JPH02139094A - Method and equipment for removing nitrogen from sewage - Google Patents

Method and equipment for removing nitrogen from sewage

Info

Publication number
JPH02139094A
JPH02139094A JP63290033A JP29003388A JPH02139094A JP H02139094 A JPH02139094 A JP H02139094A JP 63290033 A JP63290033 A JP 63290033A JP 29003388 A JP29003388 A JP 29003388A JP H02139094 A JPH02139094 A JP H02139094A
Authority
JP
Japan
Prior art keywords
nitrification
tank
denitrification
activated sludge
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63290033A
Other languages
Japanese (ja)
Inventor
Takeshi Minami
南 武
Yukihisa Hosaka
保坂 幸尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP63290033A priority Critical patent/JPH02139094A/en
Publication of JPH02139094A publication Critical patent/JPH02139094A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To make installation area comparatively small and also to obtain a preferable biological denitrifying process at small volume without lowering denitrification efficiency by mixing sewage with both the circulated nitrification liquid and the returned activated sludge to perform denitrification and thereafter performing oxidations of BOD and then performing nitrification treatment. CONSTITUTION:Raw water is agitated and mixed with both the nitrification liquid circulated from a nitrification tank 12 and the activated sludge returned from a final sedimentation basin 4 in a denitrification tank 2 to perform denitrification. The discharged water is introduced into a BOD oxidation tank 11 and aeration is performed in the existence of activated sludge and BOD remaining in water is chiefly oxidized. The solid particle group with nitrification bacterial stuck thereon is housed in a nitrification vessel 12 and this solid particle is brought into contact with the discharged water sent from the BOD oxidation tank 11 under the aerobic conditions to perform nitrification treatment. Since large amounts of nitrification bacteria are held on the solid particle group having the large surface area, nitrification treatment is extremely efficiently performed even in a miniature vessel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、し尿あるいは産業廃水等の汚水から窒
素成分を生物学的に除去する方法及びその装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for biologically removing nitrogen components from wastewater such as sewage, human waste or industrial wastewater.

〔従来の技術〕[Conventional technology]

従来、汚水中の窒素成分を生物学的に除去する方法とし
ては、硝化槽の後段に脱窒槽を設け、脱窒槽に水素供与
体としてメタノール等を添加する方法、水素供与体とし
ては外部からは何も与えずに脱窒槽の容量を大きくした
硝化・内生脱窒法が知られている。
Conventional methods for biologically removing nitrogen components from wastewater include installing a denitrification tank after the nitrification tank and adding methanol or the like as a hydrogen donor to the denitrification tank; A nitrification/endogenous denitrification method is known in which the capacity of the denitrification tank is increased without feeding anything.

これらの脱窒法を改良したものとして、汚水中の有機物
を水素供与体として利用する循環式硝化脱窒法があり、
この方法は、第2図に示すように、最初沈殿池1、脱窒
槽2、BOD酸化・硝化槽3、最終沈殿池4を直列に配
置し、原水中の粗大固形分を最初沈殿池1で除いたのち
脱窒槽2へ導き、この脱窒槽2に最終沈殿池4から活性
汚泥を返送すると共にBOD酸化・硝化槽3から流出す
る硝化液の一部を循環させ、脱窒槽2に流入する原水中
の有機物を水素供与体として利用して脱窒を行うもので
ある。さらに、この循環式硝化脱窒法におけるBOD酸
化・硝化槽3の後段にメタノール等を添加する第2脱窒
槽を設けるパーナート(Barnard)法なども広く
知られている。
An improved version of these denitrification methods is the cyclic nitrification and denitrification method, which uses organic matter in wastewater as a hydrogen donor.
In this method, as shown in Figure 2, a primary sedimentation tank 1, a denitrification tank 2, a BOD oxidation/nitrification tank 3, and a final sedimentation tank 4 are arranged in series, and coarse solids in raw water are removed in the primary sedimentation tank 1. The activated sludge is returned to the denitrification tank 2 from the final settling tank 4, and a part of the nitrification liquid flowing out from the BOD oxidation/nitrification tank 3 is circulated to remove the raw material flowing into the denitrification tank 2. Denitrification is performed using organic matter in water as a hydrogen donor. Furthermore, the Barnard method is widely known in which a second denitrification tank for adding methanol or the like is provided after the BOD oxidation/nitrification tank 3 in this circulating nitrification/denitrification method.

また、第3図に示すように、前記循環式硝化脱窒法の脱
窒[2の前段に嫌気槽5を設け、汚水中の窒素成分を除
去すると同時にリン成分をも生物学的に除去するA、0
法もあり、さらには、この^80法におけるBOD酸化
・硝化槽3内に回転円板を設け、硝化菌を多く回転円板
に付着させるハイブリッド生物処理法(回転円板付活性
汚泥法)なども知られている。
In addition, as shown in FIG. 3, an anaerobic tank 5 is provided before the denitrification [2] of the circulating nitrification and denitrification method to biologically remove the phosphorus component as well as the nitrogen component in the wastewater. ,0
In addition, there is also a hybrid biological treatment method (activated sludge method with rotating disk) in which a rotating disk is installed in the BOD oxidation/nitrification tank 3 in this ^80 method, and a large number of nitrifying bacteria are attached to the rotating disk. Are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来のパーナート法を含めて、脱窒
槽にメタノール等を添加する方法では、薬剤のコストが
かかり、硝化・内生脱窒法では脱窒槽の容量が非常に大
きくなり、都市の大規模な下水処理場などでは不向きで
あった。
However, methods that add methanol, etc. to the denitrification tank, including the conventional Pernat method, require high chemical costs, and the nitrification/endogenous denitrification method requires a very large denitrification tank capacity, making it difficult to use in large-scale urban areas. It was not suitable for sewage treatment plants.

また、循環式硝化脱窒法(第2図参照)及びIhO法(
第3図参照)でも、BOD酸化・硝化槽3の容量が大き
くなり、標準活性汚泥法の曝気槽よりもかなり大きな容
量や設置面積を必要としていた。これは、硝化菌の増殖
速度が非常に遅く、硝化菌を冬期でも活性汚泥中に保持
しようとするために、汚泥滞留時間を長くする必要が生
じ、その結果、多大な容量や敷地面積を必要としていた
ものである。
In addition, the circulating nitrification-denitrification method (see Figure 2) and the IhO method (
(see Figure 3), the capacity of the BOD oxidation/nitrification tank 3 was large, requiring a considerably larger capacity and installation area than the aeration tank of the standard activated sludge method. This is because the growth rate of nitrifying bacteria is extremely slow, and in order to retain nitrifying bacteria in activated sludge even in winter, it becomes necessary to lengthen the sludge retention time, and as a result, a large amount of capacity and site area is required. This is what it was supposed to be.

さらに前記ハイブリッド生物処理法も、回転円板を用い
ているため、回転円板の重量支持や駆動モータの設置ス
ペース及び駆動源を要し、槽上部に円板を取り出す際の
スペースを設ける必要もあることから、汚水処理施設の
上部に覆蓋をして、その覆蓋上部を有効利用する場合な
どは汚水処理施設を非常に深くする必要があるなどの問
題点があった。
Furthermore, since the above-mentioned hybrid biological treatment method also uses a rotating disk, it requires space to support the weight of the rotating disk, installation space for a drive motor, and a drive source, and there is also a need to provide space at the top of the tank to take out the disk. Therefore, when covering the top of a sewage treatment facility and using the upper part of the cover effectively, there was a problem that the sewage treatment facility had to be made very deep.

本発明は、上記従来の問題点を解決し、従来よりも小容
量で比較的設置面積を小さくし、しかも脱窒効率を低下
させることなく、覆蓋構造の汚水処理施設にも好適な生
物学的脱窒プロセス、ならびに既設の標準活性汚泥処理
装置を簡単に改造した装置を提供しようとするものであ
る。
The present invention solves the above-mentioned conventional problems, has a smaller capacity than the conventional one, has a relatively small installation area, does not reduce denitrification efficiency, and is suitable for use in covered sewage treatment facilities. The present invention aims to provide a denitrification process and a device that is a simple modification of an existing standard activated sludge treatment device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、汚水を脱窒工程に導き、循環される硝化液と
返送される活性汚泥を混合して脱窒を行ったのち、BO
Df12化工程に導いて主としてBODの酸化を行い、
次いで硝化工程に導いて硝化菌が付着した固体粒子群と
好気的条件下で接触せしめて硝化処理し、得られた硝化
液の一部を前記脱窒工程に循環する一方、残部を固液分
離し、分離された活性汚泥の一部を前記脱窒工程に返送
することを特徴とする汚水から窒素を除去する方法であ
る。
The present invention introduces wastewater into a denitrification process, mixes the recycled nitrification liquid and returned activated sludge to perform denitrification, and then performs BO
Leading to the Df12 conversion step, mainly oxidizing BOD,
Next, it is led to the nitrification process, where it is brought into contact with the solid particles to which nitrifying bacteria have adhered, under aerobic conditions, and nitrified. A part of the obtained nitrified liquid is circulated to the denitrification process, while the remainder is used as a solid liquid. This method of removing nitrogen from wastewater is characterized in that the activated sludge is separated and a part of the separated activated sludge is returned to the denitrification process.

また、本発明は、曝気槽と後続する沈殿池を主体とした
標準活性汚泥処理装置において、前記曝気槽を汚水の流
入部から順に攪拌のみを行う脱窒槽、 Ill気を行う
BOD酸化槽及び硝化菌が付着した固体粒子群を収容し
た硝化槽に区分して連通せしめ、前記硝化槽に、流出す
る硝化液の一部を前記脱窒槽に循環せしめる循環流路と
硝化液の残部を前記沈殿槽に導く流路を付設したことを
特徴とする汚水から窒素を除去する装置である。
In addition, the present invention provides a standard activated sludge treatment device mainly consisting of an aeration tank and a subsequent settling tank, in which the aeration tank is sequentially equipped with a denitrification tank that performs only agitation from the wastewater inlet, a BOD oxidation tank that performs aeration, and a nitrification tank. The nitrification tank is divided and communicated with a nitrification tank containing a group of solid particles to which bacteria are attached, and a circulation flow path circulates a part of the nitrification liquid flowing out into the nitrification tank to the denitrification tank, and the remainder of the nitrification liquid is connected to the sedimentation tank. This is a device for removing nitrogen from wastewater, which is characterized by being equipped with a flow path that leads to nitrogen.

〔作 用〕[For production]

本発明の作用を、一実施態様を示す第1図を参照しなが
ら説明する。
The operation of the present invention will be explained with reference to FIG. 1 showing one embodiment.

まず、原水を最初沈殿池1に導いて原水中の粗大固形分
を分離したのち、脱窒槽2へ導く。脱窒槽2では、原水
は、後述する硝化槽12から循環される硝化液と最終沈
殿池4から返送される活性汚泥と攪拌混合され、原水中
のBODを脱窒に必要な水素供与体として利用して脱窒
が行われ、その流出水はBOD酸化槽11に導かれる。
First, raw water is first led to a settling tank 1 to separate coarse solids in the raw water, and then led to a denitrification tank 2. In the denitrification tank 2, the raw water is stirred and mixed with a nitrification liquid circulated from the nitrification tank 12, which will be described later, and activated sludge returned from the final settling tank 4, and BOD in the raw water is used as a hydrogen donor necessary for denitrification. Then, denitrification is performed, and the effluent water is led to the BOD oxidation tank 11.

BOD酸化槽11においては、活性汚泥の存在下に曝気
が行われ、主として水中に残留するBODが酸化された
のち硝化槽12に導かれる。
In the BOD oxidation tank 11, aeration is performed in the presence of activated sludge, and BOD mainly remaining in the water is oxidized and then introduced to the nitrification tank 12.

硝化槽12には、硝化菌が付着した砂、アンスラサイト
1粒状活性炭、プラスチック粒子その他の固体粒子群が
収容されており、この固体粒子群とBOD酸化槽11か
らの流出水とを好気的条件下で接触させて硝化処理が行
われるが、表面積の大きな固体粒子群に多量の硝化菌が
保持されているから、硝化処理は小型の槽でもきわめて
効率よく行われる。
The nitrification tank 12 contains sand to which nitrifying bacteria have adhered, anthracite 1 granular activated carbon, plastic particles, and other solid particles, and the solid particles and the outflow water from the BOD oxidation tank 11 are aerobically heated. Nitrification is carried out by contacting the particles under certain conditions, and since large amounts of nitrifying bacteria are retained in solid particles with a large surface area, nitrification can be carried out extremely efficiently even in small tanks.

硝化槽12の固体粒子群は、固定層であってもよいが、
通水中に目詰まりを生じやすいため、固体粒子群を流動
させて流動層を形成させるのが好ましく、さらに固体粒
子群を上向流通水と下部からの曝気により流動化する、
固液気の三相流動層方式とするのが最も好ましい。
The solid particle group in the nitrification tank 12 may be a fixed layer, but
Since clogging is likely to occur during water flow, it is preferable to fluidize the solid particles to form a fluidized bed, and further fluidize the solid particles by upward flowing water and aeration from the bottom.
A solid-liquid-gas three-phase fluidized bed system is most preferable.

かくて、硝化槽12において、BOD酸化槽11からの
流出水中のアンモニア性窒素は、固体粒子上の硝化菌の
働きによって、亜硝酸性窒素及び硝酸性窒素に硝化され
て流出する。この流出する硝化液の一部は前述のように
脱窒槽2に循環され、液中の亜硝酸性窒素及び硝酸性窒
素は、原水中のBODが水素供与体として利用されて脱
窒菌によって窒素ガスに還元されて除去される。また、
硝化槽12から流出する硝化液の残部は最終沈殿池4に
導かれて固液分離され、分離された活性汚泥の一部は前
述のように脱窒槽2に返送され、分離水は処理水として
系外に導かれる。
Thus, in the nitrification tank 12, ammonia nitrogen in the outflow water from the BOD oxidation tank 11 is nitrified into nitrite nitrogen and nitrate nitrogen by the action of the nitrifying bacteria on the solid particles, and then flows out. A part of this outflowing nitrification liquid is circulated to the denitrification tank 2 as described above, and the nitrite nitrogen and nitrate nitrogen in the liquid are converted into nitrogen gas by denitrifying bacteria, with BOD in the raw water being used as a hydrogen donor. is reduced to and removed. Also,
The remainder of the nitrified liquid flowing out from the nitrification tank 12 is led to the final settling tank 4 where it is separated into solid and liquid, and a part of the separated activated sludge is returned to the denitrification tank 2 as described above, and the separated water is used as treated water. be led outside the system.

従来、循環式硝化脱窒法及びA、0法では、活性汚泥の
中に硝化菌を保持させる必要があり、硝化菌が余剰汚泥
として引き抜かれることを極力抑えるために、曝気槽に
ある活性汚泥量を多くする必要があったが、本発明の上
記の硝化処理においては、硝化菌は固体粒子上に固定化
されているので系外に引き抜かれることはなく、冬期に
おいても硝化槽12では安定した硝化が行われる。従っ
て、BOD酸化fff、11では、必ずしも硝化が行わ
れている必要はなく、BODの酸化だけで処理は充分で
ある。
Conventionally, in the circulating nitrification-denitrification method and the A,0 method, it is necessary to retain nitrifying bacteria in activated sludge. However, in the above-mentioned nitrification treatment of the present invention, the nitrifying bacteria are immobilized on solid particles, so they are not drawn out of the system, and the nitrifying bacteria remain stable in the nitrification tank 12 even in winter. Nitrification takes place. Therefore, in BOD oxidation fff, 11, nitrification does not necessarily need to be performed, and oxidation of BOD alone is sufficient for treatment.

そのため、最初沈殿池lから最終沈殿池4までの槽容量
は、標準活性汚泥法の槽容量と同程度でよく、また、硝
化槽12では、固体粒子群によって硝化菌が高濃度に保
持されているので、滞留時間が短くすむため、全体とし
ても、従来の循環式硝化脱窒法及びA、0法よりも容量
や設置面積が少なくてすむ。また、硝化槽12は、槽上
部に多大な保守用のスペースを設ける必要がない。
Therefore, the tank capacity from the initial settling tank 1 to the final settling tank 4 may be about the same as the tank capacity of the standard activated sludge method, and in the nitrifying tank 12, nitrifying bacteria are retained at a high concentration by the solid particles. As a result, the residence time is shortened, and the overall capacity and installation area are smaller than those of the conventional circulating nitrification and denitrification method and the A,0 method. Further, the nitrification tank 12 does not require a large space for maintenance at the top of the tank.

以上のように、本発明は、特別の操作を要することなく
、小容量の装置で脱窒効率を高めるものであり、既設の
標準活性汚泥処理装置の曝気槽を汚水の流入部から順に
攪拌のみを行う脱窒槽2、曝気を行うBODM化槽1化
皮11化菌が付着した固体粒子群を収容した硝化槽12
に区分して連通せしめ、硝化槽12に脱窒槽2への硝化
液循環配管13と最終沈殿池4への流出配管14を付設
することにより、既設の標準活性汚泥処理装置を闇単に
改造し、全体の容量、設置面積を変えることなく、少な
くとも同一の脱窒効率を得ることができる。
As described above, the present invention improves denitrification efficiency with a small-capacity device without requiring any special operations, and only agitates the aeration tank of an existing standard activated sludge treatment device from the inlet of sewage. a denitrification tank 2 that performs aeration, a BODM tank 1 that performs aeration, and a nitrification tank 12 that accommodates solid particles to which oxidized bacteria have adhered.
The existing standard activated sludge treatment equipment was secretly modified by connecting the nitrification tank 12 with a nitrified liquid circulation pipe 13 to the denitrification tank 2 and an outflow pipe 14 to the final settling tank 4. At least the same denitrification efficiency can be obtained without changing the overall capacity or footprint.

〔実施例〕〔Example〕

次に本発明の一実施例を示す。 Next, one embodiment of the present invention will be described.

第1図の窒素除去システムにおいて、硝化槽12に有効
径0.3fi、均等係数1.5以下のケイ砂を充填し、
平均全窒素濃度30m+r/j!の生下水を通水させた
。硝化液の循環率は、生下水の水量に対して150%と
した。第1表に、第1図の窒素除去システム(本発明)
と、第2図の従来の循環式硝化脱窒法(比較例)につい
て、全窒素除去率、各種の処理時間、装置容積比を示す
。なお、処理時間は、装置容積を生下水の水量で割った
値であり、装置容積比は、標準活性汚泥法の最初沈殿池
、曝気槽、最終沈殿池の容積の合計を100としたとき
の比率である。
In the nitrogen removal system shown in FIG. 1, the nitrification tank 12 is filled with silica sand with an effective diameter of 0.3fi and a uniformity coefficient of 1.5 or less,
Average total nitrogen concentration 30m+r/j! raw sewage was passed through. The circulation rate of the nitrifying solution was 150% of the amount of raw sewage water. Table 1 shows the nitrogen removal system (invention) shown in Figure 1.
The total nitrogen removal rate, various treatment times, and device volume ratios are shown for the conventional circulating nitrification-denitrification method (comparative example) shown in FIG. In addition, the treatment time is the value obtained by dividing the equipment volume by the raw sewage water volume, and the equipment volume ratio is the sum of the volumes of the initial settling tank, aeration tank, and final settling tank of the standard activated sludge method as 100. It is a ratio.

本発明によれば、循環式の原理により、全窒素除去率は
従来の循環式硝化脱窒法と同程度であったが、装置容積
は小さくなった。
According to the present invention, due to the circulating principle, the total nitrogen removal rate was comparable to that of the conventional circulating nitrification-denitrification method, but the device volume was reduced.

以下余白 第1表 第1図は本発明の一実施態様を示す系統説明図で、第2
図及び第3図はそれぞれ従来の実施態様を示す系統説明
図である。
The following margins are Table 1. Figure 1 is a system explanatory diagram showing one embodiment of the present invention.
3 and 3 are system explanatory diagrams showing conventional embodiments, respectively.

1・・・最初沈殿池、2・・・脱窒槽、3・・・BOD
酸化・硝化槽、4・・・最終沈殿池、5・・・嫌気槽、
11・・・BOD酸化槽、12・・・硝化槽、13・・
・硝化液循環配管、14・・・流出配管。
1... First sedimentation tank, 2... Denitrification tank, 3... BOD
Oxidation/nitrification tank, 4... Final sedimentation tank, 5... Anaerobic tank,
11... BOD oxidation tank, 12... Nitrification tank, 13...
・Nitrification liquid circulation piping, 14...Outflow piping.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、装置規模を著しく
大きくすることなく、安定した窒素除去が可能であり、
敷地面積に制約がある場所、覆蓋構造の処理施設への適
用、既存の標準活性汚泥処理装置の改造等においても、
従来法では期待できない効果を有するものである。
As described above, according to the present invention, stable nitrogen removal is possible without significantly increasing the scale of the equipment.
Even in places where site area is limited, application to treatment facilities with covered structures, modification of existing standard activated sludge treatment equipment, etc.
This method has effects that cannot be expected with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)汚水を脱窒工程に導き、循環される硝化液と返送
される活性汚泥を混合して脱窒を行ったのち、BOD酸
化工程に導いて主としてBODの酸化を行い、次いで硝
化工程に導いて硝化菌が付着した固体粒子群と好気的条
件下で接触せしめて硝化処理し、得られた硝化液の一部
を前記脱窒工程に循環する一方、残部を固液分離し、分
離された活性汚泥の一部を前記脱窒工程に返送すること
を特徴とする汚水から窒素を除去する方法。
(1) Sewage is led to the denitrification process, and denitrification is performed by mixing the recycled nitrification liquid and returned activated sludge, and then led to the BOD oxidation process to mainly oxidize BOD, and then to the nitrification process. A part of the obtained nitrified liquid is circulated to the denitrification process, while the remaining part is separated into solid and liquid. A method for removing nitrogen from wastewater, comprising returning a part of the activated sludge to the denitrification process.
(2)曝気槽と後続する沈殿池を主体とした標準活性汚
泥処理装置において、前記曝気槽を汚水の流入部から順
に攪拌のみを行う脱窒槽、曝気を行うBOD酸化槽及び
硝化菌が付着した固体粒子群を収容した硝化槽に区分し
て連通せしめ、前記硝化槽に、流出する硝化液の一部を
前記脱窒槽に循環せしめる循環流路と硝化液の残部を前
記沈殿槽に導く流路を付設したことを特徴とする汚水か
ら窒素を除去する装置。
(2) In a standard activated sludge treatment system that mainly consists of an aeration tank and a subsequent settling tank, the aeration tank is sequentially moved from the inlet of sewage to a denitrification tank that only performs agitation, a BOD oxidation tank that performs aeration, and nitrifying bacteria. A circulation flow path which is divided and communicated with a nitrification tank containing a group of solid particles, and which circulates a part of the nitrification liquid flowing into the nitrification tank to the denitrification tank, and a flow path which leads the remainder of the nitrification liquid to the precipitation tank. A device for removing nitrogen from wastewater, characterized in that it is equipped with a.
JP63290033A 1988-11-18 1988-11-18 Method and equipment for removing nitrogen from sewage Pending JPH02139094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290033A JPH02139094A (en) 1988-11-18 1988-11-18 Method and equipment for removing nitrogen from sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290033A JPH02139094A (en) 1988-11-18 1988-11-18 Method and equipment for removing nitrogen from sewage

Publications (1)

Publication Number Publication Date
JPH02139094A true JPH02139094A (en) 1990-05-29

Family

ID=17750917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290033A Pending JPH02139094A (en) 1988-11-18 1988-11-18 Method and equipment for removing nitrogen from sewage

Country Status (1)

Country Link
JP (1) JPH02139094A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531493A (en) * 1991-07-31 1993-02-09 Nishihara Environ Sanit Res Corp Treatment of sewage and equipnent
KR100387765B1 (en) * 2001-01-11 2003-06-18 광주과학기술원 Intracircular treatment of drainage or waste water using pure oxygen and a medium for holding microorganisms
JP2009028698A (en) * 2007-07-31 2009-02-12 Metawater Co Ltd Reaction tank for sewage treatment
JP2017047399A (en) * 2015-09-04 2017-03-09 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removal equipment and modification method of nitrogen removal equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531493A (en) * 1991-07-31 1993-02-09 Nishihara Environ Sanit Res Corp Treatment of sewage and equipnent
KR100387765B1 (en) * 2001-01-11 2003-06-18 광주과학기술원 Intracircular treatment of drainage or waste water using pure oxygen and a medium for holding microorganisms
JP2009028698A (en) * 2007-07-31 2009-02-12 Metawater Co Ltd Reaction tank for sewage treatment
JP2017047399A (en) * 2015-09-04 2017-03-09 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removal equipment and modification method of nitrogen removal equipment

Similar Documents

Publication Publication Date Title
US4179374A (en) Apparatus for the treatment of wastewater
WO2015171374A1 (en) Method and system for treating wastewater in an integrated fixed film activated sludge sequencing batch reactor
JP4867098B2 (en) Biological denitrification method and apparatus
JP4923348B2 (en) Biological denitrification method
JP4915036B2 (en) Denitrification method and denitrification apparatus
JPH0125634B2 (en)
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
US3235487A (en) Sewage treatment process
JPH067789A (en) Bacteria immobilized carrier and biologically nitrogen removing apparatus using the carrier
JPH02139094A (en) Method and equipment for removing nitrogen from sewage
US7056438B2 (en) Flood and drain wastewater treatment system and associated methods
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP2000093992A (en) Wastewater treatment system
KR20020075046A (en) The treating method of high concentration organic waste water
JPH04310298A (en) Biological nitrogen removing unit
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JPH02139093A (en) Method and equipment for removing nitrogen from sewage
JPH02214596A (en) Method and device for removing nitrogen from sewage
JPS61287498A (en) Biological treatment of organic sewage
JPS63232891A (en) Batch type activated sludge waste water treating device
JP2798326B2 (en) Microbial immobilization carrier
JP3696359B2 (en) Wastewater treatment equipment
JPH05337494A (en) Biological nitrogen removing equipment
JP2000279992A (en) Waste water treatment and apparatus therefor