000mg/程度であ
り、これが反応槽においては、浮遊物濃度の比較的低い
(下水の最初沈殿池越流水の場合、100〜200mg/程
度)原汚水によって希釈されることになる。下水処理に
おける標準活性汚泥法の場合を例にとれば、反応槽内ML
SSは通常1500〜2000mg/程度であり、反応槽滞留時間
は6〜8時間程度を必要とするため、反応槽が大となる
という問題がある。
In the floating organism method, in order to maintain the concentration of microorganisms in the reaction tank, the sludge mixture flowing out of the reaction tank is solid-liquid separated by gravity sedimentation, and at least a part of the separated sludge is
Return to the reaction tank. In this case, the suspended solids concentration of the returned sludge obtained by gravity sedimentation is about 10,000 mg /, which is relatively low in the reaction tank. (About 200mg /) It will be diluted by raw water. For example, in the case of the standard activated sludge method in sewage treatment,
SS is usually about 1500 to 2000 mg /, and the residence time of the reaction tank needs to be about 6 to 8 hours. Therefore, there is a problem that the reaction tank becomes large.

反応槽をコンパクト化するには、返送比を大とするか
又は返送汚泥濃度を大とすることにより、反応槽内MLSS
を大とする必要があるが、前者の方法では返送動力が大
となり、後者の方法では重力沈殿法以外の固液分離法、
例えば、加圧浮上法や遠心分離法を採用する必要がある
ため、やはり運転費が大となるという問題を生ずる。さ
らに何らかの方法で反応槽内のMLSSを大とし、固液分離
に重力沈殿法を用いたとしても、高濃度汚泥の沈降速度
が小さくなるため、効率よく固液分離するためには沈殿
池の水面積を大とする必要を生ずる。
To reduce the size of the reaction tank, increase the return ratio or the concentration of returned sludge to increase the MLSS in the reaction tank.
In the former method, the return power is large, and in the latter method, solid-liquid separation methods other than gravity sedimentation method,
For example, it is necessary to employ a pressurized flotation method or a centrifugal separation method, which also causes a problem that the operating cost becomes large. Furthermore, even if the MLSS in the reaction tank is increased by some method and the gravity sedimentation method is used for solid-liquid separation, the sedimentation velocity of high-concentration sludge is low. This requires a large area.

固着生物法においては、反応槽内の担体に固着した微
生物の作用を利用するため、基本的には反応槽流出液を
固液分離して得た汚泥を反応槽に返送する必要はない。
しかしながら、反応槽流出液のSS濃度は、下水処理の場
合100〜300mg/と活性汚泥法の場合に比して少なく、
微細なSSと汚泥との共沈効果が少ない。このため、固着
生物法における沈澱処理水は、活性汚泥処理水に比して
白濁しており、清澄度が低いという問題点がある。また
固着生物法における沈殿汚泥は、活性汚泥法のように常
に引き抜かれるということがないため、ややもすれば沈
殿池下部は嫌気的となり、汚泥の腐敗による悪臭の発生
やガス発生に伴う汚泥の浮上と浮上汚泥の処理水への汚
泥混入による処理水の悪化を招く。このような問題は、
反応槽と沈殿池とを分離した場合も一体型とした場合も
共通である。この処理水中の濁度を高度に除去するに
は、凝集沈殿処理や砂濾過等の特別な処理を行う必要が
あるが、特別な装置の設置、凝集剤による汚泥の発生、
運転費の増大といった新たな問題を来たす結果となって
いた。さらに、固着生物法における担体と微生物との結
合は、微生物の生産する粘性物質あるいは菌糸によるも
のであり、せん断力に対して弱い。したがって、汚水の
通水処理あるいは洗浄の過程で固着生物膜がはく離し、
汚水処理性能が低下するという問題もある。
In the fixed organism method, since the action of microorganisms fixed on the carrier in the reaction tank is used, it is basically unnecessary to return sludge obtained by solid-liquid separation of the effluent of the reaction tank to the reaction tank.
However, the SS concentration of the reaction tank effluent is 100 to 300 mg / sewage for sewage treatment, which is less than that for the activated sludge method.
There is little co-precipitation effect between fine SS and sludge. For this reason, there is a problem that the sedimentation treated water in the fixed organism method is cloudy compared with the activated sludge treated water, and the clarity is low. In addition, the sediment sludge in the sticking organism method is not always pulled out unlike the activated sludge method, so the lower part of the sedimentation basin becomes anaerobic in some cases, generating odor due to decay of sludge and floating and rising of sludge due to gas generation. The deterioration of the treated water is caused by the incorporation of sludge into the treated water. Such a problem,
The case where the reaction tank and the sedimentation tank are separated and the case where they are integrated are common. In order to remove the turbidity in the treated water to a high degree, it is necessary to perform special treatment such as coagulation sedimentation treatment and sand filtration.
This has resulted in new problems such as an increase in operating costs. Furthermore, the bond between the carrier and the microorganism in the fixed organism method is due to a viscous substance or hyphae produced by the microorganism, and is weak against shearing force. Therefore, the sticking biofilm is peeled off in the process of water treatment or washing of sewage,
There is also a problem that sewage treatment performance is reduced.

固着生物法における上記のような問題点の一部を解決
したものが、固定化生物法である。この方法は、高分子
による立体的な籠状の担体の中に微生物を封入し、反応
槽内の微生物濃度の向上とせん断力に対する抵抗化をは
かったもので、処理の高速化と安定化をはかったもので
ある。
The immobilized biological method solves some of the above problems in the fixed biological method. In this method, microorganisms are sealed in a three-dimensional cage-shaped carrier made of a polymer, and the concentration of microorganisms in the reaction tank is improved and resistance to shearing force is increased. It is a measure.

〔発明が解決しようとする問題点〕 しかしながら、この固定化生物法においても、沈殿処
理水の白濁化と沈殿汚泥の腐敗化、SSの浮上・流出とい
う問題を解決することはできなかった。
[Problems to be Solved by the Invention] However, even the immobilized biological method could not solve the problems of white turbidity of the sedimentation treatment water, decay of the settled sludge, and floating and outflow of SS.

本発明は、上記のような問題点を解決するためになさ
れたもので、以下に示す汚水の処理方法を得ることを目
的とする。
The present invention has been made to solve the above problems, and has as its object to obtain a wastewater treatment method described below.

(1)、処理装置のコンパクト化が可能で、かつ反応槽
流出汚泥混合液の固液分離に重力沈殿分離を用いる。
(1) The treatment apparatus can be made compact, and gravity sedimentation separation is used for solid-liquid separation of the sludge mixture flowing out of the reaction tank.

(2)、清澄度の高い処理水を得る。(2) Obtain treated water with high clarity.

(3)、通水処理あるいは清浄の過程での担体からの汚
泥のはく離による処理への影響が少なく、安定した処理
を行う。
(3) Stable treatment is performed with little influence on the treatment due to separation of sludge from the carrier in the process of passing water or cleaning.

〔問題を解決するための手段〕[Means for solving the problem]

本発明は上記の目的を達成するためになされたもの
で、汚水を生物学的に処理するに当たり、まず固定化微
生物反応槽による処理を行った後浮遊生物反応槽による
処理を行うか、又は固定化微生物と浮遊生物の共存する
反応槽において生物処理を行った後、曝気槽により曝気
処理を行い、その後沈殿槽により固液分離を行わせて沈
降汚泥と処理水を得るとともに、沈殿槽からの沈降汚泥
の少なくとも一部を浮遊生物反応槽若しくは固定化微生
物反応槽又はその両者へ返送し、曝気槽内の汚泥混合液
又は曝気槽より流出する汚泥混合液の一部を浮遊生物反
応槽若しくは固定化微生物反応槽又はその両者へ返送す
る汚水の処理方法を提供するものである。
The present invention has been made in order to achieve the above object, and in biologically treating sewage, first performs treatment in an immobilized microorganism reaction tank, and then performs treatment in a floating organism reaction tank, or fixed. After performing biological treatment in a reaction tank where coexisting microorganisms and floating organisms coexist, aeration treatment is performed in an aeration tank, and then solid-liquid separation is performed in a sedimentation tank to obtain settled sludge and treated water. At least a part of the settled sludge is returned to the floating organism reaction tank or the immobilized microorganism reaction tank or both, and the sludge mixed liquid in the aeration tank or a part of the sludge mixed liquid flowing out from the aeration tank is suspended or fixed. The present invention provides a method for treating sewage returned to the activated microorganism reaction tank or both.

[作用] 固定化微生物反応槽による処理を行った後浮遊生物反
応槽による処理を行うか、又は固定化微生物と浮遊生物
の共存する反応槽において生物処理を行った後、曝気槽
により曝気処理を行い、その後沈殿槽により固液分離を
行わせて沈殿汚泥と処理水を得るとともに、沈殿槽から
の沈降汚泥の少なくとも一部を浮遊生物反応槽若しくは
固定化微生物反応槽又はその両者へ返送し、曝気槽内の
汚泥混合液又は曝気槽より流出する汚泥混合液の一部を
浮遊生物反応槽若しくは固定化微生物反応槽又はその両
者へ返送する。
[Action] After the treatment in the immobilized microorganism reaction tank, the treatment in the floating organism reaction tank is performed, or the biological treatment is performed in the reaction tank in which the immobilized microorganisms and the suspended organism coexist, and then the aeration treatment is performed in the aeration tank. Performing, and then performing solid-liquid separation in the sedimentation tank to obtain the settled sludge and treated water, and returning at least a part of the settled sludge from the sedimentation tank to the floating organism reaction tank or the immobilized microorganism reaction tank or both, A part of the sludge mixture in the aeration tank or a part of the sludge mixture flowing out of the aeration tank is returned to the floating organism reaction tank or the immobilized microorganism reaction tank or both.

[実施例] 第1図は本発明の実施例を説明するための模式図であ
る。この設備は、固定化微生物を保持させた担体1を内
在した反応槽2と、曝気槽3および沈澱槽4とからなる
活性汚泥処理装置を順に配設し、処理すべき汚水5を反
応槽2へ導入して、好気的又は嫌気的条件下で生物処理
を行う。この場合、担体1は粒状、ヒモ状、板状、筒状
等様々な形状のものを利用することができ、また充填層
は流動層又は固定層とすることが可能で、板状担体の場
合には回転円板状とすることも可能である。なお反応槽
2内の汚水の流れは、上向流としても下向流としても完
全混合流としてもよい。反応槽2内の固定化担体の立体
的形状、粒径又はその両者を合理的に選定することによ
り、反応槽2内に保持する微生物の濃度及び性を高めて
高速処理を行うことができる。
Embodiment FIG. 1 is a schematic diagram for explaining an embodiment of the present invention. This equipment is provided with an activated sludge treatment apparatus including a reaction tank 2 having a carrier 1 holding immobilized microorganisms therein, an aeration tank 3 and a sedimentation tank 4 in order. For biological treatment under aerobic or anaerobic conditions. In this case, the carrier 1 may be of various shapes such as granular, string-like, plate-like, and tubular, and the packed bed may be a fluidized bed or a fixed bed. It is also possible to adopt a rotating disk shape. The flow of the sewage in the reaction tank 2 may be an upward flow, a downward flow, or a completely mixed flow. By rationally selecting the three-dimensional shape, particle size, or both of the immobilized carrier in the reaction tank 2, the concentration and properties of the microorganisms held in the reaction tank 2 can be increased to perform high-speed processing.

反応槽2からの流出液6は、溶解性BOD、溶解性CODの
低いものとなるが、流出液6には担体1よりはく離した
微生物、原汚水5より持ち込んだSS等のSS成分が含まれ
るため、濁度の高いものとなる。この流出液6は、沈殿
槽4より引き抜かれた沈殿汚泥7の一部である返送汚泥
8と共に曝気槽3へ導入され、曝気処理される。曝気槽
3より流出する汚泥混合液9は沈殿槽4へ導入されて固
液分離処理し、上澄水としての処理水10と沈澱汚泥7と
を得る。曝気槽3内での微生物作用および高濃度汚泥混
合液の共沈効果により、処理水10はSS分の少ない良好な
ものとなる。
The effluent 6 from the reaction tank 2 has low soluble BOD and low soluble COD, but the effluent 6 contains microorganisms released from the carrier 1 and SS components such as SS brought from the raw wastewater 5. Therefore, the turbidity becomes high. The effluent 6 is introduced into the aeration tank 3 together with the return sludge 8 which is a part of the settling sludge 7 extracted from the sedimentation tank 4, and is subjected to aeration treatment. The sludge mixed liquid 9 flowing out of the aeration tank 3 is introduced into the sedimentation tank 4 and subjected to solid-liquid separation processing to obtain treated water 10 as supernatant water and precipitated sludge 7. Due to the microbial action in the aeration tank 3 and the co-precipitation effect of the high-concentration sludge mixture, the treated water 10 becomes good with little SS.

汚水処理の大半は高濃度の微生物を保持した反応槽2
を通過する間に終了し、それに続く活性汚泥処理におい
てはいわば「仕上げ」としての短時間の曝気処理と、沈
殿分離処理を行う。したがって、反応槽2および曝気槽
3とより成る微生物反応処理部の容積のコンパクト化を
行うことができる。また、固液分離部には重力沈殿槽を
用いて充分清澄度の高い処理水を得ることが可能であ
り、沈殿槽内での汚泥の滞留、腐敗による汚泥浮上のお
それはない。さらに、反応槽2における通水あるいは逆
洗に伴って汚泥がはく離し、処理能力が低下した場合に
おいても、これに続く活性汚泥処理工程でこれを補完
し、未処理の汚濁成分の除去処理およびはく離汚泥の捕
捉、フロック化を行うことによって、安定化した処理を
行うことができる。
Most of the sewage treatment is a reaction tank 2 that holds a high concentration of microorganisms
The process is completed while passing through the process, and in the subsequent activated sludge treatment, a short-time aeration treatment as a so-called “finishing” and a sedimentation separation treatment are performed. Therefore, the volume of the microbial reaction processing section including the reaction tank 2 and the aeration tank 3 can be reduced in size. Further, it is possible to obtain treated water having sufficiently high clarity by using a gravity sedimentation tank in the solid-liquid separation part, and there is no possibility that sludge stays in the sedimentation tank or sludge floats due to decay. Further, even when sludge is peeled off due to water passing or backwashing in the reaction tank 2 and the treatment capacity is reduced, the sludge is complemented in the subsequent activated sludge treatment step, and the removal treatment of untreated pollutant components and Stabilized treatment can be performed by capturing and flocking the separated sludge.

なお第1図において、反応槽2は曝気又は回転曝気に
より好気処理槽とすることも可能であり、酸素の供給を
制限して、嫌気処理槽とすることもできる。また曝気槽
3は制限曝気又は無曝気として嫌気状態となし、続く沈
澱槽4と合わせて嫌気性活性汚泥とすることも可能であ
る。運転動力の低減という観点からは嫌気性活性汚泥が
好ましいが、装置のコンパクト化及び処理水の高級化と
いう観点からは好気性活性汚泥が好ましい。また、流入
水量の時間変動の大きな小規模処理場、工場廃水処理場
においては、処理装置に導入する汚水の水量および水質
を平均化すべく、調整槽と反応槽2とを兼ねたものとす
ることも可能である。この場合の実施例を第2図に示
す。
In FIG. 1, the reaction tank 2 can be formed into an aerobic treatment tank by aeration or rotary aeration, and can be formed into an anaerobic treatment tank by restricting the supply of oxygen. The aeration tank 3 can be made anaerobic as limited aeration or non-aeration, and can be made anaerobic activated sludge together with the subsequent settling tank 4. Anaerobic activated sludge is preferable from the viewpoint of reduction in operation power, but aerobic activated sludge is preferable from the viewpoint of downsizing of the apparatus and upgrading of treated water. In small-scale treatment plants and industrial wastewater treatment plants where the amount of influent water fluctuates greatly over time, the control tank and the reaction tank 2 should be combined to equalize the amount and quality of sewage introduced into the treatment equipment. Is also possible. An embodiment in this case is shown in FIG.

本実施例は、流水汚染11を導入溝12を通じて、固定化
微生物保持担体13を少なくも容器内の一部に存在させた
調整反応槽14に導入するものであって、水量の調整は、
調整反応槽14の上水位レベル15と下水位レベル16との間
で、送液ポンプ17のON.OFFによって行う。調整反応槽14
の下水位レベル16以下の部分には常に汚水が存在し、流
入量との比で定められる滞留時間が確保されることにな
る。かくして、調整反応槽14よりの流出水18は、水量、
水質の調整および担体13上の微生物による処理を受けた
ものとなる。この調整反応槽14も好気状態又は嫌気状態
とすることが可能である。流出水18を活性汚泥法等の受
遊生物処理工程へ導入して処理することにより、本発明
方法における処理装置のコンパクト化、処理水質の高級
化、処理成績の安定化という効果をもたらすことが可能
となる。
In the present embodiment, the flowing water contamination 11 is introduced through the introduction groove 12 into the adjustment reaction tank 14 in which the immobilized microorganism holding carrier 13 is present in at least a part of the container.
The adjustment is performed between the upper water level 15 and the lower water level 16 of the adjustment reaction tank 14 by turning on and off the liquid supply pump 17. Conditioning reaction tank 14
Sewage is always present in the area below the sewage level of 16 and the residence time determined by the ratio with the inflow is secured. Thus, the effluent 18 from the regulating reaction tank 14 is
The water has been adjusted and treated with microorganisms on the carrier 13. This adjustment reaction tank 14 can also be in an aerobic state or an anaerobic state. By introducing and treating the effluent 18 into a receiving biological treatment process such as an activated sludge process, it is possible to bring about effects such as downsizing of a treatment apparatus, upgrading of treatment water quality, and stabilization of treatment results in the method of the present invention. It becomes possible.

第3図は本発明の他の実施例を示す模式図である。本
実施例は、第1図で示した実施例における返送汚泥8の
排出先を変更し、反応槽2へ排出するようにしたもので
ある。この場合、第1図の実施例と比較すれば、反応槽
2を好気条件下で運転するにおいては反応槽2での必要
酸素量は大となるが、汚泥濃度が大となるため処理シス
テム全体の反応槽容積はより小さくなるという効果を生
ずる。この場合、酸素供給のための曝気風量の増加によ
り、微生物膜に作用するせん断力が大となるが、固定化
微生物を用いているため担体に保持された汚泥のすべて
がはく離し、処理に影響するというおそれはない。さら
に第3図の実施例において、反応槽2の容積及び反応槽
2内の微生物量が汚濁負荷量に比して充分大である場合
には、曝気槽3を処理フローより削除することが可能で
ある。この場合、高級な処理水水質を確保しまた反応槽
2をコンパクト化するという観点からは、反応槽2を好
気条件で運転することが好ましい。
FIG. 3 is a schematic view showing another embodiment of the present invention. In this embodiment, the return destination of the return sludge 8 in the embodiment shown in FIG. In this case, as compared with the embodiment of FIG. 1, when the reaction tank 2 is operated under aerobic conditions, the required amount of oxygen in the reaction tank 2 is large, but the sludge concentration is large, so the treatment system The effect is that the overall reactor volume is smaller. In this case, the shearing force acting on the microbial membrane increases due to the increase in the amount of aeration air for oxygen supply, but all the sludge held on the carrier is released due to the use of immobilized microorganisms, affecting the treatment. There is no danger of doing so. Further, in the embodiment of FIG. 3, when the volume of the reaction tank 2 and the amount of microorganisms in the reaction tank 2 are sufficiently large compared to the pollution load, the aeration tank 3 can be omitted from the processing flow. It is. In this case, it is preferable to operate the reaction tank 2 under aerobic conditions from the viewpoint of ensuring high-grade treated water quality and making the reaction tank 2 compact.

第4図は本発明のさらに他の実施例を示す模式図であ
る。本実施例においては、嫌気条件下の微生物固定化担
体1を含む反応槽2、曝気槽3及び沈殿槽4を順に配設
し、処理すべき汚水5を反応槽2へ導入し、反応槽2よ
りの流出液6を曝気槽3へ導入して曝気処理する。曝気
槽3より流出する汚泥混合液9の少なくも一部を沈殿槽
4へ導入し、汚泥を沈殿分離することにより処理水10を
得る。沈殿槽4によって得られた沈殿汚泥7の少なくと
も一部は、返送汚泥8として反応槽2へ返送し、沈殿汚
泥7の残部は余剰汚泥として別途処理する。また、曝気
槽3内の汚泥混合液又は曝気槽3より流出する汚泥混合
液9の一部を反応槽2へ返送する。
FIG. 4 is a schematic view showing still another embodiment of the present invention. In the present embodiment, a reaction tank 2 containing a microorganism-immobilized carrier 1 under anaerobic conditions, an aeration tank 3 and a sedimentation tank 4 are sequentially arranged, and sewage 5 to be treated is introduced into the reaction tank 2. The effluent 6 is introduced into the aeration tank 3 for aeration. At least a part of the sludge mixture 9 flowing out of the aeration tank 3 is introduced into the sedimentation tank 4, and the sludge is settled and separated to obtain the treated water 10. At least a part of the settled sludge 7 obtained by the settling tank 4 is returned to the reaction tank 2 as returned sludge 8, and the remaining part of the settled sludge 7 is separately treated as excess sludge. Further, a part of the sludge mixture liquid in the aeration tank 3 or the sludge mixture liquid 9 flowing out from the aeration tank 3 is returned to the reaction tank 2.

このような運転操作を行うことにより、反応槽2での
嫌気反応による汚泥からのリンの吐き出し処理及び脱窒
処理、曝気槽3での好気反応による汚泥へのリンの取り
込み処理及び硝化処理が行われ、嫌気反応及び好気反応
によるBOD、CODの除去と共に窒素・リンの除去処理が可
能となる一方、SS濃度が小さく高級な処理水をコンパク
トな処理装置で安定的に得ることが可能となる。
By performing such a driving operation, the process of discharging and denitrifying phosphorus from sludge by the anaerobic reaction in the reaction tank 2, the process of incorporating phosphorus into sludge by the aerobic reaction in the aeration tank 3, and the nitrification process are performed. It is possible to remove BOD and COD by anaerobic reaction and aerobic reaction, and to remove nitrogen and phosphorus, while it is possible to stably obtain high-grade treated water with low SS concentration using a compact treatment device. Become.

第5図は本発明方法の別の実施例を示す模式図であ
る。本実施例においては、嫌気条件化で運転される固定
化担体1を含む反応槽2及び反応槽18aと、曝気槽3と
沈殿槽4とを順に配設し、処理すべき汚水5を反応槽2
へ導入して嫌気処理し、反応槽2よりの流出液6を反応
槽18aへ導入して嫌気処理し、反応槽18aからの流出液19
を曝気槽3へ導入して曝気処理する。曝気槽3より流出
する汚泥混合液9の少なくとも一部を沈殿槽4へ導入
し、汚泥を沈殿分離することにより処理水10を得る。沈
殿槽4より得られた沈殿汚泥7の少なくとも一部は、返
送汚泥8として反応槽2へ返送する。また、曝気槽3内
の汚泥混合液又は曝気槽3より流出する汚泥混合液9の
一部を反応槽18aへ返送する。
FIG. 5 is a schematic view showing another embodiment of the method of the present invention. In this embodiment, a reaction tank 2 and a reaction tank 18a containing an immobilized carrier 1 operated under anaerobic conditions, an aeration tank 3 and a sedimentation tank 4 are arranged in this order, and sewage water 5 to be treated is supplied to the reaction tank. 2
And the effluent 6 from the reaction tank 2 is introduced into the reaction tank 18a and subjected to anaerobic treatment.
Is introduced into the aeration tank 3 to perform aeration treatment. At least a part of the sludge mixture 9 flowing out of the aeration tank 3 is introduced into the sedimentation tank 4, and the sludge is settled and separated to obtain the treated water 10. At least a part of the settling sludge 7 obtained from the settling tank 4 is returned to the reaction tank 2 as returned sludge 8. In addition, the sludge mixture in the aeration tank 3 or a part of the sludge mixture 9 flowing out of the aeration tank 3 is returned to the reaction tank 18a.

このような操作を行うことにより、反応槽2での嫌気
反応による汚泥からのリンの吐き出し処理及び反応槽18
aでの嫌気処理により脱窒処理及び曝気槽3での好気反
応による汚泥へのリンの取り込み処理が行なわれ、BO
D、CODの除去と共に窒素、リンの除去処理が可能となる
一方、SS濃度が小さく高級な処理水をコンパクトな装置
により安定的に得ることが可能となる。第4図の実施例
と異なり、本実施例において嫌気処理の工程をリンの吐
き出し処理のための反応槽2と、脱窒処理のための反応
槽18aとにわけたのは、高濃度の窒素酸化物が存在すれ
ば汚泥よりのリンの吐き出し反応が抑制されるため、曝
気槽3により生成したNO2、NO3がリンの吐き出し処理の
ための反応槽2へ導入されることを避けたものである。
By performing such an operation, the process of discharging phosphorus from sludge by the anaerobic reaction in the reaction tank 2 and the reaction tank 18
The denitrification treatment by the anaerobic treatment in a and the treatment of phosphorus incorporation into the sludge by the aerobic reaction in the aeration tank 3 are performed.
While removal of nitrogen and phosphorus can be performed together with removal of D and COD, high-grade treated water with a low SS concentration can be stably obtained with a compact device. Unlike the embodiment shown in FIG. 4, in this embodiment, the anaerobic treatment step is divided into a reaction tank 2 for discharging phosphorus and a reaction tank 18a for denitrification treatment. If oxides are present, the reaction of discharging phosphorus from sludge is suppressed, so that NO 2 and NO 3 generated by the aeration tank 3 are prevented from being introduced into the reaction tank 2 for discharging phosphorus. It is.

次に、本発明方法による処理装置と、従来方法による
処理装置とを用いて下水の処理を行った実験例について
説明する。実験用原水としては、某下水処理場の最初沈
殿池越流水を使用した。その成分分析例は、第1表に示
す通りである。
Next, an experimental example in which sewage treatment is performed using a treatment apparatus according to the present invention and a treatment apparatus according to a conventional method will be described. As the raw water for the experiment, the overflow of the first sedimentation basin of a certain sewage treatment plant was used. An example of the component analysis is as shown in Table 1.

実験に用いた固定化担体はPVAをベースとしたもの
で、その作成法は下記の通りである。
The immobilized carrier used in the experiment was based on PVA, and the preparation method was as follows.

PVA20重量%水溶液1容、アルギナン酸ナトリウム3.0
重量%水溶液0.5容及び活性汚泥の遠心濃縮液(MLSS 90
000mg/)1容を混和し、注射筒より0.2MCaCl2水溶液
へ滴下してアルギナン酸カルシウムの一次ゲルを作成
し、ゲル化した担体を飽和ホウ酸液に移して24時間放置
した後、水洗いしてPVAをベースとした微生物固定化担
体を得た。
1 volume of 20% PVA aqueous solution, sodium alginate 3.0
0.5 volume% aqueous solution and centrifugal concentrate of activated sludge (MLSS 90
000 mg /), and dropped into a 0.2 M CaCl 2 aqueous solution from a syringe to form a primary gel of calcium alginate. The gelled carrier was transferred to a saturated boric acid solution, allowed to stand for 24 hours, and then washed with water. Thus, a microorganism-immobilized carrier based on PVA was obtained.

従来法における実験装置Aは内容量10の反応槽で、
これに対して上記固定化担体を3.2(見掛け容量)に
加えたものでDO2mg/以上となるように曝気しつつ、毎
時2.0(滞留時間5時間)の原水を導入した。
Experimental apparatus A in the conventional method is a reaction tank having a content of 10,
On the other hand, the immobilized carrier was added to 3.2 (apparent volume), and raw water was introduced at an hourly rate (residence time: 5 hours) while aeration was performed so that the DO became 2 mg / or more.

従来法における実験装置Bは、曝気槽有効容10の活
性汚泥装置で、同様に曝気槽滞留時間が5時間となるよ
うに原水の通水を行った。曝気槽内をDOは2mg/以上と
なるように散気し、曝気槽内MLSSは2000mg/を目標に
運転した。
The experimental apparatus B in the conventional method was an activated sludge apparatus having an effective volume of 10 in the aeration tank, and the raw water was similarly supplied such that the residence time in the aeration tank was 5 hours. DO was aerated in the aeration tank so as to be 2 mg / min or more, and the MLSS in the aeration tank was operated at a target of 2000 mg /.

本発明方法における実験装置Cは、従来法における実
験装置Aと、曝気槽容2の活性汚泥装置とを第1図に
おける実施例のように配設したもので、毎時4.0の原
水を通水し(全反応槽滞留時間3時間)、反応槽及び曝
気槽内のDOは2mg/以上となるように散気し、曝気槽内
MLSSは2000mg/となるよう運転した。
The experimental apparatus C in the method of the present invention is an apparatus in which the experimental apparatus A in the conventional method and the activated sludge apparatus in the aeration tank 2 are disposed as in the embodiment in FIG. (Dwell time in the entire reaction tank is 3 hours), DO in the reaction tank and the aeration tank is diffused so as to be 2 mg / or more.
MLSS was operated at 2000 mg /.

本発明方法における実験装置Dは、従来法における実
験装置A2組と曝気槽有効容10の活性汚泥実験装置を第
5図におけるように順に配設したもので、原水流量は5
/時とし、曝気槽MLSS 2000mg/を目標に、曝気槽内
DO2mg/以上となるように運転し、曝気槽より汚泥混合
液を第5図における反応槽18aへ10/時の流量で返送
した。
The experimental device D in the method of the present invention is a device in which two sets of the experimental device A in the conventional method and the activated sludge experimental device of the effective volume 10 of the aeration tank are arranged in order as shown in FIG.
/ Hour, in the aeration tank with the target of MLSS 2000mg /
The operation was performed so that the DO became 2 mg / or more, and the sludge mixture was returned from the aeration tank to the reaction tank 18a in FIG. 5 at a flow rate of 10 / hour.

上記による各実験結果は第1表に示す通りである。実
験装置Cを用いた第1図の実施例に従ったフローでの処
理水は、実験装置Aを用いた従来法による処理水より良
好であり、実験装置Bを用いた従来の処理水と同等であ
った。実験装置Cにおける全反応槽滞留時間が、実験装
置Bにおける反応槽滞留時間より少ないにもかかわら
ず、両者の処理水水質が同程度となったことは、本発明
方法が処理装置のコンパクト化に役立つことを示してい
る。また、実験装置Dを用いた本発明方法での処理水の
分析結果は、本発明方法が、BOD、CODの除去処理のみな
らず、窒素、リン除去処理にも適用出来ることを示して
いる。
The results of the above experiments are as shown in Table 1. The treated water in the flow according to the embodiment of FIG. 1 using the experimental device C is better than the treated water according to the conventional method using the experimental device A, and is equal to the conventional treated water using the experimental device B. Met. Although the total reaction tank residence time in the experimental apparatus C was shorter than the reaction tank residence time in the experimental apparatus B, both treated water qualities were substantially the same. Indicates that it is useful. Further, the analysis result of the treated water by the method of the present invention using the experimental apparatus D shows that the method of the present invention can be applied to not only the removal of BOD and COD but also the removal of nitrogen and phosphorus.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば以下
に示すような顕著な効果が得られる。
As is clear from the above description, according to the present invention, the following remarkable effects can be obtained.

(1)、処理装置のコンパクト化が可能で、かつ反応槽
流出汚泥混合液の固液分離に重力沈殿分離を用いること
ができる。
(1) The processing apparatus can be made compact, and gravity sedimentation separation can be used for solid-liquid separation of the sludge mixture flowing out of the reaction tank.

(2)、清澄度の高い処理水を得ることができる。(2) It is possible to obtain treated water having high clarity.

(3)、通水処理あるいは清浄の過程での担体からの汚
泥のはく離による処理への影響が少なく、負荷変動に対
しても安定した処理を行うことができる。
(3) There is little effect on the treatment due to the separation of sludge from the carrier in the process of passing water or cleaning, and the treatment can be performed stably even with load fluctuations.

(4)、プロセスの選定により、有機物除去のみなら
ず、窒素、リンの除去処理を行うことができる。
(4) Depending on the selection of the process, not only the removal of organic substances but also the removal of nitrogen and phosphorus can be performed.

(5)、生物の好気性反応処理のみならず、嫌気性反応
処理に対しても適用できる。
(5) The present invention can be applied not only to the aerobic reaction treatment of living organisms but also to the anaerobic reaction treatment.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図、第3図、第4図及び第5図はそれぞれ
本発明の実施例を説明するための模式図である。 1……固定化微生物保持担体、2……反応槽、3……曝
気槽、4……沈殿槽、5……処理すべき汚水、6……流
出液、7……沈殿汚泥、8……返送汚泥、9……汚泥混
合液、10……処理水、11……流入汚水、12……導入溝、
13……固定化微生物保持担体、14……調整反応槽、15…
…上水位レベル、16……下水位レベル、17……送液ポン
プ、18……流出水、18a……反応槽
FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are schematic views for explaining an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Immobilized microbial holding carrier, 2 ... Reaction tank, 3 ... Aeration tank, 4 ... Settling tank, 5 ... Sewage to be treated, 6 ... Effluent, 7 ... Settled sludge, 8 ... Returned sludge, 9 sludge mixture, 10 treated water, 11 sludge inflow, 12 ditches,
13 ... Immobilized microorganism holding carrier, 14 ... Adjustment reaction tank, 15 ...
… High water level, 16 …… Low water level, 17 …… Send pump, 18 …… Outflow water, 18a …… Reaction tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 503 C02F 9/00 503C 503G 504 504A (72)発明者 局 俊明 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 丹治 保典 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭55−22324(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C02F 9/00 503 C02F 9/00 503C 503G 504 504A (72) Inventor's Bureau Toshiaki Marunouchi, Chiyoda-ku, Tokyo 1-1-2 Nippon Kokan Co., Ltd. (72) Inventor Yasunori Tanji 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-55-22324 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】汚水を生物学的に処理するに当たり、まず
固定化微生物反応槽による処理を行った後浮遊生物反応
槽による処理を行うか、又は固定化微生物と浮遊生物の
共存する反応槽において生物処理を行った後、曝気槽に
より曝気処理を行い、その後沈殿槽により固液分離を行
わせて沈降汚泥と処理水を得るとともに、前記沈殿槽か
らの沈降汚泥の少なくとも一部を前記浮遊生物反応槽若
しくは固定化微生物反応槽又はその両者へ返送し、前記
曝気槽内の汚泥混合液又は前記曝気槽より流出する汚泥
混合液の一部を前記浮遊生物反応槽若しくは固定化微生
物反応槽又はその両者へ返送することを特徴とする汚水
の処理方法。
In the biological treatment of sewage, first, treatment is performed in an immobilized microorganism reaction tank and then in a floating organism reaction tank, or in a reaction vessel in which immobilized microorganisms and suspended organisms coexist. After performing the biological treatment, aeration treatment is performed by an aeration tank, and then solid-liquid separation is performed by a sedimentation tank to obtain settled sludge and treated water, and at least a part of the settled sludge from the settling tank is suspended in the floating organism. The sludge mixed liquid in the aeration tank or a part of the sludge mixed liquid flowing out from the aeration tank is returned to the reaction tank or the immobilized microorganism reaction tank or both, and the floating organism reaction tank or the immobilized microorganism reaction tank or a mixture thereof. A method for treating sewage, which is returned to both.
JP8717387A 1987-04-10 1987-04-10 Wastewater treatment method Expired - Lifetime JP2590474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8717387A JP2590474B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8717387A JP2590474B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS63252591A JPS63252591A (en) 1988-10-19
JP2590474B2 true JP2590474B2 (en) 1997-03-12

Family

ID=13907595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8717387A Expired - Lifetime JP2590474B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2590474B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090161A (en) * 2007-10-04 2009-04-30 N Ii T Kk Wastewater treatment apparatus and method
JP6744714B2 (en) * 2015-12-18 2020-08-19 メタウォーター株式会社 Wastewater treatment system
CN110436596A (en) * 2019-09-05 2019-11-12 辽宁城建设计院有限公司 A kind of processing of combined type backwashing water and reclaiming system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132171A (en) * 1977-04-22 1978-11-17 Kobe Steel Ltd Process for wastewater treatment
JPS5522324A (en) * 1978-08-07 1980-02-18 Nippon Steel Chem Co Ltd Waste liquid treatment using active sludge
JPS56126494A (en) * 1980-03-07 1981-10-03 Toray Eng Co Ltd Waste water treating method
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water
JPS60153998A (en) * 1984-01-20 1985-08-13 Hitachi Plant Eng & Constr Co Ltd Waste water treating agent and its preparation
JPS6120356A (en) * 1984-07-09 1986-01-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS61271090A (en) * 1985-05-25 1986-12-01 Hitachi Plant Eng & Constr Co Ltd Treating device for waste water using immobilized microorganism
JPS61287493A (en) * 1985-06-14 1986-12-17 Ebara Res Co Ltd Filtration method by granular filter medium

Also Published As

Publication number Publication date
JPS63252591A (en) 1988-10-19

Similar Documents

Publication Publication Date Title
KR960013340B1 (en) Two-stage waste water treatment
KR960013341B1 (en) Two-stage water treatment
US4721569A (en) Phosphorus treatment process
JPS6112759B2 (en)
US5776344A (en) Method for removing nitrogen from wastewater
JP2002336885A (en) Method for aerobic treatment of waste water
JP3483917B2 (en) Sewage treatment method
JP4915036B2 (en) Denitrification method and denitrification apparatus
US2492486A (en) Separating solids from a liquid
JP2590474B2 (en) Wastewater treatment method
CN109111031A (en) A kind of emulsion polymerization production of resins purification method for effluent
JP2000107797A (en) Purification method and apparatus
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
JPH0661552B2 (en) Organic wastewater treatment method
Meikap et al. Recent Advances in Bio-chemical Reactors for Treatment of Wastewater
JPH02139094A (en) Method and equipment for removing nitrogen from sewage
JPH0454519B2 (en)
EP0421483A1 (en) Aqueous stream treatment process
Dalmacija et al. Nitrates removal from surface river water by means of a biosorption system
JP2607030B2 (en) Wastewater treatment method and apparatus
KR940006405B1 (en) Biological filtering apparatus
JP3131658B2 (en) Wastewater biological treatment method
KR930001811B1 (en) Sludge treating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11